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Abstract. A binary CSP instance satisfying the broken-triangle property
(BTP) can be solved in polynomial time. Unfortunately, in practice, few
instances satisfy the BTP. We show that a local version of the BTP allows
the merging of domain values in arbitrary instances of binary CSP, thus
providing a novel polynomial-time reduction operation. Extensive exper-
imental trials on benchmark instances demonstrate a significant decrease
in instance size for certain classes of problems. We show that BTP-merging
can be generalised to instances with constraints of arbitrary arity and we
investigate the theoretical relationship with resolution in SAT. A direc-
tional version of the general-arity BTP then allows us to extend the BTP
tractable class previously defined only for binary CSP.

1 Introduction

At first sight one could assume that the discipline of constraint programming
has come of age. On the one hand, efficient solvers are regularly used to solve
real-world problems in diverse application domains while, on the other hand,
a rich theory has been developed concerning, among other things, global con-
straints, tractable classes, reduction operations and symmetry. However, there
often remains a large gap between theory and practice which is perhaps most
evident when we look at the large number of deep results concerning tractable
classes which have yet to find any practical application. The research reported
in this paper is part of a long-term project to bridge the gap between theory
and practice. Our aim is not only to develop new tools but also to explain why
present tools work so well.

Most research on tractable classes has been based on classes defined by plac-
ing restrictions either on the types of constraints or on the constraint hyper-
graph whose vertices are the variables and whose hyper-edges are the con-
straint scopes. Another way of defining classes of binary CSP instances consists
in imposing conditions on the microstructure, a graph whose vertices are the
possible variable-value assignments with an edge linking each pair of compat-
ible assignments [9,12]. If each vertex of the microstructure, corresponding to a
? supported by ANR Project ANR-10-BLAN-0210.



variable-value assignment 〈x, a〉, is labelled by the variable x, then this so-called
coloured microstructure retains all information from the original instance. The
broken-triangle property (BTP) is a simple local condition on the coloured mi-
crostructure which defines a tractable class of binary CSP [5]. Inspired by the
BTP, investigation of other forbidden patterns in the coloured microstructure
has led to the discovery of new tractable classes [1,4,6,8] as well as new reduc-
tion operations based on variable elimination [2].

For simplicity of presentation we use two different representations of con-
straint satisfaction problems. In the binary case, our notation is fairly standard,
whereas in the general-arity case we use a notation close to the representation
of SAT instances. This is for presentation only, though, and our algorithms do
not need instances to be represented in this manner.

Definition 1. A binary CSP instance I consists of

– a set X of n variables,
– a domain D(x) of possible values for each variable x ∈ X ,
– a relation Rxy ⊆ D(x)×D(y), for each pair of distinct variables x, y ∈ X , which

consists of the set of compatible pairs of values (a, b) for variables (x, y).

A partial solution to I on Y = {y1, . . . , yr} ⊆ X is a set {〈y1, a1〉, . . . , 〈yr, ar〉}
such that ∀i, j ∈ [1, r], (ai, aj) ∈ Ryiyj

. A solution to I is a partial solution on X .

For simplicity of presentation, Definition 1 assumes that there is exactly one
constraint relation for each pair of variables. The number of constraints e is the
number of pairs of variables x, y such that Rxy 6= D(x) × D(y). An instance
I is arc consistent if for each pair of distinct variables x, y ∈ X , for each value
a ∈ D(x), there is a value b ∈ D(y) such that (a, b) ∈ Rxy .

In our representation of general-arity CSP instances, we require the notion
of tuple which is simply a set of variable-value assignments. For example, in the
binary case, the tuple {〈x, a〉, 〈y, b〉} is compatible if (a, b) ∈ Rxy and incompatible
otherwise.

Definition 2. A (general-arity) CSP instance I consists of

– a set X of n variables,
– a domain D(x) of possible values for each variable x ∈ X ,
– a set NoGoods(I) consisting of incompatible tuples.

A partial solution to I on Y = {y1, . . . , yr} ⊆ X is a tuple t = {〈y1, a1〉, . . . , 〈yr, ar〉}
such that no subset of t belongs to NoGoods(I). A solution is a partial solution on X .

2 Value merging in binary CSP based on the BTP

In this section we consider a method, based on the BTP, for reducing domain
size while preserving satisfiability. Instead of eliminating a value, as in classic
reduction operations such as arc consistency or neighbourhood substitution,
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we merge two values. We show that the absence of broken-triangles [5] on two
values for a variable x in a binary CSP instance allows us to merge these two
values in the domain of x while preserving satisfiability. This rule generalises
the notion of virtual interchangeability [11] as well as neighbourhood substitu-
tion [10].

