
Tree-Decompositions with Connected Clusters
for Solving Constraint Networks?

Philippe Jégou and Cyril Terrioux

Aix-Marseille Université, LSIS UMR 7296
13397 Marseille (France)

{philippe.jegou, cyril.terrioux}@lsis.org

Abstract. From a theoretical viewpoint, the (tree-)decomposition methods offer
a good approach for solving Constraint Satisfaction Problems (CSPs) when their
(tree)-width is small. In this case, they have often shown their practical interest.
So, the literature (coming from Mathematics or AI) has concentrated its efforts
on the minimization of a single parameter, the tree-width. Nevertheless, experi-
mental studies have shown that this parameter is not always the most relevant to
consider for solving CSPs. In this paper, we experimentally show that the decom-
position algorithms of the state of the art produce clusters (a tree-decomposition
is a tree of clusters) having several connected components. Then we highlight that
such clusters create a real problem for the efficiency of solving methods. To avoid
this kind of problem, we consider here a new kind of graph decomposition called
Bag-Connected Tree-Decomposition, which considers only tree-decompositions
such that each cluster is connected. We propose a first polynomial time algorithm
to find such decompositions. Finally, we show experimentally that using these
bag-connected tree-decompositions improves significantly the solving of CSPs
by decomposition methods.

1 Introduction

Constraint Satisfaction Problems (CSPs, see [1] for a state of the art) provide an efficient
way of formulating problems in computer science, especially in Artificial Intelligence.

Formally, a constraint satisfaction problem is a triple (X,D,C), where X = {x1,
. . . , xn} is a set of n variables, D = (Dx1

, . . . , Dxn
) is a list of finite domains of

values, one per variable, and C = {C1, . . . , Ce} is a finite set of e constraints. Each
constraint Ci is a pair (S(Ci), R(Ci)), where S(Ci) = {xi1 , . . . , xik} ⊆ X is the
scope of Ci, and R(Ci) ⊆ Dxi1

× · · · ×Dxik
is its compatibility relation. The arity of

Ci is |S(Ci)|. A CSP is called binary if all constraints are of arity 2. The structure of a
constraint network is represented by a hypergraph (which is a graph in the binary case),
called the constraint (hyper)graph, whose vertices correspond to variables and edges to
the constraint scopes. In this paper, for sake of simplicity, we only deal with the case
of binary CSPs but this work can easily be extended to non-binary CSP by exploiting
the 2-section [2] of the constraint hypergraph (also called primal graph), as it will be

? This work was supported by the French National Research Agency under grant TUPLES
(ANR-2010-BLAN-0210).

done for our experiments since we will consider binary and non-binary CSPs. More-
over, without loss of generality, we assume that the network is connected. To simplify
the notations, in the sequel, we denote the graph (X, {S(C1), . . . S(Ce)}) by (X,C).
An assignment on a subset of X is said to be consistent if it does not violate any con-
straint. Determining whether a CSP has a solution (i.e. a consistent assignment on all
the variables) is known to be NP-complete. So, many works have been realized to make
the solving of instances more efficient in practice, by using optimized backtracking
algorithms which may exploit heuristics, constraint learning, non-chronological back-
tracking, filtering techniques based on constraint propagation, etc. The time complexity
of these backtracking methods is naturally exponential, at least in O(e.dn) with n the
number of variables, d the maximum size of domains and e the number of constraints.

Another way is related to the study of tractable classes defined by properties of con-
straint networks. E.g., it has been shown that if the structure of this network is acyclic, it
can be solved in linear time [3]. Using and generalizing these theoretical results, some
methods to solve CSPs have been defined, such as Tree-Clustering [4]. This kind of
methods is based on the notion of tree-decomposition of graphs [5]. Their advantage
is related to their theoretical complexity, that is dw+1 where w is the tree-width of the
constraint graph. When this graph has nice topological properties and thus when w is
small, these methods allow to solve large instances, e.g. radio link frequency assign-
ment problems [6]. Note that in practice, the time complexity is more related to dw

++1

where w+ ≥ w is actually an approximation of the tree-width because computing an
optimal tree-decomposition (of width w) is an NP-hard problem.

However, the practical implementation of such methods, even though it often shows
its interest, has proved that the minimization of the parameter w+ is not necessarily
the most appropriate. Besides the difficulty of computing the optimal value of w+, i.e.
w, it sometimes leads to handle optimal decompositions, but whose properties are not
always adapted to a solving that would be the most efficient. This has led to propose
graph decomposition methods that make the solving of CSPs more efficient in practice,
but for which the value of w+ can even be really greater than w [7].

In this paper, we show that a reason to this lack of efficiency for solving CSPs us-
ing decomposition can be found in the nature of the decompositions for which w+ is
close to w. Indeed, minimizing w+ can lead to decompositions such that some clusters
have several connected components. Unfortunately, this lack of connectedness may lead
the solving method to spend large amount of efforts to solve the subproblems related
to these disconnected clusters, by passing many times from a connected component
to another. To avoid this problem, we consider here a new kind of graph decompo-
sition called Bag-Connected Tree-Decomposition1 and its associated parameter called
Bag-Connected Tree-Width [8]. This parameter is equal to the minimal width over all
the tree-decompositions for which each cluster has a single connected component. So,
the Bag-Connected Tree-Width will be the minimum width for all Connected Tree-
Decompositions. The notion of Bag-Connected Tree-Width has been introduced very
recently and to date, only studied in [8] from a mathematical viewpoint. Here we ana-
lyze this concept in terms of its algorithmic properties. So, we firstly prove that its com-

1 We use the term “bag” rather than “cluster” because it is more compatible with the terminology
of Graph Theory.

x2

x4

x6

x7

x5 x8

x1

x3

x3x7x8

x4x5x6

x2 x5x4x3

x1 x3x2

E3

2

1

4E

E

E

(a) (b)

Fig. 1. A constraint graph for 8 variables (a) and an optimal tree-decomposition (b).

putation is NP-hard. So, we propose a first polynomial time algorithm (in O(n(n+ e)))
in order to approximate this parameter, and the associated decompositions. The exper-
iments we present show the relevance of this parameter, since it allows to significantly
improve the solving of CSPs by decomposition.

