
Combining Restarts, Nogoods and Decompositions
for Solving CSPs

Philippe Jégou and Cyril Terrioux 1

Abstract. From a theoretical viewpoint, the (tree-)decomposition
methods offer a good approach when the (tree)-width of constraint
networks (CSPs) is small. In this case, they have often shown their
practical interest. However, sometimes, a bad choice for the root clus-
ter (a tree-decomposition is a tree of clusters) may drastically degrade
the performance of the solving.

In this paper, we highlight an explanation of this degradation and
we propose a solution based on restart techniques. Then, we present
a new version of the BTD algorithm (for Backtracking with Tree-
Decomposition [8]) integrating restart techniques. From a theoretical
viewpoint, we prove that reduced nld-nogood can be safely recorded
during the search and that their size is smaller than ones recorded by
MAC+RST+NG [9]. We also show how structural (no)goods may be
exploited when the search restarts from a new root cluster. Finally,
from a practical viewpoint, we show experimentally the benefits of
using restart techniques for solving CSPs by decomposition methods.

1 INTRODUCTION
Constraint Satisfaction Problems (CSPs, see [14] for a state of the
art) provide an efficient way of formulating problems in computer
science, especially in Artificial Intelligence.

Formally, a constraint satisfaction problem is a triple (X,D,C),
where X = {x1, . . . , xn} is a set of n variables, D =
(dx1 , . . . , dxn) is a list of finite domains of values, one per variable,
andC = {C1, . . . , Ce} is a finite set of e constraints. Each constraint
Ci is a pair (S(Ci), R(Ci)), where S(Ci) = {xi1 , . . . , xik} ⊆ X
is the scope of Ci, and R(Ci) ⊆ dxi1

× · · ·× dxik
is its compatibil-

ity relation. The arity of Ci is |S(Ci)|. A CSP is called binary if all
constraints are of arity 2. The structure of a constraint network is rep-
resented by a hypergraph (which is a graph in the binary case), called
the constraint (hyper)graph, whose vertices correspond to variables
and edges to the constraint scopes. In this paper, for sake of simplic-
ity, we only deal with the case of binary CSPs but this work can easily
be extended to non-binary CSP by exploiting the 2-section [1] of the
constraint hypergraph (also called primal graph), as it will be done
for our experiments since we will consider binary and non-binary
CSPs. Moreover, without loss of generality, we assume that the net-
work is connected. To simplify the notations, in the sequel, we de-
note the graph (X, {S(C1), . . . S(Ce)}) by (X,C). An assignment
on a subset of X is said to be consistent if it does not violate any
constraint. Testing whether a CSP has a solution (i.e. a consistent as-
signment on all the variables) is known to be NP-complete. So the
time complexity of backtracking algorithms which are usually ex-
ploited to solve CSPs, is naturally exponential, at least in O(e.dn).

1 Aix-Marseille Université, LSIS UMR 7296, France {philippe.jegou,
cyril.terrioux}@lsis.org

Many works have been realized to make the solving more efficient
in practice, by using optimized backtracking algorithms, heuristics,
constraint learning, non-chronological backtracking, filtering tech-
niques, etc. In order to ensure an efficient solving, most solvers com-
monly exploit jointly several of these techniques. Moreover, often,
they also derive benefit from the use of restart techniques. In par-
ticular, restart techniques generally allow to reduce the impact of
bad choices performed thanks to heuristics (like the variable order-
ing heuristic) or of the occurrence of heavy-tailed phenomena. They
have been recently introduced in the CSP framework (e.g. in [9]).
For efficiency reasons, they are usually exploited with some learning
techniques (like recording of nld-nogoods in [9]).

In this paper, we introduce for the first time the restart techniques
in the context of decomposition methods for solving CSPs. Decom-
position methods (e.g. [4, 8]) solve CSPs by taking into account
some particular features of the constraint networks. Often, they rely
on the notion of tree-decomposition of graphs [12]. In such a case,
their advantage is related to their theoretical complexity, i.e. dw

++1

where w+ is the width of the considered tree-decomposition. Since
computing an optimal tree-decomposition is NP-Hard, the used tree-
decompositions are generally computed by heuristic methods and so
approximate optimal tree-decompositions. When this graph has nice
topological properties and thus when w+ is small, these methods
allow to solve large instances, e.g. radio link frequency assignment
problems [3]. From a practical viewpoint, they have obtained promis-
ing results on such instances. However, their efficiency may drasti-
cally be degraded by some bad choices performed by heuristics. To
present this issue, we consider here the BTD method [8] which is a
reference in the state of the art for this type of approach [11].

For BTD, the considered tree-decomposition and the choice of the
root cluster (i.e. the first studied cluster) induce a particular variable
ordering. Hence, as it is well known that the variable ordering has
a significant impact on the efficiency of the solving, the choice of
the root cluster is crucial. In [7], an approach has been proposed to
choose a variable ordering with more freedom but its efficiency still
depends on the choice of the root cluster. In the next section, we
explain why it is difficult to propose a suitable choice for the root
cluster. As a consequence, in order to reduce the impact of the root
cluster on the practical efficiency, we propose an alternative based
on restart techniques. Then, we present a new version of BTD in-
tegrating restart techniques. From a theoretical viewpoint, we prove
that reduced nld-nogood can be safely recorded during the search
and that their size is smaller than ones recorded by MAC+RST+NG
[9]. We also show how structural (no)goods can be exploited when
the search restarts from a new root cluster. Finally, from a practical
viewpoint, we show experimentally the benefits of the use of restart
techniques for solving CSPs by decomposition methods.

