Towards a Dynamic Decomposition of CSPs
with Separators of Bounded Size

Philippe Jégou, Hanan Kanso, and Cyril Terrioux

Aix-Marseille Université, CNRS, ENSAM, Université de Toulon, LSIS UMR 7296
13397 Marseille Cedex 20 (France)
{philippe.jegou, hanan.kanso, cyril.terrioux}@lsis.org

Abstract. In this paper, we address two key aspects of solving methods based
on tree-decomposition. First, we propose an algorithm computing decomposi-
tions that allows to bound the size of separators, which is a crucial parameter to
limit the space complexity, and thus the feasibility of such methods. Moreover,
we show how it is possible to dynamically modify the considered decomposi-
tion during the search. This dynamic modification can offer more freedom to the
variable ordering heuristics. This also allows to better use the information gained
during the search while controlling the size of the required memory.

1 Introduction

The solving methods of CSPs based on tree-decomposition have shown a theoretical
significance because they guarantee complexity bounds in O(exp(w)) in time as well
asin O(exp(s)) in space where w and s are parameters induced by the structural proper-
ties of the constraint network. When w is bounded by a constant, these methods ensure
a polynomial runtime. Moreover, in practice, such approaches are quite justified by nu-
merous real-world problems for which w is relatively small [1]. However, two major
problems occur sometimes in practice. First, controlling the value s is not always guar-
anteed, especially for decomposition methods like Min-F'ill [2] which can be seen as
the state of the art [3]. This sometimes makes this type of approach completely ineffec-
tive because this parameter is crucial in practice [4]. On the other hand, ensuring a time
complexity in O(exp(w)) requires a traversal of the search space that imposes strong
constraints on the variable assignment ordering, which can lead to a strong deterioration
of practical efficiency.

To answer the question of memory, we propose a new configurable algorithm for
computing decompositions. It takes as an input a parameter S to compute decompo-
sitions that guarantee separator sizes at most S. Its time complexity is less than that
of Min-Fill and it offers performances which are widely better in practice (around
1,000 times faster on a large set of benchmarks). This algorithm fits perfectly into the
framework proposed in [5] and can then be considered as a refinement of the heuristics
proposed in this framework. The second part of the paper proposes a framework to dy-
namically change the decomposition during the search, enabling to offer more freedom
to heuristics while continuing exploiting decompositions. This approach relies on the
fact that, to be efficient in practice, the solving methods must take into account the con-
text of the search and the knowledge gained gradually during the search. This is done by

CSP solvers using adaptive heuristics (e.g. [6,7]) and by CDCL SAT solvers (e.g. [8])
through clause learning and restart techniques. In the case of decomposition methods,
the fundamental difficulty is linked to the variable ordering imposed by the decompo-
sition. To overcome this difficulty, we propose to adapt dynamically the decomposition
by merging clusters during the search. Such an approach have been introduced in [9]
but mainly from a theoretical viewpoint. Thus, we show here how it is feasible. In ad-
dition, we extend it by integrating restarts techniques as proposed in [10]. Moreover,
we describe how to dynamically change the decomposition, taking advantage of the
knowledge acquired during the search while proposing to keep a bound on the size
of separators all along the search. The last part of this paper presents an experimental
analysis on a large set of instances, to assess the practical value of this approach.

In Section 2, we recall notions about solving methods based on tree-decompositions
while in Section 3, we present the computation of tree-decompositions taking into ac-
count the size of separators. Section 4 introduces a variant of the algorithm BTD able to
adapt the decomposition during search while Section 5 presents experiments that assess
the relevance of this approach, before concluding.

2 Preliminaries

The Constraint Satisfaction Problem (CSP) provides a strong framework to formulate
problems in computer science [11]. An instance of a finite CSP is given by a triple
(X,D,C), with X = {z1,...,2,} aset of n variables, D = {d,,,...,dy, } a set
of finite domains, and C' = {¢y,...,c.} a set of e constraints. Each constraint ¢; is a
pair (S(¢;), R(¢;)), where S(¢;) = {24,,..., 2} C X defines the scope of ¢;, and
R(e;) Cdy, X -+ X dy, isits compatibility relation. The arity of ¢; is [S(c;)|. If the
arity of each constraint is two, the instance is a binary CSP. The structure of a constraint
network (other name of a CSP) is given by a hypergraph (a graph for a binary CSP),
called the constraint (hyper)graph, whose vertices correspond to variables while edges
correspond to the scopes of the constraints. To simplify notations, we denote the hy-
pergraph (X, {S(c1),...5(ce)}) by (X, C). An assignment on a subset of X is called
consistent if all the constraints are satisfied. Checking whether a CSP has a solution (i.e.
a consistent assignment of X) is well known to be NP-complete. So, many works have
been done to improve the solving in practice such as algorithms exploiting heuristics,
constraint learning, non-chronological backtracking or filtering-based algorithms. Nev-
ertheless, the complexity of these approaches remains exponential, at least in O(n.d"™)
where d is the maximum size of domains. To circumvent this theoretical intractability,
other approaches have been proposed. Some of them rely on a structural tractable class
[12] based on the notion of tree-decomposition of graphs [13].

Definition 1 A tree-decomposition of a graph G = (X, C) is a pair (E,T) with T =
(I,F) atree (I is the set of nodes and F the set of edges of T) and E = {F; : i €
I} a family of subsets of X, such that each subset (called cluster) E; is a node of
T and satisfies: (i) U;er E; = X, (ii) for each edge {x,y} € C, there exists i € I
with {z,y} C E;, and (iii) for all i,j,k € I, if k is in a path from i to j in T, then
E; N E; C Ey. The width of a tree-decomposition (E, T) is equal to max;cr|E;| — 1.
The tree-width w of G is the minimal width over all the tree-decompositions of G.