Note that the present work is applied to tree-decompositions, but it can also be
adapted to most decompositions (e.g. [9, 10]). Indeed, in most CSP solving methods
based on a decomposition approach, the decompositions are computed by algorithms
which aim to approximate at best a graphical parameter (width) without taking into ac-
count the connectedness of produced clusters, neither the solving step. So, the problems
observed here for tree-decomposition can also occur for other decompositions.

Section 2 introduces notations and the principles of tree-decomposition methods for
solving CSPs. Section 3 points to some problems due to the computing of “good” tree-
decompositions while section 4 presents the notion of bag-connected tree-decomposition,
proposing a first algorithm to achieve one. Before concluding, we empirically show the
interest of the use of this graph parameter for the practical solving of CSPs in section 5.

2 Solving CSPs using Graph Decomposition

Tree-Clustering (denoted TC [4]) is the reference method for solving binary CSPs by
exploiting the structure of their constraint graph. It is based on the notion of tree-
decomposition of graphs [5].

Definition 1 Given a graph G = (X,C), a tree-decomposition of G is a pair (E, T)
with T = (I, F) a tree and E = {Ei : i ∈ I} a family of subsets of X , such that
each subset (called cluster or bag in Graph Theory) Ei is a node of T and satisfies (i)
∪i∈IEi = X , (ii) for each edge {x, y} ∈ C, there exists i ∈ I with {x, y} ⊆ Ei, and
(iii) for all i, j, k ∈ I , if k is in a path from i to j in T , then Ei ∩ Ej ⊆ Ek.

The width of a tree-decomposition (E, T) is equal to maxi∈I |Ei| − 1. The tree-
width w of G is the minimal width over all the tree-decompositions of G.

Figure 1(b) presents a tree whose nodes correspond to the maximal cliques of the
graph depicted in Figure 1(a). It is a possible tree-decomposition for this graph. So,
we get E1 = {x1, x2, x3}, E2 = {x2, x3, x4, x5}, E3 = {x4, x5, x6}, and E4 =
{x3, x7, x8}. The tree-width of this graph is 3 as the maximum size of clusters is 4.

The first version of TC [4], begins by computing a tree-decomposition (using the
algorithm MCS [11]). In the second step, the clusters are solved independently, con-
sidering each cluster as a subproblem, and then, enumerating all its solutions. After
this, a global solution of the CSP, if one exists, can be found efficiently exploiting the
tree structure of the decomposition. Time and space complexities of this first version is
O(n.dw

++1) where w++1 is the size of the largest cluster (w+1 ≤ w++1 ≤ n). Note
that this first approach has been improved to reach a space complexity in O(n.s.ds)
[12, 13] where s is the size of the largest intersection (separator) between two clusters
(s ≤ w+). Unfortunately, this kind of approach which solves completely each cluster
is not efficient in practice. So, later, the Backtracking on Tree-Decomposition method
(denoted BTD) [14] has been proposed and shown to be really more efficient from a
practical viewpoint and appears in the state of the art as a reference method for this type
of approach [15]. In contrast to TC, BTD does not need to solve completely each cluster
to find a solution. A backtrack search is realized, exploiting a variable ordering induced
by a depth first traversal of the tree-decomposition. While this approach has shown
its practical interest, from a theoretical viewpoint, in the worst case, it has the same
complexities as the improved version of TC, that is O(n.dw

++1) for time complex-
ity, and O(n.s.ds) for space complexity. So, to make structural methods efficient, we
must a priori minimize the values of w+ and s when computing the tree-decomposition.
Unfortunately, computing an optimal tree-decomposition (i.e. a tree-decomposition of
width w) is NP-hard [16]. So, many works deal with this problem. They often exploit
an algorithmic approach related to triangulated graphs (see [17] for an introduction
to triangulated graphs). We can distinguish different classes of approaches. On the one
hand, the methods looking for optimal decompositions or their approximations have not
shown their practical interest, due to a too expensive runtime w.r.t. the weak improve-
ment of the value w+. On the other hand, the methods with no guarantee of optimality
(like ones based on heuristic triangulations) are commonly used. They run in polyno-
mial time (between O(n + e) and O(n3)), are easy to implement and their advantage
seems justified. Indeed, these heuristics appear to obtain triangulations reasonably close
to the optimum [18]. In practice, the most used methods to find tree-decompositions are
based on MCS [11] and Min-Fill [19] which give good approximations of w+. More-
over, in [7], experiments have shown that the efficiency for solving CSPs is not only
related to the value of w+, but also to the value of s. Nevertheless, to our knowledge,
these studies were only focused on the values of w+ and s, not on the structure of
clusters which seems to be a more relevant parameter. This question is studied in the
next section, showing that topological properties of clusters constitute also a crucial
parameter for solving CSPs.

Before that, we recall how compute a tree-decomposition with the Min-Fill heuris-
tic. The first step, which corresponds to Min-Fill, is to calculate a triangulation of the
graph. For a given graph G = (X,C), a set of edges C ′ will be added so that the re-
sulting graph G′ = (X,C ∪ C ′) is triangulated. Min-Fill will order the vertices from
1 to n. At each step, a vertex is numbered by choosing a unnumbered vertex x that
minimizes the number of edges to be added in G′ to make a clique with the set of un-
numbered neighboring vertices of x. Once a vertex is numbered, it will be eliminated.
After this processing, the vertices have been numbered from 1 to n, and it is ensured

that for a given vertex x with number i, its neighboring vertices in G′ with a higher
number j > i, form a clique. The order defined by these numbers is called a perfect
elimination order. The cost of this first step is O(n3). The second step is to compute
the maximal cliques of G′. Since G′ is triangulated and we have a perfect elimination
order, it can be achieved in linear time, i.e. in O(n+ e′) where e′ = |C ∪ C ′| [20, 17].
Each maximal clique corresponds to a cluster of the associated tree decomposition. The
third step computes the tree structure of the decomposition. Several approaches exist.
A simple way consists in computing a maximum spanning tree (the constraint graph is
assumed to be connected) of a graph whose vertices correspond to the maximal cliques
(i.e. clusters Ei), and edges link two maximal cliques sharing at least one vertex and
are labeled with the size of these intersections. This treatment can be achieved in O(n3)
(e.g. by Prim’s algorithm). Overall, the cumulative cost of these three steps is in O(n3).

