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Abstract
The CSP formalism has shown, for many years, its
interest for the representation of numerous kinds
of problems, and also often provide effective res-
olution methods in practice. This formalism has
also provided a useful framework for the knowl-
edge representation as well as to implement effi-
cient methods for reasoning about knowledge. The
data of a CSP are usually expressed in terms of a
constraint network. This network is a (constraints)
graph when the arity of the constraints is equal
to two (binary constraints), or a (constraint) hy-
pergraph in the case of constraints of arbitrary ar-
ity, which is generally the case for problems of
real life. The study of the structural properties of
these networks has made it possible to highlight
certain properties, which led to the definition of
new tractable classes, but in most cases, they have
been defined for the restricted case of binary con-
straints. So, several representations by graphs have
been proposed for the study of constraint hyper-
graphs to extend the known results to the binary
case. Another approach, finer, is interested in the
study of the microstructure of CSP, which is defined
by graphs. This helped, offering a new theoretical
framework to propose other tractable classes.
In this paper, we propose to extend the notion of
microstructure to any type of CSP. For this, we pro-
pose three kinds of graphs that can take into ac-
count the constraints of arbitrary arity. We show
how these new theoretical tools can already provide
a framework for developing new tractable classes
for CSPs. We think that these new representations
should be of interest for the community, firstly for
the generalization of existing results, but also to ob-
tain original results.

1 Preliminaries
Constraint Satisfaction Problems (CSPs, see [Rossi et al.,
2006] for a state of the art) provide an efficient way of for-
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mulating problems in computer science, especially in Artifi-
cial Intelligence. Formally, a constraint satisfaction problem
is a triple (X,D,C), where X = {x1, . . . , xn} is a set of n
variables, D = (Dx1

, . . . , Dxn
) is a list of finite domains of

values, one per variable, and C = {C1, . . . , Ce} is a finite set
of e constraints. Each constraint Ci is a pair (S(Ci), R(Ci)),
where S(Ci) = {xi1 , . . . , xik} ⊆ X is the scope of Ci, and
R(Ci) ⊆ Dxi1

×· · ·×Dxik
is its compatibility relation. The

arity of Ci is |S(Ci)|.
We assume that each variable appears at least in the scope

of one constraint and that the relations are represented in ex-
tension (e.g. by providing the list of allowed tuples) even if
for some parts of this work, this hypothesis is not required. A
CSP is called binary if all constraints are of arity 2 (we denote
Cij the binary constraint whose scope is S(Cij) = {xi, xj}).
Otherwise, if the constraints are of arbitrary arity, a CSP is
said to be non binary. The structure of the constraint network
is represented by the hypergraph (X,C) (which is a graph in
the binary case) whose vertices correspond to variables and
edges to the constraint scopes. An assignment on a subset of
X is said to be consistent if it does not violate any constraint.

Testing whether a CSP has a solution (i.e. a consistent as-
signment on all the variables) is known to be NP-complete.
So, many works have been realized to make the solving of in-
stances more efficient by using optimized backtracking algo-
rithms, filtering techniques based on constraint propagation,
heuristics. . .

Another way is related to the study of tractable classes de-
fined by properties of constraint networks. E.g., it has been
shown that if the structure of this network, that is a graph
for binary CSPs, is acyclic, it can be solved in linear time
[Freuder, 1982]. This kind of result has been extended to
hypergraphs in [Beeri et al., 1983; Janssen et al., 1989]. Us-
ing these theoretical results, some practical methods to solve
CSPs have been defined, such as Tree-Clustering [Dechter
and Pearl, 1989] which can be efficient in practice [Jégou and
Terrioux, 2003]. So, the study of such properties for graphs
or hypergraphs has shown its interest regarding the constraint
network.

Graphs properties have also been exploited to study the
properties of compatibility relations for the case of binary
CSPs. This is made possible thanks to a representation called
microstructure that we can associate to a binary CSP. A mi-
crostructure is defined as follows:



Definition 1 (Microstructure) Given a binary CSP P =
(X,D,C), the microstructure of P is the undirected graph
µ(P ) = (V,E) with:

• V = {(xi, vi) : xi ∈ X, vi ∈ Dxi
},

• E = { {(xi, vi), (xj , vj)} | i 6= j, Cij /∈ C or Cij ∈
C, (vi, vj) ∈ R(Cij)}

The transformation of a CSP instance using this represen-
tation can be considered as a reduction from the CSP prob-
lem to the well known CLIQUE problem [Garey and John-
son, 1979] seeing that it can be realized in polynomial time
and using the theorem [Jégou, 1993] recalled below:

Theorem 1 An assignment of variables in a binary CSP P is
a solution iff this assignment is a clique of size n (the number
of variables) in µ(P ).

The interest to consider the microstructure was firstly
shown in [Jégou, 1993] in order to detect new tractable
classes for CSP based on Graph Theory. Indeed, while deter-
mining whether the microstructure contains a clique of size
n is NP-complete, this task can be achieved, in some cases,
in polynomial time. For example, using a famous result of
Gavril [Gavril, 1972], Jégou has shown that if the microstruc-
ture of a binary CSP is triangulated, then this CSP can be
solved in polynomial time. By this way, a new tractable class
for binary CSPs has been defined since it is also possible to
recognize triangulated graphs in polynomial time.

