
Decomposition and good recording for solving Max-CSPs
Jégou Philippe and Terrioux Cyril 1

Abstract. [22] presents a new method called BTD for solving Val-
ued CSPs and so Max-CSPs. This method based both on enumerative
techniques and the tree-decomposition notion provides better theo-
retical time complexity bounds than classical enumerative methods
and aims to benefit of the practical efficiency of enumerative meth-
ods thanks to the structural goods which are recorded and exploited
during the search. However, [22] does not provide any experimental
result and it does not discuss the way of finding an optimal solution
from the optimal cost (because BTD only computes the cost of the
best assignment). Providing an optimal solution is an important task
for a solver, especially when we consider real-world instances. So, in
this paper, we first raise these two questions. Then we explain how
a solution can be efficiently computed and we provide experimental
results which emphasize the practical interest of BTD.

1 INTRODUCTION

Many various problems, like boolean formulae satisfiability, configu-
ration, graph coloring, planning, . . . , can be expressed as a Constraint
Satisfaction Problem (CSP). A CSP is defined by a set of variables
(each one having a finite domain) and a set of constraints. Each con-
straint forbids some combinations of values for a subset of variables.
Solving a CSP requires to assign a value to each variable such that the
assignment satisfies all constraints. Determining whether a CSP has
a solution is a NP-complete task. When we consider real-world prob-
lems, they involve two kinds of constraints: hard constraints which
express some physical properties and soft constraints which express
notions like possibility or preference. The first ones must be satisfied
whereas the second ones can be violated. Unfortunately, representing
these problems in the CSP formalism (where each constraint must
be satisfied) often produces over-constrained problems which do not
have any solution. However, even if there is no perfect solution, we
can be interested by finding an assignment which optimizes a certain
criterion on the constraint satisfaction. Hence, recently, many exten-
sions of the CSP framework have been proposed (e.g. [6, 2, 21]).

In this paper, we focus our study on the Max-CSP problem [6].
Solving a Max-CSP instance requires to find an assignment which
maximizes the number of satisfied constraints. Many algorithms have
been defined in the past years for solving this problem. On the one
hand, they exploit enumerative techniques like Branch and Bound
(BB) or the arc-consistency notion [13, 10, 14, 4]. On the other
hand, some other methods are based on the dynamic programming
approach [23, 8, 15, 16, 17, 11]. Some of them exploit the problem
structure like [8, 15, 12, 11]. These different approaches have been
provided interesting results in some different cases. In [22], an hy-
brid method, called BTD, is presented for solving the Valued CSP
problem [21] which is a generalization of the Max-CSP problem.

1 LSIS, Universit́e d’Aix-Marseille III, Marseille, France. Email:
{philippe.jegou,cyril.terrioux}@lsis.org

This method is based both on enumerative techniques and on the
tree-decomposition notion. It aims to benefit from the practical ef-
ficiency of enumerative methods while providing better theoretical
time complexity bounds than enumerative methods. From [22], two
important questions are raised. The first one is how we can compute
an optimal solution from the optimal cost (because BTD only com-
putes the cost of the best assignment, and not the assignment itself).
Providing an optimal solution is one of the most important tasks for
a solver, especially when we consider real-world instances. The sec-
ond raised question deals with the practical efficiency of this method.
BTD presents a good behaviour on classical CSPs [7]. In contrast,
its behaviour on the Max-CSP problem is unknown and must be as-
sessed. This article tries to answer these two important questions.

The paper is organized as follows. Section 2 introduces the basic
notions about CSPs and Max-CSPs. Section 3 is devoted to the BTD
method. Then, section 4 explains how we can compute an optimal so-
lution. Finally, we present some empirical results in section 5, before
concluding and giving some ideas of future works in section 6.

