
Some New Tractable Classes of CSPs and their
Relations with Backtracking Algorithms ?

Achref El Mouelhi1, Philippe Jégou1, Cyril Terrioux1, and Bruno Zanuttini2

1 LSIS - UMR CNRS 7296
Aix-Marseille Université

Avenue Escadrille Normandie-Niemen
13397 Marseille Cedex 20 (France)

{achref.elmouelhi, philippe.jegou, cyril.terrioux}@lsis.org
2 Normandie Université, France

GREYC, Université de Caen Basse-Normandie, CNRS UMR 6072, ENSICAEN
Campus II, Boulevard du Maréchal Juin

14032 Caen Cedex (France)
bruno.zanuttini@unicaen.fr

Abstract. In this paper, we investigate the complexity of algorithms for
solving CSPs which are classically implemented in real practical solvers,
such as Forward Checking or Bactracking with Arc Consistency (RFL or
MAC).. We introduce a new parameter for measuring their complexity
and then we derive new complexity bounds. By relating the complexity
of CSP algorithms to graph-theoretical parameters, our analysis allows
us to define new tractable classes, which can be solved directly by the
usual CSP algorithms in polynomial time, and without the need to rec-
ognize the classes in advance. So, our approach allows us to propose new
tractable classes of CSPs that are naturally exploited by solvers, which
indicates new ways to explain in some cases the practical efficiency of
classical search algorithms.

1 Introduction

Constraint Satisfaction Problems (CSPs [1]) constitute an important formalism
of Artificial Intelligence (AI) for expressing and efficiently solving a wide range
of practical problems. A constraint network (or CSP, abusing words) consists of
a set of variables X, each of which must be assigned a value in its associated
(finite) domain D, so that these assignments together satisfy a finite set C of
constraints.

Deciding whether a given CSP has a solution is an NP-complete problem.
Hence classical approaches to this problem are based on backtracking algorithms,
whose worst-case time complexity is at best of the order O(e.dn) with n the num-
ber of variables, e the number of constraints and d the size of the largest domain.
To increase efficiency, such algorithms also rely on filtering techniques during
search (among other techniques, such as variable ordering heuristics). With the

? This work was supported by the French National Research Agency under grant
TUPLES (ANR-2010-BLAN-0210).

help of such techniques, despite their theoretical time complexity, algorithms
such as Forward Checking [2] (denoted FC), RFL (for Real Full Look-ahead [3])
or MAC (for Maintaining Arc Consistency [4]) for binary CSPs, or nFCi for
non-binary CSPs [5] turn out to be very efficient in practice on a wide range of
practical problems.

In a somewhat orthogonal direction, other works have addressed the effec-
tiveness of solving CSPs by defining tractable classes. A tractable class is a class
of CSPs which can be recognized, and then solved, using polynomial time algo-
rithms. Different kinds of tractable classes have been introduced. Some of them
are based on the structure of the constraint network, for instance tree-structured
networks [6] or more generally, networks of bounded width [7]. This kind of
tractable classes has shown its practical interest for benchmarks of small width
(e.g. [8]). Other studies have highlighted the interest of certain tractable classes
(e.g. [9]) but unfortunately they are very rare. This direction of research has
produced and still produces works both numerous and complex and the results
are generally difficult to establish (we can find a synthesis in [1]). Unfortunately,
most of these results remain only theoretical and thus, the question of their real
interest should be raised in the context of constraint programming.

It is not easy to cite one tractable class in the field of CSP that has shown
any interest in practice (with the exception of bounded width) and ideally allow
it to outperform the efficiency of current solvers. So, we think that it seems
necessary today to ask that question to the CPAIOR community, even if this
question could be controversial.

In our opinion, the reasons for lack of practical interest of the tractable classes
exhibited to date are based on several aspects. Firstly, the identification of a new
tractable class requires the development of ad hoc polytime algorithms: one for
the recognition of tractable instances, and one for solving them. Secondly, these
polytime algorithms are generally neither efficient in practice, and frequently,
nor in theory. And most importantly, the proposed tractable classes seem to be
artificial in the sense that they do not exist in reality: real benchmarks do not
belong to these classes, and even tractable classes only appear in small pieces of
real problems, this making them finally completely unusable. And surprisingly,
most tractable classes currently exhibited by the community seem to conceal
their only interest by their theoretical difficulty. Finally, it seems that these
classes have no interest, from a practical point of view, for the CPAIOR com-
munity. In addition, to be efficient, solvers need to rely on simple mechanisms
that can be efficiently implemented. So, to integrate the use of tractable classes
whose treatment would not be in linear time seems almost useless, because their
treatment would significantly slow down the efficiency of a solver and thus make
it inoperative in practice.

We do not criticize the existence of works on tractable classes, but essentially
the direction they take, and we propose to redirect the works in the direction
which seems, after several decades of works on the issue, the only one which
can be of interest to the CPAIOR community, or at least, offers the best chance
of producing useful results. So, we propose here to focus research on the anal-
ysis of algorithms such as FC, RFL or nFCi, whose theoretical complexity is
exponential, but which are the basis of practical systems for constraint solving,

and whose concrete results are often impressive in terms of computational time.
Their analysis could lead to identify tractable classes which could then be effi-
ciently exploited in practice, possibly with some slight modifications of solvers.
In this respect, our study is very close in spirit to the study by Rauzy about
satisfiability and the behaviour of DPLL on known tractable instances [10], and
more recently, of the works presented in [11] for CSPs of bounded structural
parameters or in [12] for β-acyclic CNFs in SAT.