3 Disconnected Clusters and their Impact on the Efficiency of
Decomposition Methods

The study of the tree-decompositions shows they can frequently possess clusters that
have several connected components. For example, consider a cycle without chord (that
is without edge joining two non-consecutive vertices in the cycle) of n vertices (with
n ≥ 4). Any optimal tree-decomposition has exactly n−2 clusters of size 3, and among
them, n− 4 clusters have two connected components.

This phenomenon is also observed for real instances, when we consider tree-decom-
positions of good quality. For example, the well known RLFAP instance Scen-06 ap-
pearing in the CSP 2008 Competition2 is defined on 200 variables and its network admit
good tree-decompositions which can be found quite easily (e.g. Min-Fill finds one with
w+ = 20). Unfortunately, a detailed analysis of these tree-decompositions shows that
they have several disconnected clusters. More generally, it turns out that about 32% of
the 7,272 instances of the CSP 2008 Competition have a tree-decomposition with at
least one disconnected cluster when MCS or Min-Fill are used, what is generally the
case of most tree-decomposition methods for solving CSPs. Among these instances for
which MCS or Min-Fill produce tree-decompositions with disconnected clusters, we
can notably find most of the RLFAP or FAPP instances which are often exploited as
benchmarks for decomposition methods for both decision and optimization problems.
Moreover, sometimes, the percentage of disconnected clusters in one instance may be
very large up to 99% and about 35% in average. For the FAPP instances, the average is
about 48% for tree-decompositions produced by Min-Fill, and a greater average using
MCS. This observation will be even more striking for algorithms that find decomposi-
tions with smaller widths, as suggested by the example of the cycle without chord.

The presence of disconnected clusters in the considered tree-decomposition can
have a negative impact on the practical efficiency of decomposition methods which
can be penalized by a large amount of time or memory to solve the instance. Firstly,
it is well known that if a constraint network is not connected, this can have important
consequences on the effectiveness of its solving. For example, if one of its connected

2 See http://www.cril.univ-artois.fr/CPAI08 for more details.

E = parent of Ep(i) i

child of Ei

 E

sub-tree of clusters

i

child of Ei

e

h

g

f

X

X' = E

X

X
V

1
1

0 d

3

2

c

b

a

(a) (b)

Fig. 2. (a) Disconnected cluster in a Tree-Decomposition, (b) First pass in the loop for Bag-
Connected-TD.

components has no solution, and if the solving first addresses a connected component
that has solutions, all of them should be listed before proving the inconsistency of the
whole CSP. In the case of decomposition methods, the existence of disconnected clus-
ters is perhaps even more pernicious. In the case of TC, let us consider a disconnected
cluster. On the one hand, the phenomenon already encountered in the case of discon-
nected networks may arise. But it is also possible that this cluster has solutions. All these
solutions will be calculated and stored before processing another cluster. Their number
can be significant as it is the product of the number of solutions of each of its con-
nected components. Note that for some benchmarks coming from the FAPP instances,
the number of connected components in one cluster can be greater than 100. However,
many local solutions of this cluster may be globally incompatible, because these con-
nected components may be linked by some constraints which appear in other clusters.
Figure 2(a) shows an example of decomposition for which two connected components
of a cluster Ei are connected by a sequence of constraints that appear in the subproblem
rooted in this cluster. Thus, the overall inconsistency of local solutions of Ei can only
be detected when all these clusters have been solved, during the composition of global
solutions produced by TC in its last step. This leads TC to a large consumption of time
and memory, making this approach unrealistic in practice.

Other methods were proposed to avoid this kind of phenomenon where clusters are
initially solved independently. This is notably the case of BTD which is one of the most
effective approaches based on decompositions. Although BTD has shown its practical
interest, unfortunately, the observed phenomenon still exists, even if it will generally
be attenuated. To well understand this, we must remind that BTD solves an instance by
solving successively the subproblems rooted in every cluster of the tree-decomposition.
But unlike TC which first calculates all the solutions of a cluster, when accessing a
cluster, BTD only computes one solution. Roughly speaking, the subproblem rooted in a
cluster Ei corresponds to the subproblem involving all the variables of the descendants
of Ei in the tree-decomposition (see [14] for more details). In practice, BTD starts
its backtrack search by assigning consistently the variables of the root cluster before
exploring a child cluster. When exploring a new cluster Ei, it only assigns the variables
which appear in the cluster Ei but not in its parent cluster Ep(i), that is all the variables

of the cluster Ei except the variables of the separator Ei ∩ Ep(i)
3. For instance, let us

consider the constraint graph of Figure 1 and its associated tree-decomposition. If we
assume that E1 is the root cluster, BTD first tries to assign consistently the variables
of E1. If so, it keeps on the search with one of its child clusters (i.e. E2 or E4). If
BTD chooses to explore first E2, it will have to assign consistently the variables of
E2\(E1 ∩ E2) (i.e x4 and x5).
Now and more generally, let us consider a disconnected cluster Ei. We have two cases:

– if G[Ei\(Ei ∩ Ep(i))]
4 is disconnected: BTD has to consistently assign variables

which are distributed in several connected components. If the subproblem rooted
in Ei is trivially consistent (for instance it admits a large number of solutions),
BTD will find a solution by doing at most a few backtracks and keep on the search
on the next cluster. So, in such a case, the non-connectivity of Ei does not entail
any problem. In contrast, if this subproblem has few solutions or none, we have a
significant probability that BTD passes many times from a connected component of
G[Ei\(Ei ∩Ep(i))] to another when it solves this cluster. Roughly speaking, BTD
may have to explore all the consistent assignments of each connected component by
interleaving eventually the variables of the different connected components. Indeed,
if BTD exploits filtering techniques, the assignment of a value to a variable x of
Ei\(Ei∩Ep(i)) has mainly impact on the variables of the connected component of
G[Ei\(Ei ∩ Ep(i))] which contains x. In contrast, the filtering does not modify or
slightly the domain of any variable in another connected component. This entails
that inconsistencies are often detected later and not necessarily in Ei but in one
of its descendant cluster (as illustrated previously by Figure 2(a)). If so, BTD may
require a large amount of time or memory (due to (no)good recording) to solve
the subproblem rooted in Ei, especially if the variables have large domains. For
example, this negative phenomenon has been empirically observed on some FAPP
instances (e.g the fapp05-0350-10 instance) with a BTD version using MAC [21].