2 BASIC NOTIONS

A constraint satisfaction problem(CSP) is defined by a tuple
(X, D, C, R). X is a set{x1, . . . , xn} of n variables. Each vari-
ablexi takes its values in the finite domaindxi from D. Variables
are subject to constraints fromC. Each constraintc is defined as a
set{xc1 , . . . , xck} of variables. A relationrc (from R) is associated
with each constraintc such thatrc represents the set of allowed tu-
ples overdxc1

×· · ·×dxck
. Note that we can also define constraints

by using functions or predicates for instance. GivenY ⊆ X such
thatY = {x1, . . . , xk}, anassignmentof variables fromY is a tu-
pleA = (v1, . . . , vk) from dx1 × · · · × dxk . A constraintc is said
satisfiedby A if c ⊆ Y, (v1, . . . , vk)[c] ∈ rc, violated otherwise.
We note the assignment(v1, . . . , vk) in the more meaningful form
(x1 ← v1, . . . , xk ← vk). In this paper, without lost of generality,
we only consider binary constraints (i.e. constraints which involve
two variables). So, the structure of a CSP can be represented by the
graph(X, C), called theconstraint graph, whose vertices are the
variables ofX and for which there an edge between two vertices
if the corresponding variables share a constraint. Given an instance,
the CSP problem consists in determining whether there is an assign-
ment of each variable which satisfies each constraint. This problem is
NP-Complete. Unfortunately, representing real-world instances as a
CSP may produce over-constrained instances which do not have any
solution. In such cases, as there is no perfect solution, we can be in-
terested by finding an assignment which optimizes a certain criterion
on the constraint satisfaction. Hence, in the recent years, many ex-
tensions of the CSP framework have been proposed (e.g. [6, 2, 21]).

In this paper, we focus our study on the Max-CSP problem [6].
Solving a Max-CSP instance requires to find an assignment which

maximizes the number of satisfied constraints. In other words, we
want to minimize the number of violated constraints. The number
of constraints violated by an assignment is called the cost of this
assignment. Many complete algorithms have been recently devel-
oped for solving Max-CSPs. They are often based on enumerative
techniques or on dynamic programming approaches. Enumerative
methods exploit a lower bound, which underestimates the cost of
the best complete extension of the current assignment, and an up-
per bound which is generally the cost of the best known assignment.
Then, if the lower bound does not exceed the upper one, they ex-
tend the current assignment by assigning a new variable. Otherwise,
they backtrack and try to assign a new value to the last assigned vari-
able. If all the values have been tried, they backtrack again. The effi-
ciency of enumerative methods mostly depends on the quality of the
lower and upper bounds. The greater the lower bound (respectively
the smaller the upper bound) is, the less nodes are visited and con-
straint checks performed. The basic enumerative method is Branch
and Bound (BB). It simply uses the cost of the current assignment as
lower bound. Then, many improvements have been proposed from
the classical CSP framework. For instance, the lower bound can be
improved by using prospective techniques like Forward-Checking
(FC [6]) or the arc-consistency notion [13, 10, 14, 4]. On the other
hand, some other methods are based on the dynamic programming
approach [23, 8, 15, 16, 17, 12, 11]. These methods divide the prob-
lem into different subproblems. Then each subproblem is solved and
some informations are recorded during each resolution. These infor-
mations are exploited for solving a bigger subproblem, and so on
until the whole problem is solved. In particular, they can be used for
computing good lower or upper bounds like in Russian dolls search
(RDS [23]) and its variants [15, 16, 12, 17]. Some of these methods
exploit the problem structure like [8, 15, 12, 11]. From a practical
viewpoint, the enumerative methods which use arc-consistency ob-
tain goods results when the instances to solve have a limited size.
However, they seem have some difficulties in solving larger instances
like the CELAR real-world instances [3]. On the other hand, dynamic
programming methods may seem perform many redundant searches
or visit some useless parts of the search space. Nonetheless, in prac-
tice, they can obtain interesting results. For instance, RDS [23] and
the Koster’s structural method [8] succeed in solving the SCEN-06
instance of the CELAR (which is one of the hardest instances).