We do so by reevaluating their time complexity using a new parameter,
namely the number of maximal cliques in the microstructure [13] of the instance
or in the generalized microstructure for the non-binary case. For the binary
case, writing ω#(µ(P)) for the number of maximal cliques in the microstruc-
ture of a CSP P , we show that the complexity of an algorithm such as FC is in
O(n2d·ω#(µ(P))). This provides a new perspective on the study of the efficiency
of backtracking-like algorithms, by linking it to a well-known graph-theoretical
parameter. In particular, reusing known results from graph theory, we propose
some tractable classes of CSPs. The salient feature of these classes is that they
are solved in polynomial time by general-purpose, widely used algorithms, with-
out the need for the algorithms to recognize the class.

The paper is organized as follows. We first introduce notations and recall
the definitions and basic properties of the microstructure. Then we present our
complexity analysis of BT, FC and RFL on binary CSPs, and we introduce the
notion of generalized microstructure to extend our study to non-binary CSPs
and to algorithms of the class nFCi. We then point at new tractable classes
issued from graph theory, which can be exploited in the field of CSPs. Finally,
we give a discussion and perspectives for future work.

2 Preliminaries

Before reviewing the classical analysis of algorithms, we recall some basic notions
about CSPs and their microstructure.

Definition 1 (CSP) A finite constraint satisfaction problem (CSP) is a triple
(X,D,C), where X = {x1, . . . , xn} is a set of variables, D = (D(x1), . . . , D(xn))
is a list of finite domains of values, one per variable, and C = {c1, . . . , ce} is
a finite set of constraints. Each constraint ci is a couple (S(ci), R(ci)), where
S(ci) = {xi1 , . . . , xik} ⊆ X is the scope of ci, and R(ci) ⊆ D(xi1)×· · ·×D(xik)
is its relation. The arity of ci is |S(ci)|.

We will refer to a binary constraint with scope {xi, xj} by the notation cij . A
binary CSP is one in which all constraints are binary. Otherwise (general case),
the CSP is said to be n-ary. We assume that all variables appear at least in one
scope of constraint and that for a given scope, there is at most one constraint.
This is without loss of generality since two constraints over the same set of
variables can be merged into one by taking the intersection of their relations
(for the purpose of analysis).

Definition 2 (assignment, solution) Given a CSP (X,D, C), an assignment
of values to Y ⊆ X is a set of pairs t = {(xi, vi) | xi ∈ Y } (written t =

(v1, . . . , vk) when no confusion can arise), with vi ∈ D(xi) for all i. An assign-
ment to Y ⊆ X is said to be consistent (or a partial solution) if all constraints
c ∈ C with scope S(c) ⊆ Y are satisfied, i.e., t[S(c)] ∈ R(c) holds with t[S(c)]
the restriction of t to S(c). A solution is a consistent assignment to X.

We consistently write n for the number of variables in a CSP, d for the
cardinality of the largest domain, e for the number of constraints, a for the
maximum arity over all constraints, and r for the number of tuples of the largest
relation.

Given a CSP, the basic question is to decide whether it has a solution, which
is well-known to be NP-complete. In order to study CSPs and try to circumvent
this difficulty, various points of view can be adopted. As concerns binary CSPs,
one of them is the microstructure of an instance, that is its compatibility graph
as we define now. Intuitively, the vertices of this graph code the values, and its
edges code their compatibility.

Definition 3 (microstructure) Given a binary CSP P = (X,D,C), the mi-
crostructure of P is the undirected graph µ(P) = (V,E) with:

– V = {(xi, vi) : xi ∈ X, vi ∈ D(xi)},
– E = { {(xi, vi), (xj , vj)} | i 6= j, cij /∈ C or (vi, vj) ∈ R(cij)}

In words, the microstructure of a binary CSP P contains an edge for all pairs
of vertices, except for vertices coming from the same domain and for vertices
corresponding to pairs which are forbidden by some constraint. It can easily be
seen that the microstructure of a CSP is an n-partite graph, since there is no
edge connecting vertices issued from the same domain. In this paper, we will
study the complexity of CSP algorithms through cliques in the microstructure.

Definition 4 (clique) A complete graph is a simple graph in which every pair
of distinct vertices is connected by an edge. A k-clique in an undirected graph is
a subset of k vertices inducing a complete subgraph (all the vertices are pairwise
adjacent). A maximal clique is a clique which is not a proper subset of another
clique. We write ω#(G) for the number of maximal cliques in a graph G.

The following result follows directly from the fact that in a microstructure,
the vertices of a clique correspond to compatible values which are by construction
issued from different domains.

Proposition 1 Given a binary CSP P and its microstructure µ(P), an assign-
ment (v1, ..., vn) to X is a solution of P iff {(x1, v1), ..., (xn, vn)} is an n-clique
of µ(P).

It can be seen that the transformation of a CSP P to its microstructure µ(P)
can be realized in polynomial time. A polynomial reduction directly follows, from
the problem of deciding whether a given CSP has a solution, to the problem of
deciding whether a given undirected graph has a clique of a given size (the
famous “clique problem”). This transformation has first been exploited by [13],
who proposed tractable classes of CSPs based on known tractable classes for
the maximal clique problem (chordal graphs [14]). A similar approach has been
taken for hybrid tractable classes [15, 16].

Backtracking algorithms We now briefly review the complexity of algorithms of
interest here: BT, FC, RFL and MAC for both binary and non-binary CSPs.
These algorithms essentially cover all the approaches which use backtracking
and lookahead (variable and value ordering left apart).

