Decomposition and good recording for solving Max-CSPs

Jégou Philippe and Terrioux Cyril *

Abstract. [22] presents a new method called BTD for solving Val- This method is based both on enumerative techniques and on the
ued CSPs and so Max-CSPs. This method based both on enumerativee-decomposition notion. It aims to benefit from the practical ef-
techniques and the tree-decomposition notion provides better thediciency of enumerative methods while providing better theoretical
retical time complexity bounds than classical enumerative methodéme complexity bounds than enumerative methods. From [22], two
and aims to benefit of the practical efficiency of enumerative methimportant questions are raised. The first one is how we can compute
ods thanks to the structural goods which are recorded and exploitezh optimal solution from the optimal cost (because BTD only com-
during the search. However, [22] does not provide any experimentgbutes the cost of the best assignment, and not the assignment itself).
result and it does not discuss the way of finding an optimal solutiorProviding an optimal solution is one of the most important tasks for
from the optimal cost (because BTD only computes the cost of the solver, especially when we consider real-world instances. The sec-
best assignment). Providing an optimal solution is an important tasknd raised question deals with the practical efficiency of this method.
for a solver, especially when we consider real-world instances. So, iBTD presents a good behaviour on classical CSPs [7]. In contrast,
this paper, we first raise these two questions. Then we explain howts behaviour on the Max-CSP problem is unknown and must be as-
a solution can be efficiently computed and we provide experimentasessed. This article tries to answer these two important questions.

results which emphasize the practical interest of BTD. The paper is organized as follows. Section 2 introduces the basic
notions about CSPs and Max-CSPs. Section 3 is devoted to the BTD
1 INTRODUCTION method. Then, section 4 explains how we can compute an optimal so-

lution. Finally, we present some empirical results in section 5, before
Many various problems, like boolean formulae satisfiability, configu-concluding and giving some ideas of future works in section 6.
ration, graph coloring, planning, ..., can be expressed as a Constraint
Satisfaction Problem (CSP). A CSP is defined by a set of variable
(each one having a finite domain) and a set of constraints. Each coif=
straint forbids some combinations of values for a subset of variables,
Solylng aCSsP requires to assign avalueto e_a;h variable such that t 9(’ D,C,R). X is a set{x1,...,z,} of n variables. Each vari-
assignment satisfies all constraints. Determining whether a CSP h $; . S . A
L X able z; takes its values in the finite domadih, from D. Variables
a solution is a NP-complete task. When we consider real-world prob- . : i .
. - o . .~ "are subject to constraints frofi. Each constraint is defined as a
lems, they involve two kinds of constraints: hard constraints which .) . .
.)) : set{z.,, ...,z } Of variables. A relatiom. (from R) is associated
express some physical properties and soft constraints which express

. ; .) o gwth each constraint such thatr. represents the set of allowed tu-
notions like possibility or preference. The first ones must be satisfie) .
les overd,,, x --- X dz,, . Note that we can also define constraints

whereas the second ones can be violated. Unfortunately, representi :) . . .
. . . using functions or predicates for instance. Gi€nC X such
these problems in the CSP formalism (where each constraint mu . . .
atY = {x1,...,zx}, anassignmenbf variables fromY” is a tu-

be satisfied) often produces over-constrained problems which do noﬁ L -
.) . . eA = (vi,...,u) fromds, X --- x dg,. A constraintc is said
have any solution. However, even if there is no perfect solution, we___." . : : .
. L . ; . Satisfiedby A if ¢ C Y, (v1,...,v,)[c] € rc, violated otherwise.
can be interested by finding an assignment which optimizes acerta%e note the assignmens ve) in the more meaningful form
criterion on the constraint satisfaction. Hence, recently, many exten- 9 Lo Ok 9

sions of the CSP famework have been propose (6. 16,2, 21). i oo nar oot e 2o R
In this paper, we focus our study on the Max-CSP problem [6]. y y e