3 THE BTD METHOD

In [22] a new method is proposed for solving Valued CSPs [21] and
so Max-CSP. This method called BTD (for Backtracking with Tree-
Decomposition) is an enumerative method which is guided by a tree-
decomposition of the constraint graph. Atree-decomposition[18] of
a graphG = (X, E) is a pair(C, T) with T = (I, F) a tree andC =
{Ci : i ∈ I} a family of subsets ofX, such that each clusterCi is a
node ofT and verifies: (1)∪i∈ICi = X, (2) for each edge{x, y} ∈
E, there existsi ∈ I with {x, y} ⊆ Ci, (3) for all i, j, k ∈ I, if k is
on a path fromi to j in T , thenCi ∩ Cj ⊆ Ck. The width of a tree-
decomposition(C, T) is equal tomaxi∈I |Ci| − 1. The tree-width of
G is the minimal width over all the tree-decompositions ofG. Note
that finding an optimal tree-decomposition is a NP-Hard problem [1].
However, we can easily compute a good tree-decomposition by using
the notion oftriangulated graphs. Figure 1(b) presents a possible
tree-decomposition for the graph of figure 1(a). So, we getC1 =
{x1, x2, x3}, C2 = {x2, x3, x4, x5}, C3 = {x4, x5, x6} andC4 =
{x3, x7, x8}, and the tree-width is 3. In the following, from a tree-
decomposition, we consider a rooted tree(I, F) whereC1 is the root

x2

x4

x6

x7

x5 x8

x1

x3

x3x7x8

x4x5x6

x2 x5x4x3

x1 x3x2C

C

C3

C2

1

4

(a) (b)

Figure 1. (a) A constraint graph on 8 variables. (b) A tree-decomposition
of this constraint graph.

and we noteDesc(Cj) the set of variables which belong toCj or
to any descendantCk of Cj in the tree rooted inCj . For instance,
Desc(C2) = C2 ∪ C3 = {x2, x3, x4, x5, x6}.

The first step of BTD consists in computing a tree-decomposition
of the constraint graph. The computed tree-decomposition induces a
partial variable ordering which allows BTD to exploit some struc-
tural properties of the graph and so to prune some parts of the search
tree. In fact, variables are assigned according to a depth-first traversal
of the rooted tree. In other words, we first assign the variables of the
root clusterC1, then we assign the variables ofC2, thenC3’s ones,
and so on. For example,x1, x2, . . . , x8 is a possible variable order-
ing. Furthermore, the tree-decomposition and the variable ordering
allow BTD to divide the problemP into many subproblems. Given
two clustersCi andCj (with Cj a Ci’s son), the subproblem rooted
in Cj depends on the current assignmentA onCi ∩ Cj . It is denoted
PA,Ci/Cj

. Its variable set is equal toDesc(Cj). The domain of each
variable which belongs toCi ∩ Cj is restricted to its value inA. Re-
garding the constraint set, it contains the constraints which involve
at least one variable which exclusively appears inCj or in a descen-
dant ofCj . For instance, let us consider the CSP whose constraint
graph is provided in figure 1(a). We assume that each domain is
{1, 2, 3} and each constraintcij = {xi, xj} meansxi 6= xj . Given
A = (x2 ← 2, x3 ← 2), the variable set ofPA,C1/C2 is Desc(C2),
(with dx2 = dx3 = {2} anddx4 = dx5 = dx6 = {1, 2, 3}) and its
constraint set is{c24, c25, c34, c35, c45, c46, c56}. Note that the con-
straintc23 does not belong to its constraint set becausex2 andx3 ap-
pear both inC1. Remark that the definition of subproblems defines a
partition of the constraint set. Such a partition ensures that BTD takes
into account each constraint only once and so that it safely computes
the cost of any assignment. Finally, the tree-decomposition notion
permits to define thevalued structural goodnotion (by analogy with
the nogood notion). A structural valued good ofCi with respect toCj

(with Cj a Ci’s son) is a pair(A, v) with A the current assignment
on Ci ∩ Cj andv the optimal cost of the subproblemPA,Ci/Cj

. For
instance, if we consider the assignmentA = (x2 ← 2, x3 ← 2)
onC1 ∩ C2, we obtain the good(A, 0) since the best assignment on
Desc(C2) is (x2 ← 2, x3 ← 2, x4 ← 1, x5 ← 3, x6 ← 2) (which
violates no constraint becausec23 does not belong toPA,C1/C2).