Later, in [Cohen, 2003], applying the same approach
and also [Gavril, 1972], Cohen shows that the class of bi-
nary CSPs with triangulated complement of microstructure is
tractable, the achievement of arc-consistency being a decision
procedure.

More recently, other works have defined new tractable
classes of CSPs thanks to the study of microstructure. For ex-
ample, generalizing the result on triangulated graphs, [Sala-
mon and Jeavons, 2008] have shown that the class of binary
CSPs the microstructure of which is a perfect graph consti-
tutes also a tractable class. Then, in [Cooper et al., 2010],
the class BTP, which is defined by forbidden patterns (as for
triangulated graphs), has been introduced. After that, [El
Mouelhi et al., 2012] also exploit the microstructure, but in
another way, by presenting new results on the effectiveness
of classical algorithms for solving CSPs when the number
of maximal cliques in the microstructure of binary CSPs is
bounded by a polynomial.

The study of the microstructure has also shown its interest
in other fields. For example, for the problem of counting the
number of solutions [Angelsmark and Jonsson, 2003], or for
the study of symmetries in binary CSPs [Cohen et al., 2006;
Mears et al., 2009]. Thus, the microstructure appears as an
interesting tool for the study of CSPs, or more precisely, for
the theoretical study of CSPs.

This notion has been studied and exploited in the limited
field of binary CSPs, even if the microstructure for non binary
CSPs has already been considered. Indeed, in [Cohen, 2003],
the complement of the microstructure of a non binary CSP is
defined as a hypergraph:

Definition 2 (Complement of the Microstructure) Given
a binary CSP P = (X,D,C), the Complement of the
Microstructure of P is the hypergraphM(P ) = (V,E) such
that:

• V = {(xi, vi) : xi ∈ X, vi ∈ Dxi
},

• E = E1 ∪ E2 such that

– E1 = { {(xi, vj), (xi, vj′)} | xi ∈ X and j 6= j′}
– E2 = {{(xi1 , vi1), . . . (xik , vik)} | Ci ∈
C, S(Ci) = {xi1 , . . . , xik} and (vi1 , . . . vik) /∈
R(Ci)}

One can see that for the case of binary CSPs, this definition
is a generalization of the microstructure since the Comple-
ment of the Microstructure is then exactly the complement of
the graph of microstructure. Unfortunately, while it is easily
possible to consider the complement of a graph, for hyper-
graphs this notion is not clearly defined in Hypergraph The-
ory. For example, should we consider all possible hyperedges
of the hypergraph (i.e. all the subsets of V ) by associating to
each one a universal relation? In this case, the size of repre-
sentation would be potentially exponential w.r.t. the size of
the considered instance of CSP. As a consequence, the no-
tion of microstructure for non binary CSPs is not explicitly
defined in [Cohen, 2003], and to our knowledge, this ques-
tion seems to be considered as open today. Moreover, to our
knowledge, it turns out that this definition of complement of
the microstructure has not really been exploited for non bi-
nary CSPs, even in the paper where it is defined since [Co-
hen, 2003] only exploits it for binary CSPs. More generally,
exploiting a definition of a microstructure based on hyper-
graphs seems to be really more difficult than when it is de-
fined by graphs. Indeed, it is well known that the literature
of Graph Theory is really more extended than one of Hyper-
graph Theory. So, the theoretical results and efficient algo-
rithms to manage them are more numerous, offering a larger
number of existing tools which can be operated for graphs
rather than for hypergraphs.

So, in this paper, to extend this notion to CSPs with con-
straints of arbitrary arity, we propose another way than the
one introduced in [Cohen, 2003]. We propose to preserve the
graph representation rather than the hypergraph representa-
tion. This is possible using known representations of con-
straint networks by graphs. So, we introduce three possible
microstructures, based on the dual representation, on the hid-
den variable representation and on the mixed encoding [Ster-
giou and Walsh, 1999] of non binary CSPs. We study the
basic properties of such microstructures. We also give some
possible tracks to exploit these microstructures for future the-
oretical developments, focusing particularly on extensions of
tractable classes to non binary CSPs.

The next section introduces different possibilities of mi-
crostructures for non binary CSPs while the third section
shows some first results exploiting them. The last section
presents a conclusion.



2 Microstructures for non binary CSPs
As indicated above, the first evocation of the notion of mi-
crostructure to non-binary CSPs was proposed by Cohen in
[Cohen, 2003] and is based on hypergraphs. In contrast, we
will propose several microstructures based on graphs. To do
this, we will rely on the conversion of non-binary CSPs to bi-
nary CSPs. The well known methods are the dual encoding
(also called dual representation), the hidden transformation
(also called hidden variable representation) and the mixed en-
coding (also called combined encoding).

2.1 Microstructure based on Dual Representation
The dual encoding appeared in CSPs in [Dechter and Pearl,
1987]. It is based on the graph representation of hyper-
graphs called Line Graphs which has been introduced in the
(Hyper)Graph Theory and which are called Dual Graphs for
CSPs. This representation was also used before in the field of
Relational Database Theory (Dual Graphs were called Qual
Graphs in [Bernstein and Goodman, 1981]). In this encoding,
the constraints of the original problem become the variables
(also called dual variables). The domain of each new variable
is exactly the set of tuples allowed by the original constraint.
Then a binary constraint links two dual variables if the origi-
nal constraints share at least one variable (i.e. the intersection
between their scopes is not empty). So, this representation
allows to define a binary instance of CSP which is equivalent
to the considered non binary instance.