The Backtracking algorithm (BT, a.k.a. Chronological Backtracking) is a re-
cursive enumeration procedure. It starts with an empty assignment and in the
general case, given a current partial solution (v1, v2, . . . , vi), it chooses a new vari-
able xi+1 and tries to assign values of D(xi+1) to xi+1. The only check performed
while doing so is that the resulting assignment (v1, v2, . . . , vi, vi+1) is consistent.
In the affirmative, BT continues with this new partial solution to a new unas-
signed variable (called a future variable). Otherwise (if (v1, v2, . . . , vi, vi+1) is
not consistent), BT tries another value from D(xi+1). If there is no such unex-
plored value, BT is in a dead-end, and then it uninstantiates xi (it performs a
backtrack). It is easily seen that the search performed by BT corresponds to a
depth-first traversal of a semantic tree called the search tree, whose root is an
empty tuple, while the nodes at the ith level are i-tuples which represent the
assignments of the variables along the corresponding path in the tree. Nodes in
this tree which correspond to partial solutions are called consistent nodes, while
other nodes are called inconsistent nodes. The number of nodes in the search
tree is at most Σ0≤i≤nd

i = dn+1−1
d−1 , hence it is in O(dn). So, the complexity of

BT can be bounded by the number of nodes multiplied by the cost at each node.
Assuming that a constraint check can be achieved in O(a), the complexity of
BT is O(e.a.dn).

BT can be considered as a generic algorithm. Algorithms based on BT and
used in practice perform some extra work at each node in the search tree, namely,
they remove inconsistent values from the domain of future variables (filtering).
For binary CSPs, FC removes values inconsistent with the current assignment,
and RFL moreover enforces full arc-consistency (AC) on the future variables.
The complexity of FC can be bounded by O(ndn). Using an O(ed2) algorithm
for achieving AC, the complexity of RFL is in O(ed2dn−1) = O(edn+1). For n-
ary CSPs, the algorithms of the class nFCi(i = 0, 1 . . . 5) cover the partial and
total enforcement of generalized arc consistency (GAC) on a subset of constraints
involving both assigned variables and future variables. In each case, the filtering
is achieved after each variable assignment. So, the complexity of nFCi depends
on the cost of the filtering. Hence, for nFC5 which achieves the most powerful
filtering, the complexity is in O(eardn). It is the same if we consider the non-
binary version of RFL which maintains GAC at each node. In the following, we
denote by nBT and nRFL the non-binary versions of BT and RFL.

The algorithm M(G)AC (for Maintaining (Generalized) Arc-Consistency) is
slightly different from previous algorithms. Assume that an assignment (xi+1, vi+1)
(called a positive decision) produces a dead-end. After returning to the current
assignment (v1, v2, . . . vi), and before assigning a new value to xi+1, the value
vi+1 is deleted from the domain D(xi+1), and a (G)AC filtering is realized. All
the domains of future variables can be impacted by this filtering. This process is
called refutation of value xi+1, and can be understood as extending the current
partial solution (v1, v2, . . . , vi) with the “negative” child (xi+1,¬vi+1) (called a

negative decision), then enforcing arc-consistency, which can end up in a dead
end or in further exploration.

Hence the structure and the size of a MAC search tree are different from
previous algorithms. First, it is a binary tree verifying particular properties. Each
branch of the search tree corresponds to a set of decisions ∆ = {δ1, . . . , δi} where
each δj may be a positive or negative decision. Given an internal node, a negative
decision (xi+1,¬vi+1) is produced only after a dead-end has occurred with the
positive decision (xi+1, vi+1). Thus, the number of nodes issued from a negative
decision is at most the number of nodes issued from standard assignments. Hence
for MAC, the number of nodes in the search tree is at most 2 × Σ0≤i≤n−1d

i =

2dn−1
d−1 ∈ O(dn−1). Since the cost associated to a node is bounded by the cost of

the AC filtering O(ed2), the worst-case complexity of MAC is the same as for
RFL, that is O(edn+1).

We note here that algorithms (n)BT, FC, nFCi, (n)RFL, or M(G)AC may
use a dynamic variable ordering, that is, which variable (xi+1) to explore next
can typically be decided on each assignment.

3 New Complexity Analysis for Binary CSPs

We now come to the heart of our contribution, namely, a complexity analysis of
classical algorithms in terms of parameters related to the microstructure. In the
following, we say that a node of the search tree is a maximally deep consistent
node if it is consistent and has no consistent child node (on the next variable
in the ordering). Hence, such a node corresponds either to a solution, or to a
partial solution which cannot be consistently extended to the next variable. The
following result is central to our study.

Proposition 2 Given a binary CSP P = (X,D,C), there is an injective map-
ping from the maximally deep consistent nodes explored by BT onto the maximal
cliques in µ(P).

Proof: Let (v1, v2, . . . , vi) be a maximally deep consistent node explored by
BT. By definition, (v1, v2, . . . , vi) is a partial solution, hence for all 1 ≤ j, k ≤
i, either there is no constraint cjk in C with scope {xj , xk}, or (vj , vk) is in
the relation R(cjk). In both cases {(xj , vj), (xk, vk)} is an edge in µ(P). Hence
{(x1, v1), . . . , (xi, vi)} is a clique in µ(P) and hence, is included in some maximal
clique of µ(P). Write Cl(v1, v2, . . . , vi) for an arbitrary one.

We now show that Cl forms an injective mapping from maximally deep con-
sistent nodes to maximal cliques. By construction of BT, if (v1, v2, . . . , vi) and
(v′1, v

′
2, . . . , v

′
i′) are two maximally deep nodes explored, then they must differ

on the value of at least one variable. Precisely, they must differ at least at the
point where the corresponding paths split in the search tree, corresponding to
some variable xj assigned to some value on one path, and to some other value
on the other one3. Since there are no edges in µ(P) connecting two values of the

3 We use at this point the assumption that the algorithms explore all the values of a
variable before reordering the future variables.

same variable, there cannot be a maximal clique containing both (v1, v2, . . . , vi)
and (v′1, v

′
2, . . . , v

′
i′), hence Cl is injective. 2

Using this proposition, we can easily bound the number of nodes in a search
tree induced by a backtracking search, and its time complexity, in terms of
the microstructure. As is common, we assume that a constraint check (deciding
(vi, vj) ∈ R(cij)) requires constant time.