It is known that if for a given variable x in an arc-consistent binary CSP in-
stance I , the set of (in)compatibilities (known as a broken-triangle) shown in
Figure 1 occurs for no two values a, b ∈ D(x) and no two assignments to two
other variables, then the variable x can be eliminated from I without chang-
ing the satisfiability of I [5,2]. In figures, each bullet represents a variable-value
assignment, assignments to the same variable are grouped together within the
same oval and compatible (incompatible) pairs of assignments are linked by
solid (broken) lines. Even when this variable-elimination rule cannot be ap-
plied, it may be the case that for a given pair of values a, b ∈ D(x), no broken
triangle occurs. We will show that if this is the case, then we can perform a
domain-reduction operation which consists in merging the values a and b.
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Fig. 1. A broken triangle on two values a, b for a given variable x.

Definition 3. Merging values a, b ∈ D(x) in a binary CSP consists in replacing
a, b in D(x) by a new value c which is compatible with all variable-value assignments
compatible with at least one of the assignments 〈x, a〉 or 〈x, b〉. A value-merging
condition is a polytime-computable property P (x, a, b) of assignments 〈x, a〉, 〈x, b〉 in
a binary CSP instance I such that when P (x, a, b) holds, the instance I ′ obtained from
I by merging a, b ∈ D(x) is satisfiable if and only if I is satisfiable.

We now formally define the value-merging condition based on the BTP.

Definition 4. A broken triangle on the pair of variable-value assignments a, b ∈
D(x) consists of a pair of assignments d ∈ D(y), e ∈ D(z) to distinct variables y, z ∈
X \ {x} such that (a, d) /∈ Rxy , (b, d) ∈ Rxy , (a, e) ∈ Rxz , (b, e) /∈ Rxz and
(d, e) ∈ Ryz . The pair of values a, b ∈ D(x) is BT-free if there is no broken triangle on
a, b.

Proposition 1. In a binary CSP instance, being BT-free is a value-merging condition.
Furthermore, given a solution to the instance resulting from the merging of two values,
we can find a solution to the original instance in linear time.
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Proof. Let I be the original instance and I ′ the new instance in which a,b have
been merged into a new value c. Clearly, if I is satisfiable then so is I ′. It suffices
to show that if I ′ has a solution s which assigns c to x, then I has a solution. Let
sa, sb be identical to s except that sa assigns a to x and sb assigns b to x. Suppose
that neither sa nor sb are solutions to I . Then, there are variables y, z ∈ X \
{x} such that 〈a, s(y)〉 /∈ Rxy and 〈b, s(z)〉 /∈ Rxz . By definition of the merging
of a, b to produce c, and since s is a solution to I ′ containing 〈x, c〉, we must
have (b, s(y)) ∈ Rxy and (a, s(z)) ∈ Rxz . Finally, (s(y), s(z)) ∈ Ryz since s is
a solution to I ′. Hence, 〈y, s(y)〉, 〈z, s(z)〉, 〈x, a〉, 〈x, b〉 forms a broken-triangle,
which contradicts our assumption. Hence, the absence of broken triangles on
assignments 〈x, a〉, 〈x, b〉 allows us to merge these assignments while preserving
satisfiability.

Reconstructing a solution to I from a solution s to I ′ simply requires check-
ing which of sa or sb is a solution to I . 2

We can see that the BTP-merging rule, given by Proposition 1, generalises
neighbourhood substitution [10]: if b is neighbourhood substitutable by a, then
no broken triangle occurs on a, b and merging a and b produces a CSP instance
which is identical (except for the renaming of the value a as c) to the instance
obtained by simply eliminating b from D(x). BTP-merging also generalises the
merging rule proposed by Likitvivatanavong and Yap [11]. The basic idea be-
hind their rule is that if the two assignments 〈x, a〉, 〈x, b〉 have identical com-
patibilities with all assignments to all other variables except concerning at most
one other variable, then we can merge a and b. This is clearly subsumed by
BTP-merging.

The BTP-merging operation is not only satisfiability-preserving but, from
Proposition 1, we know that we can also reconstruct a solution in polynomial
time to the original instance I from a solution to an instance Im to which we
have applied a sequence of merging operations until convergence. It is known
that for the weaker operation of neighbourhood substitutability, all solutions to
the original instance can be generated in O(N(de + n2)) time, where N is the
number of solutions to the original instance, n is the number of variables, d the
maximum domain size and e the number of constraints [3]. We now show that
a similar result also holds for the more general rule of BTP-merging.

