Conflict History Based Heuristic for Constraint Satisfaction Problem Solving*

Djamal Habet Cyril Terrioux
Aix Marseille Univ, Université de Toulon, CNRS, LIS, Marseille, France
\{djamal.habet,cyril.terrioux\}@lis-lab.fr

Abstract

The variable ordering heuristic is an important module in algorithms dedicated to solve Constraint Satisfaction Problems (CSP), while it impacts the efficiency of exploring the search space and the size of the search tree. It also exploits, often implicitly, the structure of the instances. In this paper, we propose Conflict-History Search (CHS), a dynamic and adaptive variable ordering heuristic for CSP solving. It is based on the search failures and considers the temporality of these failures throughout the solving steps. The exponential recency weighted average is used to estimate the evolution of the hardness of constraints throughout the search. The experimental evaluation on XCSP3 instances shows that integrating CHS to solvers based on MAC (Maintaining Arc Consistency) and BTD (Backtracking with Tree Decomposition) achieves competitive results and improvements compared to the state-of-the-art heuristics. Beyond the decision problem, we show empirically that the solving of the constraint optimization problem (COP) can also take advantage of this heuristic.

1 Introduction

The Constraint Satisfaction Problem (CSP) is an important formalism in Artificial Intelligence (AI) which allows to model and efficiently solve problems that occur in various fields, both academic and industrial (e.g. [8, 19, 37, 40]). A CSP instance is defined on a set of variables, which must be assigned in their respective finite domains. Variable assignments must satisfy a set of constraints, which express restrictions on assignments. A solution is an assignment of each variable, which satisfies all constraints.

CSP solving is often based on backtracking algorithms. In recent years, it has made significant progress thanks to research on several aspects. In particular, considerable effort is devoted to global constraints, filtering techniques, learning and restarts [37]. An important component in CSP solvers is the variable ordering heuristic. Indeed, the corresponding heuristics define, statically or dynamically, the order in which the variables will be assigned and, thus, the way that the search space will be explored and the size of the search tree. The problem of finding the best variable to assign (i.e. one which minimizes the search tree size) is NP-Hard [30].

Many heuristics have been proposed (e.g. [4, 5, 6, 7, 12, 13, 18, 32, 35]) aiming mainly to satisfy the first-fail principle [17] which advises "to succeed, try first where you are likely to fail". Nowadays, the most efficient heuristics are adaptive and dynamic $[6,12,18,32,35]$, where the variable ordering is defined according to the collected information since the beginning of the search. For instance, some heuristics consider the effect of filtering when decisions and propagations are applied [32, 35]. dom/wdeg is one of the simplest, the most used and efficient variable ordering heuristic [6]. It is based on the hardness of constraints and, more specifically, reflects how often a constraint fails. It uses a weighting process to focus on the variables appearing in constraints with high weights which are assumed to be hard to satisfy. In addition, some heuristics, such as LC [25] and COS [11], attempt to consider the search history while they require the use of auxiliary heuristics.

In this paper, we propose Conflict-History Search (CHS), a new dynamic and adaptive variable ordering heuristic for CSP solving. It is based on the history of search failures, which happen as soon as a domain of a variable is emptied after constraint propagations. The goal is to reward the scores of constraints that have recently been involved in conflicts and therefore to favor the variables appearing in these constraints. The scores of constraints are estimated on the basis of the exponential recency weighted average technique, which comes from reinforcement learning [41]. It was also recently used in defining powerful branching heuristics for solving the satisfiability problem (SAT) [28, 29]. We have integrated CHS in solvers based on MAC (Maintaining Arc Consistency) [38] and BTD (Backtracking with Tree-Decomposition) [24]. The empirical evaluation on XCSP3 instances ${ }^{1}$ shows that CHS is competitive and brings improvements to the state-of-the-art heuristics. In addition, this evaluation provides an extensive study of the performance of state-of-the-art search heuristics on more than 12,000 instances. Finally, we also study, from a practical viewpoint, the benefits of the proposed heuristic for solving constraint optimization problems (COP).

The paper is structured as follows. Section 2 includes some necessary definitions and notations. Section 3 presents and details our contribution, the CHS variable ordering heuristic. Section 4 describes related work on variable ordering heuristics for CSP and

[^0]on branching heuristics for the satisfiability problem. CHS is evaluated experimentally and compared to the main powerful heuristics of the state-of-the-art on CSP instances in Section 5 and on COP ones in Section 6. Finally, we conclude and give some perspectives on extending the application of CHS.

2 Preliminaries

This section is dedicated to the definition of CSP and Exponential Recency Weighted Average, which we use to propose our heuristic.

2.1 Constraint Satisfaction Problem

An instance of a Constraint Satisfaction Problem (CSP) is given by a triple (X, D, C), such that: $X=\left\{x_{1}, \cdots, x_{n}\right\}$ is a set of n variables, $D=\left\{D_{1}, \ldots, D_{n}\right\}$ is a set of finite domains, and $C=\left\{c_{1}, \cdots, c_{e}\right\}$ is a set of e constraints. The domain of each variable x_{i} is D_{i}. Each constraint c_{j} is defined by its scope $S\left(c_{j}\right)$ and its compatibility relation $R\left(c_{j}\right)$, where $S\left(c_{j}\right)=\left\{x_{j_{1}}, \cdots, x_{j_{k}}\right\} \subseteq X$ and $R\left(c_{j}\right) \subseteq D_{j_{1}} \times \cdots \times D_{j_{k}}$. The constraint satisfaction problem asks for an assignment of the variables $x_{i} \in X$ within their respective domains $D_{i}(1 \leq i \leq n)$ that satisfies each constraint in C. Such consistent assignment is a solution. Checking whether a CSP instance has a solution is NP-complete [37].

In the past decades, many solvers have been proposed for solving CSPs. Generally, from a practical viewpoint, they succeed in solving efficiently a large kind of instances despite of the NP-completeness of the CSP decision problem. In most cases, they rely on optimized backtracking algorithms whose time complexity is at least in $O\left(e . d^{n}\right)$ where d denotes the size of the largest domain. In order to ensure an efficient solving, they commonly exploit jointly several techniques (see [37] for more details) among which we can cite:

- variable ordering heuristics which aim to guide the search by choosing the next variable to assign (we discuss about some state-of-the-art heuristics in Section 4),
- constraint learning and non-chronological backtracking which aim to avoid some redundancies during the exploration of the search space,
- filtering techniques enforcing some consistency level which aim to simplify the instance by removing some values from domains or tuples from constraint relations which cannot participate to a solution.

For instance, most state-of-the-art solvers maintain some consistency level at each step of the search, like MAC (Maintaining ArcConsistency [38]) or RFL (Real Full Look-ahead [34]) do for arc-consistency. This latter turns out to be a relevant tradeoff between the number of removed values and the runtime.

We now recall MAC with more details. During the solving, MAC develops a binary search tree whose nodes correspond to decisions. More precisely, it can make two kinds of decisions: positive decisions $x_{i}=v_{i}$ which assign the value v_{i} to the variable x_{i} and negative decisions $x_{i} \neq v_{i}$ which ensure that x_{i} cannot be assigned with v_{i}. Let us consider $\Sigma=\left\langle\delta_{1}, \ldots, \delta_{i}\right\rangle$ (where each δ_{j} may be a positive or negative decision) as the current decision sequence. At each node of the search tree, MAC takes either a positive decision or negative one. When reaching a new level, it starts by a positive decision which requires to choose a variable among the unassigned variables and a value. Both choices are achieved thanks to heuristics. Then, once the decision made, MAC applies an arc-consistency filtering. This filtering deletes some values of unassigned variables which are not consistent with the last taken decision and Σ. By so doing, a domain may become empty. In such a case, we say that a dead-end or a conflict occurs. This means that the current set of decisions cannot lead to a solution. If no dead-end occurs, the search goes on to the next level by choosing a new positive decision. Otherwise, the current decision is called into question. If it is a positive decision $x_{i}=v_{i}$, MAC makes the corresponding negative decision $x_{i} \neq v_{i}$, that is the value v_{i} is deleted from the domain D_{i}. Otherwise, it is a negative decision and MAC backtracks to the last positive decision $x_{\ell}=v_{\ell}$ in Σ and makes the decision $x_{\ell} \neq v_{\ell}$. If no such decision exists, it means that the instance has no solution. In contrast, if MAC succeeds in assigning all the variables, the corresponding assignment is, by construction, a solution of the considered instance.

More recently, restart techniques have been introduced in the CSP framework (e.g. in [27]). They generally allow to reduce the impact of bad choices performed thanks to heuristics (like the variable ordering heuristic) or of the occurrence of heavy-tailed phenomena [14]. For efficiency reasons, they are usually exploited with some learning techniques like recording of nld-nogoods in [27]. These nogoods can be seen as a set of decisions which cannot be extended to a solution. They are used to avoid visiting again a part of the search space which has already been visited by MAC. These nogoods are recorded each time a restart occurs.

2.2 Exponential Recency Weighted Average

Given a time series of m numbers $y=\left(y_{1}, y_{2}, \cdots, y_{m}\right)$, the simple average of y is $\sum_{i=1}^{m} \frac{1}{m} y_{i}$ where each y_{i} has the same weight $\frac{1}{m}$. There are situations where recent data are more relevant than old data to describe the current situation. The Exponential Recency

Weighted Average (ERWA) [41] takes into account such considerations by giving higher weights to the recent data than the older ones. More precisely, the exponential moving average \bar{y}_{m} is computed as follows:

$$
\bar{y}_{m}=\sum_{i=1}^{m} \alpha \times(1-\alpha)^{m-i} \times y_{i}
$$

where $0<\alpha<1$ is a step-size parameter which controls the relative weights between recent and past data. The moving average can also be calculated incrementally by the formula:

$$
\bar{y}_{m}=(1-\alpha) \times \bar{y}_{m-1}+\alpha \times y_{m} .
$$

The base case is $\bar{y}_{0}=0$. ERWA is used to solve the bandit problem to estimate the expected reward of different actions in nonstationary environments [41]. In bandit problems, the agent must select an action to play, from a given set of actions, while maximizing its long term expected reward.

3 Conflict-History Search for CSP

This section is dedicated to our contribution by defining and describing a new variable ordering heuristic for CSP solving, which we call Conflict-History Search (CHS). The main idea is to consider the history of constraint failures and favor the variables that often appear in recent failures. In this order, the conflicts are dated and the constraints are weighted on the basis of the exponential recency weighted average. These weights are coupled with the variable domains to calculate the Conflict-History scores of the variables.