Definition 3 (Dual Representation) Given a CSP P =
(X,D,C), the Dual Graph (C,F ) of (X,C) is such that
F = {{Ci, Cj} : S(Ci) ∩ S(Cj) 6= ∅}. The Dual Repre-
sentation of P is the CSP (CD, RD, FD) such that:

• CD = {S(Ci) : Ci ∈ C},
• RD = {R(Ci) : Ci ∈ C}
• FD = {Fk : S(Fk) ∈ F and for S(Fk) =
{Ci, Cj}, R(Fk) = {(ti, tj) ∈ R(Ci) × R(Cj) :
ti[S(Ci) ∩ S(Cj)] = tj [S(Ci) ∩ S(Cj)]}}.

The associated microstructure is then immediately ob-
tained considering the microstructure of this equivalent bi-
nary CSP:

Definition 4 (DR-Microstructure) Given a CSP P =
(X,D,C) (not necessarily binary), the Microstructure based
on Dual Representation of P is the undirected graph
µDR(P ) = (V,E) such that:

• V = {(Ci, ti) : Ci ∈ C, ti ∈ R(Ci)},
• E = { {(Ci, ti), (Cj , tj)} | i 6= j, ti[S(Ci)∩S(Cj)] =
tj [S(Ci) ∩ S(Cj)]}

where t[Y ] denotes the restriction of t to the variables of Y .

Note that this definition has firstly been introduced in [El
Mouelhi et al., 2013b]. As for the microstructure, there is a
direct relationship between cliques and solutions of CSPs:

Theorem 2 A CSP P has a solution iff µDR(P ) has a clique
of size e (the number of constraints).

(a) (b)

Figure 1: Dual Graph (a) and DR-Microstructure (b) of the
CSP of the example 1.

Proof: By construction, µDR(P ) is e-partite, and any
clique contains at most one vertex (Ci, ti) per constraint
Ci ∈ C. Hence each e-clique of µDR(P ) has exactly
one vertex (Ci, ti) per constraint Ci ∈ C. By con-
struction of µDR(P ), any two vertices (Ci, ti), (Cj , tj)
joined by an edge (in particular, in some clique) satisfy
ti[S(Ci)∩S(Cj)] = tj [S(Ci)∩S(Cj)]. Hence all the tuples
ti in a clique join together, and it follows that the e-cliques
of µDR(P ) correspond exactly to tuples t which are joins of
one allowed tuple per constraint, that is, to solutions of P . 2

Consider the example 1 which will be used in this paper:

Example 1 P = (X,D,C) has five variables X =
{x1, . . . , x5} with domains D = {Dx1

= {a, a′}, Dx2
=

{b}, Dx3
= {c}, Dx4

= {d, d′}, Dx5
= {e}}. C =

{C1, C2, C3, C4} is a set of four constraints with S(C1) =
{x1, x2}, S(C2) = {x2, x3, x5}, S(C3) = {x3, x4, x5} and
S(C4) = {x2, x5}. The relations associated to the previous
constraints are given by these tables:

R(C1)
x1 x2
a b
a’ b

R(C2)
x2 x3 x5
b c e

R(C3)
x3 x4 x5
c d e
c d’ e

R(C4)
x2 x5
b e

The DR-Microstructure of this example is shown in figure
1. We have 4 constraints, then e = 4. Thanks to Theorem 2,
a solution of P is a clique of size 4, e.g. {ab, bce, be, cde} (in
the examples, we denote directly ti the vertex (Ci, ti) and vj
the vertex (xj , vj) when there is no ambiguity).

Assuming that relations of instances are given by tables
(it will be the same for next microstructures), the size of the
DR-Microstructure is bounded by a polynomial in the size
of the CSP, since |E| ≤ |V |2 with |V | = ΣCi∈C |{ti ∈
R(Ci)}|. Moreover, given an instance of CSP, computing its
DR-Microstructure can be achieved in polynomial time.

More generally, with a similar approach, one could define
a set of DR-Microstructures for a given non binary CSP. In-
deed, it is known that for some CSPs, some edges of their dual
representation can be deleted, while preserving the equiva-
lence (this question has been studied in [Jégou, 1991]). Be-
fore, in [Janssen et al., 1989], it has been shown that given
a hypergraph, we can define a collection of dual (or qual)
subgraphs deleting edges while preserving the connexity be-
tween shared variables. Some of these subgraphs being min-
imal for inclusion and also for the number of edges. These



graphs can be called Qual Subgraphs while the minimal ones
are called Minimal Qual Graphs.

Applying this result, in [Jégou, 1991], it is shown that for
a given non binary CSP, there is a collection of equivalent
binary CSPs (the maximal one being its dual encoding), as-
suming that their associated graphs preserve the connexity.

Definition 5 (Dual Subgraph Representation) Given a
CSP P = (X,D,C) and a Dual Graph (C,F ) of (X,C),
a Dual Subgraph (C,F ′) of (C,F ) is such that F ′ ⊆ F
and ∀Ci, Cj ∈ C such that S(Ci) ∩ S(Cj) 6= ∅, there is a
path (Ci = Ck1 , Ck2 , . . . Ckl

= Cj) in (C,F ′) such that
∀u, 1 ≤ u < l, S(Ci) ∩ S(Cj) ⊆ S(Cku) ∩ S(Cku+1).