Proposition 3 The number of nodes NBT (P) in the search tree developed by BT
for solving a given binary CSP P = (X,D,C), satisfies NBT (P) ≤ nd·ω#(µ(P)).
Its time complexity is in O(n2d · ω#(µ(P))).

Proof: First consider the number of consistent nodes. Because any node in the
search tree is at depth at most n and the path from the root to a consistent
node contains only consistent nodes, as a direct corollary of Proposition 2 we
obtain that the search tree contains at most n ·ω#(µ(P)) consistent nodes. Now
by definition of BT, a consistent node has at most d children (one per candidate
value for the next variable), and inconsistent nodes have none. It follows that
the search tree has at most nd · ω#(µ(P)) nodes of any kind.

The time complexity follows directly, since each node corresponds to extend-
ing the current partial assignment to one more variable (xi+1), which involves at
most one constraint check per other variable (check cj(i+1) for each xj already
assigned).2

It can be seen that in the statement of Proposition 3 and in the forthcoming
ones, the number of maximal cliques ω#(µ(P)) could be replaced by the number
of maximal cliques of size at most n − 1. This is because as soon as a path is
explored which is contained in an n-clique, that is, in a solution, no backtracking
will occur further than this path.

We now turn to forward checking and RFL. Clearly enough, Proposition 2
also holds for both. The number of nodes explored follows from the fact that
only consistent nodes are explored. The time complexity follows from the fact
that at most n future domains are filtered by FC, and AC is enforced in time
O(ed2) by RFL.

Proposition 4 The number of nodes NFC(P) in the search tree developed by
FC or by RFL for solving a given CSP P = (X,D,C), satisfies NFC(P) ≤
n · ω#(µ(P)). The time complexity of FC is in O(n2d · ω#(µ(P))), and that of
RFL is in O(ned2 · ω#(µ(P))).

Regarding MAC, unfortunately, the existence of negative decisions in the tree
search makes that the proof is not so easy as for other algorithms. So, at present
time, we can only claim a conjecture about this result. As a consequence, we
assume too that the time complexity could be a function linear in the number
of maximal cliques in the microstructure.

Conjecture 1 Given a binary CSP P = (X,D,C), there is an injective map-
ping from the maximally deep consistent nodes explored by MAC onto the max-
imal cliques in µ(P).

4 New Analysis for Non-Binary CSPs

We now turn to n-ary CSPs. We first extend the notion of microstructure to
this general case, then we analyze the complexity of nFCi in terms of maximal
number of cliques.

4.1 A Generalized Microstructure

Note that a generalization of the notion of microstructure was first proposed
in [15]. Nevertheless, this notion is based on hypergraphs and has been little
used so far. In contrast, our notion sticks to the simpler framework of graphs.
Our generalized microstructure is essentially obtained by letting vertices encode
the tuples (from relations involved in the CSP) rather than unary assignments
(xi, vi) of the binary case. Note that other generalizations have been proposed
(see [17]) but due to lack of space, we cannot treat them here.

Definition 5 (generalized microstructure) Given a CSP P = (X,D,C)
(not necessarily binary), the generalized microstructure of P is the undirected
graph µG(P) = (V,E) with:

– V = {(ci, ti) : ci ∈ C, ti ∈ R(ci)},
– E = { {(ci, ti), (cj , tj)} | i 6= j, ti[S(ci) ∩ S(cj)] = tj [S(ci) ∩ S(cj)]}

Like for the microstructure, there is a direct relationship between cliques and
solutions of CSPs;

Proposition 5 A CSP P has a solution iff µG(P) has a clique of size e.

Proof: By construction, µG(P) is e-partite, and any clique contains at most one
vertex (ci, ti) per constraint ci ∈ C. Hence the e-cliques of µG(P) correspond
exactly to its cliques with one vertex (ci, ti) per constraint ci ∈ C. Now by
construction of µG(P) again, any two vertices (ci, ti), (cj , tj) joined by an edge
(in particular, in some clique) satisfy ti[S(ci)∩S(cj)] = tj [S(ci)∩S(cj)]. Hence all
ti’s in a clique join together, and it follows that the e-cliques of µG(P) correspond
exactly to tuples t which are joins of one allowed tuple per constraint, that is,
to solutions of P . 2

One can observe that the generalized microstructure corresponds to the mi-
crostructure of the dual representation of a CSP [18]. One can also see that our
generalization is in fact the line-graph (the dual graph) of the hypergraph pro-
posed in [15], in which we add edges for pairs of constraints whose scopes have
empty intersections. Hence, in the same spirit, we can propose other generaliza-
tions of the microstructure by considering any graph-based representation of a
non-binary CSP as soon as the representation has the same set of solutions -
wrt. a given bijection - as the original instance (e.g. the hidden variable encoding
[19]). However, due to lack of space, we do not deal with these issues here.

4.2 Time Complexity of nBT, nFC and nRFL

We now investigate the complexity of algorithms for solving n-ary CSPs. We first
make an assumption about the order in which such algorithms explore variables,
then we discuss this restriction.