Section 2 recalls the frame of BTD and describes the BTD-MAC
algorithm2. Then, section 3 presents the algorithm BTD-MAC+RST.
In section 4, we assess the benefits of restarts when solving CSPs
thanks to a decomposition-based method and conclude in section 5.

2 THE BTD METHOD
BTD [8] relies on the notion of tree-decomposition of graphs [12].

Definition 1 A tree-decomposition of a graph G = (X,C) is a pair
(E, T) with T = (I, F) a tree and E = {Ei : i ∈ I} a family of
subsets ofX , such that each subset (called cluster)Ei is a node of T
and satisfies: (i) ∪i∈IEi = X , (ii) for each edge {x, y} ∈ C, there
exists i ∈ I with {x, y} ⊆ Ei, and (iii) for all i, j, k ∈ I , if k is in
a path from i to j in T , then Ei ∩ Ej ⊆ Ek. The width of a tree-
decomposition (E, T) is equal tomaxi∈I |Ei|−1. The tree-width w
of G is the minimal width over all the tree-decompositions of G.

Given a tree-decomposition (E, T) and a root cluster Er , we de-
note Desc(Ej) the set of vertices (variables) belonging to the union
of the descendants Ek of Ej in the tree rooted in Ej , Ej included.
Figure 1(b) presents a tree whose nodes correspond to the maxi-
mal cliques of the graph depicted in Figure 1(a). It is a possible
tree-decomposition for this graph. So, we get E1 = {x1, x2, x3},
E2 = {x2, x3, x4, x5},E3 = {x4, x5, x6}, andE4 = {x3, x7, x8}.
As the maximum size of clusters is 4, the tree-width of this graph is
3. We have Desc(E1) = X and Desc(E2) = {x2, x3, x4, x5, x6}.

Given a compatible cluster ordering < (i.e. an ordering which can
be produced by a depth-first traversal of T from the root cluster Er),
BTD achieves a backtrack search by using a variable ordering� (said
compatible) s.t. ∀x ∈ Ei, ∀y ∈ Ej , with Ei < Ej , x � y. In
other words, the cluster ordering induces a partial ordering on the
variables since the variables in Ei are assigned before those in Ej if
Ei < Ej . For the example of Figure 1, E1 < E2 < E3 < E4 (resp.
x1 � x2 � x3 � . . . � x8) is a possible compatible ordering on E
(resp. X). In practice, BTD starts its backtrack search by assigning
consistently the variables of the root cluster Er before exploring a
child cluster. When exploring a new cluster Ei, it only assigns the
variables which appears in the cluster Ei but not in its parent cluster
Ep(i), that is all the variables of the cluster Ei except the variables
of the separator Ei ∩ Ep(i)

3.
In order to solve each cluster, BTD can exploit any solving al-

gorithm which does not alter the structure. For instance, BTD can
rely on the algorithm MAC (for Maintaining Arc-Consistency [15]).
During the solving, MAC can make two kinds of decisions: positive
decisions xi = vi which assign the value vi to the variable xi (we de-
note Pos(Σ) the set of positive decisions in a sequence of decisions
Σ) and negative decisions xi 6= vi which ensure that xi cannot be as-
signed with vi. Let us consider Σ = 〈δ1, . . . , δi〉 (where each δj may
be a positive or negative decision) as the current decision sequence.
A new positive decision xi+1 = vi+1 is chosen and an AC filtering
is achieved. If no dead-end occurs, the search goes on by choosing a
new positive decision. Otherwise, the value vi+1 is deleted from the
domain dxi+1 , and an AC filtering is realized. If a dead-end occurs
again, we backtrack and change the last positive decision x` = v`
to x` 6= v`. Regarding BTD-MAC (i.e. BTD relying on MAC for
solving each cluster), we can note that the next positive decision nec-
essarily involves a variable of the current clusterEi and that only the

2 BTD-MAC has never been described before in the literature. The algorithm
MAC-BTD evoked in [8] is in fact RFL-BTD, i.e. BTD based on Real Full
Look-ahead [10] (see [16] for a comparison between MAC and RFL).

3 We assume that Ei ∩ Ep(i) = ∅ if Ei is the root cluster.

domains of the future variables in Desc(Ei) can be impacted by the
AC filtering (since Ei ∩ Ep(i) is a separator of the constraint graph
and all its variables have already been assigned).