A Dual Subgraph Representation of P is the CSP
(CD, RD, F

′
D) such that F ′

D ⊆ FD where (CD, RD, FD) is
the Dual Representation of P .

Figure 2 represents the two Dual Subgraphs of the Dual
Graph given in the figure 1. We can see that despite the dele-
tion of one edge in each subgraph, the connection between
vertices containing x2 is preserved by the existence of appro-
priate paths. In the first case, the connection between C1 and
C2 is preserved by the path (C1, C4, C2) while in the second
case, the connection between C1 and C4 is preserved by the
path (C1, C2, C4).

Figure 2: The two Dual Subgraphs of the Dual Graph of the
figure 1 (a).

The equivalence between the Dual Subgraph Representa-
tion and the non binary CSP is given by the next theorem
[Jégou, 1991]:

Theorem 3 There is a bijection between the set of solutions
of a CSP P = (X,D,C) and set of solutions of its Dual
Subgraph Representation (CD, RD, F

′
D).

So, considering these subgraphs, we can extend the previ-
ous definition of DR-Microstructures:

Definition 6 (DSR-Microstructure) Given a CSP P =
(X,D,C) (not necessarily binary) and one of its Dual
Subgraph (C,F ′), the Microstructure based on Dual
Subgraph Representation of P is the undirected graph
µDSR(P, (C,F ′)) = (V,E) with:

• V = {(Ci, ti) : Ci ∈ C, ti ∈ R(Ci)},
• E = E1 ∪ E2 such that

– E1 = { {(Ci, ti), (Cj , tj)} | {(Ci, Cj} ∈
F ′, ti[S(Ci) ∩ S(Cj)] = tj [S(Ci) ∩ S(Cj)]}

– E2 = { {(Ci, ti), (Cj , tj)} | {(Ci, Cj} /∈ F ′}.

With this representation, we have the same kind of prop-
erties since the size of the DSR-Microstructure is bounded
by the same polynomial in the size of the CSP as for
DR-Microstructure. Moreover, the computing of the DSR-
Microstructure can be achieved in polynomial time. Nev-
ertheless, while Dual Subgraphs are subgraphs of Dual
Graph, the DR-Microstructure is a subgraph of the DSR-
Microstructure since for each deleted edge, a universal binary
relation needs to be considered. Note that the property about
the cliques is preserved:
Theorem 4 A CSP P has a solution iff µDSR(P, (C,F ′))
has a clique of size e.
Proof: Using the theorem 3, we know that all Dual Subgraph
Representations of a CSP P have the same number of
solutions as P . Moreover, since µDR(P ) is a partial graph of
µDSR(P, (C,F ′)) which is an e-partite graph, each e-clique
of µDR(P ) is also a e-clique of µDSR(P, (C,F ′)), and thus,
there is no more e-clique in µDSR(P, (C,F ′)). So, it is
sufficient to use theorem 2 to obtain the result. 2

2.2 Microstructure based on Hidden Variable
The hidden variable encoding was inspired by Peirce [Peirce
et al., 1933] (cited in [Rossi et al., 1990]). In the hidden trans-
formation, the set of variables contains the original variables
plus the set of dual variables. Then a binary constraint links a
dual variable and an original variable if the original variable
belongs to the scope of the dual variable. The microstructure
is based on this binary representation:
Definition 7 (HT-Microstructure) Given a CSP P =
(X,D,C) (not necessarily binary), the Microstructure based
on Hidden Transformation of P is the undirected graph
µHT (P ) = (V,E) with:
• V = S1 ∪ S2 such that

– S1 = {(xi, vi) : xi ∈ X, vi ∈ Dxi
},

– S2 = {(Ci, ti) : Ci ∈ C, ti ∈ R(Ci)},
• E = { {(Ci, ti), (xj , vj)} | either xj ∈ S(Ci) and
vj = ti[xj ] or xj /∈ S(Ci)}.

Figure 3 represents the HT-Microstructure based on the
hidden transformation for the CSP of example 1. We can see
that the HT-Microstructure is a bipartite graph. This will af-
fect the representation of solutions. Before that, we should
recall that a biclique is a complete bipartite subgraph, i.e. a
bipartite graph in which every vertex of the first set is con-
nected to all vertices of the second set. A biclique between
two subsets of vertices of sizes i and j is denoted Ki,j . The
solutions will correspond to some particular bicliques:
Lemma 1 In a HT-Microstructure, aKn,e biclique with e tu-
ples, such that no two tuples belong to the same constraint,
cannot contain two different values of the same variable.
Proof: We assume that a Kn,e biclique with e tuples, such
that no two tuples belong to the same constraint, can contain
two different values vj and v′j of the same variable xj . There-
fore, there is at least one constraint Ci such that xj ∈ S(Ci).
Thus, ti[xj ] = vj , v′j or another v′′j . Hence, in all three cases,
we have a contradiction since ti cannot be connected to two
different values of the same variable. 2



(a) (b)

Figure 3: Hidden graph (a) and HT-Microstructure (b) of the CSP of the example 1.