Solving a Max-CSP instance requires to find an assignment WhiC'(lwo variables). So, the structure of a CSP can be represented by the

s - . . raph (X, C), called theconstraint graph whose vertices are the
maximizes the number of satisfied constraints. Many algorithms havg_ "’ - .
. . . . variables of X and for which there an edge between two vertices
been defined in the past years for solving this problem. On the on

hand. they exploit enumerative techniques like Branch and Bounl the corresponding variables share a constraint. Given an instance,
(BB) 'or tﬁ/e ar')c-consistency notion [12 10, 14, 4]. On the other e CSP problem consists in determining whether there is an assign-

. .ment of each variable which satisfies each constraint. This problem is
hand, some other methods are based on the dynamic programming, . .
-Complete. Unfortunately, representing real-world instances as a

approach [23, 8, 15, 16, 17, 11]. Some of them exploit the proble) b - .
structure like [8, 15, 12, 11]. These different approaches have be’;tn:SP may produce over-constrained instances which do not have any

; . : . . solution. In such cases, as there is no perfect solution, we can be in-
provided interesting results in some different cases. In [22], an hyferested by finding an assignment which optimizes a certain criterion
brid method, called BTD, is presented for solving the Valued CSP y g g P

L o on the constraint satisfaction. Hence, in the recent years, many ex-
problem [21] which is a generalization of the Max-CSP prOblem'tensions of the CSP framework have been proposed (e.g. [6, 2, 21]).

1 SIS, Universie d'Aix-Marseille 1ll, Marseille, France. Email: In this paper, we focus our study on the Max-CSP problem [6].
{philippe.jegou,cyril.terrioux@Isis.org Solving a Max-CSP instance requires to find an assignment which