Definition 6 (compatible with constraints) Let P be a CSP. A total order
(x1, x2, . . . xn) on X is said to be compatible with the constraints in C if there
are k constraints ci1 , ci2 , . . . cik in C (1 ≤ k ≤ e) which satisfy:

–
⋃

1≤`≤k S(ci`) = X

– there are k variables xi1 , xi2 , . . . xik such that ∀` ∈ {1, . . . , k}, xi` ∈ S(ci`)
and

⋃
1≤j≤` S(cij) = {xi | i = 1, . . . , i`} hold.

In words, the ordering must be such that the variables in the scope of one
distinguished constraint (ci1) all appear first, then all the variables in the scope
of some ci2 (except for those already mentioned by ci1), etc. The variables
xi1 , . . . , xik in the definition are such that xij is the last variable assigned in
the scope of cij . We refer to these variables as milestones in the ordering.

For instance, with the notation of the definition we must have S(ci1) =
{x1, x2, . . . xi1} and S(ci1)∪S(ci2) = {x1, x2, . . . xi1 , xi1+1, . . . xi2}. The variable
xi1 is a milestone (last variable assigned in the scope of ci1).

Under the assumption that such a variable ordering is used, we can give a
generalization of Proposition 2.

Proposition 6 Let P be an n-ary CSP, and assume that nBT explores the
variables in some order compatible with the constraints in C. Then there is an
injective mapping from the maximally deep consistent nodes (xi, vi) in the search
tree such that xi is a milestone, and the maximal cliques in µG(P).

Proof: Let t be an assignment corresponding to a node as in the statement, and
write xij for the last variable assigned by t (which is a milestone by assumption).
Similarly, let t′ be another maximal consistent assignment with the milestone
xij′ as its last variable. Write T for the set {t[S(c)] | c ∈ C, S(c) ⊆ {x1, . . . , xij}},
that is, for the set of all projections of t onto the scopes of constraints fully as-
signed by t, and similarly for T ′. Then T (resp. T ′) is included in some maximal
clique Cl(t) (resp. Cl(t′)) of µG(P). Now assume j′ ≥ j (wlog). From t 6= t′, the
fact that t is maximally consistent, and the fact that t′ is consistent, it follows
that t′ differs from t on at least one variable x` with ` ≤ ij . Hence this vari-
able is assigned differently by both, and there is some constraint ci` such that
t[S(ci`)] is different from t′[S(ci`)], and it follows that t, t′ cannot be included in
a common clique. Hence Cl defines an injective mapping from assignments as in
the statement to maximal cliques in µG(P), as desired. 2

Using this property, we can bound the number of nodes in a search tree
induced by a backtracking search, and its time complexity, in terms of the gen-
eralized microstructure.

Proposition 7 Let P = (X,D,C) be an n-ary CSP, and assume that nBT
uses a variable ordering which is compatible with the constraints in C. Then the
number of nodes NnBT (P) in the search tree of nBT on P satisfies NnBT (P) ≤
nda · ω#(µG(P)). Its time complexity is in O(nea · da · ω#(µG(P))).

Proof: From Proposition 6 it follows that the subtree induced by the search tree
on milestones contains at most ω#(µG(P)) nodes. Now for reaching a milestone
from the previous one, that is, for extending an assignment to x1, . . . , xij onto
an assignment to x1, . . . , xij+1

(with the notation of Definition 6), nBT explores
at most a variables (this is by definition of an ordering compatible with the
constraints). Hence it explores at most da combinations of values (nBT has no
clue for ruling out an assignment before assigning all variables in the scope of a
constraint). Since a branch contains at most n milestones, we get the result. The
time complexity follows directly since each node requires at most e constraint
checks, each one in time O(a) with an appropriate data structure. 2

A similar result holds for nFCi (i ≥ 2). Nevertheless, we must consider the
additional cost due to applying GAC, that is O(e · a · r) at each node. However,
note that contrary to nBT, due to the use of GAC, nFCi explores only the
r tuples allowed by c when exploring the variables in S(c), rather than all da

combinations of values.

Proposition 8 Let P = (X,D,C) be an n-ary CSP, and assume that nFCi

(i ≥ 2) uses a variable ordering which is compatible with the constraints in C.
Then the number of nodes NnFCi

(P) in the search tree of nFCi on P satisfies
NnFCi

(P) ≤ nr · ω#(µG(P)). Its time complexity is in O(nea · r2 · ω#(µG(P))).

The same result also holds for nRFL.
As a final note, we have considered a total order in definition 6. A partial order

can be used instead, provided the following holds: for each constraint cij (1 < j ≤
k), all the variables of cij−1

have been assigned before the variables of cij which
do not belong to the scope of a previous constraint. The last assigned variable
of each constraint will be the corresponding milestone variable. Moreover, the
considered order may be dynamic.

4.3 Time Complexity without Ordering

Arguably, our restriction to variable orderings which are compatible with con-
straints is not met by all reasonable variable orderings. For instance, there is no
reason in general for the well-known dom/deg heuristic to yield such orderings.
However, we show here that such restrictions are necessary.

To show this, we build a family of instances which have a linear number of
cliques in their generalized microstructure (in its number of vertices), but for
which nFC5 explores a search tree of size exponential (in the number of vertices)
for some specific variable ordering.

The instances (X,D,C) in this family are built as follows. Writing e for the
number of constraints, there are two distinguished variables x0, x

′
0 in X (common

to all constraints), and X \ {x0, x′0} is partitioned into e sets X1, . . . , Xe (Xi is
specific to ci). So each constraint ci ∈ C has scope S(ci) = {x0, x′0} ∪ Xi.
Now D is {v0, . . . , ve−1} for all variables (d = e). Finally, the tuples allowed
by the constraint ci are precisely those of the form {(x0, vj), (x′0, vi+j), . . . }, for
j = 1, . . . , e (indices are taken modulo e) and unrestricted assignments to Xi.
The point is that for i 6= i′, the restrictions of the tuples allowed by ci and
ci′ onto {x0, x′0} never match, so that there are no edges in µG(P). Hence the
number of cliques in µG(P) is exactly its number of vertices |V | = e2+(n−2)/e.

