
A Time-space Trade-off for Constraint Networks Decomposition

Philippe J́egou
LSIS - Universit́e d’Aix-Marseille 3

Avenue Escadrille Normandie-Niemen
13397 Marseille Cedex 20 (France)

philippe.jegou@univ.u-3mrs.fr

Cyril Terrioux
LSIS - Universit́e d’Aix-Marseille 3

Avenue Escadrille Normandie-Niemen
13397 Marseille Cedex 20 (France)

cyril.terrioux@univ.u-3mrs.fr

Abstract

We study here a CSP decomposition method in-
troduced in [9] and called Cyclic-Clustering. While
[9] only presents the principles of the method, this
paper explains how this method can be made op-
erational by exploiting good properties of triangu-
lated induced subgraphs. After, we give formal results
which show that Cyclic-Clustering proposes a time-
space trade-off w.r.t. theoretical complexities. Finally,
we present some preliminary experiments which show
that Cyclic-Clustering may be efficient in practice.

1. Introduction

The CSP formalism (Constraint Satisfaction Prob-
lem) offers a powerful framework for representing
and solving efficiently many problems. In particu-
lar, many academic or real problems can be formu-
lated in this framework which allows the expression
of NP-complete problems. Generally, CSPs are solved
by different versions of backtrack search whose time
complexity is exponential in the size of the instance.
Nevertheless, theoretical results have shown that, for
some particular instances, we can provide better com-
plexity bounds. These new bounds are often obtained
by applying decomposition methods which exploit
some topological properties of constraint networks
which are represented by graphs (or hypergraphs).
For example, in [2, 5], two decomposition strategies
have been proposed, theCycle-Cutset method(CCM)
and theTree-Clustering scheme(TC). However, while
their theoretical interest seems significant (see [7] for
an analysis), their practical advantages have not been
proved yet. Firstly [9] and recently [4] have proposed
some trade-offs between time and space complexity
to make this class of approaches usable. Moreover, in
[10], an hybrid approach, which combines backtrack-

ing with structural decomposition has shown its prac-
tical interest for solving hard CSPs. So, it seems that
trade-offs and hybrid approaches allow to propose re-
alistic implementations of structural methods. This pa-
per studies this direction by analyzing and trying to
make usable theCyclic-Clusteringmethod (CC [9]).
Note that [9] only describes the motivations and prin-
ciples of this method. Our description of CC allows
us to give complexity results, which prove that this
method can actually make a compromise between TC
and CCM. For example, we demonstrate that the theo-
retical time and space complexities of CC are located
between ones of TC and CCM. Finally, we present an
implementation based on BTD [10] which allows CC
to obtain interesting practical results.

The paper is organized as follows. Section 2 in-
troduces the main definitions about the CSP formal-
ism and decomposition methods like TC and CCM.
Section 3 presents theoretical foundations of CC and
section 4 gives the formal comparisons w.r.t. TC and
CCM. Section 5 deals with an efficient implementa-
tion of CC and presents some preliminary experimen-
tal results. Finally, we conclude in section 6. For lack
of place in this paper, all the proofs of properties and
theorems are given in [11].

2. CSPs and decomposition methods

A constraint satisfaction problem(CSP) also called
a constraint network, consists of a set of variables
which must be assigned with a value from finite do-
mains such that each constraint is satisfied. Formally,
a CSP is defined by a tuple(X, D, C, R). X is a set
{x1, . . . , xn} of n variables. Each variablexi takes its
values in the finite domainDi from D. Variables are
subject to constraints fromC. Each constraintCi is
defined as a set{xi1 , . . . , xiji

} of variables. A rela-
tion Ri (from R) is associated with each constraintCi

such thatRi represents the set of allowed tuples over

Di1×· · ·×Diji
. A solution of a CSP is an assignment

of a value to each variable which satisfies all the con-
straints. For a CSPP, the hypergraph(X, C) is called
the constraint hypergraph. A CSP is said binary if all
the constraints are binary, i.e. they involve only two
variables, so(X, C) is a graph (called the constraint
graph) associated to(X, D, C,R). For a given CSP,
the problem is either to find all solutions or one solu-
tion, or to know if there exists any solution. The deci-
sion problem (existence of solution) is NP-complete.