– if G[Ei\(Ei ∩ Ep(i))] is connected: it follows that Ei is a disconnected cluster
because its separator with its parent cluster is disconnected. As the variables of
this separator are already assigned, the non-connectivity of Ei does not cause any
problem.

This negative impact of disconnected clusters is compatible with empirical results
reported in the literature. We have observed that sometimes, the percentage of discon-
nected clusters for Min-Fill differs significantly from one for MCS, which may explain
some differences of efficiency observed by different authors. Indeed, even if the width
is the same, decompositions computed by Min-Fill offer best results for solving than
the ones obtained by MCS [7] and is considered as the best heuristic of the state of the
art now. Moreover, the analysis of tree-decompositions shows also that the connection
between connected components of some clusters is frequently observed in the leaves
(clusters) of the decomposition, further increasing more the negative effects observed.
To avoid this kind of phenomenon, we study classes of tree-decompositions for which
all the clusters are connected.

3 We assume that Ei ∩ Ep(i) = ∅ if Ei is the root cluster.
4 For any Y ⊆ X , the subgraph G[Y] of G = (X,C) induced by Y is the graph (Y,CY) where
CY = {{x, y} ∈ C|x, y ∈ Y }.

4 A New Parameter for Graph Decomposition of CSPS

4.1 Bag-Connected Tree-Decomposition

The facts presented above lead us naturally to consider only tree-decompositions for
which all the clusters are connected. This concept has been recently introduced in the
context of Graph Theory [8]. It has been studied for some of its combinatorial prop-
erties. However, the algorithmic issues related to its computation have not been stud-
ied yet, neither in terms of complexity, nor to propose algorithms to find them. [8]
provides a central theorem indicating an upper bound of Bag-Connected Tree-Width5

as a function of the tree-width. We present now the notion of Bag-Connected Tree-
Decomposition, which corresponds to tree-decomposition for which each cluster Ei is
connected (i.e. the subgraph G[Ei] of G induced by Ei is a connected graph).

Definition 2 Given a graph G = (X,C), a Bag-Connected Tree-Decomposition of G
is a tree-decomposition (E, T) of G such that for all Ei ∈ E, the subgraph G[Ei] is a
connected graph. The width of a Bag-Connected Tree-Decomposition (E, T) is equal
to maxi∈I |Ei| − 1. The Bag-Connected Tree-Width wc is the minimal width over all
the bag-connected tree-decompositions of G.

Given a graph G = (X,C) of tree-width w, necessarily w ≤ wc. The central
theorem of [8] provides an upper bound of the Bag-Connected Tree-Width as a function
of the tree-width and k which is the maximum length of its geodesic cycles6. More
precisely, we have wc ≤ w +

(
w+1
2

)
.(k.w − 1) (k = 1 if G has no cycle). Note that

wc = dn2 e for graphs defined by cycles of length n and without chord. Nevertheless, if
G is a triangulated graph, w = wc.

Furthermore, the fact that w ≤ wc, independently of the complexity of achieving a
Bag-Connected Tree-Decomposition, indicates that the decomposition methods based
on it, necessarily appear below Tree-Decomposition methods in the hierarchy intro-
duced in [9]. But this remark has no real interest here because our contribution mainly
concerns practical efficiency of such methods. Nevertheless, the difference between w
and wc can naturally have incidences on the efficiency of solving in practice. Indeed, if
we consider the example of the cycle of length n given in section 3 (a geodesic cycle),
optimal decompositions give w = 2 and wc = dn2 e. But, in such a case, even if the bag-
connected tree-width is arbitrarily greater than the tree-width, applying BTD based on
MAC is always as effective since as soon as the first variable is assigned, BTD detects
the inconsistency or directly finds a solution, due to the arc-consistency propagation
which will be realized along the connected paths in the clusters.

The natural question now is related to the computation of optimal Bag-Connected
Tree-Decompositions, that is Bag-Connected Tree-Decompositions of width wc. We
show that this problem, as for Tree-Decompositions, is NP-hard.

5 Note that we use the term of Bag-Connected Tree-Width rather than one of Connected Tree-
Width exploited in [8] because the term of Connected Tree-Width has been introduced before
in [22] but corresponds to a quite different concept.

6 A cycle is said geodesic if for any pair of vertices x and y belonging to the cycle, the distance
between x and y in the graph is equal to the length of the shortest path between x and y in the
cycle.

Theorem 1 Computing an optimal Bag-Connected Tree-Decomposition is NP-hard.

Proof: We propose a polynomial reduction from the problem of computing an optimal
tree-decomposition to this one. Consider a graph G = (X,C) of tree-width w, the
associated tree-decomposition of G being (E, T). Now, consider the graph G′ obtained
by adding to G an universal vertex x, that is a vertex which is connected to all the
vertices in G. Note that from (E, T), we can obtain a tree-decomposition for G′ by
adding in each cluster Ei ∈ E the vertex x. It is a bag-connected tree-decomposition
since each cluster is necessarily connected (by paths containing x) and its width is
w + 1. To show that this addition defines a reduction, it is sufficient to show that w is
the tree-width of G iff the bag-connected tree-width wc of G′ is w + 1.