When BTD has consistently assigned the variables of a clusterEi,
it then tries to solve each subproblem rooted in each child cluster
Ej . More precisely, for a child Ej and a current decision sequence
Σ, it attempts to solve the subproblem induced by the variables of
Desc(Ej) and the decision set Pos(Σ)[Ei ∩ Ej] (i.e. the set of
positive decisions involving the variables of Ei ∩ Ej). Once this
subproblem solved (by showing that there is a solution or showing
that there is none), it records a structural good or nogood. Formally,
given a clusterEi andEj one of its children, a structural good (resp.
nogood) of Ei with respect to Ej is a consistent assignment A of
Ei ∩ Ej such that A can (resp. cannot) be consistently extended
on Desc(Ej) [8]. In the particular case of BTD-MAC, the consis-
tent assignment of A will be represented by the restriction of the set
of positive decisions of Σ on Ei ∩ Ej , namely Pos(Σ)[Ei ∩ Ej].
These structural (no)goods can be used later in the search in order to
avoid exploring a redundant part of the search tree. Indeed, once the
current decision sequence Σ contains a good (resp. nogood) of Ei

w.r.t. Ej , BTD has already proved previously that the correspond-
ing subproblem induced by Desc(Ej) and Pos(Σ)[Ei ∩ Ej] has a
solution (resp. none) and so does not need to solve it again. In the
case of a good, BTD keeps on the search with the next child cluster.
In the case of a nogood, it backtracks. For example, let us consider
a CSP on 8 variables x1, . . . , x8 for which each domain is {a, b, c}
and whose constraint graph and a possible tree-decomposition are
given in Figure 1. Assume that the current consistent decision se-
quence Σ = 〈x1 = a, x2 6= b, x2 = c, x3 = b〉 has been
built according to a variable order compatible with the cluster order
E1 < E2 < E3 < E4. BTD tries to solve the subproblem rooted
in E2 and once solved, records {x2 = c, x3 = b} as a structural
good or nogood of E1 w.r.t. E2. If, later, BTD studies the consistent
decision sequence 〈x1 6= a, x3 = b, x1 = b, x2 6= a, x2 = c〉, it
will keep on its search with the next child cluster of E1, namely E4,
if {x2 = c, x3 = b} has been recorded as a good, or backtrack to the
last decision in E1 if {x2 = c, x3 = b} corresponds to as a nogood.

Algorithm 1 without the lines 21-24 corresponds to the algorithm
BTD-MAC. Initially, the current decision sequence Σ and the sets
G and N of recorded structural goods and nogoods are empty and
the search starts with the variables of the root cluster Er . Given a
current cluster Ei and the current decision sequence Σ, lines 16-
27 consist in exploring the cluster Ei by assigning the variables of
VEi (with VEi the set of unassigned variables of the cluster Ei)
like MAC would do while lines 1-14 allow to manage the chil-
dren of Ei and so to use and record structural (no)goods. BTD-
MAC(P ,Σ,Ei,VEi ,G,N) returns true if it succeeds in extending
consistently Σ on Desc(Ei)\(Ei\VEi), false otherwise. It has a
time complexity in O(n.s2.e. log(d).dw

++2) while its space com-
plexity is O(n.s.ds) with w+ the width of the used tree-decomposi-
tion and s the size of the largest intersection between two clusters.

From a practical viewpoint, generally, BTD efficiently solves
CSPs having a small tree-width [6, 7, 8]. However, sometimes, a bad
choice for the root cluster may drastically degrade the performance
of the solving. The choice of the root cluster is crucial since it im-
pacts on the variable ordering, in particular on the choice of the first
variables. Hence, in order to make a smarter choice, we have selected
some instances of the CSP 2008 Competition4 and, for each instance,
we run BTD from each cluster of its considered tree-decomposition.

4 See http://www.cril.univ-artois.fr/CPAI08 for more details.

x2

x4

x6

x7

x5 x8

x1

x3

x3x7x8

x4x5x6

x2 x5x4x3

x1 x3x2

E3

2

1

4E

E

E

(a) (b)

Figure 1. A constraint graph for 8 variables (a) and an optimal
tree-decomposition (b).

We have first observed that for a same instance, the runtimes may
differ from several orders of magnitude according the chosen root
cluster. For instance, for the scen11-f12 instance (which is the easi-
est instance of the scen11 family), BTD succeeds in proving the in-
consistency for only 75 choices of root cluster among the 301 pos-
sible choices. Secondly, we have noted that solving some clusters
(not necessarily the root cluster) and their corresponding subprob-
lems is more expensive for some choice of the root cluster than for
another. This is explained by the choice of the root cluster which in-
duces some particular ordering on the clusters and the variables. In
particular, since for a cluster Ei, BTD only considers the variables
of Ei\(Ei ∩ Ep(i)), it does not handle the same variable set for Ei

depending on the chosen root cluster. Unfortunately, it seems to be
utopian to propose a choice for the root cluster based only on features
of the instance to solve because this choice is too strongly related
to the solving efficiency. In [7], an approach has been proposed to
choose a variable ordering with more freedom but its efficiency still
depends on the choice of the root cluster. So, an alternative to limit
the impact of the choice of the cluster is required. In section 3, we
propose a possible one consisting in exploiting restart techniques.