Figure 2 describes the BTD algorithm based on BB. It explores
the search space according to the variable ordering induced by the
tree-decomposition. So, it begins with the variables of the root clus-
terC1. Inside a clusterCi, it proceeds classically like BB by assigning
a value to a variable, by maintaining and comparing upper and lower
bounds and by backtracking if the lower bound exceeds the upper
bound. The bounds in BTD are similar to BB’s ones but they only
take into account the constraints of the subproblemPA,Cp(i)/Ci

(with

BTD(A, Ci, VCi
, lCi

, αCi
)

1. If VCi
= ∅

2. Then
3. F ← Sons(Ci)
4. While F 6= ∅ and lCi

< αCi
Do

5. ChooseCj in F
6. F ← F\{Cj}
7. If (A[Ci ∩ Cj], v) is a good ofCi/Cj in G Then lCi

← lCi
+ v

8. Else
9. v ← BTD(A, Cj , Cj\(Cj ∩ Ci), 0, αC1)
10. lCi

← lCi
+ v

11. Record the good (A[Ci ∩ Cj], v) of Ci/Cj in G
12. EndIf
13. EndWhile
14. ReturnlCi
15.Else
16. Choosex ∈ VCi
17. d← dx
18. While d 6= ∅ and lCi

< αCi
Do

19. Choosea in d
20. d← d\{a}
21. la ← |{c = {x, y} ∈ C|y 6∈ VCi

andA ∪ {x← a} violates c}|
22. If lCi

+ la < αCi
23. Then αCi

← min(αCi
, BTD(A ∪ {x← a}, Ci, VCi

\{x},
lCi

+ la, αCi
))

24. EndIf
25. EndWhile
26. ReturnαCi
27.EndIf

Figure 2. The BTD algorithm.

Cp(i) theCi’s father andA the assignment onCi ∩ Cp(i)). The lower
bound corresponds to the cost of the current assignment onDesc(Ci)
while the upper one is defined by the cost of the best known solution
for the subproblemPA,Cp(i)/Ci

. When every variable inCi is as-
signed, if the lower bound is less than the upper bound, BTD keeps
on the search with the first son ofCi (if there is one). More generally,
let us consider a sonCj of Ci. Given the current assignmentA onCi,
BTD checks whether the assignmentA[Ci∩Cj] corresponds to a val-
ued structural good. If so, BTD adds its associated costv to the lower
bound. Otherwise it extendsA onDesc(Cj) in order to compute the
optimal costv of the subproblemPA[Ci∩Cj],Ci/Cj

. Then, it addsv to
the lower bound and it records the valued good(A[Ci ∩ Cj], v). If,
after having proceeded the sonCj , the lower bound does not exceed
the upper bound, BTD keeps on the search with the next son ofCi. Fi-
nally, if a failure occurs, BTD tries to modify the current assignment
onCi.

In figure 2, given an assignmentA and a clusterCi, BTD looks
for the best assignmentB on Desc(Ci) such thatA[Ci\VCi] =
B[Ci\VCi] and the cost ofB is less thanαCi . VCi denotes the set
of unassigned variables inCi, lCi the lower bound andαCi the
upper bound with respect to the subproblemPA[Ci∩Cp(i)],Cp(i)/Ci

.
If BTD finds such an assignment, it returns its cost, otherwise
it returns a cost greater than (or equal to)αCi . The first call is
BTD(∅, C1, C1, 0, +∞).

Finally, BTD has a space complexity inO(n.s.ds) and a time
complexity inO(n.s2.m. log(d).dw+1) with w + 1 the size of the
largestCk ands the size of the largest intersectionCi ∩ Cj with Cj a
son ofCi [22]. These complexities assume that a tree-decomposition
has been computed (structural parametersw ands are related to this
decomposition).

4 HOW TO COMPUTE A SOLUTION?

BTD only provides the optimal costα of the instance we want to
solve. It does not compute an optimal solution of this instance. In-
deed, when BTD exploits a good ofCi with respect toCj , it does not

assign again the variables ofDesc(Cj)− (Ci∩Cj). What is called in
[7, 22] a forward-jump(by analogy with the backjump notion). For
instance, after having assigned the variablex3 in C1, if BTD exploits
a good onC1 ∩ C2, then, it checks for a good onC1 ∩ C4 without
exploring againDesc(C2). Hence, as many variables may be unas-
signed, BTD cannot provide a solution of the problem we want to
solve. It can only look for its optimal cost. Even if computing the
optimal cost may be an important task, the main task in the Max-
CSP framework is to provide an assignment which minimizes the
number of violated constraints. What raises a fundamental question
for BTD: how can we compute an optimal solution from the optimal
cost provided by BTD? More generally, this question is often raised
for algorithms like BTD which make a trade-off between time and
space. As an example, the adaptation of Tree-Clustering proposed
in [5] with a limited space-complexity suffers from the same draw-
back since it only records informations on each separator and then it
cannot produce a solution in a backtrack free-manner.