This notion is only defined for graphs but can be considered for a hypergraph by exploit-
ing its 2-section' . Their primary advantage is related to their theoretical time complexity
in d¥*! [3] while their space complexity is in d® where s is the maximum size of in-
tersections (called separators in the sequel) between clusters. Thus, these methods can
be efficient on large instances of small tree-width as it is the case for example for well
known optimization problems of radio frequency allocations [15]. These methods run
in two steps: (1) computing a tree-decomposition, and (2) solve the instance exploit-
ing the decomposition. Since computing optimal decompositions (i.e. of width w) is
NP-hard [16], in practice, the first step generally computes tree-decompositions whose
width is wt > w, that is an approximation of the tree-width. In this context, Min-
Fill [2] appears as the best compromise between the computation time (O(n?)) and
the quality of the obtained decompositions. It can be considered as the state of the art
for such algorithms [3], even if, for graphs with more of tens of thousands of vertices,
it may be unusable in practice.

However, the computed decompositions are not necessarily really suitable from a
solving viewpoint [17, 18]. First, Min-F'ill does not take into account explicitly the
topological properties of the considered graph which can make the solving inefficient.
For example, the obtained decompositions may contain disconnected clusters [18]. Sec-
ondly, Min-Fill can generate decompositions such that s is often close to w*. In-
deed, in order to minimize the width, Min-F'ill produces clusters with few proper
vertices (i.e. vertices belonging to the cluster but not to its parent cluster in the tree-
decomposition) or even only one proper vertex. This explains why s is often close to
w™. This can lead to a prohibitive cost for space memory. Thus, the minimization of s
is crucial to be efficient in practice [17].

Secondly, to guarantee the time complexity in dw+, efficient structural methods
such as BTD [19] use an ordering for the assignment of the variables which is partially
determined by the considered decomposition. When M in-F'ill is used, this freedom is
even more restricted because of the limited number of proper vertices in the clusters.
But we know that to have an efficient search, it is desirable to have maximum freedom
when choosing the next variable to assign.

To circumvent these difficulties, several approaches are possible. A first approach is
to have a decomposition with small separators, while having larger clusters thereby re-
leasing the constraints on the ordering [17]. Another possibility is to exploit restarts like
in [10]. This approach works by restarting the search from a first variable which does
not necessarily belong to the previous root cluster. This leads, while retaining the same
decomposition (except for the root cluster), to give more freedom to the ordering and its
relevance has been shown experimentally. Another possibility is to dynamically change
the decomposition during the search while maintaining guarantees for time complexity.
This approach was proposed in [9], but mainly on a theoretical level. It consists in ex-
panding the cluster size by merging some neighboring clusters. However, its relevance
has never been demonstrated. Moreover, as defined in [9], it is only guided by structural
criteria, without taking into account explicitly the state of search, and the knowledge
gained during the solving. Note that exploiting the structure of instances dynamically

! The 2-section of a hypergraph (X, C) is the graph (X,C") where C' = {{z,y}|3c €
C,{z,y} C c}[14].

Algorithm 1: H-TD-W'T

Input: A graph G = (X, C)

Output: A set of clusters Ey, . . . I, of a tree-decomposition of G
1 Choose a first cluster Eg in G

2 X'« Ep

3 Let X1, ... X} be the connected components of G[X \ Eo]

4 F « {Xl.Xk}

5 while ' # () do /% find new cluster E; */
6

7

8

9

Delete X; from F’

Let V; C X' be the neighborhood of X; in G

Find a subset X/ C X such that there is at least one vertex v € V; such that N (v, X;) C X/’
E; +— X g/ uv;

10 X X' ux!
11 Let X;,, Xi,, ... X, be the connected components of G[X;\E;]
12 F— FU{X;, Xiy,. - Xiy }

has already been proposed for SAT in [20], but without guarantee for the complexity
bounds, contrary to what we offer here.

To propose new alternative ways, we introduce in the following, first an algorithm
which computes decompositions with clusters of bounded size. Secondly, we present a
new solving algorithm based on BTD allowing to dynamically adapt the decompositions
during the search, using information obtained from the beginning of the solving.

3 Decomposition controlling separators

3.1 A general framework to compute specific tree-decompositions

In this part, we recall the framework H-TD-WT (Heuristic Tree-Decomposition Without
Triangulation [5]) that computes a tree-decomposition of the graph G = (X, C) with-
out triangulation in polynomial time, more precisely in O(n(n + ¢)). Like Min-Fill,
no warranty about the optimality of the computed width is given. However, it allows to
compute decompositions depending on the features we want to fulfill. Notably, differ-
ent parameterizations are conceivable depending on the wanted criteria for the obtained
tree-decompositions. For example, these criteria may be related to w™ and/or s or the
connectivity of clusters [18]. By designing such a framework, we have many goals.
First, in order to manage dynamically the decompositions during the solving, efficient
decomposition algorithms are needed from a theoretical and practical viewpoint. Sec-
ond, the complexity of these algorithms should be at most in O(n(n + €)) to be more
efficient than Min-F'ill. To do so, the time-consuming step of triangulation performed
by Min-Fill must be avoided. Beyond that, limiting the maximum size of the separa-
tors (i.e. intersection between clusters), as well as the size of clusters, is also crucial.
The first step of H-TD-WT (line 1 in Algorithm 1) computes a first cluster, denoted
Ey, thanks to a heuristic. X’ which denotes the set of already considered vertices is
initialized to Ey (line 2). We denote X1, X, ... X} the connected components of the
subgraph G[X\ Ey] induced by the deletion in G of vertices of Ey>. Each one of these