BASIC NOTIONS

constraint satisfaction problenfCSP) is defined by a tuple

maximizes the number of satisfied constraints. In other words, we % c @
want to minimize the number of violated constraints. The number !
of constraints violated by an assignment is called the cost of this %
assignment. Many complete algorithms have been recently devel- c c
oped for solving Max-CSPs. They are often based on enumerative x, X X 2 ®)
techniques or on dynamic programming approaches. Enumerative
methods exploit a lower bound, which underestimates the cost of X C3
the best complete extension of the current assignment, and an up-
per bound which is generally the cost of the best known assignment. @ ()
Then, if the lower bound does not exceed the upper one, they ex-
tend the current assignment by assigning a new variable. Otherwiserigure 1. (a) A constraint graph on 8 variables. (b) A tree-decomposition
they backtrack and try to assign a new value to the last assigned vari- of this constraint graph.
able. If all the values have been tried, they backtrack again. The effi-
ciency of enumerative methods mostly depends on the quality of the
lower and upper bounds. The greater the lower bound (respectively
the smaller the upper bound) is, the less nodes are visited and coand we noteDesc(C;) the set of variables which belong & or
straint checks performed. The basic enumerative method is Branae any descendart;, of C; in the tree rooted ir€;. For instance,
and Bound (BB). It simply uses the cost of the current assignment aPesc(C2) = C> U C3 = {z2, 3, T4, T5, T }-
lower bound. Then, many improvements have been proposed from The first step of BTD consists in computing a tree-decomposition
the classical CSP framework. For instance, the lower bound can bef the constraint graph. The computed tree-decomposition induces a
improved by using prospective techniques like Forward-Checkingpartial variable ordering which allows BTD to exploit some struc-
(FC [6]) or the arc-consistency notion [13, 10, 14, 4]. On the othertural properties of the graph and so to prune some parts of the search
hand, some other methods are based on the dynamic programminge. In fact, variables are assigned according to a depth-first traversall
approach [23, 8, 15, 16, 17, 12, 11]. These methods divide the prolwf the rooted tree. In other words, we first assign the variables of the
lem into different subproblems. Then each subproblem is solved angbot clusterC;, then we assign the variables @f, thenCs’s ones,
some informations are recorded during each resolution. These infoend so on. For example; , z2, . . ., zs is a possible variable order-
mations are exploited for solving a bigger subproblem, and so ofing. Furthermore, the tree-decomposition and the variable ordering
until the whole problem is solved. In particular, they can be used forllow BTD to divide the problen®? into many subproblems. Given
computing good lower or upper bounds like in Russian dolls searchwo clustersC; andC; (with C; aC;’s son), the subproblem rooted
(RDS [23]) and its variants [15, 16, 12, 17]. Some of these methodsn C; depends on the current assignmgnon C; N C;. It is denoted
exploit the problem structure like [8, 15, 12, 11]. From a practical P, ¢, /¢, . Its variable set is equal tPesc(C;). The domain of each
viewpoint, the enumerative methods which use arc-consistency olariable which belongs t6; N C; is restricted to its value il. Re-
tain goods results when the instances to solve have a limited sizgarding the constraint set, it contains the constraints which involve
However, they seem have some difficulties in solving larger instancest least one variable which exclusively appear§,iror in a descen-
like the CELAR real-world instances [3]. On the other hand, dynamicdant ofC;. For instance, let us consider the CSP whose constraint
programming methods may seem perform many redundant searchggaph is provided in figure 1(a). We assume that each domain is
or visit some useless parts of the search space. Nonetheless, in prga- 2, 3} and each constraint; = {z;,z;} meansr; # z;. Given
tice, they can obtain interesting results. For instance, RDS [23] ang{ = (z, « 2,z35 < 2), the variable set 0P 4 ¢, /¢, is Desc(Cz),
the Koster’s structural method [8] succeed in solving the SCEN-0Gwith d, = d., = {2} andd,, = d., = ds, = {1,2,3}) and its
instance of the CELAR (which is one of the hardest instances). constraint set i§cau4, co5, €34, €35, Ca5, Ca6, 56 }- Note that the con-
straintcas does not belong to its constraint set becausandzs ap-
pear both irC;. Remark that the definition of subproblems defines a
3 THEBTD METHOD partition of the constraint set. Such a partition ensures that BTD takes
In [22] a new method is proposed for solving Valued CSPs [21] andnto account each constraint only once and so that it safely computes
s0 Max-CSP. This method called BTD (for Backtracking with Tree- the cost of any assignment. Finally, the tree-decomposition notion
Decomposition) is an enumerative method which is guided by a treePermits to define thealued structural goodhotion (by analogy with
decomposition of the constraint graphtrée-decompositiofi.8] of ~ the nogood notion). A structural valued goodlefwith respect t;
agraphG = (X, E)isapair(C, 7) with T = (I, F) atree and = (with C; aC;'s son) is a paif(A4, v) with A the current assignment
{C; : i € I'} afamily of subsets oK, such that each clust€s isa ~ OnCi N C; andv the optimal cost of the subprobleRy ¢, /¢, . For
node of7 and verifies: (1)J;c:C; = X, (2) for each edgéz,y} € instance, if we consider the assignmett= (z2 — 2,23 — 2)
E, there exists € I with {z,y} C C;, 3)foralli,j, k € I, if kis onC; N Cz, we obtain the good.A4, 0) since the best assignment on
on a path from to j in 7, thenC; N C; C Ci. The width of atree- Desc(C2) is (z2 < 2,23 < 2,24 «— 1,25 — 3,26 — 2) (Which
decompositior(C, T) is equal tomazic7|Ci| — 1. The tree-width of ~ Violates no constraint becausg does not belong t®4 ¢, /¢,).
G is the minimal width over all the tree-decompositiongafNote Figure 2 describes the BTD algorithm based on BB. It explores
that finding an optimal tree-decomposition is a NP-Hard problem [1] the search space according to the variable ordering induced by the
However, we can easily compute a good tree-decomposition by usin@ee-decomposition. So, it begins with the variables of the root clus-
the notion oftriangulated graphs Figure 1(b) presents a possible terCi.Inside acluste€;, it proceeds classically like BB by assigning
tree-decomposition for the graph of figure 1(a). So, we@et= a value to a variable, by maintaining and comparing upper and lower
{1, 29,23}, Co = {2, 3, 24,25}, C3 = {xa, 25,26} andCy = bounds and by backtracking if the lower bound exceeds the upper
{373, 1-771\8}’ and the tree-width is 3. In the fo”owing, from a tree- bound. The bounds in BTD are similar to BB’s ones but they only
decomposition, we consider a rooted t(deF") whereC; is the root take into account the constraints of the subprobiRRr, , /c; (with