In this section, we explain how we can build a solution from the
optimal costα. A basic way consists in using any enumerative algo-
rithm for looking for an assignment with a costα. But such a way
is clearly inefficient and has a time-complexity worse than BTD’s
one. By so doing, we do not benefit from the tree-decomposition or
from the goods which BTD has recorded during the search. So we
can build a solution thanks to a method derived from BTD which
would exploit the goods previously recorded. For instance, given a
clusterCi, we can look for an assignmentA onCi such that for each
sonCj of Ci, A[Ci ∩ Cj] is a good. This method has a time com-
plexity similar to BTD’s one. However, it is clear that, in practice, it
performs fewer nodes and constraint checks than BTD (except in the
case where there is a single cluster). This method is better than the
first, but it still seems too expensive because BTD may record a lot
of goods. So for efficiency reasons, we must restrict the number of
goods which are liable to be exploited for guiding the search for a
solution. The ideal case would be to keep a single good per intersec-
tion Ci ∩ Cj . In fact, this ideal case can be reached if we memorize
some additional informations when we record or use a good.

Keeping a single good per intersection means that for each inter-
section, we keep the good which participates in an optimal solution.
The main difficulty comes from the forward-jumps which may occur
during the search. Indeed, when BTD uses a good ofCi with respect
to Cj , it does not visit again the subproblem rooted inCj . So it does
not check the goods ofCj with respect to any son ofCj . For instance,
by using a good onC1 ∩ C2, BTD does not check the goods ofC2
with respect toC3. Therefore, when BTD records a new goodg of
Ci with respect toCj , it must also memorize, for each sonCk of Cj ,
the good onCj ∩ Ck which is exploited for building the current good
g. By applying recursively this concept, we keep exactly one good
per intersection. Thanks to a suitable data structure, these additional
recordings do not change the space and time complexities of BTD.

Then, for computing a solution, we first assign the variables which
appear in at least one intersectionCi ∩ Cj with the value they have
in the corresponding good. We noteUCi the set of unassigned vari-
ables ofCi. Clearly, we haveUCi = Ci− (Cp(i) ∪

⋃
Cj∈Sons(Ci)

Cj).

For each clusterCi, we consider the subproblem defined by the
subgraph(Ci, CCi) of the constraint graph(X, C) with CCi =
C∩(Ci×(Ci\Cp(i))). For each subproblem, only the variables ofUCi

must be assigned. Moreover, we can solve independently each sub-
problem since each intersectionCi ∩ Cj is a separator of the graph
(X, C). Then, for each subproblemCi, the initial lower bound (if we
use BB) is defined by|{c = {x, y} ∈ CCi |∃Cj ∈ Sons(Ci), x ∈

Ci and y ∈ Ci∩Cj andA violates c}|+
∑

Cj∈Sons(Ci)
αCj where

A =
⋃
Cj∈Sons(Ci)

ACj and(ACj , αCj) is the good ofCi with re-

spect toCj . Straightforwardly, the two terms of the previous sum
involve different constraints. Regarding the upper bound, it is sim-
ply αCi . The time-complexity of this method is, in the worst case,
O(nmdk) wherek is the size of the largest setUCi . Of course, find-
ing an optimal solution still requires an enumeration, but our method
limits this enumeration to its strict minimum.

Finally, if there is a single cluster, obviously, we havek = n and
providing an optimal solution requires an enumeration onn vari-
ables. To avoid such a redundant work, we add to BTD the ability to
record the best known assignment for the variables of the root cluster.
This trade-off slightly changes the space-complexity (O(n+n.s.ds)
instead ofO(n.s.ds)) while saving many redundant works.

5 EXPERIMENTAL RESULTS

The second main question raised by BTD deals with its practical
efficiency. Thanks to theoretical results and some intuitive ideas, we
can think that BTD is efficient on some instances (in particular if
they have a good structure) but no experimental result is presented
in [22]. Indeed, first, the time-complexity bound of BTD is clearly
better than one of enumerative methods sincew + 1 ≤ n. Then, by
recording and using goods, BTD solves each subproblem only once,
which allows BTD to save time and constraint checks. In contrast,
BTD uses local lower and upper bounds, what may limit its pruning
capacity. Consequently, some experimentations are required in order
to really assess the practical interest of BTD.