(⇒) We know that at most, the width of the considered tree-decomposition of G′ is
w + 1 since this tree-decomposition is connected and its width is w + 1. Thus, wc ≤
w + 1. Assume that wc ≤ w. So, there is a bag-connected tree-decomposition of G′

of width at most w. Using this tree-decomposition of G′, we can define the same tree,
but deleting the vertex x, to obtain a tree-decomposition of G of width w − 1, which
contradicts the hypothesis.

(⇐) With the same kind of argument as before, we know that the tree-width w of G
is at most wc − 1. And by construction, it cannot be strictly less than wc − 1. So, it is
exactly wc − 1.
Moreover, achieving G′ is possible in linear time. 2

We have seen that for solving CSPs, it is not necessary to find an optimal tree-
decomposition, and this is even often desirable. Also, we now propose an algorithm
which computes a bag-connected tree-decomposition in polynomial time, of course
without any guarantee about its optimality. The algorithm Bag-Connected-TD described
below finds a bag-connected tree-decomposition of a given graph G = (X,C).

4.2 Computing a Bag-Connected Tree-Decomposition

The first step of Algorithm 1 finds a first cluster, denoted E0, which is a subset of
vertices which are connected. X ′ is the set of already treated vertices. It is initialized
to E0. This first step can be done easily, using an heuristic. Then, let X1, X2, . . . Xk

be the connected components of the subgraph G[X\E0] induced by the deletion of the
vertices of E0 in G. Each one of these sets is inserted in a queue F . For each element Xi

removed from the queue F , let Vi ⊆ X be the set of vertices in X ′ which are adjacent to
at least one vertex in Xi. Note that Vi (which can be connected or not) is a separator of
the graph G since the deletion of Vi in G makes G disconnected (Xi being disconnected
from the rest of G). A new cluster Ei is then initialized by this set Vi. So, we consider
the subgraph of G induced by Vi and Xi, that is G[Vi ∪ Xi]. We choose a first vertex
x ∈ Xi that is connected to at least one vertex of Ei (so one vertex of Vi). This vertex
is added to Ei. If G[Ei] is connected, we stop the process because we are sure that Ei

will be a new connected cluster. Otherwise, we continue, taking another vertex of Xi.
Figure 2(b) shows the computation of E1, the second cluster (after E0), at the first

pass in the loop. After the addition of vertices a, b and c, the subgraph G[V1 ∪{a, b, c}]
is not connected. If the next reached vertex is d, it is added to E1, and thus, E1 =
V1 ∪ {a, b, c, d} is a new connected cluster, breaking the search in G[V1 ∪X1].

Algorithm 1: Bag-Connected-TD
Input: A graph G = (X,C)
Output: A set of clusters E0, . . . Em of a bag-connected tree-decomposition of G

1 Choose a first connected cluster E0 in G

2 X′ ← E0

3 Let X1, . . . Xk be the connected components of G[X\E0]
4 F ← {X1, . . . Xk}
5 while F 6= ∅ do /* find a new cluster Ei */
6 Remove Xi from F

7 Let Vi ⊆ X′ be the neighborhood of Xi in G
8 Ei ← Vi

9 Search in G[Vi ∪Xi] starting from Vi ∪ {x} with x ∈ Xi. Each time a new vertex x is found, it is added
to Ei. The process stops once the subgraph G[Ei] is connected

10 if Vi belongs to the set of clusters already found then Delete the cluster Vi (because Vi (Ei)

11 X′ ← X′ ∪ Ei

12 Let Xi1
, Xi2

, . . . Xiki
be the connected components of G[Xi\Ei]

13 F ← F ∪ {Xi1 , Xi2 , . . . Xiki
}

When this process is finished, we add the vertices of Ei to X ′ and we compute
Xi1 , . . . Xiki

the connected components of the subgraph G[Xi\Ei]. Each one is then
inserted in the queue F . In the example of Figure 2(b), two connected components will
be computed, {e} and {f, g, h}. This process continues while the queue is not empty.
In the example, in the right part of the graph, the algorithm will compute 3 connected
clusters: {d, e}, {b, c, d, f} and {f, g, h}.

Note that the line 10 is only useful when the set Vi computed at line 7 is a previously
built cluster. In such a case, the cluster Vi can be removed. Indeed, as Vi (Ei, Vi

becomes useless in the tree-decomposition.
We now establish the validity of the algorithm and we evaluate its time complexity.

Theorem 2 The algorithm Bag-Connected-TD computes the clusters of a bag-connected
tree-decomposition of a graph G.

Proof: We need only to prove the lines 5-13 of the algorithm. We first prove the termi-
nation of the algorithm. At each pass through the loop, at least one vertex will be added
to the set X ′ and this vertex will not appear later in a new element of the queue because
they are defined by the connected components of G[Xi\Ei], a subgraph that contains
strictly fewer vertices than was contained in Xi. So, after a finite number of steps, the
set Xi\Ei will be an empty set, and therefore no new addition in F will be possible.

We now show that the set of clusters E0, E1, . . . Em induces a bag-connected tree-
decomposition. By construction each new cluster is connected. So, we have only to
prove that they induce a tree-decomposition. We prove this by induction on the added
clusters, showing that all these added clusters will induce a tree-decomposition of the
graph G(X ′).

Initially, the first cluster E0 induces a tree-decomposition of the graph G[E0] =
G[X ′].

For the induction, our hypothesis is that the set of already added clusters E0, E1,
. . . Ei−1 induces a tree-decomposition of the graph G[E0 ∪E1 ∪ · · · ∪Ei−1]. Consider
now the addition of Ei. We show that by construction, E0, E1, . . . Ei−1 and Ei induces

a tree-decomposition of the graph G[X ′] by showing that the three conditions (i), (ii)
and (iii) of the definition of tree-decompositions are satisfied.