Lemma 2 In a HT-Microstructure, a Kn,e biclique with n
values, such that no two values belong to the same variable,
cannot contain two different tuples of the same constraint.
Proof: We assume that a Kn,e biclique with n values,
such that no two values belong to the same variable, can
contain two different tuples ti and t′i of the same constraint
Ci. Therefore, there is at least one variable xj such that
ti[xj ] 6= t′i[xj ]. If vj = ti[xj ] and v′j = t′i[xj ] belong both to
the Kn,e biclique, we have a contradiction since we cannot
have two values of the same variable. 2

Using these two lemmas, since a Kn,e biclique with n val-
ues and e tuples such that no two values belong to the same
variable and no two tuples belong to the same constraint cor-
responds to an assignment on all the variables which satisfies
all the constraints, we can deduce the following theorem:
Theorem 5 Given a CSP P = (X,D,C) and µHT (P ) its
HT-Microstructure, P has a solution iff µHT (P ) has a Kn,e

biclique with n values and e tuples such that no two values
belong to the same domain and no two tuples belong to the
same constraint.

Based on the previous example, we can easily see that a
biclique does not necessarily correspond to a solution. Al-
though {a, a′, b, c, e, ab, ab′, bce, be} is a K5,4 biclique, it is
not a solution. On the contrary, {a, b, c, d, e, ab, bce, be, cde}
which is also aK5,4 biclique, is a solution of P . Then, the set
of solutions is not equivalent to the set of Kn,e bicliques, but
to the set of Kn,e bicliques which contain exactly one ver-
tex per variable and per constraint. This is due to the manner
which the graph of microstructure must be completed.

As for DR-Microstructure, the size of the HT-
Microstructure is bounded by a polynomial in the size
of the CSP, since:
• |V | = Σxi∈X |Dxi

|+ ΣCi∈C |{ti ∈ R(Ci)}| and
• |E| ≤ Σxi∈X |Dxi | × ΣCi∈C |{ti ∈ R(Ci)}|.
Moreover, given an instance of CSP, computing its HT-

Microstructure can also be achieved in polynomial time.
For the third microstructure, we propose another manner to

complete the graph of microstructure: this new way of repre-
sentation is also deduced from hidden encoding.

2.3 Microstructure based on Mixed Encoding
The Mixed Encoding [Stergiou and Walsh, 1999] of non bi-
nary CSPs uses at the same time dual encoding and hidden

variable encoding. This approach allows us to connect the
values of dual variables to the values of original variables,
two tuples of two different constraints and two values of two
different variables. More precisely:

Definition 8 (ME-Microstructure) Given a CSP P =
(X,D,C) (not necessarily binary), the Microstructure based
on Mixed Encoding of P is the undirected graph µME(P ) =
(V,E) with:

• V = S1 ∪ S2 such that

– S1 = {(Ci, ti) : Ci ∈ C, ti ∈ R(Ci)},
– S2 = {(xj , vj) : xj ∈ X, vj ∈ Dxj

},
• E = E1 ∪ E2 ∪ E3 such that

– E1 = { {(Ci, ti), (Cj , tj)} | i 6= j, ti[S(Ci) ∩
S(Cj)] = tj [S(Ci) ∩ S(Cj)]}

– E2 = { {(Ci, ti), (xj , vj)} | either xj ∈ S(Ci)
and vj = ti[xj ] or xj /∈ S(Ci)}

– E3 = { {(xi, vi), (xj , vj)} | xi 6= xj}.

The microstructure based on the mixed encoding of the
CSP of example 1 is shown in figure 4. We can observe that
in this encoding, we have the same set of vertices as for the
HT-Microstructure while for edges, we have the edges which
belong to the DR-Microstructure and the HT-Microstructure,
plus all the edges between values of domains that could ap-
pear in the classical microstructure of binary CSPs. This
will have an impact on the relationship between the solu-
tions of the CSP and the properties of the graph of ME-
Microstructure. The next lemma formalizes these observa-
tions:

Lemma 3 In a ME-Microstructure, a clique on n+e vertices
cannot contain two different values of the same variable, nei-
ther two different tuples of the same constraint.

Proof: Let vi and v′i be two values of the same variable
xi. By definition, the vertices corresponding to vi and v′i
cannot be adjacent and so cannot belong to the same clique.
Likewise, for the tuples. 2

According to this lemma, there is a strong relationship be-
tween cliques and solutions of CSPs:

Theorem 6 A CSP P has a solution iff µME(P ) has a clique
of size n+ e.



(a) (b)

Figure 4: Mixed graph (a) and ME-Microstructure (b) of the CSP of the example 1.

Proof: In a ME-Microstructure, according to lemma 3, a
clique on n+ e vertices contains exactly one vertex per vari-
able and per constraint. So it corresponds to an assignment
of n variables which satisfies e constraints, i.e. a solution of
P . 2

As for other microstructures, the size of the ME-
Microstructure is bounded by a polynomial in the size of the
CSP, since:

• |V | = Σxi∈X |Dxi |+ ΣCi∈C |{ti ∈ R(Ci)}| and

• |E| ≤ Σxi∈X |Dxi | × ΣCi∈C |{ti ∈ R(Ci)}| +

(Σxi∈X |Dxi |)
2

+ (ΣCi∈C |{ti ∈ R(Ci)}|)2.