X3

BTD(A,Cs, Ve, s e, s oc;) assign again the variables Besc(C;) — (C; NC;). What is called in

%: !Fh‘éff =0 [7, 22] aforward-jump(by analogy with the backjump notion). For
3. F < Sons(Ci) instance, after having assigned the variahjén C,, if BTD exploits
4 While F # 0 andl¢, < ac, Do P
5 Choose; inF * a good onC; N Cz, then, it checks for a good ofy N C4 without
6. F— F\{C;} , exploring againDesc(C2). Hence, as many variables may be unas-
;: gégﬂc’; N €l v)isagoodolt/C;in GThenle; — le, +v signed, BTD cannot(prc))vide a solution o)f/ the problem \)//ve want to
2-0 v BTlD(iL C5,C5\(C5 N C:),0,acy) solve. It can only look for its optimal cost. Even if computing the

. c; — le; v
i% EnFéﬁcord the good4[C; M C;], v) of C;/C; in G E):pstgfal (r:T(]):t m:(iy b;a an |rr_1§ortant ta§k, the ;nalhq tsSk'm the M?r:(-

. | ramework is to provide an assignment which minimizes the
13. EndWhile
14. Returnllci number of violated constraints. What raises a fundamental question
%g- E'Scehoosec € Vo, for BTD: how can we compute an optimal solution from the optimal
17. d — d, ‘ cost provided by BTD? More generally, this question is often raised
%g- Wh"cehf(l)oﬁe? if;“glci < ac; Do for algorithms like BTD which make a trade-off between time and
20. d — d\{a} _ space. As an example, the adaptation of Tree-Clustering proposed
Ery ffal; ‘ﬁ :<{"fy»c-?} € Cly & Ve, and AU {z — a} violates c}| in [5] with a limited space-complexity suffers from the same draw-
23. Then ac, — min(ac,, BTD(AU {z «— a},C;, Ve, \{z}, back since it only records informations on each separator and then it
04 Endif le; +la,ac;)) cannot produce a solution in a backtrack free-manner.
25. EndWhile In this section, we explain how we can build a solution from the
gs- En'zﬁm'mci optimal costw. A basic way consists in using any enumerative algo-

rithm for looking for an assignment with a cast But such a way

is clearly inefficient and has a time-complexity worse than BTD’s
one. By so doing, we do not benefit from the tree-decomposition or
from the goods which BTD has recorded during the search. So we
can build a solution thanks to a method derived from BTD which
would exploit the goods previously recorded. For instance, given a
Cp(;) theC;'s father andA the assignment ofi; N C,(;)). The lower clusterC;, we can look for an assignmenton C; such that for each
bound corresponds to the cost of the current assignmeBesn(C;) sonC; of C;, A[C; N C;] is a good. This method has a time com-
while the upper one is defined by the cost of the best known solutiomlexity similar to BTD’s one. However, it is clear that, in practice, it
for the SprfOblenV’A,cp(i)/cj- When every variable ir¢; is as- performs fewer nodes and constraint checks than BTD (except in the
signed, if the lower bound is less than the upper bound, BTD keepgase where there is a single cluster). This method is better than the
on the search with the first son @f (if there is one). More generally, first, but it still seems too expensive because BTD may record a lot
let us consider a saf; of C;. Given the current assignmedton(;, of goods. So for efficiency reasons, we must restrict the number of
BTD checks whether the assignmetiC; NC;] corresponds to aval- goods which are liable to be exploited for guiding the search for a
ued structural good. If so, BTD adds its associated costhe lower ~ solution. The ideal case would be to keep a single good per intersec-
bound. Otherwise it extend4 on Desc(C;) in order to compute the tion C; N C;. In fact, this ideal case can be reached if we memorize
optimal cosw of the subproblenP 4jc,¢,].c, /c; - Then, it adds to some additional informations when we record or use a good.