(i) Each new vertex added in X ′ belongs to Ei

(ii) Each new edge in G[X ′] is inside the cluster Ei.
(iii) We can consider two different cases for a vertex x ∈ Ei, knowing that for other

vertices, the property is already satisfied by the induction hypothesis:
(a) x ∈ Ei\Vi: in this case, x does not appear in another cluster than Ei and then,

the property holds.
(b) x ∈ Vi: in this case, by the induction hypothesis, the property was already

verified.

Finally, it is easy to see that if the line 10 is applied, we obtain a tree-decomposition
of the graph G[X ′]. 2

Theorem 3 The time complexity of the algorithm Bag-Connected-TD is O(n(n+ e)).

Proof: The lines 1-4 are feasible in linear time, that is O(n+ e), since the cost of com-
puting the connected components of G[X\E0] is bounded by O(n + e). Nevertheless,
we can note that the line 1 can be done by a more expensive heuristic to get a more rele-
vant first cluster, but at most in O(n(n+ e)) in order not to exceed the time complexity
of the most expensive step of the algorithm. We analyze now the cost of the loop (line
5). Firstly, note that there is less than n insertions in the queue F . Now, we analyze the
cost of each treatment associated to the addition of a new cluster, and we give for each
one, its global complexity.

– Line 6: obtaining the first element Xi of F is bounded by O(n), thus globally
O(n2).

– Line 7: obtaining the neighborhood Vi ⊆ X ′ of Xi in G is bounded by O(n + e),
thus globally by O(n(n+ e)).

– Line 8: this step is feasible in O(n), thus globally O(n2).
– Line 9: the cost of the search in G[Vi∪Xi] starting with vertices of Vi and x ∈ Xi is

bounded by O(n+ e). Since the while loop runs at most n times, the global cost of
the search in these subgraphs is bounded by O(n(n+ e)). Moreover, for each new
added vertex x, the connectivity of G[Ei] is tested with an additional cost bounded
by O(n+ e). Note since such a vertex is added at most one time, globally, the cost
of this test is bounded by O(n(n+e)). So, the cost of the line 9 is globally bounded
by O(n(n+ e)).

– Line 10: using an efficient data structure, this step can be realized in O(n), thus
globally O(n2).

– Line 11: the cost of finding the connected components of G[Xi\Ei] is bounded by
O(n+ e). So, globally, the cost of this step is O(n(n+ e)).

– Line 12: the insertion of a set Xij in F is feasible in O(n), thus globally O(n2)
since there is less than n insertions in F .

Finally, the time complexity of the algorithm Bag-Connected-TD is O(n(n+ e)). 2

From a practical viewpoint, it can be assumed that the choice of the first cluster E0

can be crucial for the quality of the decomposition which is being computed. Similarly,
the choice of vertex x, selected in line 9 may be of considerable importance. For these
two choices, heuristics can of course be used. This is discussed in the next section.
However, a particular choice of these heuristics makes it possible, without any change
of the complexity, to compute optimal tree-decompositions for the case of triangulated
graphs. Assume that the first cluster E0 is a maximal clique. This can be done efficiently
using a greedy approach. Now, for the choice of the vertex x in line 9, we consider the
vertex which has the maximum number of neighbors in the set Vi. As in a triangulated
graph, all the clusters of an optimal tree-decomposition are cliques, necessarily, Vi being
a clique, x will be connected to all the vertices of Vi and thus, Ei will be a clique.
Progressively, each maximal clique will be found and the tree-decomposition will be
optimal. Line 10 will be used for the case of maximal cliques including more than one
vertex x of a new connected component. In any case, the practical interest of this type
of decomposition is based on both the efficiency of its computation, but also on the
significance which it may have for solving CSPs. This is discussed in section 5.

5 Experiments

In this section, we mainly compare the solving efficiency and the structural parameters
for BTD using tree-decompositions produced by Min-Fill with ones for BTD exploit-
ing bag-connected tree-decompositions. These latter are computed thanks to the Bag-
Connected-TD algorithm. Regarding the choice of the first cluster in Bag-Connected-
TD, it consists in computing greedily a maximal clique of the constraint network7. To
choose the next vertex, we have considered 6 heuristics. We present here the best ones:

– NV1: the next vertex is a vertex in the neighborhood of previously chosen vertices,
– NV2: the vertices are processed in the decreasing degree order,
– NV3: the vertices are processed according to the order they are visited by a breadth-

first traversal of the graph from the vertices of Vi,
– NV4: we choose as next vertex the vertex which has the maximum number of

neighbors in the set Vi.

The solving is achieved by BTD based on MAC, by using the dom/wdeg variable heuris-
tic [23]. We choose as root cluster the cluster Ei which maximizes the ratio ei

|Ei|−1 with
ei the number of constraints of the cluster Ei. This choice provides better results than
ones of [24]. The decomposition runtimes for Min-Fill and Bag-Connected-TD are sim-
ilar and are included in the runtime of BTD. All the implementations are written in C++.
The experimentations are performed on a linux-based PC with an Intel Pentium IV 3.2
GHz and 1 GB of memory.

5.1 Instances for which Min-Fill produces some disconnected clusters

In this subsection, we compare the bag-connected tree-decompositions with discon-
nected ones from the viewpoint of the solving efficiency. With this aim in view, we

7 Remind that we use the 2-section for non-binary instances.

 0

 200

 400

 600

 800

 1000

 1200

 700 800 900 1000 1100 1200 1300 1400

ti
m

e
 (

s)

solved instances

Min-Fill
NV1
NV2
NV3
NV4

 0

 200

 400

 600

 800

 1000

 1200

 100 110 120 130 140 150 160

ti
m

e
 (

s)

solved instances

Min-Fill
NV1
NV2
NV3
NV4

(a) (b)

Fig. 3. The cumulative number of solved instances for each considered tree-decomposition for
instances for which Min-Fill produces some disconnected clusters (a), for instances for which
Min-Fill produces a bag-connected tree-decomposition (b).

consider 1,597 instances (of arbitrary arity) among the 2,310 instances of the CSP 2008
Competition for which Min-Fill produces a tree-decomposition with at least one dis-
connected cluster. The excluded instances are instances which cannot be solved with-
out exceeding the time limit (namely 1,200 s) or which contain global constraints (not
implemented yet in our solver). Among the considered instances, we can notably find
instances from families rlfap, fapp, modifiedRenault, graphColoring, bqwh or travel-
lingSalesman.