Proposition 2. Let I be a binary CSP instance and suppose that we are given the set
of all solutions to the instance Im obtained after applying a sequence of BTP-merging
operations. All N solutions to I can then be determined in O(Nn2d) time.

Proof. Let I ′ be the CSP instance which results after performing a single BTP-
merging operation of values a, b ∈ D(x) in I . As we saw in the proof of Proposi-
tion 1, given the set of solutions sol(I ′) to I ′ we can generate the set of solutions
to I by testing for each s ∈ Sol(I ′) whether sa or sb (or both) are solutions to
I . This requires O(n) time per solution to I , since there are at most n − 1 con-
straints to be tested involving the variable x, and at least one of sa or sb is a
solution to I .
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The total number of BTP-merging operations performed to transform I into
Im is at most n(d− 1). Therefore, the total time to generate all N solutions to I
from the set of solutions to Im is O(Nn2d). 2
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Fig. 2. (a) A broken triangle exists on values a′, b′ at variable z. (b) After BTP-merging of
values a and b in D(x), this broken triangle has disappeared.
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Fig. 3. (a) This instance contains no broken triangle. (b) After BTP-merging of values a
and b in D(x), a broken triangle has appeared on values a′, b′ ∈ D(z).

The weaker operation of neighbourhood substitution has the property that
two different convergent sequences of eliminations by neighbourhood substi-
tution necessarily produce isomorphic instances Im

1 , Im
2 [3] . This is not the

case for BTP-merging. Firstly, and perhaps rather surprisingly, BTP-merging
can have as a side-effect to eliminate broken triangles. This is illustrated in the
3-variable instance shown in Figure 2. The instance in Figure 2(a) contains a
broken triangle on values a′, b′ for variable z, but after BTP-merging of values
a, b ∈ D(x) into a new value c, as shown in Figure 2(b), there are no broken
triangles in the instance. Secondly, BTP-merging of two values in D(x) can in-
troduce a broken triangle on a variable z 6= x, as illustrated in Figure 3. The
instance in Figure 3(a) contains no broken triangle, but after the BTP-merging
of a, b ∈ D(x) into a new value c, a broken triangle has been created on values
a′, b′ ∈ D(z).
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3 Experimental trials

To test the utility of BTP-merging we performed extensive experimental tri-
als on benchmark instances from the International CP Competition4. For each
instance not including global constraints, we performed BTP-mergings until
convergence with a time-out of one hour. In total, we obtained results for 2,547
instances out of 3,811 benchmark instances. In the other instances the search for
all BTP-mergings did not terminate within a time-out of one hour.

domain no. instances no. values no. values deleted %age deleted
BH-4-13 6 7,334 3,201 44%
BH-4-4 10 674 322 48%
BH-4-7 20 2,102 883 42%
ehi-85 98 2,079 891 43%
ehi-90 100 2,205 945 43%
graph-coloring/school 8 4,473 104 2%
graph-coloring/sgb/book 26 1,887 534 28%
jobShop 45 6,033 388 6%
marc 1 6400 6,240 98%
os-taillard-4 30 2,932 1,820 62%
os-taillard-5 28 6,383 2,713 43%
rlfapGraphsMod 5 14,189 5,035 35%
rlfapScens 5 12,727 821 6%
rlfapScensMod 9 9,398 1,927 21%
others 1919 1,396 28 0.02%

Table 1. Results of experiments on CSP benchmark problems.

All instances from the benchmark-domain hanoi satisfy the broken-triangle
property and BTP-merging reduced all variable domains to singletons. After es-
tablishing arc consistency, 38 instances from diverse benchmark-domains sat-
isfy the BTP, including all instances from the benchmark-domain domino . We
did not count those instances for which arc consistency detects inconsistency by
producing a trivial instance with empty variable domains (and which trivially
satisfies the BTP). In all instances from the pigeons benchmark-domain with
a suffix -ord , BTP-merging again reduced all domains to singletons. This is be-
cause BTP-merging can eliminate broken triangles, as pointed out in Section 2,
and hence can render an instance BTP even though initially it was not BTP. The
same phenomenon occurred in a 680-variable instance from the benchmark-
domain rlfapGraphsMod as well as the 3-variable instance ogdPuzzle .

Table 1 gives a summary of the results of the experimental trials. We do
not include those instances mentioned above which are entirely solved by BTP-
merging. We give details about those benchmark-domains where BTP-merging

4 http://www.cril.univ-artois.fr/CPAI08
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was most effective. All other benchmark-domains are grouped together in the
last line of the table. The table shows the number of instances in the benchmark-
domain, the average number of values (i.e. variable-value assignments) in the
instances from this benchmark-domain, the average number of values deleted
(i.e. the number of BTP-merging operations performed) and finally this average
represented as a percentage of the average number of values.