the lower bound and it records the valued ggotC; N C;],v). If, Keeping a single good per intersection means that for each inter-
after having proceeded the s6p, the lower bound does not exceed section, we keep the good which participates in an optimal solution.
the upper bound, BTD keeps on the search with the next s6n Bf- The main difficulty comes from the forward-jumps which may occur
nally, if a failure occurs, BTD tries to modify the current assignmentduring the search. Indeed, when BTD uses a goag} @fith respect

Figure 2. The BTD algorithm.

onc;. to C;, it does not visit again the subproblem rootedjn So it does
In figure 2, given an assignment and a clustec;, BTD looks not check the goods @f; with respect to any son @f;. For instance,
for the best assignmerf on Desc(C;) such thatA[C:\Ve,] = by using a good o€, N C2, BTD does not check the goods 6§

B[C:\Ve,] and the cost of3 is less thame,. Ve, denotes the set with respect toCs. Therefore, when BTD records a new gogaf

of unassigned variables i@;, lc, the lower bound andvc, the C; with respect ta;, it must also memorize, for each s6p of C;,

upper bound with respect to the subprobl@mc,nc, ., 1.c,,/c:- the good orC; N Ci, which is exploited for building the current good

If BTD finds such an assignment, it returns its cost, otherwiseg. By applying recursively this concept, we keep exactly one good

it returns a cost greater than (or equal t),. The first call is per intersection. Thanks to a suitable data structure, these additional

BTD(0,Cy,Cq, 0, +00). recordings do not change the space and time complexities of BTD.
Finally, BTD has a space complexity if(n.s.d®) and a time Then, for computing a solution, we first assign the variables which

complexity inO(n.s?.m.log(d).d” ™) with w + 1 the size of the appear in at least one intersectiépn C; with the value they have

largestC;, ands the size of the largest intersecti6nn C; with C; a in the corresponding good. We ndte, the set of unassigned vari-

son ofC; [22]. These complexities assume that a tree-decompositioables ofC;. Clearly, we havédc, = Ci — (Cp(i) Ul ¢ sons(c,) Ci)-

has been computed (structural parameteends are related to this For each clusteC;, we consider the subproblerzn defined by the

decomposition). subgraph(C;, Cc,) of the constraint grapi{X, C) with C¢, =
CN(Ci x (C:i\Cp(s))). For each subproblem, only the variables/gf
4 HOW TO COMPUTE A SOLUTION? must be assigned. Moreover, we can solve independently each sub-

problem since each intersectiGn N C; is a separator of the graph
BTD only provides the optimal cost of the instance we want to (X, C). Then, for each subproble, the initial lower bound (if we
solve. It does not compute an optimal solution of this instance. Inuse BB) is defined by{c = {z,y} € C¢,|3C; € Sons(C:i),x €
deed, when BTD exploits a good 6f with respect t&;, it does not

Ciandy € C;NC; and Aviolates c}|+ ch €Sons(cy) AC; where 1000 e
A = Ue, esons(c;) Ac; and(Ac;, ac;) is the good ofC; with re- RGE 3 ‘
spect toC;. Straightforwardly, the two terms of the previous sum w0 b e —

involve different constraints. Regarding the upper bound, it is sim-
ply ac,. The time-complexity of this method is, in the worst case,
O(nmdk) wherek is the size of the largest sk, . Of course, find-

ing an optimal solution still requires an enumeration, but our method
limits this enumeration to its strict minimum.

Finally, if there is a single cluster, obviously, we have= n and
providing an optimal solution requires an enumerationnowari-
ables. To avoid such a redundant work, we add to BTD the ability to 5 1w v W w w u = a =
record the best known assignment for the variables of the root cluster.

This trade-off slightly changes the space-complexiy + n.s.d”)

instead ofO(n.s.d®)) while saving many redundant works. Figure 3. Mean run-time in seconds (with a log scale) for FC-BTD,
(n.5.d%)) g many FC-MRDAC, FC and RDS on class (30,5175).