3 EXPLOITING RESTARTS WITHIN BTD
It is well known that any method exploiting restart techniques must as
much as possible avoid exploring the same part of the search space
several times and that randomization and learning are two possible
ways to reach this aim. Regarding the learning, BTD already exploits
structural (no)goods. However, depending on when the restart occurs,
we have no warranty that a (no)good has been recorded yet. Hence,
another form of learning is required to ensure a good practical effi-
ciency. Here, we consider the reduced nld-nogoods (for negative last
decision nogoods) whose practical interest has been highlighted in
the MAC+RST+NG algorithm [9]. We first recall the notion of no-
good in the case of MAC:

Definition 2 ([9]) Given a CSP P = (X,D,C) and a set of deci-
sions ∆, P|∆ is the CSP (X,D′, C) withD′ = (d′x1

, . . . , d′xn
) such

that for any positive decision xi = vi, d′xi
= {vi} and for any neg-

ative decision xi 6= vi, d′xi
= dxi\{vi}. ∆ is a nogood of P if P|∆

is inconsistent.

In the following, we assume that for any variable xi and value vi, the
positive decision xi = vi is considered before the decision xi 6= vi.

Proposition 1 ([9]) Let Σ = 〈δ1, . . . , δk〉 be the sequence of deci-
sions taking along the branch of the search tree when solving a CSP
P . For any subsequence Σ′ = 〈δ1, . . . , δ`〉 of Σ s.t. δ` is a negative
decision, the set Pos(Σ′) ∪ {¬δ`} is a nogood (called a reduced
nld-nogood) of P with ¬δ` the positive decision corresponding to δ`.

In other words, given a sequence Σ of decisions taking along the
branch of a search tree, each reduced nld-nogood characterizes a vis-
ited inconsistent part of this search tree. When a restart occurs, an
algorithm like MAC+RST+NG can record several new reduced nld-
nogoods and exploit them later to prevent from exploring again an
already visited part of the search tree. These nld-nogoods can be ef-
ficiently computed and stored as a global constraint with an efficient
specific propagator for enforcing AC [9].

The use of learning in BTD may endanger its correctness as soon
as we add to the initial problem a constraint whose scope is not in-
cluded in a cluster. So recording reduced nld-nogoods in a global
constraint involving all the variables like proposed in [9] is impos-
sible. However, by exploiting the features of a compatible variable
ordering, Property 2 shows that this global constraint can be safely
decomposed in a global constraint per cluster Ei.

Proposition 2 Let Σ = 〈δ1, . . . , δk〉 be the sequence of decisions
taking along the branch of the search tree when solving a CSP P by
exploiting a tree-decomposition (E, T) and a compatible variable
ordering. Let Σ[Ei] be the subsequence built by considering only the
decisions of Σ involving the variables of Ei. For any prefix subse-
quence Σ′Ei

= 〈δi1 , . . . , δi`〉 of Σ[Ei] s.t. δi` is a negative decision,
and every variable inEi∩Ep(i) appears in a decision in Pos(Σ′Ei

),
the set Pos(Σ′Ei

) ∪ {¬δi`} is a reduced nld-nogood of P .

Proof: Let PEi be the subproblem induced by the variables of
Desc(Ei) and ∆Ei the set of the decisions of Pos(ΣEi) related
to the variables of Ei ∩ Ep(i). As Ei ∩ Ep(i) is a separator of the
constraint graph, PEi|∆Ei

is independent from the remaining part of
the problem P . Let us consider Σ[Ei] the maximal subsequence of Σ
which only contains decisions involving variables of Ei. According
to Proposition 1 applied to Σ[Ei] and PEi|∆Ei

, Pos(Σ′Ei
)∪{¬δi`}

is necessarily a reduced nld-nogood. 2

It ensues that we can bound the size of produced nogoods and
compare them with those produced by Proposition 1:

Corollary 1 Given a tree-decomposition of width w+, the size of
reduced nld-nogood produced by proposition 2 is at most w+ + 1.

Corollary 2 Under the same assumptions as Proposition 2, for any
reduced nld-nogood ∆ produced by Proposition 1, there is at least
one reduced nld-nogood ∆′ produced by Proposition 2 s.t. ∆′ ⊆ ∆.

BTD already exploits a particular form of learning by recording
structural (no)goods. Any structural (no)good of a cluster Ei w.r.t. to
a child cluster Ej is by definition oriented from Ei to Ej . This ori-
entation is directly induced by the choice of the root cluster. When
a restart occurs, BTD may choose a different cluster as root cluster.
If so, we have to consider structural (no)goods with different orien-
tations. Proposition 3 states how these structural (no)goods can be
safely exploited when BTD uses the restart technique.

Proposition 3 A structural good of Ei w.r.t. Ej can only be used if
the choice of the current root cluster induces thatEj is a child cluster
of Ei. A structural nogood of Ei w.r.t. Ej can be used regardless the
choice of the root cluster.