On the other hand, assume that nFC5 explores all variables in the Xi’s and
only explores x0, x

′
0 after them. Then because all values for x0 have a support in

all constraints, and similarly for x′0, no value will be removed before reaching x0
or x′0, and hence all en−2 ∼ |V |e combinations of values will be explored, that
is, exponentially more than the number of cliques in µG(P).

In the general case, we can bound the time complexity of nFCi as follows.

Proposition 9 Let P = (X,D,C) be an n-ary CSP, and assume that nFCi

(i ≥ 2) uses a variable ordering such that the maximum number of non-milestone
variables assigned consecutively is m. Then the number of nodes NnFCi(P) in
the search tree of nFCi on P satisfies NnFCi

(P) ≤ ndm · ω#(µG(P)). Its time
complexity is in O(nea · rdm · ω#(µG(P))).

In our previous example, we have m = n− 2.

5 A Few Tractable Classes for Backtracking

The number of cliques in a graph can grow exponentially with the size of the
graph [20], and so can the number ω#(G) of maximal cliques in a graph G
[21]. However, for some classes of graphs, the number of maximal cliques can
be bounded by a polynomial in the size of the graph. If the (generalized) mi-
crostructure of a (family of) CSP P belongs to one of these classes, then our
analysis in the previous sections allows us to conclude that P is solved in poly-
nomial time by classical backtracking algorithms, without the need to recognize
the instance to be in the class. In this section, we study several such classes of
graphs in terms of their relevance to constraint satisfaction problems.

5.1 Triangle-Free and Bipartite Graphs

Recall that a k-cycle in a graph G = (V,E) is a sequence (v1, v2, . . . vk+1) of
distinct vertices satisfying ∀i, 1 ≤ i ≤ k, {vi, vi+1} ∈ E, and v1 = vk+1.

A triangle-free graph is an undirected graph with no 3-cycle. It is easily
seen that the number of maximal cliques in a triangle-free graph is exactly its
number of edges E. Hence by our analysis, if a class of CSPs has a triangle-free
(generalized) microstructure, algorithms (n)BT, (n)FC and (n)RFL correctly
solve them in polynomial time. Note however that this is quite a degenerate
case, since except for instances having at most two variables (binary case) or
two constraints (non-binary case), instances with a triangle-free (generalized)
microstructure are inconsistent.

Another degenerate but illustrative case is one of bipartite graphs. A graph
is bipartite if it does not contain an odd cycle. Again, a bipartite graph cannot
contain any clique of more than two vertices, and hence no partial assignment
to more than three variables will ever be considered by BT (hence it obviously
runs in time O(d3)).

We now turn to more interesting classes, which also essentially contain in-
consistent CSPs, but for which our analysis gives a better time complexity than
the classical one.

5.2 Planar, Toroidal, and all Embedded Graphs

Definition 7 (planar) A planar graph is a graph that can be embedded in the
plane without crossing edges.

[20] proved that the number of cliques in a planar graph is at most 8(|V |−2).

Definition 8 (toroidal) A graph is toroidal if it can be embedded on the torus
without crossing edges.

[22] showed that every toroidal graph has at most 8(|V | + 9) cliques and
then that every graph embeddable in some surface has a linear number of
cliques (8(|V | + 27) at worst). Since the microstructure µ(P) (resp. µG(P))
of a CSP P contains at most nd vertices (resp. er vertices), it follows that if
µ(P) (resp. µG(P)) belongs to one of these classes of graphs, then ω#(µ(P))
(resp. ω#(µG(P))) is in O(nd) (resp. O(er)). Thanks to Prop. 3, 4, 7 and 8, we
immediately get the following.

Theorem 1 Let Em denote the class of all CSPs whose microstructure is pla-
nar, toroidal, or embeddable in a surface. Then instances in Em are solved in
time
– O(n2d · ω#(µ(P))) = O(n3d2) by BT or FC,
– O(ned2 · ω#(µ(P))) = O(n2ed3) by RFL,
– O(neada · ω#(µG(P))) = O(ne2arda) by nBT,
– O(near2 · ω#(µG(P))) = O(ne2ar3) by nFCi, nRFL.

Recall that this family of graphs cannot contain as a minor, an 8-clique
(for toroidal graphs), or a 5-clique nor K3,3 (for planar graphs). It follows in
particular that any binary (resp. non-binary) CSP in Em over at least 8 variables
(resp. constraints) is inconsistent. Hence again this class is a little degenerate,
however a classical analysis states that, e.g., BT solves these instances in time
O(d8). In case d is large, this is looser that O(n3d2).

5.3 CSG Graphs

We finally turn to the class of CSG graphs, which has been introduced by [23]
and which generalizes the class of chordal graphs. Given a graph (V,E) and an
ordering v1, . . . , v|V | of its vertices, we write N+(vi) for the forward neighborhood
of vi, that is, N+(vi) = {vj ∈ V |{vi, vj} ∈ E, i < j}. For V ′ ⊆ V , we write G(V ′)
for the graph induced by E on V ′, namely, G(V ′) = (V ′, E′) where E′ = {{x, y} |
x, y ∈ V ′ and {x, y} ∈ E}.

Definition 9 (CSG graphs) The class of graphs CSGk is defined recursively
as follows.

– CSG0 is the class of complete graphs.
– Given k > 0, CSGk is the class of graphs G = (V,E) such that there exists

an ordering σ = (v1, ..., v|V |) of V satisfying that for i = 1, . . . , |V |, the graph

G(N+(vi)) is a CSGk−1 graph.