3.1 CHS Description

Formally, CHS maintains for each constraint c_{j} a score $q\left(c_{j}\right)$ which is initialized to 0 at the beginning of the search. If c_{j} leads to a failure during the search because the domain of a variable in $S\left(c_{j}\right)$ is emptied then $q\left(c_{j}\right)$ is updated by the formula below derived from ERWA [41]:

$$
q\left(c_{j}\right)=(1-\alpha) \times q\left(c_{j}\right)+\alpha \times r\left(c_{j}\right)
$$

The parameter $0<\alpha<1$ is the step-size and $r\left(c_{j}\right)$ is the reward value. The parameter α fixes the importance given to the old value of q at the expense of the reward r. The value of α decreases over time as it is applied in reinforcement learning to converge towards relevant values of q [41]. In other words, decreasing the value of α amounts to giving more importance to the last value of q and considering that the values of q are more and more relevant as the search progresses. Furthermore, we are interested by the constraint failure to follow the first-fail principle [17].

CHS applies the decreasing policy of α, which is successfully used for designing efficient branching heuristic for the satisfiability problem [28, 29]. More precisely, starting from an initial value α_{0}, α decreases by 10^{-6} at each constraint failure to a minimum of 0.06. This minimum value of α controls the number of steps before considering that a convergence is reached.

The reward value $r\left(c_{j}\right)$ is based on how recently c_{j} occurred in conflicts. More precisely, it relies on the proximity between the previous conflict in which c_{j} is involved and the current one. By so doing, we aim to give a higher reward to constraints that fail regularly over short periods of time during the search space exploration. The reward value is calculated according to the formula:

$$
r\left(c_{j}\right)=\frac{1}{\operatorname{Conflicts}-\operatorname{Conflict}\left(c_{j}\right)+1}
$$

Initialized to 0 , Conflicts is the number of conflicts which have occurred since the beginning of the search. Conflict $\left(c_{j}\right)$ is also initialized to 0 for each constraint $c_{j} \in C$. When a conflict occurs on $c_{j}, r\left(c_{j}\right)$ and $q\left(c_{j}\right)$ are computed. Then Conflicts is incremented by 1 and $\operatorname{Conflict}\left(c_{j}\right)$ is updated to the new value of Conflicts.

At this stage, we define the Conflict-History score of a variable $x_{i} \in X$ as follows:

$$
\begin{equation*}
\operatorname{chv}\left(x_{i}\right)=\frac{\sum_{c_{j} \in C: x_{i} \in S\left(c_{j}\right) \wedge\left|\operatorname{Uvars}\left(S\left(c_{j}\right)\right)\right|>1} q\left(c_{j}\right)}{\left|D_{i}\right|} \tag{1}
\end{equation*}
$$

$\operatorname{Uvars}(Y)$ is the set of unassigned variables in $Y . D_{i}$ is the current domain of x_{i} and its size may be reduced by the propagation process in the current step of the search. CHS chooses the variable to assign with the highest chv value. In this manner, CHS focuses branching on the variables with a small domain size belonging to constraints which appear recently and repetitively in conflicts.

One can observe that at the beginning of the search, all the variables have the same score, which is equal to 0 . To avoid random selection, we update Equation 1 to calculate $c h v$ as given below, where δ is a positive real number close to 0 .

$$
\begin{equation*}
\operatorname{chv}\left(x_{i}\right)=\frac{\sum_{c_{j} \in C: x_{i} \in S\left(c_{j}\right) \wedge\left|\operatorname{Uvars}\left(S\left(c_{j}\right)\right)\right|>1}\left(q\left(c_{j}\right)+\delta\right)}{\left|D_{i}\right|} \tag{2}
\end{equation*}
$$

Thus, when the search starts, the branching will be oriented according to the degree of the variables without having a negative influence on the ERWA-based calculation later in the search. CHS selects the branching variable with the highest chv value calculated according to Equation 2.

The heuristic CHS is described in Algorithm 1 with an event-driven approach. Lines 2-7 correspond to the initialization step. If a conflict occurs when enforcing the filtering with the constraint c_{j}, the associated event is triggered and the score is update (Lines 8-14). The selection of a new variable is achieved thanks to Lines 15-16.

```
Algorithm 1: CHS
    Input: an event \(e\)
    switch \(e\) do
        case initialization do
            \(\alpha \leftarrow \alpha_{0}\)
            Conflicts \(\leftarrow 0\)
            for \(c_{j} \in C\) do
                Conflict \(\left(c_{j}\right) \leftarrow 0\)
                \(q\left(c_{j}\right) \leftarrow 0\)
        case conflict when filtering with \(c_{j}\) do
            \(r\left(c_{j}\right) \leftarrow \frac{1}{\text { Conflicts-Conflict }\left(c_{j}\right)+1}\)
            \(q\left(c_{j}\right) \leftarrow(1-\alpha) \times q\left(c_{j}\right)+\alpha \times r\left(c_{j}\right)\)
            Conflicts \(\leftarrow\) Conflicts +1
            Conflict \(\left(c_{j}\right) \leftarrow\) Conflicts
            if \(\alpha>0.06\) then
                \(\alpha \leftarrow \alpha-10^{-6}\)
        case select a new variable do
            return a variable \(x\) s.t. \(x \in \underset{x_{i} \in U \operatorname{vars}(X)}{\arg \min \frac{\sum_{c_{j} \in C: x_{i} \in S\left(c_{j}\right) \wedge\left|U \operatorname{vars}\left(S\left(c_{j}\right)\right)\right|>1}\left(q\left(c_{j}\right)+\delta\right)}{\left|D_{i}\right|}}\)
        case restart do
            \(\alpha \leftarrow \alpha_{0}\)
            for \(c_{j} \in C\) do
                    \(q\left(c_{j}\right) \leftarrow q\left(c_{j}\right) \times 0.995^{\text {Conflicts-Conflict }\left(c_{j}\right)}\)
```


3.2 CHS and Restarts

Restart techniques are known to be important for the efficiency of solving algorithms (see for example [26]). Restarts may allow to reduce the impact of irrelevant choices done during the search according to heuristics, such as variable selection.

As it will be detailed later, CHS is integrated into CSP solving algorithms, which include restarts. In the corresponding implementations, the Conflict $\left(c_{j}\right)$ value of each constraint c_{j} is not reinitialized when a restart occurs. It is the same for $q\left(c_{j}\right)$. However, a smoothing may be applied and will be explained below. Keeping this information unchanged reinforces learning from the search history.

Concerning the step-size α, which defines the importance given to the old value of $q\left(c_{j}\right)$ at the expense of the reward $r\left(c_{j}\right)$, CHS reinitializes the value of α to α_{0} at each restart (Line 18 of Algorithm 1). This may guide the search through different parts of the search space.

3.3 CHS and Smoothing

At each conflict, CHS updates the $c h v$ score of one constraint at a time: the constraint c_{j} which is used to wipe out the domain of a variable in $S\left(c_{j}\right)$. As long as they do not appear in new conflicts, some constraints can have their weights unchanged for several search steps. These constraints may have high scores while their importance does not seem significant for the current part of the search. To avoid this situation, we propose to smooth the scores $q\left(c_{j}\right)$ of all the constraints $c_{j} \in C$ at each restart by the following formula:

$$
q\left(c_{j}\right)=q\left(c_{j}\right) \times 0.995^{\text {Conflicts-Conflict }\left(c_{j}\right)}
$$

Hence, the scores of constraints are decayed according to the date of their last appearances in conflicts (Lines 19-20 of Algorithm 1).

4 Related Work

Before providing a detailed experimental evaluation of CHS and its components, we present the most efficient and common variable ordering heuristics for CSP. As CHS, the recalled heuristics share the same behavior. In effect, the variables and/or constraints are weighted dynamically throughout the search by considering the collected information since its beginning. Some of these heuristics, such as Last Conflict [25], require the use of an auxiliary heuristic as it will be explained later. We also recall briefly branching heuristics for the satisfiability problem. It should be recalled that ERWA was first used in the context of the satisfiability problem [28, 29].

4.1 Impact-Based Search (IBS)

This heuristic selects the variable which leads to the largest search space reduction [35]. The impact on the search space size is approximated as the reduction of the product of the variable domain sizes. Formally, the impact of assigning the variable x_{i} to the value $v_{i} \in D_{i}$ is defined by:

$$
I\left(x_{i}=v_{i}\right)=1-\frac{P_{a f t e r}}{P_{\text {before }}}
$$

$P_{a f t e r}$ and $P_{\text {before }}$ are respectively the products of the domain cardinalities after and before branching on $x_{i}=v_{i}$ and applying constraint propagations. By doing so, selecting the next branching variable requires the computation of the impact of each variable assignment, by simulating filtering at each node of the search tree. This can be very time consuming. Hence, IBS considers the impact of an assignment at a given node as the average of its observed impacts. More precisely, if K is the index set of impacts observed of $x_{i}=v_{i}$, IBS estimates an averaged impact of this assignment as follows, where I_{k} is $k^{t h}$ impact value:

$$
\bar{I}\left(x_{i}=v_{i}\right)=\frac{\sum_{k \in K} I_{k}\left(x_{i}=v_{i}\right)}{|K|}
$$

Finally, the impact of a variable according to its current domain, which may be filtered, is defined as follows:

$$
\mathcal{I}\left(x_{i}\right)=\sum_{v \in D_{i}} 1-\bar{I}\left(x_{i}=v\right)
$$

IBS selects the variable with the highest impact value $\mathcal{I}\left(x_{i}\right)$.

4.2 Conflict-Driven Heuristic

A popular variable ordering heuristic for CSP solving is $d o m / w d e g$ [6]. It guides the search towards the variables appearing in the constraints which seem hard to satisfy. For each constraint c_{j}, the $d o m / w d e g$ heuristic maintains a weight $w\left(c_{j}\right)$, initially set to 1 , counting the number of times that c_{j} has led to a failure (i.e. the domain of a variable x_{i} in $S\left(c_{j}\right)$ is emptied during propagation from c_{j}). The weighted degree of a variable x_{i} is defined as:

$$
w d e g\left(x_{i}\right)=\sum_{c_{j} \in C: x_{i} \in S\left(c_{j}\right) \wedge\left|U \operatorname{vars}\left(S\left(c_{j}\right)\right)\right|>1} w\left(c_{j}\right)
$$

The dom/wdeg heuristic selects the variable x_{i} to assign with the smallest ratio $\left|D_{i}\right| / w \operatorname{deg}\left(x_{i}\right)$, such that D_{i} is the current domain of x_{i} (the size of D_{i} may be reduced in the current search step). Note that the constraint weights are not smoothed in $\mathrm{dom} / \mathrm{wdeg}$. Also, variants of $d o m / w d e g$ were introduced, such as in [18], but are not widely used in practice. Very recently, a refined version of $w d e g$ (called $w d e g^{c a . c d}$) has been defined in [43]. When a conflict occurs for a constraint c_{j}, instead of increasing its weight by 1 as in $d o m / w d e g, w d e g^{c a . c d}$ increases its weight by a value depending on the number of unassigned variables in the scope of c_{j} and their current domain size.