Proof: Let us consider a good ∆ of Ei w.r.t. Ej produced for a
root cluster Er . By definition of structural goods, the subproblem
PEj |∆ has a solution and its definition only depends on ∆ and
the fact that Ej is a child cluster of Ei. So, for any choice of the
root cluster s.t. Ej is a child cluster of Ei, ∆ will be a structural
good of Ei w.r.t. Ej and can be used to prune safely redundant

part of the search. Regarding structural nogoods, any structural
nogood ∆ of Ei w.r.t. Ej is a nogood and so any decision se-
quence Σ s.t. ∆ ⊆ Pos(Σ) cannot be extended to a solution,
independently from the choice of the root cluster. Hence, struc-
tural nogoods can be used regardless the choice of the root cluster. 2

It follows that unlike the nogoods, for the goods, the orientation is
required. So, it could be better to call them oriented structural goods.

Algorithm 2 describes the algorithm BTD-MAC+RST which ex-
ploits restart techniques jointly with recording reduced nld-nogoods
and structural (no)goods. Exploiting the restart techniques can be
seen as choosing a root cluster (line 3) and running a new instance
of BTD-MAC+NG (line 4) at each restart until the problem is solved
by proving there is a solution or none. Algorithm 1 presents the al-
gorithm BTD-MAC+NG. Like BTD-MAC, given a current cluster
Ei and the current decision sequence Σ, BTD-MAC+NG explores
the cluster Ei (lines 16-27) by assigning the variables of VEi (with
VEi the set of unassigned variables of Ei). When Ei is consistently
assigned, it manages the children of Ei and so uses and records
structural (no)goods (lines 1-14). The used structural (no)goods may
have been recorded during the current call to BTD-MAC or dur-
ing a previous one. Indeed, if the first call of BTD-MAC+NG is
achieved with empty sets G and N of structural goods and nogoods,
G and N are not reset at each restart. Note that their uses (lines 7-8)
are performed according to Proposition 3. Then, unlike BTD-MAC,
BTD-MAC+NG may stop its search as soon as a restart condition
is reached (line 21). If so, it records reduced nld-nogoods w.r.t. the
decision sequence Σ restricted to the decisions involving variables
of Ei (line 22) according to Proposition 2. We consider that a global
constraint is associated to each cluster Ei to handle the nld-nogoods
recorded w.r.t. Ei and that their use is performed via a specific prop-
agator when the arc-consistency is enforced (lines 19 and 25) like in
[9]. The restart condition may involve some global parameters (e.g.
the number of backtracks achieved since the begin of the current call
to BTD-MAC+NG), some local ones (e.g. the number of backtracks
performed in the current cluster or the number of recorded structural
(no)goods) or a combination of these two approaches.

BTD-MAC+NG(P ,Σ,Ei,VEi ,G,N) returns true if it succeeds in
extending consistently Σ onDesc(Ei)\(Ei\VEi), false if it proves
that Σ cannot be consistently extended on Desc(Ei)\(Ei\VEi) or
unknown if a restart occurs. BTD-MAC+RST(P) returns true if P
has at least a solution, false otherwise.

Theorem 1 BTD-MAC+RST is sound, complete and terminates.

Proof: BTD-MAC+NG differs from BTD-MAC by exploiting
restart techniques, recording reduced nld-nogoods and starting its
search with sets G and N which are not necessarily empty. When
a restart occurs, the search is stopped and reduced nld-nogoods are
safely recorded from Proposition 2. Regarding structural (no)goods,
N andG only contain valid structural (no)goods and their uses (lines
7-8) are safe according to Proposition 3. So, as BTD-MAC is sound
and terminates and as these properties are not endangered by the dif-
ferences between BTD-MAC and BTD-MAC+NG, it is the same for
BTD-MAC+NG. Then, as BTD-MAC is complete, BTD-MAC+NG
is complete under the condition that no restart occurs. Moreover,
restarts stop the search without changing the fact that if a solution
exists in the part of the search space visited by BTD-MAC+NG,
BTD-MAC+NG would find it. As BTD-MAC+RST only performs
several calls to BTD-MAC+NG, it is sound. For the complete-
ness, if the call to BTD-MAC+NG is not stopped by a restart
(what is necessarily the case of the last call to BTD-MAC+NG if
BTD-MAC+RST terminates), the completeness of BTD-MAC+NG

Algorithm 1: BTD-MAC+NG (InOut: P = (X,D,C): CSP;
In: Σ: sequence of decisions, Ei: Cluster, VEi : set of variables;
InOut: G: set of goods, N : set of nogoods)

1 if VEi
= ∅ then

2 result← true
3 S ← Sons(Ei)
4 while result = true and S 6= ∅ do
5 Choose a cluster Ej ∈ S
6 S ← S\{Ej}
7 if Pos(Σ)[Ei ∩ Ej] is a nogood in N then result← false
8
9 else if Pos(Σ)[Ei ∩ Ej] is not a good of Ei w.r.t. Ej in G then

10 result← BTD-MAC+NG(P ,Σ,Ej ,Ej\(Ei ∩ Ej),G,N)
11 if result = true then
12 Record Pos(Σ)[Ei ∩ Ej] as good of Ei w.r.t. Ej in G

13 else if result = false then
14 Record Pos(Σ)[Ei ∩Ej] as nogood of Ei w.r.t. Ej in N