2 Forany Y C X, the subgraph G[Y] of G = (X, C) induced by Y is the graph (Y, Cy) where
Cy ={{z,y} €Clz,y e Y}

sets X; is inserted in a queue F' (line 4). For each element X; deleted from F' (line
6), V; denotes the set of vertices of X’ which are adjacent to at least one vertex of X;
(line 7). One can note that V; is a separator in the graph G since removing V; from G
makes G disconnected (X; being disconnected from the rest of G). We then consider
the subgraph of G induced by V; and X, that is G[V; U X;]. The next step (line 8) can
be parameterized. It looks for a subset of vertices X C X; such that X/ U V; will
be a new cluster F; of the decomposition. This can be ensured if there is at least one
vertex v of V; s.t. all its neighbors in X; appear in X/'. More precisely, if N (v, X;) =
{z € X; : {v,z} € C}, we must ensure that Jv, N (v, X;) C X/. We then define a
new cluster E; = X/ UV, (line 10). This process is repeated until the queue is empty.
In [5], this framework implements several heuristics. The first (denoted H;), tries to
minimize the size of the clusters while the second (H2) guarantees that clusters will be
connected (see [18]). The third heuristic (H3) aims to identify independent parts of the
graph and to separate them as soon as possible using a breadth-first search starting from
the vertices of V;. The fourth heuristic (), which introduces the one we will present in
this contribution, aims to limit the size of the separators of the decomposition. To do so,
it considers a parameter .S which represents the maximum allowed size for a separator.
This heuristic adds new vertices to the next cluster £; similarly to H4. Nevertheless, the
heuristic stops progressing through levels at [= L when G[X;\E;,] does not contain
any connected component with separator’s size greater than S.

3.2 A heuristic for controlling separators

We hereby introduce a new heuristic (denoted H 5) controlling the separator size. It aims
to refine the heuristic H; by detecting more separators of size at most S. If H, stops
adding vertices when it arrives to a level where all separators are of size at most .S, H5
may stop earlier. If at level [, the separator associated to one of the connected compo-
nents has at most size S, the separator will be taken into account and included in the
obtained tree-decomposition. In fact, when the separator is detected the corresponding
connected component is added to the queue in order to be managed later. Hence, the
computation of the current cluster continues only on the remaining part of X; after the
removal of the connected component having a suitable separator. Consider the example
given in Figure 1(a). We first show the computation of F, the second cluster (after
FEy) during the first pass through the loop and we set S to 2. We consider then the set
Vi = {z,y, z}. The vertices of the first level are then a, b and c. There is no subset
of {a,b, c} of size at most 2 that induces a separator of the graph. The next level that
is visited contains the vertices d, e, f and g, At this level, we obtain two minimal sep-
arators, {d, e, f} and {f, g}. If Hy is used, the search would continue. However with
Hs, the search is modified because of the detection and the exploitation of the separa-
tor {f,g}. Since {f, g} is of size 2, the induced connected component containing the
vertices ¢, j and m is removed and added to the queue F' (line 8). Hence, the search
continues only in the remaining part of the connected component X; which includes
the vertices h, k, [, and n. The next level only contains the vertex h which is then a
separator of size 1. Therefore, the search stops and a new cluster F is created with:
E, = {z,y,2z,a,b,c,d,e, f,g,h} and X{ = {a,b,c,d,e, f,g,h}. We obtain then a

(b)

Fig. 1. View of H5 (a), a set of clusters of the decomposition before merging E, with E; (b) and
after (c).

new connected component X;, = {k,[,n} that is added to F. Note that the instan-
tiation of H-T'D-WT by Hj is integrated in line 8. The conditions required by the
approach are thus respected. In particular, a new subset X C X, is created where
there exists at least one vertex v € V; with N (v, X;) C X/'. With this in mind and the
proof given in [5], the validity of H5 is ensured.

Theorem 1 Hs computes the clusters of a tree-decomposition.

Also, the analysis of its complexity is similar to the one given in [5].

Theorem 2 The time complexity of the algorithm Hy is O(n(n + e)).

4 The dynamic decomposition

4.1 Context

The thesis that we defend in this paper is that changing the decomposition dynamically
during the solving allows to adapt the decomposition to the nature of the instance to
solve. The decomposition is modified according to the knowledge acquired during the
solving, especially the one related to the semantics of the problem. The approach can
be thus classified among the adaptive methods. These methods make choices depend-
ing on the current state of the problem as well as previous states. In practice, they have
shown their benefit (like in [6,21, 7]) w.r.t. conventional methods. For example, with
conflict-driven variable ordering heuristics, the most problematic variables are iden-
tified during the search thanks to learned information from the part of the problem
already explored. Hence, this allows to consider the identified variables earlier in the
search and so to solve the problem efficiently. Nevertheless, in the case of solving meth-
ods based on tree-decompositions like BTD, the variable ordering is partially induced
by the used decomposition. In other words, the next chosen variable should be allowed
by the tree-decomposition. For this reason, the structural methods suffer from the re-
strictions imposed by the tree-decomposition with regard to the variable ordering. In
order to circumvent this problem, we propose to adapt the tree-decomposition during
the solving by merging dynamically some clusters.

Algorithm 2: BTD-MAC+Merge (InOut: P = (X, D,C): CSP; In: X: sequence of
decisions, E;: Cluster, Vg, : set of variables; InOut: G: set of goods, IV: set of nogoods)
1 if Vg, = () then

2 result < true

3 S < Sons(E;)

4 while result ¢ {false,unknown}and S # () do

5 Choose a cluster E; € S

p S — S\{E,}

7 if Pos(X)[E; N E;] isanogoodin N then result < false

8 else

9 if Pos(X)[E; N E;] is not a good of E; w.rt. Ej in G then

10 result %BTD(P,E,Ej,Ej\(Ei N Ej),G,N)

1 if result = true then Record Pos(X)[E; N Ej] as good of E; wrt. E; in G
12 else

13 if result = false then Record Pos(X)[E; N E;] as nogood of F; w.rt. E; in N
14 else

15 if merge then Merge E/; with one of its sons

16 if not restart then

17 S+ SU{E;}

18 result < true

19 return result

20 else

21 Choose a variable = € Vg,

22 Choose a value v € d

23 dy « dz\{v}

24 ifAC(P,X U (xz = v)) then result +— BTD(P, XU (z = v), E;, Vg, \{z}, G, N)
25 else result < false