4.3 Activity-Based Heuristic (ABS)

ABS is motivated by the prominent role of filtering techniques in CSP solving [32]. It exploits this filtering information and maintains measures of how often the variable domains are reduced during the search. In practice, at each node of the search tree, constraint propagation may filter the domains of some variables after the decision process. Let X_{f} be the set of such variables. Accordingly, the activities $A\left(x_{i}\right)$, initially set to 0 , of the variables $x_{i} \in X$ are updated as follows:

- $A\left(x_{i}\right)=A\left(x_{i}\right)+1$ if $x_{i} \in X_{f}$
- $A\left(x_{i}\right)=\gamma \times A\left(x_{i}\right)$ if $x_{i} \notin X_{f}$
γ is a decay parameter, such that $0 \leq \gamma \leq 1$. The ABS heuristic selects the variable x_{i} with the highest ratio $A\left(x_{i}\right) /\left|D_{i}\right|$.

4.4 CHB in Gecode

Dedicated to constraint programming, Gecode solver implements Conflict-History based Branching (CHB) heuristic since version 5.1.0 released in April 2017 [39]. It follows the same steps of the first definition of CHB in the context of the satisfiability problem [28, 29]. In Gecode, the following parameters are used to update the Q-score of each variable x_{i} of the CSP instance, denoted $q s\left(x_{i}\right)$. f is the number of failures encountered since the beginning of the search and $l f\left(x_{i}\right)$ is the last failure number of x_{i}, corresponding to the last time that D_{i} is emptied.

Initialized to 0.05 for each variable x_{i}, CHB update the Q -score $q s\left(x_{i}\right)$ of x_{i} during the constraint propagation as follows:

- If D_{i} is not reduced then $q s\left(x_{i}\right)$ remains unchanged
- If D_{i} is pruned and the search leads to a failure, $l f\left(x_{i}\right)$ is set to f and $q s\left(x_{i}\right)$ is updated by:

$$
q s\left(x_{i}\right)=(1-\alpha) \times q s\left(x_{i}\right)+\alpha \times r
$$

The step-size α, initialized to 0.4 , is updated to $\alpha-10^{-6}$ if $\alpha>0.06$. The value of the reward r is given by:

$$
r=\frac{1}{f-l f\left(x_{i}\right)+1}
$$

- If D_{i} is pruned and the search does not lead to a failure, $q s\left(x_{i}\right)$ is also updated by:

$$
q s\left(x_{i}\right)=(1-\alpha) \times q s\left(x_{i}\right)+\alpha \times r
$$

In this case, the reward value is defined by:

$$
r=\frac{0.9}{f-l f\left(x_{i}\right)+1}
$$

CHB in Gecode selects the variable with the highest Q-score.

4.5 Last Conflict (LC)

Last Conflict (LC) reasoning [25] aims to better identify and exploit nogoods in a binary tree search, where each node has a first branch corresponding to a positive decision $\left(x_{i}=v_{i}\right)$ and eventually a second branch with a negative decision $\left(x_{i} \neq v_{i}\right)$.

If a positive decision $x_{i}=v_{i}$ leads to a conflict then LC records the variable x_{i} as a conflicting variable. The value v_{i} is removed from the domain D_{i} of x_{i}. After developing the negative branch $x_{i} \neq v_{i}$, LC continues the search by assigning a new value v_{i}^{\prime} to x_{i} instead of choosing a new decision variable. This treatment is repeated until a successful assignment of x_{i} is achieved. In this case, the variable x_{i} is unrecorded as a conflicting one and the next decision variable is decided by an auxiliary variable ordering heuristic. Hence, this last one is used when no conflicting variable is recorded by LC.

4.6 Conflict Order Search (COS)

Conflict Order Search (COS) [11] is intended to focus the search on the variables which lead to recent conflicts. When a branching on a variable x_{i} fails, x_{i} is stamped by the total number of failures since the beginning of the search (the initial stamp value of each variable is 0). COS prefers the variable with the highest stamp value. An auxiliary heuristic is used if all the unassigned variables have the stamp value 0 .

4.7 Branching Heuristics for the Satisfiability Problem

In the context of the satisfiability problem, modern solvers based on Conflict-Driven Clause Learning (CDCL) [10, 31, 33] employ variable branching heuristics correlated to the ability of the variable to participate in producing learnt clauses when conflicts arise (a conflict is a clause falsification). The Variable State Independent Decaying Sum (VSIDS) heuristic [33] maintains an activity value for each Boolean variable. The activities are modified by two operations: the bump (increase the activity of variables appearing in the process of generating a new learnt clause when a conflict is analyzed) and the multiplicative decay of the activities (often applied at each conflict). VSIDS selects the variable with the highest activity to branch on.

Recently, a conflict history based branching heuristic (CHB) [28], based on the exponential recency weighted average, was introduced. It rewards the activities to favor the variables that were recently assigned by decision or propagation. The rewards are higher if a conflict is discovered. The Learning Rate Branching (LRB) heuristic [29] extends CHB by exploiting locality and introducing the learning rate of the variables.

4.8 Discussion

Reinforcement learning techniques have already been studied in constraint programming. The multi-armed bandit framework is used to select adaptively the consistency level of propagation at each node of the search tree [2]. A linear regression method is used to learn the scoring function of value heuristics [9]. Rewards are calculated and used to select adaptively the backtracking strategy [1]. Learning process based on Least Squares Policy Iteration technique is used to tune adaptively the parameters of stochastic local search algorithms [3].

More recently, upper confidence bound and Thompson Sampling techniques are employed to select automatically a variable ordering heuristic for CSP, among a set of candidate ones, at each node of the search tree [44]. The considered candidate set contains notably IBS, ABS and dom/wdeg. Knowing that no heuristic always outperforms another, Xia and Yap exploit reinforcement learning (under the form of a multi-armed bandit) to choose the search heuristic to employ at each node of the search rather than choosing a particular heuristic before the solving. More recently, Wattez et al. have proposed another MAB approach [42]. Like in the work of Xia and Yap, each heuristic corresponds to an arm. In contrast, an new arm is chosen at each restart instead of each node. On the other hand, in CHS, reinforcement learning allows to select the branching variable based on ERWA. Note also that CHS can be used as an additional arm in the work of Xia and Yap while it is already exploited as an arm in [42].

To return to the heuristics detailed in this section, LC, COS and CHB are also conceptually interested in the search history as CHS. They act directly on the variable scores while CHS considers this history by weighting the constraints that are responsible for failures before scoring the variables. As an illustration, CHB in Gecode updates the Q-score values of variables according to ERWA while CHS uses ERWA to update the weight of constraints to calculate the score of the variables. The update of the α parameter is also different between CHS and CHB, especially during restarts.

Weight and score decaying is also used in other heuristics such as ABS. However, it is applied to the score of the variables and not that of the constraints such as in CHS. It is also important to note that there is no decaying in CHB. Furthermore, CHS and dom/wdeg calculate differently the score of the constraints leading to failures. In the first case, the score of the constraint is always incremented by a constant value 1 . In the second case, the new score is a tradeoff between the current one and the reward that varies at each failure. Moreover, the scores of constraints are not decayed in dom/wdeg contrary to CHS. Finally, unlike LC and COS, CHS does not require the use of an auxiliary heuristic.

5 Experimental Evaluation on CSP Instances

This section is devoted to the evaluation of the behavior of our heuristic when solving CSP instances (decision problem). We first describe the experimental protocol we use. In subsection 5.2, we assess the sensitivity of our heuristic CHS to its parameters and the benefits of smoothing and resetting. Afterwards, we compare CHS with state-of-the-art variable ordering heuristics in subsection 5.3, before studying the behavior of CHS when it is used jointly with LC or COS in subsection 5.4. Finally, in subsection 5.5, we evaluate the practical interest of CHS in the particular case where the search is guided by a tree-decomposition.

5.1 Experimental Protocol

We consider all the CSP instances from the XCSP3 repository ${ }^{2}$ and the XCSP3 competition 2018 ${ }^{3}$, resulting in 16,947 instances. XCSP3, for XML-CSP version 3, is an XML-based format to represent instances of combinatorial constrained problems. Our solvers are compliant with the rules of the competition except that the global constraints cumulative, circuit and some variants of the allDifferent constraint (namely except and list) or the noOverlap constraint are not supported yet. Consequently, from the 16,947 obtained instances, we first discard 1,233 unsupported instances. We also remove 2,813 instances which are detected as inconsistent by the initial arc-consistency preprocessing and having no interest for the present comparison. Finally, we have noted that some instances appear more than once. In such a case, we keep only one copy. In the end, our benchmark contains 12,829 instances, including notably structured instances and instances with global constraints.

Regarding the solving step, we exploit MAC with restarts [27] before assessing the impact of our approach on a structural solving method, namely BTD-MAC+RST+Merge [21]. Roughly speaking, BTD-MAC+RST+Merge differs from MAC by the exploitation of the structure via the notion of tree-decomposition (i.e. a collection of subsets of variables, called clusters, which are arranged in the form of a tree [36]). While the search performed by MAC considers at each step all the remaining variables, one performed by BTD-MAC+RST+Merge only takes into account the unassigned variables of the current cluster. The clusters of the computed tree-decomposition are processed according to a depth-first traversal of the tree-decomposition starting from a cluster called the root cluster (see [21] for more details). For BTD-MAC+RST+Merge, the tree-decompositions are computed with the heuristic H_{5}-TDWT [21]. The first root cluster is the cluster having the maximum ratio number of constraints to its size minus one. At each restart, the selected root cluster is one which maximizes the sum of the weights of the constraints whose scope intersects the cluster. The merging heuristic is the one provided in [21]. Note that these settings except the variable ordering heuristic correspond to those used for the XCSP3 competitions 2017 and 2018 [15, 22, 23].

[^1]MAC and BTD-MAC+RST+Merge use a geometric restart strategy based on the number of backtracks with an initial cutoff set to 100 and an increasing factor set to 1.1. In order to make the comparison fair, the lexicographic ordering is used for the choice of the next value to assign. We consider the following heuristics $d o m / w d e g, w d e g^{c a . c d}$, ABS , IBS and CHB as implemented in Gecode. For ABS, we fix the decay parameter γ to 0.999 as in [32]. Note that we do not exploit a probing step like one mentioned in [32]. So all the weights are initially set to 0 . For CHB, we use the value parameters as given in [39]. We also introduce a new variant $d o m / w d e g+s$ which we define as $d o m / w d e g$ where the weights of constraints are smoothed at each restart, exactly as in CHS. For all the heuristics, ties (if any) are broken by using the lexicographic ordering.