The class of CSG graphs generalizes the class of complete graphs (CSG0

graphs) and the class of chordal graphs (CSG1 graphs). Like chordal graphs, CSG
graphs have nice properties. For instance, they can be recognized in polynomial
time. Moreover, Chmeiss and Jégou have proved that CSGk graphs have at
most |V |k maximal cliques, and they have proposed an algorithm running in
time O(|V |2(k−1)(|V |+ |E|)) for finding all of them.

These two algorithms qualify the class of all CSPs which have a CSGk (gen-
eralized) microstructure as a tractable class for any fixed k. We are however able
to show that even a generic algorithm such as (n)BT, FC, nFCi or (n)RFL runs
in polynomial time on such CSPs, without even the need to recognize member-
ship in this class, nor to compute the microstructure. Again, the result follows
from the number of maximal cliques together with Prop. 3, 4, 7 and 8.

Theorem 2 Given any integer k, the class of all CSPs which have a CSGk

(generalized) microstructure is solved in time

– O(n2d · ω#(µ(P))) = O(nk+2dk+1) by BT and FC,
– O(ned2 · ω#(µ(P))) = O(nk+1edk+2) by RFL,
– O(neada · ω#(µG(P))) = O(nek+1arkda) by nBT,
– O(near2 · ω#(µG(P))) = O(nek+1ark+2) by nFCi or nRFL.

Observe that even the time complexities are better than those of the dedi-
cated algorithm. For instance, the latter computes the microstructure of a bi-
nary CSP and enumerates all maximal cliques until exhaustion, or an n-clique
is found. So it has a time complexity in O((nd)2(k−1)(nd+ n2d2)) = O((nd)2k).
Nevertheless, we can note that this algorithm is defined for general CSGk graphs
while (generalized) microstructures of CSP are very particular graphs.

CSG graphs are generally speaking less restrictive than the previous classes
of graphs. For instance, it is possible to have CSG graphs with n-cliques (resp.
e-clique) for any value of n (resp. e), contrary to the case of planar graphs. In
particular, there are consistent CSPs with a CSGk (generalized) microstructure.
It is the case for CSG0 which are consistent binary CSPs with monovalent do-
mains (one value per domain) or consistent non-binary CSPs with exactly one
allowed tuple per relation. Nevertheless, CSPs which have a CSG1 (generalized)
microstructure can be consistent or not and it is easy to build a CSP with several
solutions, which corresponds to a collection of cliques of size n (binary case) or
e (non-binary case). Furthermore, unlike previous classes, in CSGk graphs (with
k ≥ 1), there is no restrictions on the values of n, d, e, a or r.

For instance, the Hanoi or Domino benchmarks used in the CSP solver com-
petitions (e.g. [24]) have a CSG1 microstructure after applying an AC filtering.

Thus, the use of algorithms such as RFL allows them to exploit the tractable
classes that we have highlighted here. However, this set of classes of CSPs still
has to be studied in detail for assessing its practical interest.

6 Discussion and Perspectives

We have investigated the time complexity of classical, generic algorithms for
solving CSPs under a new perspective. Our analysis expresses the complexity
in terms of the number of maximal cliques in the (generalized) microstructure
of the CSP to be solved. Our analysis reveals that essentially, backtracking and
forward checking visit each maximal clique in the (generalized) microstructure
at most once. From this analysis we derived tractable classes of CSPs, which
can be solved by classical algorithms in polynomial time, without the need to
recognize that the instance at hand is in the class. So, the results obtained shed
a new light on the analysis of CSPs.

Some relationships between tractable classes presented here and other tractable
classes of the state of the art are simple to identify. For example, for the classes
defined by the structure, that is, CSPs of bounded width, it is easy to see that
they are incomparable. It is possible to build a CSP whose constraint network is
a complete graph with a polynomial number of maximal cliques. E.g. consider a
CSPs defined on n variables with the same domain of size d and with equality
constraints between every pair of variables. For this kind of instances, there are
d maximal cliques of size n corresponding to the d solutions of the CSP. Con-
versely, it is easy to see that an acyclic binary CSP can have an exponential
number of solutions, and thus, an exponential number of maximal cliques.

For hybrid classes, we can see that the tractable class of binary CSPs satis-
fying the Broken Triangle Property (BTP) [25] is also incomparable. It is very
simple to define a CSP satisfying the BTP property with an exponential number
of solutions and thus an exponential number of maximal cliques. In contrast, one
can easily define a binary CSP whose microstructure is planar and which does
not satisfy the BTP property. For instance, the CSP defined on three variables
with domains D(x1) = {a, b}, D(x2) = {c, d}, D(x3) = {e, f}, and pairs of values
(a, d), (b, e), (c, f) prohibited.

It is thus clear that the tractable classes which we propose here are not
necessarily weaker or stronger than the classes of the state of the art. Their
main advantage is that they can simply be treated without recourse to ad hoc
algorithms, but with state-of-the-art solvers. Despite the lack of a theoretical
difficulty in the definition of these tractable classes, they seem to offer an advan-
tage compared to many tractable classes which are for most of them, artificial,
if one refers to real benchmarks.

The first perspective of this work is to investigate more classes of graphs with
polynomially many maximal cliques. Of particular interest here is the study by
[26], who precisely characterize these classes of graphs in terms of intersection
graphs. Another important perspective is to relate our analysis to other tractable
classes obtained in different manners, in the spirit of the first comparisons given
above. An important perspective is also to extend our study to the other possible

generalizations of the microstructure for non-binary constraint satisfaction prob-
lems. In [27], a close work is presented since it proposes to define a new tractable
class which is based on the polynomial size of search trees. The relations with
our work should be now clarified.