This section provides empirical results on random and real-world
instances. In both cases, the experimentations are realized on a linux-
based PC with an Intel Pentium IV 2.4 GHz and 512Mb of mem-
ory. For random instances, we limit to half an hour the time spent
for solving a given instance. So, sometimes, some instances may be
unsolved. For these instances, we consider that the running time is
half an hour. For each class of random instances, we solve 50 in-
stances. The presented results are then the averages of results ob-
tained for each instance. For both random and real-world instances,
a tree-decomposition is computed by triangulating the constraint
graph (thanks to the algorithm proposed in [19]) and by searching
the maximal cliques of the triangulated constraint graph. From this
tree-decomposition, we produce a tree-decomposition whose param-
eters does not exceed 5 for random instances and 10 for real-world
ones (see [7] for more details about this computation), which lim-
its the memory requirements of BTD. For efficiency reasons, BTD
is based on FC (instead of BB), what does not change any previous
theoretical results. Inside each cluster, the variable heuristic for BTD
is dom/deg which first chooses the variablexi which minimizes
the ratio|dxi |/|Γxi | with dxi the current domain ofxi andΓxi its
neighbour set. We do not use a particular value heuristic.

5.1 Random instances

We first assess the behaviour of BTD on classical random instances.
In the classical CSP framework, BTD solves classical random in-
stances as efficiently as the best classical enumerative algorithms [7],
even if these instances do not present a priori good structural proper-
ties. Unfortunately, in the Max-CSP framework, in many cases, BTD
can perform worse than algorithms like FC or FC-MRDAC. Indeed,
as these instances do not have good structural properties, the clusters
are often under-constrained and so BTD spends a lot of time to enu-
merate all possible solutions (because BTD exploits local bounds).

 0.1

 1

 10

 100

 1000

 15 16 17 18 19 20 21 22 23 24

T
im

e
(s

)

T

FC-BTD
FC-MRDAC

FC
RDS

Figure 3. Mean run-time in seconds (with a log scale) for FC-BTD,
FC-MRDAC, FC and RDS on class (30,5,10,T ,5).

Then, we study the practical interest of BTD on structured
random instances, for which one can expect that BTD provides
better results than classical algorithms thanks to the exploita-
tion of the structure. For these experiments, we use the model
of structured random instances proposed in [7]. We consider
several classes(n, d, rmax, T, smax). An instance of the class
(n, d, rmax, T, smax) hasn variables (each one having a domain of
sized). Its constraint graph is a clique-tree such that the size of the
largest clique isrmax and the size of the largest intersection is at
mostsmax. T denotes the tightness of each constraint. We compare
BTD with FC, RDS [23] and FC-MRDAC [13]. RDS and FC use
dom/deg as a variable heuristic (in a static way for RDS) and no
particular value heuristic. For FC-MRDAC, we use the implementa-
tion provided by J. Larrosa [9].

Table 1. Mean run-time in seconds (respectively number of unsolved
instances) for FC-BTD, FC-MRDAC, FC and RDS on random structured

instances.
Classe FC-BTD FC-MRDAC FC RDS

(30,10,10,78,5) 18.9 280.6 (1) 124.2 154.9 (1)
(40,5,10,15,5) 2.7 144.6 (1) 149.3 152.8 (0)
(40,10,10,55,5) 7.6 318.5 (3) 77.6 503.1 (8)
(40,5,15,9,5) 15.5 160.3 (1) 64.2 109.8 (0)

We can first observe that, for the class of structured random in-
stances presented in figure 3, BTD outperforms the three classical
methods for any tightness. In effect, BTD solves these instances be-
tween 7 and 14 times faster than FC-MRDAC. This gain is obtained
thanks to the exploitation of structural valued goods. Goods allow
BTD to avoid visiting some redundant parts of the search. So, BTD
achieves less constraint checks than each of the three algorithms. On
the average, only a few hundred goods are produced, but each good
is used up to 8,000 times. In order to confirm these results, we then
compare BTD, FC-MRDAC, FC and RDS on four other classes of
structured random instances (see table 1). We first note that, for some
classes, FC-MRDAC or RDS are unable to solve every instance while
BTD solves each of them in only a few seconds. Then we observe
that BTD is significantly more efficient than FC-MRDAC, FC and
RDS on these structured instances. It fully benefits from the struc-
ture. Indeed, like for the first class, only a few goods are recorded but
their use allows BTD to prune a lot of branches and to achieve less
constraint checks. Therefore, BTD makes a good trade-off between
time and space since this recording does not require much memory.