We have written our own C++ code to implement all the compared variable ordering heuristics in this section, as well as the solvers that exploit them (MAC and BTD). By so doing, we avoid any bias related to the way the heuristics and solvers are implemented. In particular, the variable ordering heuristics are all implemented with equal refinement and care. Moreover, when comparing the variable ordering heuristics for a given solver, the only thing which differs is the variable ordering heuristic. Indeed, we use exactly the same propagators, the same value heuristic, etc. This ensures that we make a fair comparison. Finally, given a solver and a CSP instance, we consider that a variable ordering heuristic h_{1} is better than another one h_{2} if h_{1} allows the solver to solve the instance faster than h_{2}. Indeed, the aim of variable ordering heuristic is to make a good tradeoff between the size of the explored search tree and the runtime spent for choosing a relevant variable (remember that finding the best one is an NP-Hard task [30]). Since all the other parts of the solver are identical, the solving runtime turns to be a relevant measure of the quality of this tradeoff. Thus, when the comparison relies on a collection of instances, h_{1} is said better than h_{2} if it leads the solver to solve more instances than h_{2}. If both lead to solve the same number of instance, ties are broken by considering the smaller cumulative runtime. At the end, note that our protocol is consistent with the recommendations outlined in [20].

The experiments are performed on Dell PowerEdge R440 servers with Intel Xeon Silver 4112 processors (clocked at 2.6 GHz) under Ubuntu 18.04. Each solving process is allocated a slot of 30 minutes and at most 16 GB of memory per instance. In the following tables, \#solved (abbreviated sometimes \#solv.) denotes the number of solved instances for a given solver and time is the cumulative runtime, i.e. the sum of the runtime over all the considered instances.

5.2 Impact of CHS Settings

In this part, we assess the sensitivity of CHS with respect to the chosen values for α_{0} or δ. First, we observe the impact of α_{0} value. Hence, we fix δ to 10^{-4} to start the search by considering the variable degrees then quickly exploit ERWA-based computation. We then vary the value of α_{0}.

Table 1: Number of instances solved by MAC+CHS depending on the value of α_{0} (between 0.1 and 0.9) for consistent instances (SAT), inconsistent ones (UNSAT), and all the instances (ALL) and the cumulative runtime (in hours) of MAC+CHS for all the instances.

α_{0}	\# solved instances			time (h)
	SAT	UNSAT	ALL	
0.1	$\mathbf{6 , 5 3 0}$	$\mathbf{4 , 2 1 2}$	$\mathbf{1 0 , 7 4 2}$	$\mathbf{1 , 0 3 8 . 8 9}$
0.2	6,505	4,206	10,711	$1,049.55$
0.3	6,505	4,203	10,708	$1,052.04$
0.4	6,493	4,204	10,697	$1,056.14$
0.5	6,509	4,202	10,711	$1,058.13$
0.6	6,487	4,205	10,692	$1,062.14$
0.7	6,504	4,207	10,711	$1,055.46$
0.8	6,479	4,197	10,676	$1,072.28$
0.9	6,473	4,203	10,676	$1,071.43$
VBS	6,691	4,242	10,933	940.21

Table 1 presents the number of instances solved by MAC depending on the initial value of α_{0} and the corresponding cumulative runtime. Here, we first vary α_{0} between 0.1 and 0.9 with a step of 0.1 . We also provide the results of the Virtual Best Solver (VBS). The VBS is a theoretical/virtual solver that returns the best answer obtained by MAC with a given α_{0} among those considered here. Roughly, it allows to count the number of the instances solved at least one time when varying the value of α_{0}, while considering the smaller corresponding runtime. Table 1 shows that the results obtained for the different values of α_{0} are relatively close to each others. However, we can observe that the value $\alpha_{0}=0.1$ allows MAC to solve more instances $(10,742$ solved instances with a cumulative solving time of $1,038.89$ hours) than the other considered values. More precisely, MAC with CHS and $\alpha_{0}=0.1$ solves at least 31 additional instances. The worst cases are $\alpha_{0}=0.8$ and $\alpha_{0}=0.9$ with 10,676 instances solved respectively in 1,072 and 1,071 hours. If we discard the value 0.1 for α_{0}, we observe that the results for the remaining considered values are quite close. This shows that CHS is relatively robust w.r.t. the α_{0} parameter. Moreover, we can also remark that these observations are still valid if we focus on SAT instances (respectively on UNSAT instances). For example, the choice $\alpha_{0}=0.1$ leads to solving the largest number of SAT instances (resp. UNSAT instances), exactly 6,530 instances (resp. 4,212 instances). Figures 1 and 2 also show that $\alpha_{0}=0.1$ is the best choice among the experimented values. Indeed, we can note that the curve corresponding to $\alpha_{0}=0.1$ is almost always
above the others in both figures. These two figures also highlight the robustness of CHS w.r.t. the value of α_{0} since all the curves are quite close.

Figure 1: Number of solved instances as a function of the elapsed time for α_{0} varying between 0.1 and 0.9 and the VBS, for a runtime between 1 s and 60 s .

Figure 2: Number of solved instances as a function of the elapsed time for α_{0} varying between 0.1 and 0.9 and the VBS, a for runtime between 60 s and $1,800 \mathrm{~s}$.

Since the value $\alpha_{0}=0.1$ leads to the best result, a natural question is what happens if we consider the value $\alpha_{0}=0$ (which is normally a forbidden value since $0<\alpha<1$). So we run MAC + CHS with $\alpha_{0}=0$. In this case, the number of solved instances decreases significantly since only 9,069 instances are solved. At the same time, the runtime is almost doubled with a cumulative runtime of $1,921.35$ hours. Consequently, the benefit of CHS is highly related to the tradeoff between the rewards of the past conflicts and the reward of the last one and so choosing a positive value for α_{0} is crucial. The impact of this tradeoff is reinforced by the fact that MAC+CHS with $\alpha_{0}=1$ (a forbidden value too) performs worse than most of the combinations of MAC with α_{0} between 0.1 and 0.9. Indeed, it only solves 10,667 instances while spending more time ($1,089.37 \mathrm{~h}$).

Likewise, we can wonder what happens if we choose a value slightly different from 0.1 . Hence, we now vary α_{0} between 0.025 and 0.15 with a step of 0.025 (see Table 2). Again, MAC+CHS with $\alpha_{0}=0.1$ turns to be the best case by solving more instances and obtaining the smallest cumulative runtime. Furthermore, the robustness of CHS w.r.t. the α_{0} parameter is strengthened since we can note that the other values of α_{0} obtain close results.

Regarding the Virtual Best Solver (VBS) in Table 1, we note that it can solve 191 additional instances than MAC+CHS when

Table 2: Number of instances solved by MAC+CHS depending on the value of α_{0} (between 0.025 and 0.15) for consistent instances (SAT), inconsistent ones (UNSAT), and all the instances (ALL). and the cumulative runtime (in hours) of MAC+CHS for all the instances.

α_{0}	\# solved instances			time (h)
	SAT	UNSAT	ALL	
0.025	6,507	4,202	10,709	$1,061.07$
0.05	6,512	4,212	10,724	$1,058.89$
0.075	6,500	4,204	10,704	$1,064.61$
0.1	$\mathbf{6 , 5 3 0}$	$\mathbf{4 , 2 1 2}$	$\mathbf{1 0 , 7 4 2}$	$\mathbf{1 , 0 3 8 . 8 9}$
0.125	6,519	4,203	10,722	$1,078.10$
0.15	6,503	4,207	10,710	$1,061.81$

$\alpha_{0}=0.1$ with the best runtime of 940.21 h . We can also remark that most of these additional instances are consistent (161 SAT instances vs. 30 UNSAT). If we consider the results instance per instance, we observe that 10,478 instances are solved whatever the chosen value for α_{0}, which shows again the robustness of CHS w.r.t. the value of α_{0}. Furthermore, among the 455 remaining ones, there exists 106 instances which are only solved by MAC with a particular value for α_{0} (of course this value depends on the considered instance) and for 32% of the instances, MAC needs more than 1,200 seconds in order to solve each of them. Accordingly, some instances seem to be harder to solve. Finally, we observe that these 455 instances belong to several families. Indeed, more than half of the considered families are involved here, which shows that this phenomenon is more related to the instances themselves than to a particular feature of their family.

Now, we set α_{0} to 0.1 and evaluate different values of δ (see Table 3). The observations are similar to those presented previously, showing the robustness of CHS regarding δ. Also, it is interesting to highlight that MAC+CHS with $\delta=0$ solves 10,683 instances while it solves 10,742 instances if $\delta=10^{-4}$. This illustrates the relevance of introducing δ in CHS since it allows to solve 59 more instances with this last setting.

Table 3: Impact of the value of δ on MAC+CHS regarding the number of solved instances and the cumulative runtime in hours.

δ	SAT	UNSAT	ALL	time (h)
0	6,479	4,204	10,683	$1,079.25$
10^{-5}	6,519	4,207	10,726	$1,043.53$
$\mathbf{1 0}^{-4}$	$\mathbf{6 , 5 3 0}$	$\mathbf{4 , 2 1 2}$	$\mathbf{1 0 , 7 4 2}$	$\mathbf{1 , 0 3 8 . 8 9}$
10^{-3}	6,508	4,199	10,707	$1,044.41$

Table 4 gives the results of MAC + CHS $\left(\alpha_{0}=0.1, \delta=10^{-4}\right)$ with smoothing $(+s)$ the constraint scores or without ($-s$) and/or with resetting $(+r)$ the value of α to 0.1 at each new restart or without $(-r)$. The observed behaviors clearly support the importance of smoothing and restarts for CHS. For example, MAC+CHS $+s-r$ solves 13 less instances than MAC + CHS, while MAC + CHS $-s+r$ solves 84 instances less.

Table 4: Number of instances solved by MAC with CHS with/without smoothing and reset of α and cumulative runtime in hours.