26 if result = false then

27 if restart then

Record nld-nogoods w.r.t. the decision sequence (X U (z # v))[E;]
return unknown

28
29
30 else

31 L ifAC(P,X U (x # v)) then return BTD(P,X U (z # v),E,i,VEj,G,N)
32 else return false

3 else return result

4.2 The algorithm BTD-MAC+RST+Merge

The algorithm BTD-MAC+RST+Merge (see Algorithm 3) is an adaptation of the al-
gorithm BTD-MAC+RST [10] in order to take into account the dynamic merging. For
both algorithms, the use of a tree-decomposition having a root cluster F,. induces a
partial variable ordering. If E; is the current cluster, the freedom of variable order-
ing is limited to either choose among the unassigned variables of the cluster F; or to
choose the next cluster among the children of E; when all its variables are assigned.
Both algorithms compute first a tree-decomposition before the beginning of the solv-
ing. The main difference between them is that BTD-MAC+RST uses the initial decom-
position during the solving (the same set of clusters but the root can change) while
BTD-MAC+RST+Merge updates dynamically the tree-decomposition depending on
the needs of the solving. Therefore, more different partial orderings can be exploited
during the solving. The operation that permits to change the decomposition in this con-
text is the merging. It consists in putting together the variables of two different clusters
to create one cluster. Figure 1(c) shows the merging of two clusters E; and Ej, of the

Algorithm 3: BTD-MAC+RST+Merge (In: P = (X, D, C): CSP)

1 G+ O;N <+ 0

2 repeat

3 Choose a root cluster E,.

4 result <~ BTD-MAC+Merge (P,0,E,,E,,G,N)
5

6

until result # unknown
return result

decomposition of Figure 1(b). Note that, the children of the merged cluster become the
children of the cluster resulting from the merging. For instance, £y and E,,, the children
of Ej, in Figure 1(b), become the children of E; in Figure 1(c). Consider D the initial
decomposition and D’ the obtained decomposition after the merging. Any variable or-
dering allowed by D is also allowed by D’. Nonetheless, by exploiting D’ we obtain
more possible orderings than by using D. We then deduce that the merging preserves
the orders initially allowed but also permits more freedom. Deciding to merge or not
two clusters is only conditioned by the information learned during the solving. Also,
the behavior of BTD-MAC+RST+Merge ranges from BTD-MAC+RST with a variable
ordering partially imposed by the tree-decomposition (if no merging occurs) to MAC
(for Maintaining arc consistency [22]) with a totally free variable ordering (if after sev-
eral mergings, the decomposition contains only one cluster). So, the advantage of this
new algorithm is its ability to find the right compromise thanks to learned information
during the solving.

BTD-MAC+RST+Merge exploits the algorithm BTD-MAC+Merge (see Algorithm
2). The difference between BTD-MAC+Merge and BTD-MAC+NG [10] is located at
lines 14-18. Initially, the sequence of decisions X' as well as the set of goods GG and
nogoods N are empty. BTD-MAC+Merge (like BTD-MAC+NG) begins the solving
by assigning consistently the variables of the root cluster E, before moving to one
of its children. By exploiting the new cluster F;, only unassigned variables of E; are
assigned. In other words, only the variables of E; that do not belong to E; N Ei(;)
(where E,(;) is the parent cluster of F;) are assigned. In order to solve each cluster,
both algorithms rely on MAC (lines 21-26 and 31-33). During the solving MAC can
make two kind of decisions: positive decisions x; = v; which assign the value v; to
the variable =; and negative decisions x; # v; which ensure that x; cannot be assigned
with v;. Let us consider X = (01, ..., d;) as the current decision sequence where each
0; may be either a positive or a negative decision. A new positive decision x;41 =
v;+1 1s chosen and AC filtering is achieved (line 24). If no dead-end occurs, the search
goes on by choosing a new positive decision (line 24). Otherwise, the value v;y; is
deleted from the domain d, , ,, and an AC filtering is realized (line 31). If a dead-end
occurs again, we backtrack and change the last positive decision x;, = vy to xy # vy.
When the cluster F; is chosen as the next cluster, the next positive decision involves a
variable of the current cluster F;. Since E; N F,; is a separator and all its variables
are already assigned, only the domains of future variables in Desc(E;) are impacted by
the AC filtering (where Desc(E;) is the set of variables belonging to the union of the
descendants Ej, of F;). When the variables of the cluster F; are consistently assigned
(line 1), each subproblem rooted in each child cluster E; of E; is solved (line 10). More

precisely, for a child E; and a current decision sequence Y/, it attempts to solve the
subproblem rooted in E; induced by Pos(X)[E; N E;] (where Pos(X)[E; N E;] is the
set of positive decisions involving the variables of ;N E; in J). Once this subproblem
solved, if a solution has been found by consistently extending X' on Desc(E;) then
Pos(X)[E; N E;] is recorded as a structural good® (line 11). Otherwise if no solution
exists, Pos(X)[E; N E;] is recorded as a structural nogood (line 13). These structural
(no)goods are exploited later during the solving to avoid redundancies (lines 7 and 9).

Regarding the restarts, they are managed like in [10]. If a restart occurs (line 27),
the search is suspended and some reduced nld-nogoods [23] are recorded in order to
avoid exploring again parts of the search tree already explored. The efficiency of restarts
relies on the acquired knowledge and the exploitation of stored information via the
structural (no)goods and the reduced nld-nogoods [23]. The restart condition may in-
volve global parameters (related to the whole problem) or local parameters (related to
the current cluster) or both. Lines 15-18 deal with the dynamic merging performed by
BTD-MAC+Merge. The dynamic merging, as explained above in Section 2, aims to
relax the constraints imposed by the decomposition on the variable ordering. Deciding
to merge clusters or not depends on the current state of the problem as well as on all
or part of its intermediate states. If no merging is required (merge returns false), the
search continues normally. On the contrary, if merging is judged relevant for the solving
(e.g. by making possible the early assignment of important variables), merge returns
true and BTD-MAC+Merge changes the current decomposition by merging the cur-
rent cluster F£; with one of its children (line 15). To do so, all the assigned variables of
E;\(Ep ;) N Ey) are unassigned and the reduced nld-nogoods are recorded (line 28) as
with conventional restarts. Once the search backtracks to the parent cluster, the merging
is performed. In this case (line 16), either the backtracking through clusters continues
if restart returns true or the search is resumed by exploring a child of the parent
cluster. Note that, it is not mandatory to unassign the variables of the current cluster
before merging. However, this would permit to consider the newly added variables in
the cluster earlier in the search. BTD-MAC+Merge can be parameterized by a merging
heuristic (we propose one in Section 5).