Finally, we observe that the method proposed in section 4 for com-

puting an optimal solution requires at most a thousand additional
constraint checks, which is insignificant with respect to the millions
of constraint checks performed by BTD to compute the optimal cost.

5.2 Real-world instances

We experiment BTD on some real-world instances of the CELAR
from the FullRLFAP archive2. These instances correspond to radio
link frequency assignment problems (for more details, see [3]). Some
of them can be easily expressed as binary Max-CSPs. We focus our
study on the SUBCELAR class which contains five subproblems pro-
duced from the SCEN-06 instance (one of the hardest instances in the
archive). We exploit the simplification proposed by T. Schiex [20].
It consists in removing the hard equality constraints and dividing
by two the number of variables. By so doing, we obtain a smaller
constraint graph and so a better tree-decomposition. For example,
the smallest instance (SUBCELAR0) has 16 variables and 57 con-
straints while the largest (SUBCELAR4) has 22 variables and 131
constraints. Domains contain 36 or 44 values.

As shown in table 2, FC-BTD succeeds in solving all the SUB-
CELAR instances. These results are mostly due to the exploitation
of structural goods. Indeed, on the average, BTD exploits each good
between 9 and 261 times, which allows it to save many redundant
works. For information, for these instances, computing an optimal
solution from the optimal cost requires at most 3,270 constraint
checks, which is insignificant with respect to the millions of con-
straint checks achieved for computing the optimal cost.

Comparing our results with previous ones (e.g. [13, 8, 12, 17, 11])
is quite difficult because the computer architectures are conceptually
different and experimental protocols differ. For instance, [13] solves
the SUBCELAR instances by using the optimal cost as initial upper
bound while BTD does not exploit any initial upper bound. Never-
theless, for information, FC-MRDAC solves SUBCELAR2 in about
23,000 s on a Sun Sparc 2. [11] takes also advantage of the problem
structure to provide theoretical time and space complexity bounds
but the experimental results are not convincing. In [17], an improved
version of RDS obtains, on a Pentium IV 1.8 GHz based PC, either
better results or worse ones than BTD’s ones. Comparing BTD and
the Koster’s method [8], the best known method for solving CELAR
instances, is not easy because this method exploits many pretreat-
ments which reduce the problem size (and so the size of the constraint
graph). Furthermore, we have not studied yet the influence of some
structural parameters (likew or s) on the behaviour of BTD. So,
by adding to BTD some pretreatments like Koster’s ones or thanks
to a better choice for some parameters, we can expect to improve
the practical efficiency of BTD. In practice, these improvements are
needed for solving larger and harder instances like SCEN-06.

Table 2. Results obtained by FC-BTD on SUBCELAR instances

Instance Time (s) # goods # good uses # good checks
(thousands) (millions)

SUBCELAR0 2.5 34,170 306 1.57
SUBCELAR1 308 80,375 1,336 6.48
SUBCELAR2 405 96,980 996 15.64
SUBCELAR3 1,883 515,735 19,661 162.70
SUBCELAR4 122,933 403,282 105,386 844.44

2 we thank the Centre d’Electronique de l’Armement (France).

6 CONCLUSION AND FUTURE WORKS

In this paper, we have raised two questions about the BTD method.
The first one concerns the construction of an optimal solution from
the optimal cost provided by BTD. The second one deals with the
practical efficiency of BTD. Then we have proposed an efficient
method for computing such an optimal solution. Finally, we have
shown the practical interest of BTD for solving instances with good
structural properties. Indeed, BTD clearly outperforms FC-MRDAC,
FC and RDS on random structured instances and it succeeds in solv-
ing all the SUBCELAR instances.