Solver	SAT	UNSAT	ALL	time (h)
MAC+CHS $(+s+r)$	$\mathbf{6 , 5 3 0}$	$\mathbf{4 , 2 1 2}$	$\mathbf{1 0 , 7 4 2}$	$\mathbf{1 , 0 3 8 . 8 9}$
MAC+CHS $+s-r$	6,520	4,209	10,729	$1,043.95$
MAC+CHS- $s-r$	6,484	4,199	10,683	$1,064.20$
MAC+CHS- $s+r$	6,482	4,176	10,658	$1,067.72$

Finally, these results are globally consistent with those presented in [16]. Indeed, except that the best value of α_{0} is now 0.1 instead of 0.4 in [16], we observe the same trends. The benchmark used in [16] was a subset of our initial benchmark. If we proceed similarly by removing arc-inconsistent instances, we obtain a benchmark with 7,916 instances. From this benchmark, MAC solved respectively 6,700 and 6,706 instances with 0.1 and 0.4 for α_{0} in [16], while in the current experiments, it succeeds in solving 6,837 and 6,829 instances. In both cases, the gap between the two values of α_{0} is very small. Note that the increase in the number of solved instances is mainly related to some improvements in our implementation and the difference of hardware configurations. Both impact all the heuristics in the same manner.

5.3 CHS vs. Other Search Heuristics

Now, we compare CHS to other search strategies from the state-of-the-art, namely dom/wdeg, wdeg ${ }^{\text {ca.cd }}, \mathrm{ABS}$, IBS and CHB. In the remaining part of the paper, by default, we consider CHS with $\alpha_{0}=0.1$ and $\delta=10^{-4}$. We also consider the variant $d o m / w d e g+s$ that we introduced for $\mathrm{dom} / \mathrm{wdeg}$.

Figure 3 presents the number of solved instances as a function of the elapsed time for each considered heuristic. Since no heuristic outperforms another for all instances or families of instances, Tables 5-8 give some details for each family of instances. They allow to have a better insight of the kind of instances for which CHS is relevant. More accurately, for each family, they provide

Figure 3: Number of solved instances as a function of the elapsed time (with a logarithmic scale) for the considered heuristics (namely CHS, dom/wdeg+s, dom/wdeg, wdeg ${ }^{\text {ca.cd }}$, ABS, CHB and IBS) and the VBS based on these seven heuristics.
on rows C the number of instances solved by MAC with each considered heuristic (excluding IBS ${ }^{4}$) and the cumulative runtime for solving them for each heuristic, and on rows T the total number of instances of the family, the number of solved instances and the corresponding cumulative runtime for each heuristic. For each row, we write in bold the result of the best heuristic. As mentioned in our experimental protocol and like the solver competitions, we first consider the number of solved instances and we break ties by considering the cumulative runtime (given in seconds, except for the total runtimes which are expressed in hours). We only provide two digits after the decimal dot when the runtime does not exceed 100 seconds. Beyond, such details do not bring a significant information. We divide the instance families into three categories: academic, real-world and XCSP3 2018 competition. For that, we use the labeling from the XCSP3 repository.

From Figure 3 and Tables 5-8, it is clear that MAC with CHS performs better than any other heuristics whether in terms of the number of solved instances or runtime. Indeed, for example, dom/wdeg is the heuristic closest to CHS but leads to solve 92 instances less. At the same time, CHS solves 127 instances more than MAC $+d o m / w d e g+s$ and 174 more than MAC $+w d e g^{c a . c d}$. Likewise, it solves 134 additional instances w.r.t. MAC+ABS.

Now, if we consider the heuristic CHB which is based on conflict history like CHS, the gap with CHS is even greater (213 instances). This last result shows that the calculation of weights by ERWA on the constraints (as done in CHS) is more relevant than its calculation on the variables (as done in CHB). Note that the poor score of IBS is mainly related to the estimation of the size of the search tree (i.e. the product of the domain sizes [35]). In fact, we observe that, for many instances, the value of the estimation exceeds the capacity of representation of long double in C++. Finally, these trends are still valid if we focus on SAT instances or UNSAT ones.

Interestingly, whatever the value of α_{0}, MAC with CHS remains better than all its competitors. Indeed, the worst case is observed when the value of α_{0} is equal to 0.8 or 0.9 with 10,676 solved instances. This observation also holds for the version of CHS in which we disable the smoothing or the resetting of α. This clearly highlights the practical interest of our approach.

If we look at the results more closely, i.e. for each family (see Tables 5-8), we observe that no heuristic dominates the others. Indeed, if CHS is the heuristic that leads most often to the best results (for 13 families), the other heuristics are close (notably 10 families for $w d e g^{c a . c d}, ~ \mathrm{ABS}$ and CHB). This makes the choice of a particular heuristic difficult, as it is highly dependent on the instance or the family of instances to be processed. This probably explains the gap between VBS and MAC with any heuristic (e.g. 10,982 solved instances for the VBS against 10,812 for MAC with CHS). Curiously, dom/wdeg+s only ranks first for 3 families while being globally ranked at the third place. As CHS, it rarely performs significantly worse than the other heuristics.

To illustrate this phenomenon, let us consider the difference between the number of instances solved by the VBS and the corresponding number for MAC, for each family, with each heuristic. This number can be seen as a measure of the robustness of the heuristic. Table 9 provides the mean and the standard deviation of this difference for each heuristic. It shows that CHS is the most robust heuristic by obtaining the smallest mean and standard deviation.

[^2]| Table 5: Detailed results (number ofFamily \# instances | | | | CHS | | dom/wdeg +s | | dom/wdeg | | $w d e g^{\text {ca.cd }}$ | | ABS | | CHB | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | | | \#solv. | time |
| $\begin{aligned} & \text { U } \\ & \text { U } \\ & \text { U } \\ & \text { U } \end{aligned}$ | AllInterval | C | 22 | | 0.20 | | 9.69 | | 89.26 | | 1,080 | | 0.20 | | 0.20 |
| | | T | 32 | 32 | 3.95 | 32 | 2,810 | 24 | 15,907 | 23 | 17,284 | 32 | 4.08 | 32 | 4.07 |
| | Basic | C | 4 | | 0.02 | | 0.01 | | 0.01 | | 0.01 | | 0.01 | | 0.03 |
| | | T | 4 | 4 | 0.02 | 4 | 0.01 | 4 | 0.01 | 4 | 0.01 | 4 | 0.01 | 4 | 0.03 |
| | Bibd | C | 73 | | 574 | | 5,084 | | 5,625 | | 8,301 | | 170 | | 4,686 |
| | | T | 312 | 152 | 141,154 | 98 | 246,462 | 114 | 225,675 | 110 | 222,637 | 119 | 194,960 | 107 | 226,228 |
| | Blackhole | C | 84 | | 1,379 | | 1,798 | | 416 | | 10.03 | | 1,586 | | 7.17 |
| | | T | 112 | 84 | 51,779 | 85 | 50,398 | 85 | 49,016 | 85 | 48,610 | 85 | 50,189 | 85 | 48,607 |
| | CarSequencing | C | 3 | | 10.29 | | 62.82 | | 485 | | 291 | | 481 | | 0.38 |
| | | T | 52 | 10 | 75,804 | 9 | 77,613 | 8 | 82,166 | 19 | 63,172 | 16 | 70,836 | 5 | 84,601 |
| | ColouredQueens | C | 5 | | 0.89 | | 0.90 | | 0.71 | | 0.39 | | 0.74 | | 0.27 |
| | | T | 17 | 5 | 21,601 | 5 | 21,601 | 5 | 21,601 | 5 | 21,600 | 5 | 21,601 | 5 | 21,600 |
| | CostasArray | C | 8 | | 79.16 | | 773 | | 468 | | 62.99 | | 428 | | 274 |
| | | T | 11 | 8 | 5,479 | 8 | 6,173 | 9 | 5,503 | 9 | 4,477 | 9 | 5,311 | 9 | 4,196 |
| | CryptoPuzzle | C | 10 | | 0.01 | | 0.01 | | 0.01 | | 0.01 | | 0.01 | | 0.01 |
| | | T | 10 | 10 | 0.01 | 10 | 0.01 | 10 | 0.01 | 10 | 0.01 | 10 | 0.01 | 10 | 0.01 |
| | DeBruijnSequence | C | 12 | | 534 | | 488 | | 529 | | 510 | | 530 | | 528 |
| | | T | 18 | 12 | 7,765 | 12 | 11,377 | 12 | 7,775 | 12 | 11,401 | 12 | 9,570 | 12 | 7,752 |
| | DiamondFree | C | 31 | | 524 | | 2,274 | | 1,789 | | 3,127 | | 13.31 | | 10.89 |
| | | T | 38 | 36 | 5,009 | 33 | 12,116 | 33 | 11,537 | 36 | 9,206 | 38 | 21.97 | 38 | 19.23 |
| | Domino | C | 37 | | 256 | | 256 | | 243 | | 278 | | 261 | | 261 |
| | | T | 37 | 37 | 256 | 37 | 256 | 37 | 243 | 37 | 278 | 37 | 261 | 37 | 261 |
| | Driver | C | 7 | | 23.10 | | 33.15 | | 16.75 | | 30.15 | | 50.89 | | 11.89 |
| | | T | 7 | 7 | 23.10 | 7 | 33.15 | 7 | 16.75 | 7 | 30.15 | 7 | 50.89 | 7 | 11.89 |
| | Dubois | C | 10 | | 948 | | 964 | | 1,386 | | 1,158 | | 237 | | 1,271 |
| | | T | 30 | 12 | 36,080 | 10 | 36,964 | 11 | 36,992 | 11 | 36,534 | 16 | 27,440 | 11 | 36,863 |
| | GracefulGraph | C | 12 | | 0.04 | | 2.07 | | 33.81 | | 5.86 | | 0.69 | | 1.14 |
| | | T | 104 | 19 | 153,785 | 17 | 157,580 | 16 | 160,081 | 14 | 162,902 | 16 | 158,843 | 14 | 162,121 |
| | Hanoi | C | 6 | | 3.36 | | 3.72 | | 4.39 | | 2.33 | | 4.19 | | 3.56 |
| | | T | 7 | 6 | 3.36 | 6 | 3.72 | 6 | 4.39 | 6 | 2.33 | 6 | 4.19 | 6 | 3.56 |
| | Haystacks | C | 2 | | 4.20 | | 1.57 | | 3.16 | | 0.04 | | 2.47 | | 0.51 |
| | | T | 51 | 2 | 88,204 | 2 | 88,202 | 2 | 88,203 | 2 | 88,200 | 2 | 88,203 | 2 | 88,201 |