15 return result
16 else
17 Choose a variable x ∈ VEi
18 Choose a value v ∈ dx

19 dx ← dx\{v}
20 if AC (P ,Σ ∪ 〈x = v〉) ∧ BTD-MAC+NG(P , Σ ∪ 〈x = v〉, Ei,

VEi
\{x}, G, N)= true then return true

21
22 else
23 if must restart then
24 Record nld-nogoods w.r.t. the decision sequence Σ[Ei]
25 return unknown
26 else
27 if AC (P ,Σ ∪ 〈x 6= v〉) then
28 return BTD-MAC+NG(P ,Σ ∪ 〈x 6= v〉,Ei,VEi

,G,N)
29 else return false

Algorithm 2: BTD-MAC+RST (In: P = (X,D,C): CSP)
1 G← ∅; N ← ∅
2 repeat
3 Choose a cluster Er as root cluster
4 result← BTD-MAC+NG (P ,∅,Er ,Er ,G,N)
5 until result 6= unknown
6 return result

implies one of BTD-MAC+RST. Furthermore, recording reduced
nld-nogoods at each restart prevents from exploring a part of the
search space already explored by a previous call to BTD-MAC+NG.
It ensues that, over successive calls to BTD-MAC+NG, one has to
explore a more and more reduced part of the search space. Hence,
the termination and completeness of BTD-MAC+RST are ensured
by the unlimited nogood recording achieved by the different calls
to BTD-MAC+NG and by the termination and completeness of
BTD-MAC+NG. 2

Theorem 2 BTD-MAC+RST has a time complexity in
O(R.((n.s2.e. log(d) + w+.N).dw

++2 + n.(w+)2.d)) and a
space complexity in O(n.s.ds + w+.(d + N)) with w+ the width
of the considered tree-decomposition, s the size of the largest
intersection Ei ∩Ej , R the number of restarts and N the number of
recorded reduced nld-nogoods.

Proof: BTD-MAC without nld-nogoods has a time complexity in
O(n.s2.e. log(d).dw

++2). According to Propositions 4 and 5 of [9],
storing and managing nld-nogoods of size at most n can be achieved
respectively in O(n2.d) and O(n.N). As, according to Corollary
1, the size of nld-nogoods is at most w+ + 1, this two operations
can be achieved respectively in O((w+)2.d) and O(w+.N). BTD-
MAC+RST makes at most R calls to BTD-MAC. So we obtain a
time complexity for BTD-MAC+RST in O(R.((n.s2.e. log(d) +

w+.N).dw
++2 + n.(w+)2.d)).

By exploiting the data structure proposed in [9], the worst case
space complexity for storing reduced nld-nogoods isO(w+.(d+N))
since according to Corollary 1, BTD-MAC+RST records N no-
goods of size at most w+ + 1. Regarding the storage of structural
(no)goods, BTD-MAC+RST has the same space complexity
as BTD, namely O(n.s.ds). So, its whole space complexity is
O(n.s.ds + w+.(d+N)). 2

If BTD-MAC+RST exploits a geometric restart policy [17] based
on the number of allowed backtracks (i.e. a restart occurs as soon as
the number of performed backtracks exceeds the number of allowed
backtracks which is initially set to n0 and increased by a factor r at
each restart), we can bound the number of restarts:

Proposition 4 Given a geometric policy based on the num-
ber of backtracks with an initial number n0 of allowed back-
tracks and a ratio r, the number of restarts R is bounded by⌈

log(n)+(w++1). log(d)−log(n0)
log(r)

⌉
.

4 EXPERIMENTATIONS
In this section, we assess the benefits of restarts when solving CSPs
thanks to a decomposition-based method. With this aim in view, we
compare BTD-MAC+RST with BTD-MAC and MAC+RST+NG on
647 instances (of arbitrary arity) among the instances of the CSP
2008 Competition. The selected instances are ones which have suit-
able tree-decompositions (i.e. a ratio n/w+ at least equal to 2). These
tree-decompositions are computed thanks to Min-Fill [13] which is
considered as the best heuristic of the state of the art [5]. The run-
time of BTD-MAC(+RST) includes the time required to compute the
tree-decomposition. All the methods exploit the dom/wdeg variable
heuristic [2]. We have tried several heuristics for the choice of the
root cluster. We present here the best ones:

• RW: we choose the cluster maximizing the sum of weights of con-
straints whose scope intersects the cluster (the weights are those
of dom/wdeg). This heuristic is also one exploited by BTD-MAC.

• RA: we choose alternatively the cluster containing the next vari-
able according to dom/wdeg applied on all the variables and max-
imizing sum of weights of constraints whose scope intersects the
cluster or a cluster according to the decreasing ratio number of
constraints over size of the cluster minus one.