Moreover, given an instance of CSP, computing its ME-
Microstructure can also be achieved in polynomial time.

2.4 Comparisons between microstructures
Firstly, we must observe that none of these microstructures
can be considered as a generalization of the classical mi-
crostructure of binary CSPs. Indeed, given a binary CSP P ,
we have µ(P ) 6= µDR(P ) (and µ(P ) 6= µDSR(P )), µ(P ) 6=
µHT (P ) and µ(P ) 6= µME(P ).

Moreover, while the DR-Microstructure is exactly the bi-
nary microstructure of the dual CSP (idem for DSR), nei-
ther the HT-Microstructure nor the ME-Microstructure corre-
spond to the classical microstructure of the CSP associated to
the binary representations coming from the original instance,
because of the way to complete these graphs.

Finally, all these microstructures can be computed in poly-
nomial time. This is true because we assume that compati-
bility relations associated to constraints are given by tables.
Note that the same property holds without this hypothesis,
but assuming that the size of scopes is bounded by constants,
since we consider here CSPs with finite domains. Neverthe-
less, from a practical viewpoint, they seem to be really dif-
ficult to compute and to manipulate explicitly. But it is the
same for the classical microstructure of binary CSPs. Indeed,
this should require having relations given by tables or to com-
pute all the satisfying tuples. And even if this is the case,
except for small instances, this would lead generally to build
graphs with a too large number of edges. However, this last

point is not really a problem because our motivation in this
paper concerns the proposal of new tools for the theoretical
study of non binary CSPs. To this end, the following section
presents some first results exploiting these microstructures for
defining new tractable classes.

3 Some results deduced from microstructures
We now present some results which can be deduced from
the analysis of these microstructures. For this, we will study
three tractable classes, including those corresponding to well
known properties as ”0-1-all” [Cooper et al., 1994] and BTP
[Cooper et al., 2010] for which it is necessary to make a dis-
tinctness between the vertices in the graph, and a third one for
which the vertices do not have to be distinguished.

3.1 Microstructures and number of cliques
In [El Mouelhi et al., 2012], it is shown that if the number of
maximal cliques in the microstructure of a binary CSP (de-
noted ω#(µ(P ))) is bounded by a polynomial, then classical
algorithms like Backtracking (BT), Forward Checking (FC
[Haralick and Elliot, 1980]) or Real Full Look-ahead (RFL
[Nadel, 1988]) solve the corresponding CSP in polynomial
time. Exactly, the cost is bounded by O(n2d ·ω#(µ(P ))) for
BT and FC, and byO(ned2 ·ω#(µ(P ))) for RFL. We analyze
here if this kind of result can be extended to non binary CSPs,
exploiting the different microstructures.

More recently in [El Mouelhi et al., 2013b], these re-
sults have been generalized to non binary CSPs, exploiting
the Dual Representation, using the algorithms nBT, nFC and
nRFL, which are the non binary versions of BT, FC and RFL.
More precisely, by exploiting a particular ordering for the
assignment of variables, it is shown that the complexity is
bounded by O(nea · da · ω#(µDR(P ))) for nBT, and by
O(nea · r2 ·ω#(µDR(P ))) for nFC and nRFL, where a is the
maximum arity for constraints and r is the maximum number
of tuples per compatibility relations.

Based on the time complexity of these algorithms, and
regarding some classes of graphs with number of maximal
cliques bounded by a polynomial, it is easy to define new



tractable classes. Such classes of graph are, for example, pla-
nar graphs, toroidal graphs, graphs embeddable in a surface
[Dujmovic et al., 2011] or CSG graphs [Chmeiss and Jégou,
1997]. This result can be summarized by:
Theorem 7 CSPs of arbitrary arities the DR-Microstructure
of which is either a planar graph, a toroidal graph, a graph
embeddable in a surface or a CSG graph, are tractable.

For HT-Microstructures, such a result does not hold. In-
deed, these microstructures are bipartite graphs. So the max-
imal cliques have size at most two since they correspond to
edges and their number is the number of edges in the graph,
which is then bounded by a polynomial, independently of the
tractability of the instance.

For ME-Microstructures, such a result does not hold too,
but for a different reason. By construction, the edges corre-
sponding to the set E3 = { {(xi, vi), (xj , vj)} | xi 6= xj}
of definition 8 allow all the possible assignments of variables,
making the number of maximal cliques exponential except for
CSPs with a single value per domain.

3.2 Microstructures and BTP
The property BTP (Broken Triangle Property) [Cooper et al.,
2010] defines a new tractable class for binary CSPs while ex-
ploiting characteristics of the microstructure. The BTP class
turns out to be important because it captures some tractable
classes (such as the class of tree-CSPs and other semantical
tractable classes such as RRM). The question is then: could
we extend this property to non binary CSPs while exploit-
ing characteristics of their microstructures? A first discussion
about this appears in [Cooper et al., 2010]. Here, we extend
these works, by analyzing the question on the DR, HT and
ME-Microstructures. Before, we recall the BTP property:
Definition 9 A CSP instance (X,D,C) satisfies the Broken
Triangle Property (BTP) w.r.t. the variable ordering < if,
for all triples of variables (xi, xj , xk) s.t. xi < xj < xk,
s.t. (vi, vj) ∈ R(Cij), (vi, vk) ∈ R(Cik) and (vj , v

′
k) ∈

R(Cjk), then either (vi, v
′
k) ∈ R(Cik) or (vj , vk) ∈ R(Cjk).