	Family	\# instances		CHS		dom/wdeg +s		dom/wdeg		$w d e g^{\text {ca.cd }}$		ABS		CHB	
				\#solv.	time										
$\begin{aligned} & \text { U } \\ & \text { E } \\ & \text { E } \\ & \text { U } \end{aligned}$	PseudoBoolean	C	109		1,524		1,793		1,927		1,195		1,892		2,967
		T	337	130	361,038	129	385,566	114	390,684	121	399,516	137	347,537	135	354,105
	QRandom	C	607		6,180		7,697		7,331		13,907		8,259		21,394
		T	614	614	10,287	613	11,569	614	9,706	613	18,716	612	14,170	609	33,109
	QuasiGroups	C	24		482		528		442		499		156		622
		T	148	26	203,502	26	222,532	25	204,709	24	223,707	24	205,359	24	205,826
	QueenAttacking	C	4		3.78		22.46		0.71		9.50		172.81		7.17
		T	10	5	9,021	5	9,171	5	9,082	4	10,810	4	10,973	4	10,807
	Queens	C	18		497		85.04		65.89		2,081		34.66		208
		T	24	20	4,805	21	2,353	21	2,362	18	9,283	22	2,355	20	4,633
	QueensKnights	C	10		55.19		86.39		83.74		88.47		175.85		101
		T	18	16	5,939	15	6,766	15	6,949	15	6,830	10	14,576	16	6,397
	RadarSurveillance	C	81		2.54		2.30		2.35		2.19		3.69		1,006
		T	90	90	3.58	90	3.90	90	3.64	90	2.89	90	5.53	81	17,206
	Random	C	1,591		65,626		71,650		59,499		126,920		75,109		194,100
		T	1,955	1,699	605,428	1,678	635,177	1,703	585,527	1,664	705,018	1,674	633,027	1,623	819,665
	RoomMate	C	17		289		398		363		309		276		257
		T	30	17	289	17	398	17	363	17	309	17	276	17	257
	Sat	C	356		6,620		3,915		5,071		2,867		3,467		7,149
		T	366	361	18,203	361	13,996	361	15,163	361	12,897	361	12,822	357	17,004
	Scheduling	C	80		1,076		1,230		1,147		543		29.27		67.29
		T	107	90	33,332	85	40,923	86	41,489	92	29,932	88	34,230	92	28,486
	SchurrLemma	C	7		374		409		286		522		308		564
		T	10	8	3,974	8	4,009	9	2,700	8	4,123	8	3,908	7	5,964
	Steiner3	C	4		4.45		0.07		0.06		0.08		6.62		0.96
		T	10	4	7,204.45	5	7,213.70	5	7,212.11	5	5,516.92	4	7,206.62	4	7,200.96
	Subisomorphism	C	1,616		21,942		19,362		20,467		29,582		28,134		43,863
		T	1,878	1,704	264,950	1,699	275,951	1,707	264,534	1,681	307,266	1,692	281,407	1,676	321,878
	Sudoku	C	92		0.22		0.19		0.20		0.37		0.25		0.23
		T	92	92	0.22	92	0.19	92	0.20	92	0.37	92	0.25	92	0.23

Table 8: Detailed results (number of instances and runtime) of MAC with CHS, dom/wdeg+s,dom/wdeg, wdeg ${ }^{c a . c d}$, ABS or CHB for each considered family (Table 7 continued).

Table 9: Mean and standard deviation of the difference between the number of instances solved by the VBS and the corresponding number for MAC with each heuristic.

	CHS	dom/wdeg $+s$	dom/wdeg	$w^{c \mid}$ deg $^{\text {ca.cd }}$	ABS	CHB
Mean	$\mathbf{5 . 1 1}$	7.38	6.75	8.21	7.50	8.91
Standard deviation	$\mathbf{9 . 2 5}$	13.93	11.17	15.98	14.91	19.11

Finally, our observations are consistent with ones in [16]. In particular, MAC clearly performs better with CHS than with any other heuristic, notably the two powerful and popular variable ordering heuristics dom/wdeg and ABS. The gap between CHS and the other heuristics has widened with the increase in the number of instances taken into account.

5.4 Combination with LC and COS

LC and COS are two branching strategies based on conflicts which require an auxiliary variable ordering heuristic in order to choose a variable when no conflict can be exploited. In this subsection, we study the behavior of CHS and some heuristics of the state-of-the-art when they are used jointly with LC or COS. We only keep the three best heuristics according to the results of the previous subsection, namely dom/wdeg+s, dom/wdeg and ABS.

Figure 4: Number of solved instances as a function of the elapsed time (with a logarithmic scale) for LC with the heuristics CHS, dom/wdeg+s, dom/wdeg or ABS.

First, we consider the case of LC. Figure 4 presents the number of solved instances as a function of the elapsed time for LC combined with each considered heuristic. As a first observation, we can note that using LC does not change the ranking obtained in the previous subsection. Namely, LC combined with CHS leads to the best results followed by $d o m / w d e g+s, d o m / w d e g$ and ABS. Indeed, as we can see in Table 10, MAC with LC and CHS solves more instances and solves them more quickly than MAC with LC and any other heuristic. Moreover, for any considered heuristic h, we can also remark that MAC with LC and h performs better and faster than MAC with h. For instance, MAC with LC and CHS solves 10,812 in 1,017.03 hours against 10,742 instances solved in $1,038.89$ hours for MAC with CHS. We can also observe that the gain in the number of solved instances thanks to MAC with LC and h w.r.t. MAC with h varies according to h (70 instances for CHS and 110 instances for ABS). This probably reflects the fact that the less efficient the heuristic is, the easier it is to solve additional instances. To this end, LC with CHS turns to be the most interesting variable ordering heuristic among all the heuristics we consider in our experiments.

Now, we assess the behavior of MAC when using COS with any auxiliary heuristic among CHS, dom/wdeg+s,dom/wdeg and ABS. As shown in Figure 5 and Table 10, combining COS with any heuristic leads to decrease significantly the ability of MAC to solve instances. Indeed, we can observe that MAC using COS and any heuristic solves at least 346 instances less than MAC using solely the auxiliary heuristic. Thus, if the ranking remains the same, the gap between MAC with COS and CHS and MAC with COS and any other auxiliary heuristic is narrower (from 92 instances when the heuristics are exploited alone to 16 instances with COS). A possible explanation of this behavior is that MAC only exploits the auxiliary heuristic when there is no more variable appearing in conflicts. This occurs at the beginning of the search when no conflict has been encountered yet or when all the variables appearing in past conflicts are assigned. Clearly, the first case concerns few nodes in the search tree. For the second case, it may be the same too as soon as many variables are involved in the encountered conflicts. In addition, a potential drawback of COS is that the conflicts
exploited by COS may be old and so have less sense at some steps of the search.

Figure 5: Number of solved instances as a function of the elapsed time (with a logarithmic scale) for COS with the heuristics CHS, $d o m / w d e g+s$, dom/wdeg or ABS.

Table 10: Number of instances solved by MAC with LC/COS with any auxiliary heuristic among CHS, dom/wdeg+s,dom/wdeg or ABS, and cumulative runtime in hours.

Auxiliary heuristic	LC		COS	
	\#solved	time (h)	\#solved	time (h)
CHS	$\mathbf{1 0 , 8 1 2}$	$\mathbf{1 , 0 1 7 . 0 3}$	$\mathbf{1 0 , 2 8 1}$	$\mathbf{1 , 3 6 3 . 8 6}$
dom $/ w d e g+s$	10,752	$1,057.91$	10,265	$1,368.66$
dom $/ w d e g$	10,741	$1,067.28$	10,259	$1,367.17$
ABS	10,718	$1,090.23$	10,262	$1,368.99$

5.5 CHS and Tree-Decomposition

We now assess the behavior of CHS when the search is guided by a tree-decomposition. Studying this question is quite natural since CHS aims to exploit the structure of the instance, but in a way different from what the tree-decomposition does. With this aim in view, we consider BTD-MAC+RST+Merge [21] and the heuristics CHS, dom/wdeg+s,dom/wdeg and ABS combined or not with LC. As shown in Figure 6 and Table 11, the trends observed for MAC are still valid for BTD-MAC+RST+Merge.

Table 11: Number of instances solved by BTD-MAC+RST+Merge with the heuristics CHS, dom/wdeg+s,dom/wdeg and ABS combined or not with LC , and cumulative runtime in hours.

(Auxiliary) heuristic	without LC		with LC	
	\#solved	time (h)	\#solved	time (h)
CHS	$\mathbf{1 0 , 7 7 0}$	$\mathbf{1 , 0 3 5 . 5 9}$	$\mathbf{1 0 , 8 3 9}$	$\mathbf{1 , 0 1 1 . 2 2}$
dom/wdeg+s	10,712	$1,065.01$	10,805	$1,032.30$
dom/wdeg	10,672	$1,089.00$	10,767	$1,061.63$
ABS	10,650	$1,082.71$	10,705	$1,093.49$

Indeed, the solving is more efficient with CHS than with any other used heuristic by at least 58 additional instances. For example, BTD-MAC+RST+Merge with CHS solves 10,770 instances (in $1,035 \mathrm{~h}$) against 10,712 instances (in $1,065 \mathrm{~h}$) for $\mathrm{dom} / w d e g+s$. Moreover, we can note that using BTD-MAC+RST+Merge instead of MAC does not change the ranking of the heuristics in terms of the number of solved instances or the cumulative runtime.

Likewise, we can make the same observations if we exploit LC (see Figure 7 and Table 11). Above all, BTD-MAC+RST+Merge with LC and CHS turns out to be more efficient than MAC with LC and any auxiliary heuristic. For example, it solves 27 additional

Figure 6: Number of instances solved by BTD-MAC+RST+Merge as a function of the elapsed time (with a logarithmic scale) with the heuristics CHS, dom/wdeg+s, dom/wdeg or ABS.

Figure 7: Number of instances solved by BTD-MAC+RST+Merge as a function of the elapsed time (with a logarithmic scale) with LC combined with the heuristics CHS, dom/wdeg+s,dom/wdeg or ABS.
instances compared to MAC with LC and CHS. All these observations show that exploiting both CHS and tree-decomposition may be of interest and that these two strategies can be complementary.

Finally, these results are consistent with the ones in [16]. They are also consistent with ones of the XCSP3 competition 2018. For instance, BTD-MAC+RST+Merge participated in the mini-solvers track of the competition by using respectively dom/wdeg (for the solver miniBTD [23]) and CHS (for the solver miniBTD_12 [15]) as variable ordering heuristic. miniBTD_12 finished in the second place by solving 79 instances while miniBTD was ranked third with 74 solved instances.

6 Experimental Evaluation on COP Instances

This section is devoted to the evaluation of the behavior of our heuristic when solving COP instances (optimization problem). Note that the constraint optimization problem (COP) differs from the constraint satisfaction problem by only the addition of an objective function to optimize. So solving a COP instance consists in assigning all the variables while satisfying all the constraints and optimizing the objective function. It is an NP-hard task [37].

We first describe the experimental protocol we use. Then, in subsection 6.2 , we assess the sensitivity of our heuristic CHS to its
parameters and the benefits of smoothing and resetting. Finally, we compare CHS with state-of-the-art variable ordering heuristics in subsection 6.3.