We can see that for certain types of problem, BTP-merging is very effective,
whereas for others (grouped together in the last line of the table) hardly any
merging of values occurred.

4 Generalising BTP-merging to constraints of arbitrary arity

In the remainder of the paper, we assume that the constraints of a general-arity
CSP instance I are given in the form described in Definition 2, i.e. as a set of in-
compatible tuples NoGoods(I), where a tuple is a set of variable-value assign-
ments. For simplicity of presentation, we use the predicate Good(I, t) which is
true iff the tuple t is a partial solution, i.e. t does not contain any pair of distinct
assignments to the same variable and @t′ ⊆ t such that t′ ∈ NoGoods(I). We
first generalise the notion of broken triangle and merging to the general-arity
case, before showing that absence of broken triangles allows merging.

Definition 5. A general-arity broken triangle (GABT) on values a, b ∈ D(x) con-
sists of a pair of tuples t, u (containing no assignments to variable x) satisfying the
following conditions:

1. Good(I, t ∪ u) ∧ Good(I, t ∪ {〈x, a〉}) ∧ Good(I, u ∪ {〈x, b〉})
2. t ∪ {〈x, b〉} ∈ NoGoods(I) ∧ u ∪ {〈x, a〉} ∈ NoGoods(I)

The pair of values a, b ∈ D(x) is GABT-free if there is no broken triangle on a, b.

Observe that Good(I, t∪{〈x, a〉}) entails t∪{〈x, a〉} /∈NoGoods(I). Hence to
decide whether there is a GABT on a, b in a CSP instance, one can either explore
all pairs t ∪ {〈x, b〉}, u ∪ {〈x, a〉} ∈ NoGoods(I), as suggested by Definition 5,
or, equivalently, explore all pairs t ∪ {〈x, a〉}, u ∪ {〈x, b〉} of tuples explicitly al-
lowed by the constraints in I . Whatever the representation, a pair t, u can be
checked to be a GABT on a, b by evaluating the properties of Definition 5, all
of which involve only constraint checks. Hence deciding whether a pair a, b is
GABT-free is polytime for constraints given in extension (as the set of satisfy-
ing assignments) as well as for those given by nogoods (the set of assignments
violating the constraint).

Definition 6. Merging values a, b ∈ D(x) in a general-arity CSP instance I consists
in replacing a, b in D(x) by a new value c which is compatible with all variable-value
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assignments compatible with at least one of the assignments 〈x, a〉 or 〈x, b〉, thus pro-
ducing an instance I ′ with the new set of nogoods defined as follows:

NoGoods(I ′) = {t ∈ NoGoods(I) | 〈x, a〉, 〈x, b〉 /∈ t}
∪ {t ∪ {〈x, c〉} | t ∪ {〈x, a〉} ∈ NoGoods(I) ∧

∃t′ ∈ NoGoods(I) s.t. t′ ⊆ t ∪ {〈x, b〉}}
∪ {t ∪ {〈x, c〉} | t ∪ {〈x, b〉} ∈ NoGoods(I) ∧

∃t′ ∈ NoGoods(I) s.t. t′ ⊆ t ∪ {〈x, a〉}}

A value-merging condition is a polytime-computable property P (x, a, b) of assign-
ments 〈x, a〉, 〈x, b〉 in a CSP instance I such that when P (x, a, b) holds, the instance
I ′ is satisfiable if and only if I is satisfiable.

Clearly, this merging operation can be performed in polynomial time whether
constraints are represented positively in extension or negatively as nogoods.

Proposition 3. In a general-arity CSP instance, being GABT-free is a value-merging
condition. Furthermore, given a solution to the instance resulting from the merging of
two values, we can find a solution to the original instance in linear time.