Generally, CSPs are solved by different versions
of backtrack search whose time complexity is ex-
ponential in the size of the instance. Consequently,
many works try to improve the search efficiency. They
mainly deal with binary CSPs. In [6], Freuder gives
a preprocessing procedure for selecting a good vari-
able ordering prior to running the search. One of his
main results is a sufficient condition for backtrack-free
search. The most interesting property indicates that
an arc-consistent binary CSP whose constraint graph
is acyclic admits a solution and there is a backtrack-
free search order (this property also holds for arbi-
trary CSPs with hypergraphs). This property shows
that the tractability of CSPs is intimately connected to
the topological structure of their underlying constraint
graphs. This property has led authors to propose meth-
ods for solving cyclic CSPs, as CCM [2] and TC [5].

Among the methods based on a tree-decomposition
of the constraint network, we have chosen, for sake of
simplicity and without loss of generality, to describe
TC. TC consists in building a new CSP by forming
clusters of variables such that the interactions between
the clusters are tree structured. The new CSP is equiv-
alent to the first one (i.e. it has the same set of so-
lutions), but the associated constraint hypergraph is
acyclic and it can be solved efficiently. The time com-
plexity of TC is O(n.dW .W.log(d)) with d the size
of the largest domain andW the arity of the largest
constraint in the new CSP (equal to the size of the
maximum clique). Its space complexity isO(m.dW)
with m the number of clusters, but can be limited to
O(m.dS) (like, for instance, Cluster Tree Elimination
[3]) with S the size of the largest intersection between
two clusters (i.e. the maximal size between minimal
separators in the graph). Finally, note that the problem
of finding the best tree decomposition, that is with the
minimal value ofW , is NP-hard. For more details, see
[3, 5, 7]. In the sequel, we will call TC methods based
on tree decomposition as TC [5], Join Tree Elimina-
tion [3] or Cluster Tree Elimination [3].

While these methods seem to be the most efficient
methods to solve binary CSPs w.r.t. their time com-
plexity (see [7]), their practical interest is really lim-

ited because the time computation is too expensive and
the required memory size too large in practical cases.
So, [10] has proposed an alternative approach, called
BTD, which limits the size of the required memory
and also avoids some redundancies in the search.

CCM [2] is based on the fact that assigned vari-
ables change the effective connectivity of the con-
straint graph. A cycle-cutset of a graph (resp. hyper-
graph) is a set of vertices such that the deletion of
these vertices induces an acyclic graph (resp. acyclic
hypergraph). So, as soon as all the variables of the
cycle-cutset are assigned, all the cycles of the con-
straint graph are cut. For binary CSP, the time com-
plexity of CCM is O(e.dK+2) with e the number of
constraints andK the size of cycle-cutset while for
non-binary CSPs it isO(e.r.log(r).dK) wherer is the
size (number of tuples) of the largest relation associ-
ated to constraints in the CSP. The most important pa-
rameter in this complexity isK, but the problem of
minimizing K is NP-hard. Note that for non-binary
CSPs, after the assignment of the cycle-cutset, the in-
duced acyclic CSP can be solved using the same kind
of procedure than TC.

It has been shown that for optimal values ofW and
K, we haveW ≤ K + 2, and then, TC is theoreti-
cally better than CCM for time complexity. But, nei-
ther TC nor CCM has shown their practical interest.
As indicated in [10], this is due to the practical space
complexity for TC, while it is probably due to the time
complexity for CCM.