4.3 Theoretical foundations

We now show the validity of our approach. First, we prove that the merging operation
does not influence the validity of the structural (no)goods and the reduced nld-nogoods.

Proposition 1 Let (E',T") be the tree-decomposition of the graph G obtained from the
decomposition (E,T') of G after merging the cluster E, with the cluster E,, (where E,,
is a child of E in (E,T)). The recorded structural (no)goods of E; w.rt. E; (E; # Ey)
and the recorded reduced nld-nogoods for (E,T) remain valid for (E',T").

Proof: Consider A a structural good of E; w.rt. its child E; recorded for (E,T).
Knowing that E; differs from E,, the subproblem of P rooted in F; in (E, T') is iden-
tical to the subproblem of P rooted in E; in (E’,T"). Hence, if A can be consistently

3 A structural good (resp. nogood) of E; wr.t. E; (with E; a child of E;) is a consistent assign-
ment of F; N E; which can (resp. cannot) be consistently extended on Desc(E};) [19].

extended on the first subproblem then it can also be extended on the second one. Con-
sequently, A is a structural good of E; w.r.t. E; recorded for (E’,T”). The reasoning
is similar for a structural nogood. A reduced nld-nogood A is a nogood* whatever the
considered tree-decomposition. We should only verify then if a nld-nogood A is valid
for the decomposition (E’,T"), that is to say that there exists a cluster of E’ including
all the variables of A. By construction, there exists necessarily a cluster E}, of (E,T)
covering A. If Ey, # E, and E}, # E, then E, € E'. Otherwise, after merging, we
have E;, C E, and E, € E’. Therefore, in both cases, the variables of A are all covered
by one cluster of E’ and A is valid for (E’,T"). O

Then, we prove the validity of our algorithm.
Theorem 3 BTD-MAC+RST+Merge is sound, complete and terminates.

Proof: Consider first BTD-MAC+Merge which differs from BTD-MAC+NG by ex-
ploiting the merging. Assume that we obtain (E’,T") from the decomposition (E,T)
by merging two clusters. Let X'y be the sequence of decisions for which merge be-
comes true. Some reduced nld-nogoods are then recorded and the search backtracks
to the parent cluster E; of the current cluster E;. Thus, we obtain the sequence X,
that corresponds to the sequence of decisions X'y restricted to the variables of the clus-
ters present in the branch going from the root cluster E, to E;. BTD-MAC+Merge
continues the search from E; with X% by exploiting the decomposition (E’,7”). The
cluster resulting from the merging can be the next visited cluster or can be visited later.
The search tree explored by BTD-MAC+Merge between its first call with an empty
sequence of decisions and the sequence of decisions X'y is the same as the one devel-
oped by BTD-MAC+NG under the same circumstances on the decomposition (E,T).
Also, after the merging, the search tree developed by BTD-MAC+Merge between the
sequence of decisions E} and its termination is identical to the one developed by BTD-
MAC+NG under the same circumstances on the decomposition (E’, T"). We know that
BTD-MAC+NG is complete (if no restart occurs), correct and terminates [10]. Also,
according to the proposition 1, the structural (no)goods and the reduced nld-nogoods
recorded for (E,T') remain valid for the new decomposition (E’, T"). So, the correc-
tion, the termination and the completeness of the algorithm are not endangered. Further-
more, recording reduced nld-nogoods at each restart prevents from exploring a part of
the search space already explored. Hence, BTD-MAC+Merge is complete (if no restart
occurs), correct and terminates. In addition, when many merging operations are per-
formed, the same reasoning can be applied for every merging by splitting the search
tree. Note that, restarts stop the search without changing the fact that if a solution ex-
ists in the search space visited by BTD-MAC+Merge, BTD-MAC+Merge would find
it. As BTD-MAC+RST+Merge only performs several calls to BTD-MAC+Merge, it is
sound. Regarding the completeness, if the call to BTD-MAC+Merge is not stopped by
a restart (what is necessarily the case of the last call to BTD-MAC+Merge if BTD-
MAC+RST+Merge terminates), the completeness of BTD-MAC+Merge implies the

* Given a CSP P = (X, D, C) and a sequence of decisions X, A is a nogood of P if P\ A has
no solution where P 5 is the CSP (X, D', C) with D" = (dy, , . . ., d3,) and for each positive
decision ; = vy, di;, = {v;} and for each negative decision x; # vi, dy, = da, \{vi}. If 2
does not appear in A then d;i = dz, [23].

one of BTD-MAC+RST+Merge. Furthermore, recording reduced nld-nogoods at each
restart prevents from exploring a part of the search space already explored by a previous
call to BTD-MAC+Merge. It ensues that, over successive calls to BTD-MAC+Merge,
one has to explore a more and more reduced part of the search space. Hence, the ter-
mination and completeness of BTD-MAC+RST+Merge are ensured by the unlimited
nogood recording achieved by the different calls to BTD-MAC+Merge and by the ter-
mination and the completeness of BTD-MAC+Merge. O

Finally, we give its time and space complexities.

Theorem 4 BTD-MAC+RST+Merge has a time complexity in O(R.((n.s?.e.log(d) +
W't N).d" 2 . (w')2.d)) and a space complexity in O(n.s.d* + w'.(d + N))
with w'T the width of the final obtained decomposition, s the size of the largest intersec-
tion E; N E; of the initial decomposition, R the number of restarts and N the number
of recorded reduced nld-nogoods.