Figure 3(a) presents the cumulative number of solved instances for each considered
tree-decomposition. First, we can observe that, by using any bag-connected tree-decom-
position, BTD solves more instances than by using the disconnected tree-decompositions
produced by Min-Fill. Note that this observation remains true if we use any connected
decomposition based on the non presented heuristics. The best number of solved in-
stances is reached thanks to the tree-decomposition based on the heuristic NV2 and
NV3. These decomposition allow us to solve respectively 114 and 111 additional in-
stances w.r.t. Min-Fill. Those based on NV1 and NV4 are close to each other. Moreover,
for any decomposition, most instances are solved in less than 60 s.

Now, in order to fairly compare the runtimes, we only consider the instances which
are solved by BTD for all the considered tree-decompositions, including Min-Fill. The
runtime for solving the 1,230 instances by using the decompositions based on Min-Fill
is 50,669 s while by using the connected decompositions based on NV1, it requires only
32,372. The connected decomposition based on NV2 is relatively close to NV1 (namely
33,202 s). Those based on NV3 and NV4 are slightly slower (respectively 36,420 s and
36,087 s). Note that the two other heuristics (not presented here) also outperform the
Min-Fill decomposition.

If we focus on the 329 instances having a suitable structure (i.e. instances having a
ratio n/w+ greater than 2), again, we observe the same trend, namely that BTD with
bag-connected tree-decomposition performs better than BTD with Min-Fill. The best
cumulative runtime is achieved by BTD using NV1 in 5,698 s while the worst one is
obtained by BTD using Min-Fill in 13,641 s. BTD using NV2 and NV4 are close to
each other with respectively 6,137 s and 6,010 s while BTD with NV3 needs 8,483 s.

Finally, if we compare these results with ones obtained by a classical enumerative
algorithm like MAC, we can note that some instances solved by BTD with some NVi

are not solved by MAC and conversely. We also observe that MAC performs sometimes
better, sometimes worse than BTD using connected decompositions. However, globally,
they have similar results. This is explained by the fact that most of the 1,597 instances
we consider are far from having a suitable structure. In contrast, when the structure has
interesting features, BTD outperforms MAC. For instance, BTD with decomposition
based on NV3 requires 856 s for solving 10 instances over the 12 instances of rlfap-
Scens11 family while MAC only solves 8 instances in 1,595 s. Moreover, for solving
these 8 instances, BTD requires only 63 s, that is more than 25 times faster than MAC.

5.2 Instances for which Min-Fill produces a bag-connected tree-decomposition

This subsection briefly deals with the behavior of BTD when solving instances for
which Min-Fill produces a bag-connected tree-decomposition. Of course, for such in-
stances, Min-Fill and our Bag-Connected-TD algorithm do not necessarily produce the
same tree-decompositions. By lack of place, we focus directly our study on the more
relevant instances (i.e. the 191 instances having a suitable structure for a decomposition
approach).

As shown in Figure 3(b), BTD using Min-Fill succeeds in solving more instances
than BTD using NV1 or NV2 (143 instances against 140) but less than BTD using NV3
and NV4 which solve respectively 144 and 157 instances. If we focus our study on the
132 instances which are solved by BTD for all the considered tree-decompositions, in-
cluding Min-Fill, BTD using NV3, NV4 or Min-Fill obtain the best cumulative runtime
(respectively in 1,283 s, 1,298 s and 1,280 s) while BTD using NV1 or NV2 are slower
(respectively 2,226 s and 2,265 s).

5.3 Comparisons of the structural parameters

Table 1 presents the value of the structural parameters for some instances. Not surpris-
ingly, Min-Fill produces tree-decompositions with smaller widths and larger numbers
of clusters than ones produced by Bag-Connected-TD. However, if in some cases, the
width obtained by Bag-Connected-TD is significantly larger than one provided by Min-
Fill (e.g. the width produced by NV3 for instance squares-23-23), in other cases, it
remains relatively close (even sometimes equal) to one obtained by Min-Fill. This no-
tably occurs for instance renault-mod-33 ext but also for instances for which Min-Fill
produces a bag-connected tree-decomposition (see part (b) of Table 1). We also observe
that the quality of the width obtained thanks to Bag-Connected-TD may significantly
vary depending on the considered instances. If NV1 often presents the best width among
ones computed by Bag-Connected-TD algorithm, it is sometimes outperformed by NV3
or NV4 (e.g. for instance mps-red-qnet1).

Regarding the parameter s, the observed trends are similar to ones for the width.

6 Conclusion

In this paper, we have introduced the concept of Bag-Connected Tree-Decomposition
in the field of constraint network decomposition. After having shown the interest of this

Table 1. Value of the structural parameters for some instances for which Min-Fill produces some
disconnected clusters (a), for which Min-Fill produces a bag-connected tree-decomposition (b).

Instances n e
Min-Fill NV1 NV2 NV3 NV4
w+ s w+

c s w+
c s w+

c s w+
c s

(a)