Both heuristics RW and RA aim to follow the first-fail principle. The
second case of RA brings some diversity in the search. The used
restart policies rely on the number of allowed backtracks. The pre-
sented values below are ones providing the best results among the
tested values. More precisely, for MAC+RST+NG, we exploit a ge-
ometric policy where the initial number of allowed backtracks is 100
while the increasing factor is 1.1. BTD-MAC+RST with RW uses a
geometric policy with a ratio 1.1 and initially 50 allowed backtracks.
For RA, we apply a geometric policy with a ratio 1.1 and initially 75
allowed backtracks when the cluster is chosen according to the first
case. In the second case, we use a constant number of allowed back-
tracks set to 75. All the implementations are written in C++. The
experimentations are performed on a linux-based PC with an Intel
Pentium IV 3.2 GHz and 1 GB of memory. The runtime limit is set
to 1,200 s (except for Table 1).

Figure 2 presents the cumulative number of solved instances for
each considered algorithm. First, we can note that the two heuristics
RW and RA globally lead to a similar behavior for BTD-MAC+RST.
Then it appears clearly that BTD-MAC+RST solves more instances

 0

 200

 400

 600

 800

 1000

 1200

 0 100 200 300 400 500 600

ti
m

e
 (

s)

solved instances

MAC
BTD-MAC

MAC+RST+NG
BTD-MAC+RST WR
BTD-MAC+RST WA

Figure 2. The cumulative number of solved instances per algorithm.

Table 1. Runtime in s (without timeout) for the scen11 instances.

Instance MAC+RST+NG BTD-MAC+RST
scen11-f12 0.51 0.30
scen11-f11 0.50 0.30
scen11-f10 0.65 0.35
scen11-f9 1.32 1.54
scen11-f8 1.60 1.78
scen11-f7 12.93 6.81
scen11-f6 20.23 9.86
scen11-f5 102 45.72
scen11-f4 397 202
scen11-f3 1,277 609
scen11-f2 3,813 1,911
scen11-f1 9,937 5,014

than any other algorithm. For instance, BTD-MAC+RST solves 582
instances in 15,863 s with RW (resp. 574 instances in 13,280 s for
RA) while MAC+RST+NG only solves 560 instances in 16,943 s.
Without restart techniques, the number of solved instances is still
smaller with 536 and 544 instances in 18,063 s and 13,256 s for MAC
and BTD-MAC respectively.

In order to better analyze the behavior of the different algorithms,
we now consider the results obtained per family of instances5. Table
2 provides the number of solved instances and the cumulative run-
time for each considered algorithm while Table 3 gives the runtime
for instances which are solved by all the algorithms. First, we can
note that, for some kinds of instances, like graph coloring, the use of
restart techniques does not allow to improve the efficiency of BTD-
MAC+RST w.r.t. to MAC+RST+NG or BTD-MAC. On the other
hand, for the other considered families, we can observe that BTD-
MAC+RST provides interesting results. These good results are some-
times due only to the tree-decomposition (e.g. for the families dubois
or haystacks) since they are close to ones of BTD-MAC. Likewise, in
some cases, they mainly result from the use of restart techniques (e.g.
for the families jobshop or geom) and they are then close to ones ob-
tained by MAC+RST+NG. Finally, in other cases, BTD-MAC+RST
derives fully benefit of both the tree-decomposition and the restart
techniques (e.g. for the families renault, superjobshop or scen11). In
such a case, it clearly outperforms the three other algorithms. For
example, it is twice faster than MAC+RST+NG for solving the in-
stances of the scen11 family, which contains the more difficult RL-
FAP instances [3]. Table 1 presents the runtime of MAC+RST+NG
and BTD-MAC+RST for these instances. We can remark that BTD-
MAC solves only the three easiest instances. This is explained by bad
choices for the root cluster. It turns that, for all the instances of this

5 Note that we do not take into account all the instances of a given family, but
only ones having a suitable tree-decomposition.

Table 2. The number of solved instances and the cumulative runtime in s for each considered algorithm.

Family #inst. MAC BTD-MAC MAC+RST+NG BTD-MAC+RST RW BTD-MAC+RST RA
#solv. time #solv. time #solv. time #solv. time #solv. time

dubois 13 5 2,232 13 0.03 5 2,275 13 0.04 13 0.05
geom 83 83 415 83 819 83 479 83 468 83 460

graphColoring 39 29 1,989 33 1,291 29 2,783 34 2,825 33 2,769
haystacks 46 2 5.82 8 169 2 4.43 8 172 8 172
jobshop 46 37 617 35 469 46 14.87 46 13.15 46 10.93
renault 50 50 23.89 50 86.81 50 24.30 50 22.96 50 24.73

pret 8 4 250 8 0.05 4 552 8 0.06 8 0.05
scens11 12 8 1,632 3 1.25 9 537 10 878 10 882

Super-jobShop 46 19 1,648 21 1,179 33 2,315 34 1,553 27 449
travellingSalesman-20 15 15 191 15 229 15 214 15 346 15 294

Table 3. The cumulative runtime in s for each considered algorithm for instances solved by all the algorithms.

Family #inst. MAC BTD-MAC MAC+RST+NG BTD-MAC+RST RW BTD-MAC+RST RA
dubois 5 / 13 2,232 0.01 2,275 0.01 0.01

graphColoring 27 / 39 951 1,051 1,308 846 1,277
haystacks 2 / 46 5.82 0 4.43 0 0.01
jobshop 33 / 46 392 468 5.63 5.10 4.48

pret 4 / 8 250 0.01 552 0.02 0
rlfapScens11 3 / 12 2.75 1.25 1.66 0.95 1.10

Super-jobShop 16 / 46 1,275 830 14.83 9.60 16.04

family, most choices for the root cluster lead to spend a lot of time to
solve some subproblems. So, restart techniques are here very helpful.