To complete our study, we must also address the conjecture 1 for the MAC
algorithm. Actually, we strongly believe that this conjecture is true, but we have
not been able to prove this fact, especially due to the existence of the concept
of negative decisions for MAC.

Finally, it would be interesting to analyse a wide set of benchmarks - par-
ticularly the ones easily solved by solvers of the state of the art - to investigate
cases in which the tractable classes exhibited here are present, in the spirit of
the first observations made on benchmarks such as Hanoi or Domino.

Acknowledgments

Philippe Jégou would like to thank Maria Chudnovsky for their fruitful discus-
sion, about graph theory, perfect graphs and links with classes of graphs related
to the clique problem, and the links with the microstructure of CSPs.

References

1. F. Rossi, P. van Beek, and T. Walsh. Handbook of Constraint Programming. Else-
vier, 2006.

2. R. Haralick and G. Elliot. Increasing tree search efficiency for constraint satisfac-
tion problems. Artificial Intelligence, 14:263–313, 1980.

3. B. Nadel. Tree Search and Arc Consistency in Constraint-Satisfaction Algorithms,
pages 287–342. In Search in Artificial Intelligence. Springer-Verlag, 1988.

4. D. Sabin and E. Freuder. Contradicting Conventional Wisdom in Constraint Sat-
isfaction. In Proc. of ECAI, pages 125–129, 1994.

5. C. Bessière, P. Meseguer, E. C. Freuder, and J. Larrosa. On forward checking for
non-binary constraint satisfaction. Artificial Intelligence, 141:205–224, 2002.

6. E. Freuder. A Sufficient Condition for Backtrack-Free Search. JACM, 29 (1):24–32,
1982.

7. G. Gottlob, N. Leone, and F. Scarcello. A Comparison of Structural CSP Decom-
position Methods. Artificial Intelligence, 124:343–282, 2000.

8. S. de Givry, T. Schiex, and G. Verfaillie. Dcomposition arborescente et cohérence
locale souple dans les CSP pondérés. In Proceedings of JFPC’06, 2006.

9. Lisa Purvis and Peter Jeavons. Constraint tractability theory and its application to
the product development process for a constraint-based scheduler. In Proceedings
of the 1st International Conference on The Practical Application of Constraint
Technologies and Logic Programming, pages 63–79, 1999. This paper was awarded
First Prize in the Constraints Technologies area of PACLP’99.

10. Antoine Rauzy. Polynomial restrictions of SAT: What can be done with an ef-
ficient implementation of the Davis and Putnam’s procedure. In U. Montanari
and F. Rossi, editors, Proc. International Conference on Principles of Constraint
Programming (CP 1995), pages 515–532. Springer Verlag, 1995.

11. Philippe Jégou, Samba Ndiaye, and Cyril Terrioux. A new evaluation of forward
checking and its consequences on efficiency of tools for decomposition of csps. In
ICTAI (1), pages 486–490, 2008.

12. Sebastian Ordyniak, Daniël Paulusma, and Stefan Szeider. Satisfiability of acyclic
and almost acyclic cnf formulas. In FSTTCS, pages 84–95, 2010.

13. P. Jégou. Decomposition of Domains Based on the Micro-Structure of Finite Con-
straint Satisfaction Problems. In Proceedings of AAAI 93, pages 731–736, Wash-
ingtown, DC, 1993.

14. M. Golumbic. Algorithmic Graph Theory and Perfect Graphs. Academic Press,
New York, 1980.

15. David A. Cohen. A New Classs of Binary CSPs for which Arc-Constistency Is a
Decision Procedure. In Proceedings of CP 2003, pages 807–811, 2003.

16. András Salamon and Peter Jeavons. Perfect Constraints Are Tractable. In Pro-
ceedings of CP, pages 524–528, 2008.

17. Achref El Mouelhi. Generalized micro-structures for non-binary csp. In Doctoral
Programme CP, http://zivny.cz/dp12/, pages 13–18, 2012.

18. R. Dechter and J. Pearl. Tree-Clustering for Constraint Networks. Artificial In-
telligence, 38:353–366, 1989.

19. F. Rossi, C. Petrie, and V. Dhar. On the equivalence of constraint satisfaction
problems. In Proceedings of the 9th European Conference on Artificial Intelligence,
pages 550–556, 1990.

20. David R. Wood. On the maximum number of cliques in a graph. Graphs and
Combinatorics, 23:337–352, June 2007.

21. J. W. Moon and L. Moser. On cliques in graphs. Israel Journal of Mathematics,
3:23–28, 1965.

22. Vida Dujmovic, Gasper Fijavz, Gwenaël Joret, Thom Sulanke, and David R. Wood.
On the maximum number of cliques in a graph embedded in a surface. European
J. Combinatorics, 32(8):1244–1252, 2011.

23. A. Chmeiss and P. Jégou. A generalization of chordal graphs and the maximum
clique problem. Information Processing Letters, 62:111–120, 1997.

24. Third International CSP Solver Competition , 2008. http://cpai.ucc.ie/08.
25. M. Cooper, Peter Jeavons, and Andras Salamon. Generalizing constraint satisfac-

tion on trees: hybrid tractability and variable elimination. Artificial Intelligence,
174:570–584, 2010.

26. Bill Rosgen and Lorna Stewart. Complexity results on graphs with few cliques.
Discrete Mathematics and Theoretical Computer Science, 9:127–136, 2007.

27. David A. Cohen, Martin C. Cooper, Martin J. Green, and Dániel Marx. On guar-
anteeing polynomially bounded search tree size. In CP, pages 160–171, 2011.