Proof. In order to prove that satisfiability is preserved by this merging oper-
ation, it suffices to show that if s is a solution to I ′ containing 〈x, c〉, then ei-
ther sa = (s \ {〈x, c〉}) ∪ {〈x, a〉} or sb = (s \ {〈x, c〉}) ∪ {〈x, b〉} is a solution
to I . Suppose, for a contradiction that this is not the case. Then there are tu-
ples t, u ⊆ s \ {〈x, c〉} such that t ∪ {〈x, b〉} ∈ NoGoods(I) and u ∪ {〈x, a〉} ∈
NoGoods(I). Since t, u are subsets of the solution s to I ′ and t, u contain no as-
signments to x, we have Good(I, t∪u). Since t∪{〈x, c〉} is a subset of the solution
s to I ′, we have t ∪ {〈x, c〉} /∈ NoGoods(I ′). By the definition of NoGoods(I ′)
given in Definition 6, and since t ∪ {〈x, b〉} ∈ NoGoods(I), we know that @t′ ∈
NoGoods(I) such that t′ ⊆ t ∪ {〈x, a〉}. But then Good(I, t ∪ {〈x, a〉}). By a
symmetric argument, we can deduce Good(I, u ∪ {〈x, b〉}). This provides the
contradiction we were looking for, since we have shown that a general-arity
broken triangle occurs on t, u, 〈x, a〉, 〈x, b〉.

Reconstructing a solution to the original instance can be achieved in linear
time, since it suffices to verify which (or both) of sa or sb is a solution to I . 2

Relationship with Resolution in SAT

We now show that in the case of Boolean domains, there is a close relationship
between merging two values a, b on which no GABT occurs and a common pre-
processing operation used by SAT solvers. Given a propositional CNF formula
ϕ in the form of a set of clauses (each clause Ci being represented as a set of
literals) and a variable x occurring in ϕ, recall that resolution is the process of in-
ferring the clause (C0 ∪C1) from the two clauses ({x̄} ∪C0), ({x} ∪C1). Define
the formula Res(x, ϕ) to be the result of performing all such resolutions on ϕ,
removing all clauses containing x or x̄, and removing subsumed clauses:

Res(x, ϕ) = min
⊂

({C | C ∈ ϕ;x, x̄ /∈ C}∪{(C0∪C1) | ({x̄}∪C0), ({x}∪C1) ∈ ϕ})
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It is a well-known fact that Res(x, ϕ) is satisfiable if and only if ϕ is.
Eliminating variables in this manner from SAT instances, to get an equi-

satisfiable formula with less variables, is a common preprocessing step in SAT
solving, and is typically performed provided it does not increase the size of the
formula [7]. A particular case is when it amounts to simply removing all occur-
rences of x, which is the case, for instance, if x or x̄ is unit or pure in ϕ, or if all
resolutions on x yield a tautological clause.

Definition 7. A variable x is said to be erasable from a CNF ϕ if

Res(x, ϕ) ⊆ {C | C ∈ ϕ;x, x̄ /∈ C} ∪ {C0 | ({x̄}∪C0) ∈ ϕ} ∪ {C1 | ({x}∪C1) ∈ ϕ}

A CNF ϕ can be seen as the CSP instance Iϕ on the set X of variables occur-
ring in ϕ, with D(x) = {>,⊥} for all x ∈ X , and NoGoods(Iϕ) = {C | C ∈ ϕ},
where ({x1, · · ·xp, x̄p+1, · · · , x̄q}) = {〈x1,⊥〉, . . . , 〈xp,⊥〉, 〈xp+1,>〉, . . . , 〈xq,>〉}.

Proposition 4. Assume that no GABT occurs on values ⊥,> for x in Iϕ. Assume
moreover that no clause in ϕ is subsumed by another one5. Then x is erasable from ϕ.

Proof. Rephrasing Definition 5 in terms of clauses, for any two clauses ({x̄} ∪
C0), ({x} ∪ C1) ∈ ϕ we have one of (i) ∃C ∈ ϕ, C ⊆ (C0 ∪ C1), (ii) ∃C ′ ∈
ϕ, C ′ ⊆ (C0 ∪ {x}), or (iii) ∃C ′′ ∈ ϕ, C ′′ ⊆ (C1 ∪ {x̄}). Moreover, in Case (ii) C ′

must contain x, for otherwise the clause ({x̄} ∪ C0) would be subsumed in ϕ,
contradicting our assumption. Similarly, in Case (iii) C ′′ must contain x̄.

In Case (i) the resolvent (C0 ∪ C1) of ({x̄} ∪ C0), ({x} ∪ C1) is subsumed
by C in Res(x, ϕ), and hence does not occur in it. Similarly, in the second case
(C0 ∪C1) is subsumed by the resolvent of ({x̄} ∪C0) and C ′, which is precisely
C0. The third case is dual. We finally have that the only resolvents added are
of the form C0 (resp. C1) for some clause ({x̄} ∪ C0) (resp. ({x} ∪ C1)) of ϕ, as
required. 2

We can show the converse is also true provided that a very reasonable prop-
erty holds.