2-insertions-4-3 149 541 38 34 66 54 95 14 101 66 58 57
ewddr2-10-by-5-9 50 265 16 15 22 17 21 20 26 23 45 37
renault-mod-33 ext 111 133 11 11 12 11 14 11 17 15 16 13

scen7 400 2,865 33 29 90 48 319 9 116 94 81 34
squares-23-23 1,058 1,268 45 4 45 5 45 5 235 88 45 26
fapp06-0500-1 500 3,478 221 210 286 284 286 284 314 314 313 248

js-taillard-15-100-4 225 1785 86 70 114 102 121 97 129 102 210 197

(b)

mps-red-qnet1 5,380 621 970 773 1,272 1,265 1,272 1,265 978 954 998 974
anna-9 138 493 12 12 14 14 14 14 16 15 14 13

haystacks-10 100 459 9 1 9 1 9 1 9 1 9 1
renault-mod-8 ext 111 126 11 11 11 11 12 11 13 12 11 11
qwh-15-106-9 ext 225 2324 99 99 102 102 102 102 103 103 173 168

new parameter and proposed a first polynomial time algorithm which computes Bag-
Connected Tree-Decompositions, we have experimentally demonstrated the relevance
of this approach since it allows to significantly improve the solving of CSP using de-
composition methods. Indeed, by using bag-connected tree-decompositions, BTD suc-
ceeds in solving many more instances. Moreover, the improvement of the runtime is
approximately 63% w.r.t. BTD using tree-decompositions with disconnected clusters
produced by Min-Fill. This benefit mainly comes from the connectedness of clusters
since when Min-Fill produces bag-connected tree-decompositions, the results of the
different versions of BTD are close. Finally, thanks to these bag-connected decompo-
sitions, BTD also can significantly outperform MAC for well structured instances (e.g.
for the rlfapScens11 family, BTD can be 25 times faster than MAC).

The first extension of this work is related to the study of bag-connected tree-decom-
positions in the more general field of Graphical Models in AI. This concerns the study of
this notion for other classes of methods as Hypertree-Decomposition, And/Or Search,
Bucket Elimination, etc. This approach is particularly justified by the fact that, even if
some of these approaches are based on other parameters (e.g. Hypertree-Decomposition),
their efficient implementations use generally algorithms coming from Tree-Decompo-
sitions (e.g. Min-Fill for Hypertree-Decomposition [25]). Another promising study is
related to the use of bag-connected tree-decompositions in the field of optimization and
counting problems. The second extension of this work is related to a theoretical study
of this new graph parameter from a mathematical viewpoint. For example, what are
the fundamental properties of this parameter? For what classes of graphs, this param-
eter is easy to compute, or is close to the tree-width? Or, are there problems which
are hard when the tree-width is bounded by a constant, and which are easy when the
bag-connected tree-width is bounded by a constant?

References

1. F. Rossi, P. van Beek, and T. Walsh. Handbook of Constraint Programming. Elsevier, 2006.
2. C. Berge. Graphs and Hypergraphs. Elsevier, 1973.
3. E. Freuder. A Sufficient Condition for Backtrack-Free Search. JACM, 29 (1):24–32, 1982.
4. R. Dechter and J. Pearl. Tree-Clustering for Constraint Networks. Artificial Intelligence,

38:353–366, 1989.
5. N. Robertson and P.D. Seymour. Graph minors II: Algorithmic aspects of treewidth. Algo-

rithms, 7:309–322, 1986.
6. C. Cabon, S. de Givry, L. Lobjois, T. Schiex, and J. P. Warners. Radio Link Frequency

Assignment. Constraints, 4:79–89, 1999.
7. P. Jégou, S. N. Ndiaye, and C. Terrioux. Computing and exploiting tree-decompositions for

solving constraint networks. In Proceedings of CP, pages 777–781, 2005.
8. M. Müller. Connected tree-width. CoRR, abs/1211.7353, 2012.
9. G. Gottlob, N. Leone, and F. Scarcello. A Comparison of Structural CSP Decomposition

Methods. Artificial Intelligence, 124:343–282, 2000.
10. M. Gyssens, P. Jeavons, and D. Cohen. Decomposing constraint satisfaction problems using

database techniques. Artificial Intelligence, 66:57–89, 1994.
11. R. Tarjan and M. Yannakakis. Simple linear-time algorithms to test chordality of graphs,

test acyclicity of hypergraphs, and selectively reduce acyclic hypergraphs. SIAM Journal on
Computing, 13 (3):566–579, 1984.

12. R. Dechter and Y. El Fattah. Topological Parameters for Time-Space Tradeoff. Artificial
Intelligence, 125:93–118, 2001.

13. R. Dechter. Constraint processing. Morgan Kaufmann Publishers, 2003.
14. P. Jégou and C. Terrioux. Hybrid backtracking bounded by tree-decomposition of constraint

networks. Artificial Intelligence, 146:43–75, 2003.
15. J. Petke. On the bridge between Constraint Satisfaction and Boolean Satisfiability. PhD

thesis, University of Oxford, 2012.
16. S. Arnborg, D. Corneil, and A. Proskuroswki. Complexity of finding embeddings in a k-tree.

SIAM Journal of Discrete Mathematics, 8:277–284, 1987.
17. M. Golumbic. Algorithmic Graph Theory and Perfect Graphs. Academic Press, New York,

1980.
18. U. Kjaerulff. Triangulation of Graphs - Algorithms Giving Small Total State Space. Techni-

cal report, Judex R.R. Aalborg., Denmark, 1990.
19. D. J. Rose. A graph theoretic study of the numerical solution of sparse positive denite systems

of linear equations. In Graph Theory and Computing, pages 183–217. R.C. Read (ed.),
Academic Press, New York, 1973.

20. F. Gavril. Algorithms for minimum coloring, maximum clique, minimum covering by
cliques, and maximum independent set of a chordal graph. SIAM Journal on Computing,
1 (2):180–187, 1972.

21. D. Sabin and E. Freuder. Contradicting Conventional Wisdom in Constraint Satisfaction. In
Proceedings of ECAI, pages 125–129, 1994.

22. P. Fraigniaud and N. Nisse. Connected treewidth and connected graph searching. In Pro-
ceedings of LATIN, pages 479–490, 2006.

23. F. Boussemart, F. Hemery, C. Lecoutre, and L. Sais. Boosting systematic search by weighting
constraints. In Proceedings of ECAI, pages 146–150, 2004.

24. P. Jégou, S. N. Ndiaye, and C. Terrioux. An extension of complexity bounds and dynamic
heuristics for tree-decompositions of CSP. In Proceedings of CP, pages 741–745, 2006.

25. A. Dermaku, T. Ganzow, G. Gottlob, B. J. McMahan, N. Musliu, and M. Samer. Heuristic
methods for hypertree decomposition. In Proceedings of MICAI, pages 1–11, 2008.