Finally, we have observed that BTD-MAC+RST is generally more
efficient on inconsistent instances than MAC+RST+NG. For exam-
ple, it requires 4,260 s to solve the inconsistent instances which are
solved by all the algorithms while MAC+RST+NG needs 7,105 s.
Such a phenomenon is partially explained by the use of the tree-
decomposition. Indeed, if BTD-MAC+RST explores an inconsistent
cluster at the beginning of the search, it may quickly prove the in-
consistency of the problem.

5 CONCLUSION

In this paper, we have firstly presented the integration of MAC
in BTD. We have then shown how it is possible to enhance the
decomposition-based methods with the integration of the principle of
restarts. This has led us to significantly extend the BTD method. We
have first described how classic nogoods can be incorporated into a
decomposition-based method while preserving the structure induced
by a considered decomposition. Next we have introduced the concept
of oriented structural good. Indeed, if the structural nogoods can be
used directly by BTD using restarts, the goods must verify certain
properties on the order of exploration of a tree-decomposition, and
then, the notion of oriented structural good becomes necessary. In the
last part of this paper, the experimentations show clearly the practical
interest of exploiting restarts in decomposition-based methods. It ef-
fectively overcomes the problem induced by the order of exploration
of clusters which harms very often and significantly to their practi-
cal effectiveness. These results also show that adding restarts to BTD
can significantly outperform the MAC+RST+NG method when the
topology of the network constraints has a suitable width.

To extend this work, it would be interesting to define new restart
policies specific to the case of the decompositions (e.g. by consider-
ing local and/or global policies). Moreover, we can propose smarter
choices for the root cluster by exploiting specific information (e.g.
the number of (no)goods). Finally, this approach could be applied
at a meta level, for instance, to address the problem of choosing a

suitable tree-decomposition.

ACKNOWLEDGEMENTS
This work was supported by the French National Research Agency
under grant TUPLES (ANR-2010-BLAN-0210).

REFERENCES
[1] C. Berge, Graphs and Hypergraphs, Elsevier, 1973.
[2] F. Boussemart, F. Hemery, C. Lecoutre, and L. Saı̈s, ‘Boosting system-

atic search by weighting constraints’, in ECAI, pp. 146–150, (2004).
[3] C. Cabon, S. de Givry, L. Lobjois, T. Schiex, and J. P. Warners, ‘Radio

Link Frequency Assignment’, Constraints, 4, 79–89, (1999).
[4] R. Dechter and J. Pearl, ‘Tree-Clustering for Constraint Networks’, Ar-

tificial Intelligence, 38, 353–366, (1989).
[5] P. Jégou, S. N. Ndiaye, and C. Terrioux, ‘Computing and exploiting

tree-decompositions for solving constraint networks’, in CP, pp. 777–
781, (2005).

[6] P. Jégou, S.N. Ndiaye, and C. Terrioux, ‘‘Dynamic Heuristics for Back-
track Search on Tree-Decomposition of CSPs’, in IJCAI, pp. 112–117,
(2007).

[7] P. Jégou, S.N. Ndiaye, and C. Terrioux, ‘Dynamic Management of
Heuristics for Solving Structured CSPs’, in CP, pp. 364–378, (2007).

[8] P. Jégou and C. Terrioux, ‘Hybrid backtracking bounded by tree-
decomposition of constraint networks’, AIJ, 146, 43–75, (2003).

[9] C. Lecoutre, L. Saı̈s, S. Tabary, and V. Vidal, ‘Recording and Minimiz-
ing Nogoods from Restarts’, JSAT, 1(3-4), 147–167, (2007).

[10] B. Nadel, Tree Search and Arc Consistency in Constraint-Satisfaction
Algorithms, 287–342, Search in Artificial Intelligence, 1988.

[11] J. Petke, On the bridge between Constraint Satisfaction and Boolean
Satisfiability, Ph.D. dissertation, University of Oxford, 2012.

[12] N. Robertson and P.D. Seymour, ‘Graph minors II: Algorithmic aspects
of treewidth’, Algorithms, 7, 309–322, (1986).

[13] D. J. Rose, ‘Triangulated Graphs and the Elimination Process’, Journal
of Mathematical Analysis and Application, 32, 597–609, (1970).

[14] F. Rossi, P. van Beek, and T. Walsh, Handbook of Constraint Program-
ming, Elsevier, 2006.

[15] D. Sabin and E. Freuder, ‘Contradicting Conventional Wisdom in Con-
straint Satisfaction’, in ECAI, pp. 125–129, (1994).

[16] D. Sabin and E. Freuder, ‘Understanding and Improving the MAC Al-
gorithm’, in CP, pp. 167–181, (1997).

[17] T. Walsh, ‘Search in a small world’, in IJCAI, pp. 1172–1177, (1999).