Regarding the future works, BTD can be improved by taking into
account the constraints between unassigned variables (for instance by
using arc-consistency [13, 4]). Then, studying the influence of some
structural parameters on the behaviour of BTD can help us to opti-
mize some choices about these parameters, which would allow BTD
to obtain better results. Finally, we can add to BTD some preatreat-
ments like Koster’s ones [8].

REFERENCES
[1] S. Arnborg, D. Corneil, and A. Proskurowski, ‘Complexity of finding

embeddings in a k-tree’,SIAM Journal of Discrete Mathematics, 8,
277–284, (1987).

[2] S. Bistarelli, U. Montanari, and F. Rossi, ‘Constraint solving over
semirings’, inProc. of IJCAI, pp. 624–630, (1995).

[3] C. Cabon, S. de Givry, L. Lobjois, T. Schiex, and J. P. Warners, ‘Radio
Link Frequency Assignment’,Constraints, 4, 79–89, (1999).

[4] M. Cooper and T. Schiex, ‘Arc consistency for soft constraints’,Artifi-
cial Intelligence, 154, 199–227, (2004).

[5] R. Dechter and Y. El Fattah, ‘Topological Parameters for Time-Space
Tradeoff’,Artificial Intelligence, 125, 93–118, (2001).

[6] E. Freuder and R. Wallace, ‘Partial constraint satisfaction’,Artificial
Intelligence, 58, 21–70, (1992).

[7] P. J́egou and C. Terrioux, ‘Hybrid backtracking bounded by tree-
decomposition of constraint networks’,Artificial Intelligence, 146, 43–
75, (2003).

[8] A. Koster,Frequency Assignment - Models and Algorithms, Ph.D. dis-
sertation, University of Maastricht, November 1999.

[9] J. Larrosa. http://www.lsi.upc.es/ larrosa/pfc-mrdac.
[10] J. Larrosa, ‘On arc and node consistency’, inProc. of AAAI, pp. 48–53,

(2002).
[11] J. Larrosa and R. Dechter, ‘Boosting Search with Variable Elimination

in Constraint Optimization and Constraint Satisfaction Problems’,Con-
straints, 8(3), 303–326, (2003).

[12] J. Larrosa, P. Meseguer, and M. Sánchez, ‘Pseudo-Tree Search with
Soft Constraints’, inProc. of ECAI, pp. 131–135, (2002).

[13] J. Larrosa, P. Meseguer, and T. Schiex, ‘Maintaining reversible DAC
for Max-CSP’,Artificial Intelligence, 107(1), 149–163, (1999).

[14] J. Larrosa and T. Schiex, ‘In the quest of the best form of local consis-
tency for Weighted CSP’, inProc. of IJCAI, pp. 239–244, (2003).

[15] P. Meseguer and M. Śanchez, ‘Tree-based Russian Doll Search’, in
Proc. of CP Workshop on soft constraint, (2000).

[16] P. Meseguer and M. Śanchez, ‘Specializing Russian Doll Search’, in
Proc. of CP, pp. 464–478, (2001).

[17] P. Meseguer, M. Śanchez, and G. Verfaillie, ‘Opportunistic Specializa-
tion in Russian Doll Search’, inProc. of CP, pp. 264–279, (2002).

[18] N. Robertson and P.D. Seymour, ‘Graph minors II: Algorithmic aspects
of tree-width’,Algorithms, 7, 309–322, (1986).

[19] D. Rose, R. Tarjan, and G. Lueker, ‘Algorithmic Aspects of Vertex
Elimination on Graphs’,SIAM Journal on computing, 5, 266–283,
(1976).

[20] T. Schiex. http://www.inra.fr/bia/t/schiex/doc/celare.html.
[21] T. Schiex, H. Fargier, and G. Verfaillie, ‘Valued Constraint Satisfaction

Problems: hard and easy problems’, inProc. of IJCAI, pp. 631–637,
(1995).

[22] C. Terrioux and P. J́egou, ‘Bounded backtracking for the valued con-
straint satisfaction problems’, inProc. of CP, pp. 709–723, (2003).

[23] G. Verfaillie, M. Lemâıtre, and T. Schiex, ‘Russian Doll Search for
Solving Constraint Optimization Problems’, inProc. of AAAI, pp. 181–
187, (1996).