Proof: BTD-MAC+RST has a time complexity in O(((n.s2.e. log(d) +w™.N).dv " +2
+n.(wt)?.d).R) and a space complexity in O(n.s.d* + w*.(d + N)) [10]. Regard-
ing BTD-MAC+RST+Merge, applying the merging operations implies that the size of
the clusters may increase. Hence, the theoretical complexities are expressed in terms
of w'T instead of w. The merging operations do not create new clusters but, on the
contrary, some are removed. Thus, the maximum size of separators in the initial decom-
position represents an upper bound on the size of separators. Therefore, the time and
space complexities of the elements related to the size of separators are not modified.
Regarding the reduced nld-nogoods recorded after a merging operation, even though
they induce additional time and space costs, these costs are already taken into account
by the costs of recorded reduced nld-nogoods of restarts. Thereby, the time complexity
is in O(R.((n.s%.e.log(d) +w'*.N).d*" +2 4 n.(w'*)2.d)) and the space complexity
isin O(n.s.d* +w'*t.(d+ N)). O

Note that, we can limit the increase of the width of the obtained tree-decomposition
regarding the width of the initial decomposition by using a suitable merging heuristic.

5 Experiments

In this section, we first present our experimental protocol before assessing Hs w.r.t. the
solving and comparing the dynamic decomposition with the static one and MAC+RST.

5.1 Experimental protocol

Regarding the exploited tree-decompositions, we consider Min-Fill (as the state of the
art heuristic known for its good tree-width approximation), Hy (which guarantees the
connectivity of the clusters), Hs (whose clusters have many children) and Hg (which
controls the size of the separators of the decomposition). We discard Hy since it com-
putes less elaborate decompositions than Hs. For Hs, the clusters are computed by

Table 1. Number of solved instances and runtime for BTD-MAC, BTD-MAC+RST, BTD-
MAC+Merge and BTD-MAC+RST+Merge depending on the exploited decompositions.

Algorithm Mzn—lel H2 H3 H5 (S = 50)
#solved| time |#solved| time |#solved| time |#solved| time
BTD-MAC 1,344(43,272| 1,405|31,429| 1,466|31,469| 1,469|33,564
BTD-MAC+RST 1,495|43,557| 1,518|35,042| 1,529|30,187| 1,543|33,049
BTD-MAC+Merge 1,481|42,505| 1,518|37,440| 1,523|35,101| 1,534(34,048
BTD-MAC+RST+Merge| 1,544|41,622| 1,547(32,547| 1,554|33,736| 1,567|34,432

choosing the vertices of the considered connected component by decreasing degree or-
der until the cluster becomes connected (i.e. the heuristic NV'2 of [18]). For Hj, the
decomposition is exploited with different bounds on the size of separators.

The dynamic decomposition exploits a merging heuristic. This latter relies on the
advices of the variable ordering heuristic to assess the need of clusters merging. More
precisely, given a current cluster F;, each time we choose the next variable to assign
in E;, we test whether the variable ordering heuristic would choose another variable if it
has the opportunity to choose among the unassigned variables of (| J EneChildren(E,) Ey)
UE;. If a variable of a child Ej, of E; is preferred to a variable of £}, a counter related
to E is incremented. When the counter related to Fj, reaches the limit L (namely 100
in these experiments), the cluster £}, is merged with its parent E;.

Regarding the solving, we consider BTD-MAC and BTD-MAC+RST as reference
structural methods based on a static decomposition, BTD-MAC+RST+Merge and BTD-
MAC+Merge (i.e. BTD-MAC+RST+Merge without restarts) for the methods exploiting
dynamic decompositions, and MAC+RST as the reference conventional enumerative
method. We choose as root cluster the cluster having the maximum ratio number of
constraints to its size minus one. The arc-consistency is enforced by AC3™ for the
preprocessing and AC8™™ for the solving [24]. We use the heuristic dom/wdeg [6] to
choose the next variable to assign and the geometric restart policy based on the number
of performed backtracks with a ratio of 1.1 and an initial number of backtracks of 100.

All the algorithms are implemented in C++ in our own library. The experiments
were performed on blade servers running Linux Ubuntu 14.04 each with two Intel Xeon
processors E5-2609 v2 2.5GHz and 32 GB of memory. We consider 1,859 CSP in-
stances (the same as [10, 5]) from the CSP 2008 competition®. Regarding the instances
selection, we have excluded the instances having a trivial tree-decomposition (e.g. in-
stances having a complete constraint graph) and the instances having global constraints
(because global constraints are not taken into account yet by our CSP library). The
solving is performed with a timeout of 15 minutes (including the computation of the
decomposition).

5.2 Hjy vs other decompositions

Table 1 provides the number of solved instances and the cumulative runtime of each
mentioned algorithm with each considered tree-decomposition. First, we compare the

> See http://www.cril.univ-artois.fr/CPAI0S.

Table 2. Runtime for BTD-MAC, BTD-MAC+RST, BTD-MAC+Merge and BTD-
MAC+RST+Merge depending on the exploited decompositions for the 1,234 instances
solved by all the algorithms.

Algorithm Min-Fill| H»> Hs |Hs (S =50)
BTD-MAC 34,669|18,018(18,951 18,243
BTD-MAC+RST 24,026(17,233(17,758 16,288
BTD-MAC+Merge 25,238(17,575(18,753 17,837
BTD-MAC+RST+Merge 23,832(16,803(17,602 15,718

decomposition heuristics w.r.t. the solving efficiency of BTD-MAC. Regarding the
number of solved instances, BTD-MAC with Hs (with S = 50) solves the largest
number of instances (namely 1,469) while with Min-F'ill, it solves the least number
of instances (namely 1,344). Clearly, decompositions aiming to minimize the width are
not necessarily the most efficient w.r.t. the solving. Other parameters have more im-
pact on the solving such as the connectivity of the clusters (with H>), the number of
children of a cluster (with H3) as well as the maximum size of separators (with Hj).
Note that these results are consistent with ones of [18, 5]. Besides, of course, with Hs,
the efficiency of the solving depends on the chosen value for .S. For instance, BTD-
MAC solves more instances with S = 15 (namely 1,514). Choosing S = 50 is more
interesting for exploiting dynamic decompositions.