Proposition 5. Assume that ϕ satisfies: ∀({x} ∪ C) ∈ ϕ, @C ′ ⊆ C, ({x̄} ∪ C ′) ∈ ϕ
and dually ∀({x̄}∪C) ∈ ϕ, @C ′ ⊆ C, ({x}∪C ′) ∈ ϕ. If x is erasable from ϕ, then no
GABT occurs on values ⊥,> for x in Iϕ.

Proof. Assume for a contradiction that there is a GABT on values ⊥,> for x in
Iϕ, let t, u be witnesses to this, and write t ∪ {〈x,>〉} = ({x̄} ∪ C0), u ∪ {〈x,⊥
〉} = ({x} ∪ C1). Then the clause (C0∪C1) is produced by resolution on x. Since
x is erasable, (C0∪C1) is equal to or subsumed by a clause C ∈ Res(x, ϕ), where
(applying Definition 7 in reverse) either C, or ({x}∪C), or ({x̄}∪C) is in ϕ. The
first case contradicts Good(Iϕ, t ∪ u), so assume by symmetry ({x} ∪ C) ∈ ϕ.
From C /∈ ϕ and C ∈ Res(x, ϕ) we get ∃C ′ ⊆ C, ({x̄} ∪ C ′) ∈ ϕ. But then the
pair of clauses ({x}∪C), ({x̄}∪C ′) ∈ ϕ violates the assumption of the claim. 2

5 This is without loss of generality since such clauses can be removed in polytime and
such removal preserves logical equivalence.
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5 A tractable class of general-arity CSP

In binary CSP, the broken-triangle property defines an interesting tractable class
when broken-triangles are forbidden according to a given variable ordering.
Unfortunately, the original definition of BTP was limited to binary CSPs [5].
Section 4 described a general-arity version of the broken-triangle property whose
absence on two values allows these values to be merged while preserving sat-
isfiability. An obvious question is whether GABT-freeness can be adapted to
define a tractable class. In this section we show that this is possible for a fixed
variable ordering, but not if the ordering is unknown.

Definition 5 defined a general-arity broken triangle (GABT). What happens
if we forbid GABTs according to a given variable ordering? Absence of GABTs
on two values a, b for the last variable x in the variable ordering allows us to
merge a and b while preserving satisfiability. It is possible to show that if GABTs
are absent on all pairs of values for x, then we can merge all values in the do-
main D(x) of x to produce a singleton domain. This is because (as we will show
later) merging a and b, to produce a merged value c, cannot introduce a GABT
on c, d for any other value d ∈ D(x). Once the domain D(x) becomes a singleton
{a}, we can clearly eliminate x from the instance, by deleting 〈x, a〉 from all no-
goods, without changing its satisfiability. It is at this moment that GABTs may
be introduced on other variables, meaning that forbidding GABTs according to
a variable ordering does not define a tractable class.

Nevertheless, we will show that strengthening the general-arity BTP allows
us to avoid this problem. The resulting directional general-arity version of BTP
(for a known variable ordering) then defines a tractable class which includes
the binary BTP tractable class as a special case.

Note that the set of general-arity CSP instances whose dual instance satis-
fies the BTP also defines a tractable class which can be recognised in polynomial
time even if the ordering of the variables in the dual instance is unknown [8].
This DBTP class is incomparable with the class we present in the present paper
(which is equivalent to BTP in binary CSP) since DBTP is known to be incom-
parable with the BTP class already in the special case of binary CSP [8].

5.1 Directional general-arity BTP

We suppose given a total ordering < of the variables of a CSP instance I . We
write t<x to represent the subset of the tuple t consisting of assignments to
variables occurring before x in the order <, and V ars(t) to denote the set of all
variables assigned by t.

Definition 8. A directional general-arity (DGA) broken triangle on assignments
a, b to variable x in a CSP instance I is a pair of tuples t, u (containing no assignments
to variable x) satisfying the following conditions:

1. t<x and u<x are non-empty
2. Good(I, t<x ∪ u<x) ∧ Good(I, t<x ∪ {〈x, a〉}) ∧ Good(I, u<x ∪ {〈x, b〉})
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3. ∃t′ s.t. V ars(t′) = V ars(t) ∧ (t′)<x = t<x ∧ t′ ∪ {〈x, a〉} /∈ NoGoods(I)
4. ∃u′ s.t. V ars(u′) = V ars(u) ∧ (u′)<x = u<x ∧ u′ ∪{〈x, b〉} /∈ NoGoods(I)
5. t ∪ {〈x, b〉} ∈ NoGoods(I) ∧ u ∪ {〈x, a〉} ∈ NoGoods(I)

I satisfies the directional general-arity broken-triangle property (DGABTP) ac-
cording to the variable ordering < if no directional general-arity broken triangle occurs
on any pair of values a, b for any variable x.