Time (s)

5 EXPERIMENTAL RESULTS

The second main question raised by BTD deals with its practical Then, we study the practical interest of BTD on structured
efficiency. Thanks to theoretical results and some intuitive ideas, weandom instances, for which one can expect that BTD provides
can think that BTD is efficient on some instances (in particular ifbetter results than classical algorithms thanks to the exploita-
they have a good structure) but no experimental result is presentdibn of the structure. For these experiments, we use the model
in [22]. Indeed, first, the time-complexity bound of BTD is clearly of structured random instances proposed in [7]. We consider
better than one of enumerative methods simceé 1 < n. Then, by several classe$n,d, "maz, T, Smaz). An instance of the class
recording and using goods, BTD solves each subproblem only oncén, d, 742, T, Sma=) hasn variables (each one having a domain of
which allows BTD to save time and constraint checks. In contrastsized). Its constraint graph is a clique-tree such that the size of the
BTD uses local lower and upper bounds, what may limit its pruninglargest clique is,,., and the size of the largest intersection is at
capacity. Consequently, some experimentations are required in orderosts,,.... T' denotes the tightness of each constraint. We compare
to really assess the practical interest of BTD. BTD with FC, RDS [23] and FC-MRDAC [13]. RDS and FC use
This section provides empirical results on random and real-worldiom /deg as a variable heuristic (in a static way for RDS) and no
instances. In both cases, the experimentations are realized on a linuyarticular value heuristic. For FC-MRDAC, we use the implementa-
based PC with an Intel Pentium IV 2.4 GHz and 512Mb of mem-tion provided by J. Larrosa [9].
ory. For random instances, we limit to half an hour the time spent
for solving a given instance. So, sometimes, some instances may be Taple 1. Mean run-time in seconds (respectively number of unsolved
unsolved. For these instances, we consider that the running time isinstances) for FC-BTD, FC-MRDAC, FC and RDS on random structured
half an hour. For each class of random instances, we solve 50 in- instances.

stances. The presented results are then the averages of results obk___Classe FC-BTD | FC-MRDAC | FC RDS
tained for each instance. For both random and real-world instances (30,10,10,78,5) 189 280.6(1)] 124.21 154.9 (1)
o e . . ~>11 (40,5,10,15,5) 2.7 144.6 (1) | 149.3 | 152.8(0)
a tree-decomposition is computed by triangulating the constraint | (40,10,10,55,5) 7.6 318.5(3)| 77.6| 503.1(8)
graph (thanks to the algorithm proposed in [19]) and by searching (40,5,15,9,5) 15.5 160.3(1) | 64.2 | 109.8 (0)

the maximal cliques of the triangulated constraint graph. From this

tree-decomposition, we produce a tree-decomposition whose param-

eters does not exceed 5 for random instances and 10 for real-world We can first observe that, for the class of structured random in-
ones (see [7] for more details about this computation), which lim-stances presented in figure 3, BTD outperforms the three classical
its the memory requirements of BTD. For efficiency reasons, BTDmethods for any tightness. In effect, BTD solves these instances be-
is based on FC (instead of BB), what does not change any previougveen 7 and 14 times faster than FC-MRDAC. This gain is obtained
theoretical results. Inside each cluster, the variable heuristic for BTDhanks to the exploitation of structural valued goods. Goods allow
is dom/deg which first chooses the variable which minimizes BTD to avoid visiting some redundant parts of the search. So, BTD
the ratio|d., |/|Tz,| with d., the current domain of; andT,,, its achieves less constraint checks than each of the three algorithms. On
neighbour set. We do not use a particular value heuristic. the average, only a few hundred goods are produced, but each good
is used up to 8,000 times. In order to confirm these results, we then
compare BTD, FC-MRDAC, FC and RDS on four other classes of
structured random instances (see table 1). We first note that, for some
We first assess the behaviour of BTD on classical random instanceslasses, FC-MRDAC or RDS are unable to solve every instance while
In the classical CSP framework, BTD solves classical random inBTD solves each of them in only a few seconds. Then we observe
stances as efficiently as the best classical enumerative algorithms [that BTD is significantly more efficient than FC-MRDAC, FC and
even if these instances do not present a priori good structural propeRDS on these structured instances. It fully benefits from the struc-
ties. Unfortunately, in the Max-CSP framework, in many cases, BTDture. Indeed, like for the first class, only a few goods are recorded but
can perform worse than algorithms like FC or FC-MRDAC. Indeed, their use allows BTD to prune a lot of branches and to achieve less
as these instances do not have good structural properties, the clustemnstraint checks. Therefore, BTD makes a good trade-off between
are often under-constrained and so BTD spends a lot of time to endime and space since this recording does not require much memory.
merate all possible solutions (because BTD exploits local bounds). Finally, we observe that the method proposed in section 4 for com-