Regarding the runtime, for a fair comparison, we consider, in Table 2, the 1,234
instances solved by all the algorithms. Again, BTD-MAC obtains the best results with
Hj5 (and H>) and the worst ones with Min-F'ill. We must point out that computing tree-
decompositions thanks to H; (i = 2,3,5) is significantly faster than with Min-Fill.
For instance, Hs (with S = 50) only requires 7 s to compute the tree-decompositions
for all the 1,234 instances while Min-Fill needs 7,582 s.

Note that the benefits of Hy observed here for BTD-MAC are valid whatever the
variant of BTD we use as shown in Tables 1-4.

5.3 Dynamic decompositions vs static decompositions

First, if we compare BTD-MAC to BTD-MAC+Merge (resp. BTD-MAC+RST to BTD-
MAC+RST+Merge) in Tables 1 and 2, whatever the used decomposition, we can ob-
serve that the methods exploiting dynamic decompositions solve more instances than
their corresponding variants exploiting a static decomposition while their runtime is ei-
ther similar or better. This clearly highlights the benefits of dynamically merging clus-
ters during the solving.

Nevertheless, the concept of merging may also be performed statically, as advo-
cated in [17], after having computed first a tree-decomposition thanks to any algorithm
(e.g. Min-F'ill, Ho, H3 and even Hs). Tables 3-4 provide the corresponding results for
BTD-MAC(+RST). Here, we limit the size of the separators by merging with its parent
any cluster whose separator with its parent exceeds a given value (namely 15 in Tables
3-4). We can note that, regarding the number of solved instances, BTD-MAC+Merge
is significantly better than BTD-MAC while BTD-MAC+RST+Merge is comparable or
slightly better than BTD-MAC+RST. Again, the exploitation of dynamic decomposition

Table 3. Number of solved instances and runtime for BTD-MAC and BTD-MAC+RST depend-
ing on the exploited decompositions with a static merging limiting the size of separators to 15.

Mzn—lel H2 H3 H5 (S = 50)
#solved| time |#solved| time |#solved| time |#solved| time

BTD-MAC 1,450(|45,988| 1,493(35,871| 1,504|31,612| 1,511{32,097
BTD-MAC+RST| 1,537|41,722| 1,549|33,328| 1,553|33,164| 1,564|33,145

Algorithm

Table 4. Runtime for BTD-MAC and BTD-MAC+RST depending on the exploited decomposi-
tions for the 1,234 instances solved by all the algorithms.

Algorithm [Min-Fill| Hs Hs |Hs (S =50)
BTD-MAC 32,641(17,914(17,813 16,503
BTD-MAC+RST 24,456(17,514|17,050 16,235

leads to obtain one of the best results. Beyond, by dynamically merging some clusters
during the solving, we adapt the decomposition depending on some semantic knowl-
edge about the instance whereas the static merging relies only on structural criteria and
requires to choose a limit for the separator size, what may be a difficult task.

Finally, we can remark that BTD-MAC+RST and BTD-MAC+Merge are relatively
close w.r.t. the number of solved instances or the runtime. This can be explained by
the choice of a new root cluster when BTD-MAC+RST restarts, what can be seen as
a light form of dynamicity for the decomposition. Moreover, the exploitation of both
restarts and dynamic decompositions is really relevant since BTD-MAC+RST+Merge
outperforms both BTD-MAC+RST and BTD-MAC+Merge. At the end, we can note
that BTD-MAC+RST+Merge with H5 obtain the best results whatever the decomposi-
tion or the solving algorithm we use.

5.4 BTD-MAC+RST+Merge versus MAC+RST

We now compare BTD-MAC+RST+Merge versus MAC+RST w.r.t. the solving effi-
ciency. For this, we consider here S = 50. Figure 2(a) presents the cumulative number
of solved instances for MAC-BTD+RST+Merge, MAC+RST and VBS (i.e. the Virtual
Best Solver among the two algorithms). First, BTD-MAC+RST+Merge solves more
instances than MAC+RST (1,567 instances against 1,548). Then, we can note that the
behavior of BTD-MAC+RST+Merge is closer to one of VBS than one of MAC+RST,
what clearly shows that BTD-MAC+RST+Merge performs better than MAC+RST.
Now we focus our observations on the hardest instances. Among the 1,859 con-
sidered instances, some of them are easily solved by MAC+RST (e.g. 284 instances
are solved in backtrack-free manner). Exploiting structural methods like BTD or its
variants for solving such instances is not necessarily relevant. So, we exploit here the
number of nodes developed by MAC+RST as a hardness criterion. An instance is con-
sidered as difficult if the number of nodes developed by MAC+RST is greater than 100n
(with n the number of variables). By so doing, we have 577 instances considered as
difficult. Figure 2(b) provides a runtime comparison for MAC-BTD+RST+Merge and
MAC+RST for these instances. Globally, we can observe that MAC-BTD+RST+Merge

900 - 1000
MAC+RST ——
800 [BTD-MAC+RST+Merge

VBS

100 . e El

600 - {] 0k

time (s)
MAC+RST

300 (g 0.1 4

0.01 El

e L 0.001 I L L I I
1000 1100 1200 1300 1400 1500 1600 0.001 0.01 0.1 1 10 100 1000
solved instances MAC-BTD+RST+Merge

(a) (b)

Fig. 2. (a) The cumulative number of solved instances for MAC-BTD+RST+Merge with Hs (S =
50), MAC+RST and VBS, (b) runtime comparison for MAC-BTD+RST+Merge and MAC+RST
for the 577 difficult instances.

and MAC+RST have a similar behavior on a large part of these instances. Indeed, for
about 60% of the instances, the runtime gap between the two methods is less than
10%. However, for the remaining instances, MAC-BTD+RST+Merge often outper-
forms MAC+RST. For 16% of them, MAC-BTD+RST+Merge is at least 10 times faster
than MAC+RST while MAC+RST performs 10 times faster for only 1%. Finally, the
exploitation of the structure plays here a central role. Indeed, we can note that 86%
of the instances unsolved by MAC+RST but solved by BTD-MAC+RST+Merge are
structured instances having a ratio n/(w + 1) greater than 5.