6.1 Experimental Protocol

We consider the COP instances from the 2019 XCSP3 competition ${ }^{5}$. Like for CSP instances, we discard 36 instances containing some global constraints which are not handled by our library yet. In the end, our benchmark contains 264 instances, including notably structured ones and instances with global constraints.

The experiments are performed in the same conditions as for CSP instances. In particular, we use the same value heuristic, the same settings for variable ordering heuristics, restarts, Regarding the solving step, we exploit a branch and bound algorithm based on MAC with restarts and denoted MAC-BnB. We distinguish three statuses when solving a COP instance. If the solver finds an optimal solution and proves the optimality within the allocated time slot (30 minutes), the instance has the status OPT meaning that it is has been optimally solved. However, if the solver has found a solution but cannot establish its optimality, the instance has the status SAT meaning that a solution has been found in the CSP sense but with no guarantee with respect to the objective function. In such a case, the solver has only produced an upper bound (resp. a lower bound) if the instance aims to minimize (resp. maximize) the objective function. Finally, if the solver proves that the instance has no solution, the instance has the status UNSAT. In the following, an instance is said solved if it has the status OPT or UNSAT.

6.2 Impact of CHS Settings

In this part, we assess the sensitivity of CHS with respect to the chosen values for α_{0} or δ when solving COP instances. First, we study the impact of α_{0} value. With this aim in view, we set δ to 10^{-4} and then vary the value of α_{0} between 0.1 and 0.9 with a step of 0.1.

Table 12: Number of instances having the status OPT, UNSAT or SAT depending on the value of α_{0} (between 0.1 and 0.9) and the cumulative runtime (in hours) for all the instances.

α_{0}	\# instances			time (h)
	OPT	UNSAT	SAT	
0.1	119	1	86	67.48
0.2	121	1	83	66.75
0.3	124	1	80	66.10
0.4	$\mathbf{1 2 6}$	1	78	$\mathbf{6 2 . 3 8}$
0.5	124	1	73	66.31
0.6	120	1	84	68.18
0.7	120	1	83	68.73
0.8	113	1	91	70.65
0.9	117	1	85	70.08
VBS	140	1	66	59.04

Table 12 provides the number of instances having the status OPT, UNSAT or SAT depending on the initial value of α_{0} and the corresponding cumulative runtime. We also provide the results of the Virtual Best Solver (VBS) built on the basis of this nine combinations of MAC-BnB and CHS. Table 12 shows that the results obtained for the different values of α_{0} are relatively close to each others. Indeed, if we consider the number of solved instances, the best combination ($\alpha_{0}=0.4$) solves in average 6 additional instances and the gap with the worst one is 13 instances. Regarding the runtime, MAC-BnB and CHS with $\alpha_{0}=0.4$ correspond again to the best combination with a cumulative runtime of 62.38 h . The other combinations are generally 5% slower, except for the values 0.8 and 0.9 of α_{0} for which the rate is about 10%. Globally, these results are consistent with ones obtained when solving CSP instances and show again the robustness of CHS with respect to the value of α_{0}. This robustness is also highlighted by the fact that all the curves in Figure 8 are quite close. Moreover, from this figure, we can note that $\alpha_{0}=0.4$ is the best choice among the experimented values. Indeed, the corresponding curve is almost always above the others.

Regarding the Virtual Best Solver (VBS) in Table 12, we note that it can solve 14 additional instances than MAC-BnB and CHS with $\alpha_{0}=0.4$ while saving 3.34 hours. If we consider the results instance per instance, we observe that 103 instances among the ones solved by the VBS are solved whatever the chosen value for α_{0}. Furthermore, 20 instances among the 38 remaining ones are solved by more than half of the combinations. Finally, the 18 remaining instances seem harder to solve with an average runtime for the VBS about 819 seconds.

Now, we set α_{0} to 0.4 and consider different values of δ (see Table 13). The observations are similar to those presented previously, showing the robustness of CHS regarding δ. It turns out that using a non-zero values for δ allows MAC-BnB to perform better. This

[^3]

Figure 8: Number of solved COP instances as a function of the elapsed time for α_{0} varying between 0.1 and 0.9 and the VBS.
shows the relevance of introducing δ in CHS. Finally, like for the CSP solving, the value 10^{-4} leads to obtain the best results in terms of the number of solved instances as well as the runtime.

Table 14 gives the results of MAC-BnB+CHS $\left(\alpha_{0}=0.4, \delta=10^{-4}\right)$ with smoothing $(+s)$ the constraint scores or without $(-s)$ and/or with resetting $(+r)$ the value of α to 0.4 at each new restart or without $(-r)$. The observed behaviors clearly support the importance of smoothing and restarts for CHS. For example, MAC-BnB with CHS $+s-r$ solves 5 less instances than MAC-BnB with CHS, while MAC-BnB with CHS- $s-r$ solves 11 instances less. In addition, it can be noted that removing the smoothing or the resetting lead to an increase in runtime.

Table 13: Impact of the value of δ regarding the number of instances having the status OPT, UNSAT or SAT and the cumulative runtime in hours.

δ	\# instances			time (h)
	OPT	UNSAT	SAT	
0	120	1	84	67.89
10^{-5}	123	1	82	67.21
10^{-4}	$\mathbf{1 2 6}$	1	78	$\mathbf{6 2 . 3 8}$
10^{-3}	121	1	84	68.47

Table 14: Number of instances which are solved optimally (OPT), proved as inconsistent (UNSAT) or for which a solution is found (SAT) with CHS with/without smoothing and reset of α and the cumulative runtime (in hours) for all the instances.

Variant	\# instances			time (h)
	OPT	UNSAT	SAT	
CHS $(+s+r)$	$\mathbf{1 2 6}$	1	78	$\mathbf{6 2 . 3 8}$
CHS $+s-r$	121	1	84	66.82
CHS $-s-r$	115	1	81	69.73
CHS- $s+r$	116	1	82	70.16

6.3 CHS vs. Other Search Heuristics

In this part, we compare CHS (with $\alpha_{0}=0.4$ and $\delta=10^{-4}$) to other search strategies from the state-of-the-art, namely $\mathrm{dom} / \mathrm{wdeg}$, $w d e g^{c a . c d}, \mathrm{ABS}$ and CHB. We also consider the variant $d o m / w d e g+s$ that we introduced for $d o m / w d e g$.

Figure 9 presents the number of solved instances as a function of the elapsed time for each considered heuristic. Clearly, CHS turns to be the more efficient heuristics. Indeed, MAC-BnB with CHS solves at least 13 additional instances than with any other considered heuristic while performing faster. More interestingly, CHS outperforms CHB with 49 additional solved instances. Nevertheless, no heuristic outperforms another for all instances or families of instances. So, Tables 15 and 16 give some details for each family of instances considered in the competition. They allow to have a better insight of the kind of instances for which CHS
is relevant. Note that we do not consider CHB in order to have a relevant comparison for instances which are solved with all the heuristics. Indeed, considering CHB dramatically reduces the number of instances solved by all the heuristics. Like for the decision problem, CHS is not always the better heuristic, but, it turns to be the more robust one. Finally, we can also remark that whatever the values chosen for α_{0} or δ among the considered one, CHS performs better than the state-of-the-art heuristics. This observation still holds if CHS does not exploit smoothing and/or reset of α.

Figure 9: Number of solved instances as a function of the elapsed time for the considered heuristics (namely CHS, dom/wdeg+s, dom/wdeg, $w d e g^{c a . c d}$, and ABS) and the VBS based on these five heuristics.

7 Conclusion

We have proposed CHS, a new variable ordering heuristic for CSP based on the search history and designed following techniques inspired from reinforcement learning. The experimental results confirm the relevance of CHS, which is competitive with the most powerful heuristics, when implemented in solvers based on MAC or tree-decomposition exploitation. Our experiments also shows that CHS turns to be relevant for solving COP instances.

The experimental study suggests that the initial value of α parameter value could be refined. We will explore the possibility of defining its value depending on the instance to be solved. For example, we will look for probing techniques to fix its appropriate value. Furthermore, similarly to the ABS heuristic, we will also consider including information provided by filtering operations in CHS. Finally, we will measure the impact of CHS on solving other problems under constraints, such as counting and optimization when modeled as weighted CSP.

Acknowledgements

This work has been funded by the French Agence Nationale de la Recherche, reference ANR-16-CE40-0028.

References

[1] Bachiri, I., Gaudreault, J., Quimper, C., Chaib-draa, B.: RLBS: An Adaptive Backtracking Strategy Based on Reinforcement Learning for Combinatorial Optimization. In: Proceedings of ICTAI, pp. 936-942 (2015)
[2] Balafrej, A., Bessiere, C., Paparrizou, A.: Multi-Armed Bandits for Adaptive Constraint Propagation. In: Proceedings of IJCAI, pp. 290-296 (2015)
[3] Battiti, R., Campigotto, P.: An Investigation of Reinforcement Learning for Reactive Search Optimization, pp. 131-160. Springer Berlin Heidelberg, Berlin, Heidelberg (2012)
[4] Bessière, C., Chmeiss, A., Saïs, L.: Neighborhood-based variable ordering heuristics for the constraint satisfaction problem. In: Proceedings of CP, pp. 565-569 (2001)
Table 15: Detailed results (number of solved instances and runtime) with CHS, dom/wdeg+s,dom/wdeg, wdeg ${ }^{\text {ca.cd }}$ or ABS for each considered family.