5.1 Random instances

puting an optimal solution requires at most a thousand additiona CONCLUSION AND FUTURE WORKS

constraint checks, which is insignificant with respect to the millions
of constraint checks performed by BTD to compute the optimal cost.

In this paper, we have raised two questions about the BTD method.

The first one concerns the construction of an optimal solution from
the optimal cost provided by BTD. The second one deals with the

5.2 Real-world instances

practical efficiency of BTD. Then we have proposed an efficient

method for computing such an optimal solution. Finally, we have

We experiment BTD on some real-world instances of the CELA
from the FullRLFAP archive These instances correspond to radio
link frequency assignment problems (for more details, see [3]). Som
of them can be easily expressed as binary Max-CSPs. We focus o
study on the SUBCELAR class which contains five subproblems pro-
duced from the SCEN-06 instance (one of the hardest instances in t

Rshown the practical interest of BTD for solving instances with good
structural properties. Indeed, BTD clearly outperforms FC-MRDAC,
EC and RDS on random structured instances and it succeeds in solv-
'u}g all the SUBCELAR instances.

Regarding the future works, BTD can be improved by taking into
jaccount the constraints between unassigned variables (for instance by

archive). We exploit the simplification proposed by T. Schiex [20]. USing arc-consistency [13, 4]). Then, studying the influence of some

It consists in removing the hard equality constraints and dividing
by two the number of variables. By so doing,
constraint graph and so a better tree-decomposition. For example;,

structural parameters on the behaviour of BTD can help us to opti-
we obtain a smallermize some choices about these parameters, which would allow BTD
Io obtain better results. Finally, we can add to BTD some preatreat-

the smallest instance (SUBCELARhas 16 variables and 57 con- Ments like Koster's ones [8].

straints while the largest (SUBCELARhas 22 variables and 131
constraints. Domains contain 36 or 44 values.

As shown in table 2, FC-BTD succeeds in solving all the SUB-
CELAR instances. These results are mostly due to the exploitation
of structural goods. Indeed, on the average, BTD exploits each good
between 9 and 261 times, which allows it to save many redundant?]
works. For information, for these instances, computing an optimal 3]
solution from the optimal cost requires at most 3,270 constraint
checks, which is insignificant with respect to the millions of con- [4]
straint checks achieved for computing the optimal cost.

Comparing our results with previous ones (e.g. [13, 8, 12, 17, 11])[5]
is quite difficult because the computer architectures are conceptuall){el
different and experimental protocols differ. For instance, [13] solves
the SUBCELAR instances by using the optimal cost as initial upper[7]
bound while BTD does not exploit any initial upper bound. Never-
theless, for information, FC-MRDAC solves SUBCELAR about 8]
23,000 s on a Sun Sparc 2. [11] takes also advantage of the problem
structure to provide theoretical time and space complexity boundg9]
but the experimental results are not convincing. In [17], an improved0]
version of RDS obtains, on a Pentium IV 1.8 GHz based PC, eith
better results or worse ones than BTD’s ones. Comparing BTD an
the Koster’s method [8], the best known method for solving CELAR
instances, is not easy because this method exploits many pretreéi2]
ments which reduce the problem size (and so the size of the constraint
graph). Furthermore, we have not studied yet the influence of so
structural parameters (like or s) on the behaviour of BTD. So, [14]
by adding to BTD some pretreatments like Koster’s ones or thanks
to a better choice for some parameters, we can expect to improyéd]
the practical efficiency of BTD. In practice, these improvements arxf161
needed for solving larger and harder instances like SCEN-06.