3. Running cyclic-clustering (CC)

The alternative approach calledcyclic-clustering
(CC) has been introduced in [9] to avoid drawbacks
of TC and CCM but [9] only presents the ideas of the
approach without any indication on carrying out the
method. CC runs in four steps. The first step consists
in finding all maximal cliques of the initial constraint
graph. The second step considers each maximal clique
and then solves the associated subproblems. The re-
sult is a constraint hypergraph whose constraints cor-
respond to the solved subproblems. The two last steps
consist in finding a minimal cycle-cutset and then run-
ning CCM on this new CSP. Unfortunately, running
CC is not easy because of some theoretical and practi-
cal problems. For example, it is well known that in an
arbitrary graph, the number of maximal cliques can be
exponential in the number of vertices and then achiev-
ing the first step is practically impossible. So, in this
section, we introduce another way for running CC,
which is based on good combinatorial and algorith-
mic properties of triangulated graphs. Figure 1 sum-

2

6

1 2 3 4 5

7891011

(a)

1 2 3 4 5

7891011

(b)

6

Figure 1. Example of CC decomposition.

marizes our approach. The first step of CC (a) iden-
tifies a Triangulated Induced Subgraph (TIS) of the
graph (all the vertices and edges belong to the TIS,
except vertices 2 and 4 and dotted edges). The sec-
ond step generates an acyclic n-ary CSP based on the
TIS (b). So the last step solves the initial CSP by ap-
plying the cycle-cutset method on the new problem,
since the vertices which do not belong to the TIS de-
fine a cycle-cutset of the new problem (vertices 2 and
4 in this example). Theoretical justifications of this ap-
proach are based on properties of TIS.

We need now to recall some definitions on
graph and hypergraph theory: Theprimal graph
of a hypergraph(X, C) is the graph(X, E) with
E = {{Xi, Xj} | ∃Ck ∈ C s.t. {Xi, Xj} ⊆ Ck}.
A graph is triangulated if every cycle of length
at least four has a chord, i.e. an edge joining two
non-consecutive vertices along the cycle. Sev-
eral equivalent definitions have been proposed for
acyclic hypergraphs in the literature. Here we con-
sider one related to triangulated graphs. A hyper-
graph is conformal if every maximal clique of its
primal graph corresponds to an edge in the origi-
nal hypergraph (an original constraint). A hypergraph
is acyclic if it is conformal and its primal graph is tri-
angulated. Given a graphG = (X, C), if T is
a subset ofX, G(T) = (T,C(T)) is the sub-
graph of G induced by vertices ofT , that is
C(T) = {{xi, xj} ∈ C : xi, xj ∈ T}. The graph
G(T) is aTriangulated Induced Subgraph(TIS) of G
if and only if G(T) is triangulated.G(T) is a Maxi-
mal TIS(MTIS) if T is maximal for inclusion, i.e. if
6 ∃T ′ such thatT 6⊆ T ′ ⊆ X andG(T ′) is triangu-
lated.

In [1], Balas and Yu defined an efficient algorithm
calledTRIANGto find a MTIS; its time complexity is
O(n + e). Note that the computed MTIS is not neces-
sary a maximum size induced subgraph w.r.t. the num-
ber of vertices, but it is always a maximal subgraph
w.r.t. the inclusion in the set of vertices (finding such
a maximum subgraph is a NP-hard problem).

To simplify, and without loss of generality, we only
present our approach on constraint graphs. To extend

this method to non-binary CSPs, it is sufficient to con-
sider the primal graph used in TC. Given the initial
constraint graph, the first step consists in finding a
TIS. The second step generates a hypergraph which
has two kinds of edges. The first kind of edges corre-
sponds to the maximal cliques of the TIS and the sec-
ond one to the edges of the initial graph that do not
belong to the subgraph. The primal graph of this hy-
pergraph is the initial constraint graph and we know
a cycle-cutset of this hypergraph which corresponds
to the vertices that do not appear in the TIS. From
this hypergraph, CC produces a new CSP. Some edges
of the new CSP correspond to new constraints. For
these new constraints, we must compute all their con-
sistent tuples (w.r.t. the original constraints). The last
step consists in applying CCM.

Given a graphG = (X, C), Hmax(G) = (X, C′)
denotes the hypergraph induced by maximal cliques of
G, that isC′ is the set of maximal cliques inG. Given
a subsetY of X, EG(Y) = {c ∈ C : c ∩ Y 6= ∅},
i.e. EG(Y) is the set of edges which contain at least
one vertex inY . Given a hypergraphH = (X, C)
and a subsetY of X, H(Y) = (Y, C ′) denotes the
hypergraph induced by the set of verticesY , where
C ′ = {c′ ⊆ Y : ∃c ∈ C, c′ ⊆ c and c′ is maxi-
mal }. If Y is such thatH(X \ Y) is acyclic, thenY
is a cycle-cutset ofH.