If none of these two tuples exist, (vi, vj), (vi, vk) and (vj , v
′
k)

is called a Broken Triangle on xk.
In [Cooper et al., 2010], it is shown that, if a binary CSP

is BTP, finding a good ordering and solving it is feasible in
O(n3d4 + ed2) = O(n3d4).

DR-Microstructure. To extend BTP to non binary CSPs,
the authors propose to consider the Dual Graph as a bi-
nary CSP, translating directly the BTP property. We denote
DBTP this extension. For example, Figure 5 presents the DR-
Microstructure of an instance P involving three constraints.
In Figure 5 (a), we can observe the presence of a broken tri-
angle on c3 if we consider the ordering c1 ≺ c2 ≺ c3 and
so P does not satisfy DBTP w.r.t. ≺. In contrast, in Figure
5(b), if either t1 and t′3 (blue edge) or t2 and t3 (red edge) are
compatible, then P satisfies DBTP according to ≺.

But it is possible, analyzing the DR-Microstructure, to
extend significantly the first results achieved in [Cooper et
al., 2010], these ones being limited to show that the binary
tree-structured instances are BTP on their dual representa-
tion. For example, it can be shown that for binary CSPs, the
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c1 c3
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Figure 5: DR-Microstructure of a non binary CSP satisfying
BTP on its dual representation

properties of the classical microstructure are clearly different
than the ones of the associated DR-Microstructure, proving
that for a binary instance, the existence of broken triangles
is not equivalent, considering one or the other of these two
microstructures. Moreover, it can also be proved that if a
non binary CSP has β-acyclic hypergraph [Graham, 1979;
Fagin, 1983], then its DR-Microstructure admits an order
such that there is no broken triangle, thus satisfying BTP.
Other results due to the properties of the DR-Microstructure
can be deduced considering BTP. More details about these
results are given in [El Mouelhi et al., 2013a].

HT and ME-Microstructures. For HT-Microstructure, one
can easily see that no broken triangle exist explicitly since this
graph is bipartite. To analyze BTP on this microstructure, one
should need to consider universal constraints (i.e. with uni-
versal relations) between vertices of the constraint graph re-
sulting from Hidden Transformation. Also, we will directly
study ME-microstructure because this microstructure has the
same vertices as the HT-Microstructure and it has been com-
pleted with edges between these vertices. So, consider now
the HT-Microstructure. Extending BTP on this microstruc-
ture is clearly more complicated because we must consider
at least four different cases of triangles, because contrary to
BTP or BTP on the DR-Microstructure, we have two kinds
of vertices: tuples of relations and values of domains. More-
over, since for BTP, we must also consider orderings such as
i < j < k, actually we must consider six kinds of triangles
since it is possible, for BTP to permute the order of the two
first variables: (1) xi < xj < xk, (2) xi < xj < Ck, (3)
xi < Cj < xk (or Ci < xj < xk), (4) xi < Cj < Ck (or
Ci < xj < Ck), (5) Ci < Cj < xk, (6) Ci < Cj < Ck.

One can notice the existence of a link for BTP between
DR-Microstructure and ME-Microstructure. Indeed, if a non
binary CSP P has a broken triangle on DR-Microstructure,
for any possible ordering of the constraints, then P possesses
necessarily a broken triangle for any ordering on mixed vari-
ables (variables and constraints). This leads us to the follow-
ing theorem which seems to show the DR-Microstructure as
the most promising one w.r.t. the BTP property:

Theorem 8 If a CSP P satisfies BTP considering its ME-
Microstructure, that is an ordering on mixed variables, then
there exists an ordering for which P satisfies BTP consider-
ing its DR-Microstructure.



3.3 Microstructures and ”0-1-all” constraints
In the previous subsections, it seems that the DR-
Microstructure should be the most interesting. Does this feel-
ing remains true for other tractable classes? To begin the
study we analyze the well known tractable class defined by
Zero-One-All constraints (”0-1-all”) introduced in [Cooper et
al., 1994]. Firstly, we recall the definition:

Definition 10 A binary CSP P = (X,D,C) is said 0-1-all
(ZOA) if for each constraint Cij of C, for each value vi ∈
Dxi , Cij satisfies one of the following conditions:
• (0) for any value vj ∈ Dxj

, (vi, vj) 6∈ R(Cij),
• (1) there is a unique value vj ∈ Dxj

such that (vi, vj) ∈
R(Cij),
• (all) for any value vj ∈ Dxj

, (vi, vj) ∈ R(Cij).

This property can be represented graphically using the
microstructure. In the case of the DR-Microstructure, it
seems easy to define the same kind of property. With respect
to the case of the definition given above (the one of [Cooper
et al., 1994] defined for binary CSPs), the difference will be
related to the fact that the edges of the DR-Microstructure
connect now tuples of relations. So, since there is no particu-
lar feature which can be immediately deduced from the new
representation, the satisfaction of the ”0-1-all” property is
obviously related to the properties of the considered instance.

For the HT-Microstructure, now, the edges connect tuples
(vertices associated to constraints of the CSP) to values (ver-
tices associated to variables of the CSP). We now analyze
these edges from two viewpoints, i.e. from the two possible
directions.