1]

[17]
Table 2. Results obtained by FC-BTD on SUBCELAR instances [18]
Instance Time (s) | #goods | #good uses| # good checks [19]
(thousands)| (millions)
SUBCELARy 2.5 34,170 306 1.57
SUBCELAR; 308 80,375 1,336 6.48 [20]
SUBCELAR, 405 | 96,980 996 15.64 [21]
SUBCELAR; 1,883 | 515,735 19,661 162.70
SUBCELARy 122,933 | 403,282 105,386 844.44
[22]
[23]

2 we thank the Centre d’Electronique de I'’Armement (France).

REFERENCES

S. Arnborg, D. Corneil, and A. Proskurowski, ‘Complexity of finding
embeddings in a k-treeSIAM Journal of Discrete Mathematic8,
277-284, (1987).

S. Bistarelli, U. Montanari, and F. Rossi, ‘Constraint solving over
semirings’, inProc. of IJCA| pp. 624-630, (1995).

C. Cabon, S. de Givry, L. Lobjois, T. Schiex, and J. P. Warners, ‘Radio
Link Frequency AssignmentConstraints 4, 79—-89, (1999).

M. Cooper and T. Schiex, ‘Arc consistency for soft constrainstifi-

cial Intelligence 154, 199-227, (2004).

R. Dechter and Y. El Fattah, ‘Topological Parameters for Time-Space
Tradeoff’, Artificial Intelligence 125 93-118, (2001).

E. Freuder and R. Wallace, ‘Partial constraint satisfactiémtificial
Intelligence 58, 21-70, (1992).

P. Bgou and C. Terrioux, ‘Hybrid backtracking bounded by tree-
decomposition of constraint network#itificial Intelligence 146, 43—

75, (2003).

A. Koster, Frequency Assignment - Models and Algorithifk.D. dis-
sertation, University of Maastricht, November 1999.

J. Larrosa. http://www.Isi.upc.es/ larrosa/pfc-mrdac.

J. Larrosa, ‘On arc and node consistencyPioc. of AAA] pp. 48-53,
(2002).

J. Larrosa and R. Dechter, ‘Boosting Search with Variable Elimination
in Constraint Optimization and Constraint Satisfaction Proble@wf)-
straints 8(3), 303—-326, (2003).

J. Larrosa, P. Meseguer, and Marghez, ‘Pseudo-Tree Search with
Soft Constraints’, irProc. of ECA| pp. 131-135, (2002).

J. Larrosa, P. Meseguer, and T. Schiex, ‘Maintaining reversible DAC
for Max-CSP’,Atrtificial Intelligence 107(1), 149-163, (1999).

J. Larrosa and T. Schie, ‘In the quest of the best form of local consis-
tency for Weighted CSP’, iRroc. of IJCA| pp. 239-244, (2003).

P. Meseguer and M. &ichez, ‘Tree-based Russian Doll Search’, in
Proc. of CP Workshop on soft constrgif2000).

P. Meseguer and M.&chez, ‘Specializing Russian Doll Search’, in
Proc. of CR pp. 464-478, (2001).

P. Meseguer, M. &chez, and G. Verfaillie, ‘Opportunistic Specializa-
tion in Russian Doll Search’, iRroc. of CR pp. 264-279, (2002).

N. Robertson and P.D. Seymour, ‘Graph minors II: Algorithmic aspects
of tree-width’, Algorithms 7, 309-322, (1986).

D. Rose, R. Tarjan, and G. Lueker, ‘Algorithmic Aspects of Vertex
Elimination on Graphs’SIAM Journal on computings, 266-283,
(1976).

T. Schiex. http://www.inra.fr/bia/t/schiex/doc/celare.html.

T. Schiex, H. Fargier, and G. Verfaillie, ‘Valued Constraint Satisfaction
Problems: hard and easy problems’,Hroc. of IJCA| pp. 631-637,
(1995).

C. Terrioux and P.&gou, ‘Bounded backtracking for the valued con-
straint satisfaction problems’, idroc. of CR pp. 709-723, (2003).

G. Verfaillie, M. Lemadtre, and T. Schiex, ‘Russian Doll Search for
Solving Constraint Optimization Problems’,froc. of AAA| pp. 181—
187, (1996).