Property 1 Given a graphG = (X, C) and a sub-
setT of X such thatG(T) is triangulated, then the
hypergraphHmax(G(T)) is acyclic.

Property 2 Given a graphG = (X, C), T a sub-
set ofX and C′ the set of maximal cliques inG(T),
that is Hmax(G(T)) = (T, C′); if G(T) is triangu-
lated, thenX \ T is a cycle-cutset of the hypergraph
HT = (X, C′ ∪ EG(X \ T)).

Property 3 Given a graphG = (X, C) and T a
subset ofX; if G(T) is a maximal TIS ofG, then
Y = X \ T is a minimal cycle-cutset ofHT =
(X, C′∪EG(Y)) whereC′ is the set of maximal cliques
in G(T).

Given a binary CSPPG = (X, D, C,R) with a
graphG = (X, C), andT a subset ofX such that
G(T) is a triangulated graph, the CSP induced byT
onPG is PHT

= (X, D, CT , RT) defined by:CT =
C′ ∪EG(Y) whereC′ is the set of maximal cliques of
G(T), that isHmax(G(T)) = (T, C′) andY = X \T ,
andRT = {Ri ∈ R : Ci ∈ EG(Y)} ∪ {R′

i : C′i ∈ C′
andR′

i =1Cj⊆C′
i

Rj} where the symbol1 denotes
the join operator of relational databases theory. More-
over,HT = (X, CT). If G(T) is a maximal TIS ofG,
thenPHT

is called a maximal CSP induced byT on
PG.

3

We apply this definition to the example given
in figure 1. Here,T = X\{2, 4} and thenCT =
{{1, 2}, {1, 11}, {2, 3}, {2, 10}, {3, 4}, {3, 9}, {4, 5},
{4, 6}, {4, 8}, {5, 6, 7}, {6, 7, 8}, {8, 9}, {9, 10},
{10, 11}}. The relations associated to binary con-
straints correspond to initial relations while new
constraints, defined by ternary relations, are ob-
tained by solving associated subproblems. So we
have R{5,6,7} = R{5,6} 1 R{5,7} 1 R{6,7} and
R{6,7,8} = R{6,7} 1 R{6,8} 1 R{7,8}.

Theorem 1 LetPG = (X, D, C,R) be a binary CSP
with a graphG = (X, C), T a subset ofX such that
G(T) is a TIS, andPHT

= (X, D, CT , RT) the CSP
induced byT onPG. The set of solutions ofPG, de-
notedSolPG

, is equal to the set of solutions ofPHT
.

Theorem 1 summarizes the method: given a bi-
nary CSP PG = (X, D, C,R) with graph G,
it is sufficient to determine a setT of vertices
such thatG(T) is a TIS of G. To find the set
T , we use the procedureTRIANG(G, T) . Af-
ter, we considerG(T) and we compute its maxi-
mal cliquesC′ thanks to an appropriate procedure
CliquesMaxTriangulated(G(T), C′) . At the
next step, we generate the CSP induced byT onPG,
PHT

= (X, D, CT , RT) by solving each subprob-
lem corresponding to each clique inC′. We denote
this procedure Generate(PG, T, C′,PHT

) . Fi-
nally, since the subsetX \T is a minimal cycle-cutset
of the hypergraphHT , we can apply the general
cycle-cutset method to solvePHT

, using the proce-
dureCycleCutsetMethod(PHT

, X \T, SolPG
) .

1. CC(PG, SolPG
)

2. Begin
3. TRIANG(G, T);
4. CliquesMaxTriangulated(G(T), C′);
5. Generate(PG, T, C′,PHT

);
6. CycleCutsetMethod(PHT

, X \ T, SolPG
)

7. End

Figure 2. Cyclic Clustering.