• Edges from the tuples to the values. Each tuple is con-
nected to the values appearing in the tuple. So, for each
constraint associated to the HT-Microstructure, the con-
nection is a ”one” connection, satisfying the conditions
of the ”0-1-all” property.
• Edges coming from the values to the tuples. For a con-

straint associated to the HT-Microstructure, a value is
connected to the tuples where it appears. We discuss the
three possibilities.

– ”0” connection. A value is supported by no tuple.
For a binary CSP, it is the same case as for the clas-
sical definition, with a connection ”0”.

– ”1” connection. A value is supported by one tuple.
For a binary CSP, it is also the same case as for the
classical definition, with a connection ”1”.

– ”all” connection. A value is supported by all the
tuples of a constraint. We have also the same con-
figuration as for the ”all” connections in the case of
binary CSPs.

So, we can deduce the next theorem, which allows us to
think that for the HT-Microstructure, we have a representation
at least as powerful as for the case of classical microstructure.

Theorem 9 If a binary CSP P satisfies the ”0-1-all” prop-
erty, then P satisfies the ”0-1-all” property considering its
HT-Microstructure.

Finally, for the ME-Microstructure, we must verify si-
multaneously the conditions defined for the DR and HT-
Microstructures because, the additional edges connecting ver-
tices associated to values correspond to universal constraints,
which trivially satisfy the ”0-1-all” property.

To conclude, by construction, nothing is opposite to satisfy
the conditions of ZOA, even if, as for the case of binary CSPs,
these conditions are really restrictive.

4 Conclusion

In this paper, we have introduced the concept of microstruc-
ture in the case of CSP with constraints of arbitrary arity. If
the concept of microstructure of binary CSP is now well es-
tablished and has enabled to provide the basis for many the-
oretical works in CSPs, for the general case, the notion of
microstructure was not clearly established before. Also, in
this paper, we have wanted to define explicitly a microstruc-
ture of CSP for the general case. The idea is to provide a tool
for the theoretical study of CSP with constraints of any arity.

Three proposals are presented here: the DR-Microstructure
(and the associated DSR-Microstructures), the HT-
Microstructure and the ME-Microstructure. Actually,
they are derived from the representation of non binary CSPs
by equivalent binary CSPs: the dual representation, the
hidden variable transformation, and the mixed approach.
We have studied these different microstructures whose none
constitutes a formal generalization of the classical binary
microstructure.

Although this work is prospective, we have begun to show
the interest of this approach. For this, we have studied some
known tractable classes which have been initially defined for
binary CSPs, and expressed in terms of properties of the mi-
crostructure of binary CSPs. Here, a first result is related to
the case of microstructures of binary CSP whose the number
of maximal cliques is bounded by a polynomial. These in-
stances are known to be tractable in polynomial time by the
usual algorithms for solving binary CSPs, as BT, FC or RFL.
These classes extend naturally to non binary CSPs whose mi-
crostructures satisfy the same properties about the number of
maximal cliques, if now using the non binary versions of the
same algorithms. We have also shown how the BTP class can
naturally be extended to non-binary CSPs while expressing
the notion of broken triangle within a microstructure of non
binary CSPs. This class is of interest because it includes var-
ious well-known tractable classes of binary CSPs, which are
now defined in terms of constraints of arbitrary arity. We now
hope that these tools will be used at the level of non binary
CSPs for theoretical studies as it was the case for the classi-
cal microstructure of binary CSPs. Although a practical use
of these microstructures seems quite difficult for us with re-
spect to issues of efficiency, we believe that one possible and
promising track of this work could be to better understand
how common backtracking algorithms work efficiently for
the non binary case, and the same thing for numerous heuris-
tics.
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et Techniques du Languedoc, January 1991.

[Jégou, 1993] P. Jégou. Decomposition of Domains Based
on the Micro-Structure of Finite Constraint Satisfaction
Problems. In AAAI, pages 731–736, 1993.

[Mears et al., 2009] Christopher Mears, Maria Garcia de la
Banda, and Mark Wallace. On implementing symmetry
detection. Constraints, 14(4):443–477, 2009.

[Nadel, 1988] B. Nadel. Tree Search and Arc Consistency
in Constraint-Satisfaction Algorithms, pages 287–342. In
Search in Artificial Intelligence. Springer-Verlag, 1988.

[Peirce et al., 1933] C.S. Peirce, C. Hartshorne, and
P. Weiss. Collected Papers of Charles Sanders Peirce,
volume vol. 3. Harvard University Press, 1933.

[Rossi et al., 1990] Francesca Rossi, Charles J. Petrie, and
Vasant Dhar. On the equivalence of constraint satisfaction
problems. In ECAI, pages 550–556, 1990.

[Rossi et al., 2006] F. Rossi, P. van Beek, and T. Walsh.
Handbook of Constraint Programming. Elsevier, 2006.

[Salamon and Jeavons, 2008] András Salamon and Peter
Jeavons. Perfect Constraints Are Tractable. In CP, pages
524–528, 2008.

[Stergiou and Walsh, 1999] K. Stergiou and T. Walsh. En-
codings of Non-Binary Constraint Satisfaction Problems.
In AAAI, pages 163–168, 1999.