Family	\# instances		CHS		dom/wdeg+s		dom/wdeg		wdeg ${ }^{\text {ca.cd }}$		ABS	
			\#solv.	time								
BinPacking	C	0		0		0		0		0		0
	T	15	2	24,505	0	27,003	0	27,002	3	21,687	0	27,001
ChessboardColoration	C	3		17.17		6.17		6.81		24.26		10.82
	T	6	3	5,417	3	5,406	3	5,40681	3	5,424	3	5,410
Cutstock	C	1		0.78		37.29		2.45		4.70		2.85
	T	15	12	6,013	3	21,886	4	21,443	7	15,838	3	21,612
Fastfood	C	5		776		983		1,319		856		568
	T	15	8	17,091	5	18,983	5	19,319	7	15,845	12	12,093
GolombRuler	C	3		62.12		121		97.94		170		52.13
	T	11	6	9,503	3	14,533	5	13,852	6	11,735	6	9,543
GraphColoring	C	5		1,043		101		104		712		53.41
	T	15	6	17,457	6	16,546	6	16,586		17,404	5	18,053
Knapsack	C	6		2,624		2,640		2,571		2,555		72.41
	T	15	6	18,824	6	18,840	6	18,771	6	18,755	15	338
LowAutocorrelation	C	4		644		417		489		448		98.20
	T	12	4	15,044	4	14,817	4	14,889	4	14,848	4	14,498
NurseRostering	C	1		387		221		1,439		38.41		132
	T	2	1	2,187	1	2,021	1	3,238	1	1,838	1	1,932
Opd	C	0		0		0		0		0		0
	T	15	1	25,200	2	23,870	3	21,910	2	23,483	1	25,200
OpenStacks	C	4		234		954		706		71		1,479
	T	15	15	5,666	8	16,107	8	17,029	15	1,106	4	21,279
Pb	C	8		508		470		472		456		256
	T	15	9	12,644	9	12,284	10	11,378	10	11,313	10	10,505
PeacableArmies	C	2		171		102		98.55		160		158
	T	2	2	171	2	102	2	98.56	2	160	2	158
PizzaVoucher	C	0		0		0		0		0		0
	T	1	0	1,800	0	1,800	0	1,800	1	1,747	0	1,800
PrizeCollecting	C	3		7.30		4.76		4.35		736		12.38
	T	15	15	472	15	319	15	320	3	22,336	15	1,848

Table 16: Detailed results (number of solved instances and runtime) with CHS, dom/wdeg+s,dom/wdeg, wdeg ${ }^{\text {ca.cd }}$ or ABS

Family	\# instances		CHS		dom/wdeg+s		dom/wdeg		$w d e g^{\text {ca.cd }}$		ABS	
			\#solv.	time								
QuadraticAssignment	C	5		339		424		453		825		948
	T	9	7	4,197	7	4,458	7	4,470	7	4,555	5	8,147
QueenAttacking	C	0		0		0		0		0		0
	T	1	1	1,455	0	1,800	0	1,800	0	1,800	0	1,800
Ramsey	C	3		1.06		0.92		3.38		0.50		27.91
	T	4	3	1,801	3	1,801	3	1,803	3	1,801	3	1,827
Rlfap	C	1		3.76		2.66		3.12		3.14		0.28
	T	4	2	3,605	2	3,607	2	3,610	1	5,403	2	3,625
StillLife	C	7		448		217		683		247		1,023
	T	15	12	11,485	12	9,275	13	10,281	12	8,778	7	15,423
Taillard	C	0		0		0		0		0		0
	T	15	9	12,815	9	10,815	9	10,813	0	27,001	9	13,347
Tal	C	1		258		434		468		233		1,627
	T	2	2	659	1	2,234	2	1,854	2	587	1	3,427
TravellingSalesman	C	7		1,369		2,201		2,003		3,226		1,053
	T	15	7	15,769	7	16,601	7	16,403	7	17,626	7	15,453
Vrp	C	1		747		418		374		619		480
	T	3	1	4,348	1	4,018	1	3,974	1	4,219	1	4,080
Warehouse	C	2		997		901		1,082		1,027		2,349
	T	2	2	997	2	901	2	1,082	2	1,027	2	2,349
All	C	72		2.96 h		2.96 h		3.44 h		3.45 h		2.89 h
	T	264	127	66.31 h	102	75.45 h	109	75.20 h	105	72.70 h	114	69.97 h

[5] Bessière, C., Régin, J.C.: MAC and Combined Heuristics: Two Reasons to Forsake FC (and CBJ?) on Hard Problems. In: Proceedings of CP, pp. 61-75 (1996)
[6] Boussemart, F., Hemery, F., Lecoutre, C., Saïs, L.: Boosting systematic search by weighting constraints. In: Proceedings of ECAI, pp. 146-150 (2004)
[7] Brélaz, D.: New Methods to Color Vertices of a Graph. Communications of the ACM 22(4), 251-256 (1979)
[8] Cabon, C., de Givry, S., Lobjois, L., Schiex, T., Warners, J.P.: Radio Link Frequency Assignment. Constraints 4, 79-89 (1999)
[9] Chu, G., Stuckey, P.J.: Learning value heuristics for constraint programming. In: Integration of AI and OR Techniques in Constraint Programming, pp. 108-123. Springer International Publishing, Cham (2015)
[10] Eén, N., Sörensson, N.: An Extensible SAT-solver. In: Proceedings of SAT, pp. 502-518 (2003)
[11] Gay, S., Hartert, R., Lecoutre, C., Schaus, P.: Conflict Ordering Search for Scheduling Problems. In: G. Pesant (ed.) Proceedings of CP, pp. 140-148 (2015)
[12] Geelen, P.A.: Dual Viewpoint Heuristics for Binary Constraint Satisfaction Problems. In: Proceedings of ECAI, pp. 31-35 (1992)
[13] Golomb, S.W., Baumert, L.D.: Backtrack programming. Journal of the ACM 12, 516-524 (1965)
[14] Gomes, C.P., Selman, B., Crato, N., Kautz, H.A.: Heavy-Tailed Phenomena in Satisfiability and Constraint Satisfaction Problems. Journal of Automated Reasoning 24(1/2), 67-100 (2000)
[15] Habet, D., Jégou, P., Kanso, H., Terrioux, C.: BTD_12 and miniBTD_12. In: Proceedings of the XCSP3 Competition, pp. 68-69 (2018)
[16] Habet, D., Terrioux, C.: Conflict history based search for constraint satisfaction problem. In: Proceeding of SAC, Knowledge Representation and Reasoning Technical Track, pp. 1117-1122 (2019)
[17] Haralick, R.M., Elliot, G.L.: Increasing tree search efficiency for constraint satisfaction problems. AIJ 14, 263-313 (1980)
[18] Hebrard, E., Siala, M.: Explanation-Based Weighted Degree. In: Proceedings of CPAIOR, pp. 167-175 (2017)
[19] Holland, A., O’Sullivan, B.: Weighted Super Solutions for Constraint Programs. In: Proceedings of AAAI, pp. 378-383 (2005)
[20] Hooker, J.N.: Testing Heuristics: We Have It All Wrong. Journal of Heuristics 1(1), 33-42 (1995)
[21] Jégou, P., Kanso, H., Terrioux, C.: Towards a Dynamic Decomposition of CSPs with Separators of Bounded Size. In: Proceedings of CP, pp. 298-315 (2016)
[22] Jégou, P., Kanso, H., Terrioux, C.: BTD and miniBTD. In: XCSP3 Competition (2017)
[23] Jégou, P., Kanso, H., Terrioux, C.: BTD and miniBTD. In: Proceedings of the XCSP3 Competition, pp. 66-67 (2018)
[24] Jégou, P., Terrioux, C.: Hybrid backtracking bounded by tree-decomposition of constraint networks. AIJ 146, 43-75 (2003)
[25] Lecoutre, C., Sais, L., Tabary, S., Vidal, V.: Last Conflict Based Reasoning. In: Proceedings of ECAI, pp. 133-137 (2006)
[26] Lecoutre, C., Sais, L., Tabary, S., Vidal, V.: Nogood recording from restarts. In: Proceedings of IJCAI, pp. 131-136 (2007)
[27] Lecoutre, C., Sais, L., Tabary, S., Vidal, V.: Recording and Minimizing Nogoods from Restarts. JSAT 1(3-4), 147-167 (2007)
[28] Liang, J.H., Ganesh, V., Poupart, P., Czarnecki, K.: Exponential Recency Weighted Average Branching Heuristic for SAT Solvers. In: Proceedings of AAAI, pp. 3434-3440 (2016)
[29] Liang, J.H., Ganesh, V., Poupart, P., Czarnecki, K.: Learning Rate Based Branching Heuristic for SAT Solvers. In: Proceedings of SAT, pp. 123-140 (2016)
[30] Liberatore, P.: On the complexity of choosing the branching literal in DPLL. Artificial Intelligence 116(1-2) (2000)
[31] Marques-Silva, J., Sakallah, K.A.: GRASP: A Search Algorithm for Propositional Satisfiability. IEEE Transactions on Computers 48(5), 506-521 (1999)
[32] Michel, L., Hentenryck, P.V.: Activity-based search for black-box constraint programming solvers. In: Proceedings of CPAIOR, pp. 228-243 (2012)
[33] Moskewicz, M.W., Madigan, C.F., Zhao, Y., Zhang, L., Malik, S.: Chaff: Engineering an Efficient SAT Solver. In: Proceedings of DAC, pp. 530-535 (2001)
[34] Nadel, B.: Tree Search and Arc Consistency in Constraint-Satisfaction Algorithms, pp. 287-342. In Search in Artificial Intelligence. Springer-Verlag (1988)
[35] Refalo, P.: Impact-based search strategies for constraint programming. In: Proceedings of CP, pp. 557-571 (2004)
[36] Robertson, N., Seymour, P.D.: Graph minors II: Algorithmic aspects of treewidth. Algorithms 7, 309-322 (1986)
[37] Rossi, F., van Beek, P., Walsh, T.: Handbook of Constraint Programming, Foundations of Artificial Intelligence, vol. 2. Elsevier (2006)
[38] Sabin, D., Freuder, E.C.: Contradicting Conventional Wisdom in Constraint Satisfaction. In: Proceedings of ECAI, pp. 125-129 (1994)
[39] Schulte, C.: Programming branchers. In: C. Schulte, G. Tack, M.Z. Lagerkvist (eds.) Modeling and Programming with Gecode (2018). Corresponds to Gecode 6.0.1
[40] Simonin, G., Artigues, C., Hebrard, E., Lopez., P.: Scheduling Scientific Experiments for Comet Exploration. Constraints 20(1), 77-99 (2015)
[41] Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction, 1st edn. MIT Press, Cambridge, MA, USA (1998)
[42] Wattez, H., Koriche, F., Lecoutre, C., Paparrizou, A., Tabary, S.: Learning Variable Ordering Heuristics with Multi-Armed Bandits and Restarts. In: Proceedings of ECAI (2020)
[43] Wattez, H., Lecoutre, C., Paparrizou, A., Tabary, S.: Refining Constraint Weighting. In: Proceedings of ICTAI, pp. 71-77 (2019)
[44] Xia, W., Yap, R.H.C.: Learning robust search strategies using a bandit-based approach. In: Proceedings of AAAI, pp. 66576665 (2018)

[^0]: *The final authenticated version is available online at https://doi.org/10.1007/s10732-021-09475-z. This work is an extension of the work published in [16].
 ${ }^{1}$ http://www.xcsp.org

[^1]: ${ }^{2}$ http://www.xcsp.org/series
 ${ }^{3}$ http://www.cril.univ-artois.fr/XCSP18/

[^2]: ${ }^{4}$ Given the poor results of MAC with IBS, including IBS leads to a less relevant comparison on instances solved by MAC with each heuristic since it significantly decreases the number of such instances.

[^3]: ${ }^{5}$ http://www.cril.univ-artois.fr/XCSP19