Theorem 2 The procedureCCis sound.

Theorem 3 The time complexity of CC is
O(e + n.a.da+k) while its space complexity is
O(n.s.ds) wheres is the size of the largest intersec-
tion between two clusters, that is the maximal size be-
tween minimal separators in the TIS andk the
cycle-cutset size.

Note that the first step of this approach allows to
compute the complexity of parametersa and k in

O(n+e) and then gives a new measure of the complex-
ity of a CSP whose computation can be made in linear
time. Another advantage of this approach of CC is that
the total height of backtracking is decomposed in two
different parts: one for solving subproblems (param-
etera), and the other one for solving the cycle-cutset
(parameterk). Finally, we see that time complexity is
bounded byexp(a + k).

4. Theoretical comparisons

We consider hereW andS for TC,K for CCM and
a, s andk for CC. Though optimal values forW , S,
K, a, s andk are difficult to obtain in practice because
all the associated optimization problems are NP-hard,
the analysis proposed here takes into account the opti-
mal values of these parameters.

Firstly, it is clear thats ≤ S. Note that it is easy to
find some examples of CSPs such thatk + a � K.
More generally and formally, the first result allows
us to claim that CC theoretically outperforms CCM
for time complexity while the second theorem indi-
cates that given a CC decomposition, we can obtain
an equivalent TC decomposition w.r.t. time complex-
ity.

Theorem 4 Given a binary CSP, if there exists a
cycle-cutset of sizeK, then there exists a CC decom-
position witha andk satisfyingk + a ≤ K + 2.

Theorem 5 Given a binary CSP and a CC decompo-
sition with parametersa andk, then there is a TC de-
composition with parameterW satisfyingW = k+a.

Note that for space complexity, CCM is better than
CC since the required space is limited toO(n) while
the next theorem allows us to affirm that CC decom-
position always outperforms TC decomposition con-
sidering worst-case space complexity.

Theorem 6 Given a binary CSPPG = (X, D, C,R),
for all cyclic-clustering decomposition with parame-
tersa andk, and for all tree-clustering decomposition
with parameterW , we havea ≤ W .

Note that the comparison with other structural
methods is easy from a theoretical viewpoint. Un-
fortunately, from a practical viewpoint, CCM and
TC have seldom shown their interest for solv-
ing hard problems (even if the theoretical parameters
seem interesting).

5. Implementing cyclic-clustering

Because of the limited practical interest of TC, it
is natural to implement CC by replacing TC, after the

4

assignment of the cycle-cutset, by BTD whose effi-
ciency is better than TC’s one. So, we will show here
how it is possible to exploit BTD and we present an
optimization of its use in CC.

For implementing CC, a natural approach should
consist in running BTD when the cycle-cutset has
been assigned. This approach, denotedCC-BTD1,
is clearly possible and guarantees the complex-
ity bounds given for CC. Nevertheless, this approach
is not necessarily the most efficient. Indeed, each time
CC has consistently assigned the cycle-cutset, it must
run BTD for computing and recording goods and no-
goods again. But it is clear that a part of this pro-
cessing can be avoided. Let us consider a consistent
assignment of the cycle-cutset. BTD will com-
pute and record goods and nogoods which are related
to the considered assignment. Indeed, some no-
goods are obtained because the assignment of a
particular variable of the cycle-cutset causes the in-
consistency of a part of assignments of future vari-
ables. For another assignment of the cycle-cutset,
the same assignment of the same variable can now
give a good. So, given a new consistent assign-
ment of the cycle-cutset, it seems impossible to
exploit the goods and nogoods produced by a previ-
ous call of BTD. Nevertheless, it is possible to ex-
ploit the nogoods produced by a preliminary call
of BTD. We will denote this second approach as
CC-BTD2. Now, before running CC, we first con-
sider a call to BTD. It is clear that all the recorded no-
goods correspond to assignments which cannot be ex-
tended to a complete consistent assignment, in partic-
ular including variables belonging to the cycle-cutset.
So, these nogoods can be exploited for all consis-
tent assignments of the cycle-cutset to cut search.
On the other hand, computed goods cannot be ex-
ploited directly because they have been computed
on subproblems which are not necessarily compati-
ble with any assignment of the cycle-cutset.