6 Conclusion

In this paper, we proposed two complementary contributions. On the one hand, we pre-
sented a new algorithm for computing tree-decompositions (namely H;s) allowing us to
bound the size of separators, which is a crucial parameter for the practical efficiency of
structural solving methods like BTD. Its time complexity is better than the one of Min-
Fill and it runs about 1,000 times faster than Min-F'ill on a large set of instances. On
the other hand, we described a non straightforward extension of BTD, namely BTD-
MAC+RST+Merge, which has the ability of adapting the tree-decomposition by dy-
namically merging some clusters depending on the semantics of the instance and the
knowledge acquired during the solving. By so doing, our method exploits more flexible
variable orderings and may correct some drawbacks of the initial tree-decomposition
whose computation relies only on structural parameters. In practice, we showed that
BTD-MAC+RST+Merge outperforms BTD-MAC+RST whatever the exploited decom-
positions. Moreover, its use jointly with Hs leads to obtain the best results.

For future investigations, first, other merging heuristics are possible by exploiting
different information related to the semantics learned during the solving. Then, the fact
that H-TD-WT is much more faster than Min-F"ll allows to compute more elaborate
decompositions during the solving and on restarts. Beyond, more difficult problems can
be tackled (e.g. optimization, counting or compilation).

References

1.

2.

10.

11.
12.

13.

14.
15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

S. de Givry, T. Schiex, and G. Verfaillie. Exploiting Tree Decomposition and Soft Local
Consistency in Weighted CSP. In Proceedings of AAAI, pages 22-27, 2006.

D. J. Rose. A graph theoretic study of the numerical solution of sparse positive definite
systems of linear equations. In Graph Theory and Computing, pages 183-217. Academic
Press, 1972.

. R. Dechter. Constraint processing. Morgan Kaufmann Publishers, 2003.
. D. Allouche, S. de Givry, and T. Schiex. Towards Parallel Non Serial Dynamic Programming

for Solving Hard Weighted CSP. In Proceedings of CP, pages 53-60, 2010.

. P. Jégou, H. Kanso, and C. Terrioux. An Algorithmic Framework for Decomposing Con-

straint Networks. In Proceedings of ICTAI, pages 1-8, 2015.

. F. Boussemart, F. Hemery, C. Lecoutre, and L. Sais. Boosting systematic search by weighting

constraints. In Proceedings of ECAI, pages 146—150, 2004.

. P.Refalo. Impact-based search strategies for constraint programming. In Proceedings of CP,

pages 557-571, 2004.

. N.Eén and N. Sorensson. An Extensible SAT-solver. In Proceedings of SAT, pages 502-518,

2003.

. P. Jégou, S.N. Ndiaye, and C. Terrioux. Dynamic Management of Heuristics for Solving

Structured CSPs. In Proceedings of CP, pages 364-378, 2007.

P. Jégou and C. Terrioux. Combining Restarts, Nogoods and Decompositions for Solving
CSPs. In Proceedings of ECAI, pages 465-470, 2014.

F. Rossi, P. van Beek, and T. Walsh. Handbook of Constraint Programming. Elsevier, 2006.
G. Gottlob, N. Leone, and F. Scarcello. A Comparison of Structural CSP Decomposition
Methods. Artificial Intelligence, 124:243-282, 2000.

N. Robertson and P.D. Seymour. Graph minors II: Algorithmic aspects of treewidth. Algo-
rithms, 7:309-322, 1986.

C. Berge. Graphs and Hypergraphs. Elsevier, 1973.

C. Cabon, S. de Givry, L. Lobjois, T. Schiex, and J. P. Warners. Radio Link Frequency
Assignment. Constraints, 4:79-89, 1999.

S. Arnborg, D. Corneil, and A. Proskuroswki. Complexity of finding embeddings in a k-tree.
SIAM Journal of Disc. Math., 8:277-284, 1987.

P. Jégou, S. N. Ndiaye, and C. Terrioux. Computing and exploiting tree-decompositions for
solving constraint networks. In Proceedings of CP, pages 777-781, 2005.

P. Jégou and C. Terrioux. Tree-decompositions with connected clusters for solving constraint
networks. In Proceedings of CP, pages 407-423, 2014.

P. Jégou and C. Terrioux. Hybrid backtracking bounded by tree-decomposition of constraint
networks. Artificial Intelligence, 146:43-75, 2003.

W. Li and P. van Beek. Guiding Real-World SAT Solving with Dynamic Hypergraph Sepa-
rator Decomposition. In Proceedings of ICTAI, pages 542-548, 2004.

L. Michel and P. Van Hentenryck. Activity-based search for black-box constraint program-
ming solvers. In Proceedings of CP-AI-OR, pages 228-243, 2012.

D. Sabin and E. Freuder. Contradicting Conventional Wisdom in Constraint Satisfaction. In
Proceedings of ECAI, pages 125-129, 1994.

C. Lecoutre, L. Sais, S. Tabary, and V. Vidal. Recording and Minimizing Nogoods from
Restarts. JSAT, 1(3-4):147-167, 2007.

C. Lecoutre, C. Likitvivatanavong, S. Shannon, R. Yap, and Y. Zhang. Maintaining Arc
Consistency with Multiple Residues. Constraint Programming Letters, 2:3-19, 2008.