Before providing experiments about these two ap-
proaches, note that the integration of BTD in CC of-
fers already a theoretical interest:

Theorem 7 Given a CSPP = (X, D, C,R) and a
cyclic-clustering decomposition with a TISG(T) and
parametersa andk, the time complexity ofCC-BTDi

(i = 1, 2) is O(e+n.a.da+k) while its space complex-
ity is O(n.s.ds) wheres is the size of the largest inter-
section between two maximal cliques ofG(T).

First, we must note that the efficiency of CC mostly
depends on the number of solutions of the cycle-
cutset. Indeed, in the worst case, CC computes all the
solutions of the cycle-cutset. So, for efficiency rea-

sons, CC needs a cycle-cutset with few solutions, what
raises the question about the computation of a suit-
able cycle-cutset. A solution may consist in comput-
ing a MTIS thanks to the Balas and Yu’s algorithm
[1]. By so doing, we obtain cycle-cutsets with a rea-
sonable size, but they often have a lot of solutions.
So, we have preferred build a larger but more con-
strained cycle-cutset which has fewer solutions by us-
ing a heuristic method. This method consists in choos-
ing a variable, removing it from the constraint graph
and repeating this process until the graph is triangu-
lated. The selected variables form the cycle-cutset. To
limit the number of solutions of the cycle-cutset, at
each step, we choose the variable which shares most
constraints with previously selected variables.

We first experiment CC-BTDi on binary classi-
cal random instances and we compare them with
Forward-Checking [8], MAC [12] and FC-BTD [10].
For ordering variables in FC, MAC or inside a clus-
ter for FC-BTD and CC-BTDi, we use the well-known
dom/deg heuristic which first chooses the variable

xi which minimizes the ratio
|dxi

|
|Γxi

| with dxi the cur-
rent domain ofxi and Γxi the set of the variables
sharing a constraint withxi. The classical random in-
stances are produced thanks to the generator written
by D. Frost et al. Considered classes are close to the
satisfiability threshold. For each class, we solve 50 in-
stances whose constraint graph is connected. In spite
of the absence of suitable properties, we do not ob-
serve a degradation of performance with respect to
FC or FC-BTD. Details of these experiments are re-
ported in [11].

As it is well known that classical random instances
do not have a particular structure, we assess the in-
terest of our method on binary structured random in-
stances. By structured instances, we mean that the
constraint graph of produced instances presents some
suitable properties for CC-BTDi. Formally, our ran-
dom generator takes 8 parameters. It builds a CSP of
class(n, d, a, t, s, k, e1, e2) with n+k variables, each
having a domain of sized. For each constraint,t tuples
are forbidden. We first build a clique-tree (like in [10])
with a the size of the largest clique ands the size of the
largest intersection between two cliques. This clique-
tree containsn variables. Note that a clique-tree is a
TIS. Then, we build the cycle-cutset which containsk
variables ande1 constraints. Finally, we adde2 con-
straints between the cycle-cutset and the clique-tree.
By so doing, produced problems have a suitable struc-
ture. Unfortunately, we do not have any method to rec-
ognize such a structure. So, as we aim to assess the in-
terest of CC-BTDi for structured problems and not the
quality of the computed cycle-cutset, we provide the

5

Class FC MAC FC-BTD CC-BTD1 CC-BTD2

(50,15,15,75,5,15,80,50) 42.00 89.98 10.14 4.76 3.35
(50,15,15,76,5,15,80,50) 24.68 85.14 23.62 3.35 2.44
(50,15,15,71,5,20,130,50) 46.42 159.96 40.70 0.35 0.35
(50,15,15,72,5,20,130,50) 211.36 699.47 128.53 0.29 0.30
(50,15,15,77,5,15,80,30) 1.89 8.64 1.58 4.89 1.49
(50,15,15,78,5,15,80,30) 39.98 89.56 1.51 3.45 2.15

Table 1. Structured random instances.

cycle-cutset to CC-BTDi. Selected classes are close
to the satisfiability threshold. For each class, we solve
50 instances whose constraint graph is connected.

Table 1 shows that CC-BTDi may outperform
MAC, FC and FC-BTD when the problem struc-
ture has the suitable properties. Note that this struc-
ture is not really suitable for FC-BTD, what may
explain the results obtained by FC-BTD. In partic-
ular, the cluster size for FC-BTD is significantly
more important than one for CC-BTDi. For in-
stance, the largest cluster of FC-BTD often involves
about 50 variables while CC-BTDi’s one con-
tains at most 15 variables. We can also observe
that CC-BTD2 is better than CC-BTD1. So the no-
goods recorded during the preliminary call of BTD al-
low CC-BTD2 to prune some parts of the search
space.

To sum up, CC-BTDi may be an interesting ap-
proach for solving structured problems. The main dif-
ficulty lies in recognizing the problem structure, that
is computing a good cycle-cutset with only few solu-
tions. So, methods which compute such cycle-cutsets
must be developed before we can fully assess the prac-
tical interest of CC-BTDi (for instance, by solving
real-world instances).

6. Conclusion

In this paper, we have studied the Cyclic-Clustering
decomposition method [9]. While [9] only presented
the principles of the method, we have explained here
how this method can be made operational by exploit-
ing good properties of triangulated induced subgraphs.
Then, we have shown that Cyclic-Clustering proposes
a time-space trade-off w.r.t. theoretical complexities.
Indeed, we have proved that its time complexity is
less than one of the Cycle-Cutset scheme while its
space complexity is less than Tree-Clustering’s one.
Finally, we have presented some preliminary experi-
ments which show that Cyclic-Clustering based on an
hybrid adaptation of Tree-Clustering called BTD [10]
may be efficient in practice as soon as the instance
to solve has the suitable structural properties. From
a practical viewpoint, many works must be developed,

principally in two directions. Firstly, we must study al-
gorithmic tools for finding better TIS. The second di-
rection concerns a better use of informations produced
by BTD during the preliminary phase of CC-BTD2.

References

[1] E. Balas and C. Yu. Finding a maximum clique in an
arbitrary graph. Siam J. on Computing, 15(4):1054–
1068, 1986.

[2] R. Dechter. Enhancement Schemes for Constraint Pro-
cessing: Backjumping, Learning, and Cutset Decom-
position.Artificial Intelligence, 41:273–312, 1990.

[3] R. Dechter.Constraint processing. Morgan Kaufmann
Publishers, 2003.

[4] R. Dechter and Y. E. Fattah. Topological Parame-
ters for Time-Space Tradeoff.Artificial Intelligence,
125:93–118, 2001.

[5] R. Dechter and J. Pearl. Tree-Clustering for Constraint
Networks.Artificial Intelligence, 38:353–366, 1989.

[6] E. Freuder. A Sufficient Condition for Backtrack-Free
Search.JACM, 29:24–32, 1982.

[7] G. Gottlob, N. Leone, and F. Scarcello. A Comparison
of Structural CSP Decomposition Methods.Artificial
Intelligence, 124:343–282, 2000.

[8] R. Haralick and G. Elliot. Increasing tree search effi-
ciency for constraint satisfaction problems.Artificial
Intelligence, 14:263–313, 1980.

[9] P. J́egou. Cyclic-Clustering: a compromise between
Tree-Clustering and the Cycle-Cutset method for im-
proving search efficiency. InProceedings of ECAI-90,
pages 369–371, 1990.

[10] P. J́egou and C. Terrioux. Hybrid backtracking
bounded by tree-decomposition of constraint net-
works. Artificial Intelligence, 146:43–75, 2003.

[11] P. J́egou and C. Terrioux. A time-space trade-off for
constraint networks decomposition. Technical report,
LSIS, 2004. Available at www.lsis.org.

[12] D. Sabin and E. Freuder. Contradicting Conventional
Wisdom in Constraint Satisfaction. InProceedings of
ECAI-94, pages 125–129, 1994.

6