We will show that any instance I satisfying the DGABTP can be solved
in polynomial time by repeatedly alternating the following two operations: (i)
merge all values in the last remaining variable (according to the order <); (ii)
eliminate this variable when its domain becomes a singleton. We will give the
two operations (merging and variable-elimination) and show that both opera-
tions preserve satisfiability and that neither of them can introduce DGA bro-
ken triangles. Moreover, as for GABT-freeness, the DGABTP can be tested in
polynomial time for a given order whether constraints are given as tables of
satisfying assignments or as nogoods. Indeed, in the former case, using items
(3) and (4) in Definition 8 we can restrict the search for a DGA broken triangle
to pairs of tuples satisfying some constraint (there must be a constraint with
scope V ars(t′ ∪ {x}) since there is a nogood on these variables by item (5), and
similarly for u′). This is sufficient to define a tractable class.

5.2 Merging

Let x be the last variable according to the variable order <. When values a, b
in the domain of variable x do not belong to any DGA broken triangle, we
can replace a, b by a new value c to produce an instance I ′ with the new set of
nogoods given by Definition 6. Since x is the last variable in the ordering <,
DGA broken triangles on a, b ∈ D(x) are GA broken triangles (and vice versa).
Thus, from Proposition 3 we can deduce that satisfiability is preserved by this
merging operation. What remains to be shown is that merging two values in
the domain of the last variable cannot introduce the forbidden pattern.

Lemma 1. Merging two values a, b into a value c in the domain of the last variable
x (according to the variable order <) in an instance I cannot introduce a directional
general-arity broken triangle (DGABT) in the resulting instance I ′.

Proof. We first claim that this operation cannot introduce a DGABT on a vari-
able y < x. Indeed, assume there is a DGABT on d, e ∈ D(y) in I ′, that is, that
there are tuples v, w such that

1. v<y and w<y are non-empty
2. Good(I ′, v<y∪w<y) ∧ Good(I ′, v<y∪{〈y, d〉}) ∧ Good(I ′, w<y∪{〈y, e〉})
3. ∃v′ V ars(v′) = V ars(v) ∧ (v′)<y = v<y ∧ v′ ∪ {〈y, d〉} /∈ NoGoods(I ′)
4. ∃w′ V ars(w′) = V ars(w) ∧ (w′)<y = w<y ∧ w′ ∪{〈y, e〉} /∈ NoGoods(I ′)
5. v ∪ {〈y, e〉} ∈ NoGoods(I ′) ∧ w ∪ {〈y, d〉} ∈ NoGoods(I ′)
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If v′ contains the assignment 〈x, c〉 then, by construction of NoGoods(I ′) (Defi-
nition 6), ∃v′′ ∈ {(v′\〈x, c〉)∪{〈x, a〉}, (v′\〈x, c〉)∪{〈x, b〉}} such that v′′∪{〈y, d〉}
/∈ NoGoods(I). If v′ does not contain 〈x, c〉 then let v′′ = v′. Define w′′ in a simi-
lar way. Now considering the last item, if v contains 〈x, c〉 then by construction
of NoGoods(I ′) there is v′′′ assigning a or b to x and otherwise equal to v, such
that v′′′ ∪ {〈y, e〉} was in NoGoods(I), and if v 63 〈x, c〉 we let v′′′ = v. We define
w′′′ similarly. Then:

1. (v′′′)<y = v<y and (w′′′)<y = w<y are non-empty
2. Good(I, (v′′′)<y∪(w′′′)<y) ∧ Good(I, (v′′′)<y∪{〈y, d〉}) ∧ Good(I, (w′′′)<y∪

{〈y, e〉}) (since x is the last variable, (v′′′)<y = v<y and (w′′′)<y = w<y)
3. V ars(v′′) = V ars(v′′′) ∧ (v′′)<y = (v′′′)<y ∧ v′′ ∪ {〈y, d〉} /∈ NoGoods(I)
4. V ars(w′′) = V ars(w′′′) ∧ (w′′)<y = (w′′′)<y ∧ w′′∪{〈y, e〉} /∈NoGoods(I))
5. v′′′ ∪ {〈y, e〉} ∈ NoGoods(I) ∧ w′′′ ∪ {〈y, d〉} ∈ NoGoods(I)

that is, there was a DGABT on d, e in I , contradicting our assumption.
We now show that a broken triangle cannot be introduced on x. Observe

that since x is the last variable, for all tuples t not containing an assignment to
x, t<x = t holds. We use this tacitly in the rest of the proof. Suppose for a con-
tradiction that I contained no DGABT, but that after merging a, b ∈ D(x) in I to
produce the instance I ′, in which a, b have been replaced by a new value c, we
have a DGABT on c, d. Then there is a pair of non-empty tuples t, u (containing
no assignments to variable x) satisfying in particular the following conditions:

(1) Good(I ′, t ∪ u) (4) t ∪ {〈x, d〉} ∈ NoGoods(I ′)
(2) Good(I ′, t ∪ {〈x, c〉}) (5) u ∪ {〈x, c〉} ∈ NoGoods(I ′)
(3) Good(I ′, u ∪ {〈x, d〉})

We show that there was a DGABT in I either on a, d, on b, d or on a, b.
Since merging only affects tuples containing 〈x, a〉 or 〈x, b〉, (1) implies that

Good(I, t∪ u) and hence Good(I, t∪ u′) for all u′ ⊆ u. Similarly, (3) implies that
Good(I, u ∪ {〈x, d〉}) and hence Good(I, u′ ∪ {〈x, d〉}) for all u′ ⊆ u. Similarly,
(4) implies that t ∪ {〈x, d〉} ∈NoGoods(I).
There are three possible cases to consider:

(a) Good(I, t ∪ {〈x, a〉}),
(b) Good(I, t ∪ {〈x, b〉}),
(c) ∃t1, t2 ⊆ t such that t1 ∪ {〈x, a〉}, t2 ∪ {〈x, b〉} ∈ NoGoods(I).

case (a): By Definition 6 of the creation of nogoods during merging, (5) implies
that ∃u′ ⊆ u such that u′ ∪ {〈x, a〉} ∈ NoGoods(I). We know that u′ is non-
empty since u′ ∪ {〈x, a〉} ∈ NoGoods(I) but Good(I, t ∪ {〈x, a〉}) (and hence
Good(I, {〈x, a〉})). We have Good(I, t ∪ u′), Good(I, t ∪ {〈x, a〉}) (and hence
t ∪ {〈x, a〉} /∈ NoGoods(I)), Good(I, u′ ∪ {〈x, d〉}) (and hence u′ ∪ {〈x, d〉} /∈
NoGoods(I)), t∪ {〈x, d〉} ∈ NoGoods(I), u′ ∪ {〈x, a〉} ∈ NoGoods(I) and hence
there was a DGABT on a, d in I .
case (b): Symmetrically to case (a), there was a DGABT on b, d in I .
case (c): We claim that Good(I, t1 ∪ {〈x, b〉}). If not, then we would have ∃t3 ⊆
t1 such that t3 ∪ {〈x, b〉} ∈ NoGoods(I) which would imply t1 ∪ {〈x, c〉} ∈
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NoGoods(I ′) which is impossible since, by (2) above, we have Good(I ′, t ∪
{〈x, c〉}). By a symmetrical argument, we can deduce Good(I, t2 ∪ {〈x, a〉}).
Since Good(I, t∪u) and t1, t2 ⊆ t, we have Good(I, t1 ∪ t2). Since t1 ∪{〈x, a〉} ∈
NoGoods(I) and Good(I, t2 ∪ {〈x, a〉}) (and hence Good(I, {〈x, a〉})), we must
have t1 6= ∅. By a symmetric argument, t2 6= ∅. We therefore have non-empty tu-
ples t1, t2 such that Good(I, t1∪t2), Good(I, t1∪{〈x, b〉} (and hence t1∪{〈x, b〉} /∈
NoGoods(I)), Good(I, t2 ∪ {〈x, a〉}) (and hence t2 ∪ {〈x, a〉} /∈ NoGoods(I)),
t1 ∪ {〈x, a〉} ∈ NoGoods(I), t2 ∪ {〈x, b〉} ∈ NoGoods(I) and hence we have a
DGABT in I on a, b.

Since in each of the three possible cases, we produced a contradiction, this
completes the proof. 2

5.3 Tractability of DGABTP for a known variable ordering

Theorem 1. A CSP instance I satisfying the DGABTP on a given variable ordering
can be solved in polynomial time.

Proof. Suppose that I satisfies the DGABTP for variable ordering < and that
x is the last variable according to this ordering. Lemma 1 tells us that DGA
broken triangles cannot be introduced by merging all elements in D(x) to form
a singleton domain {a}. At this point it may be that {〈x, a〉} is a nogood. In
this case the instance is clearly unsatisfiable and the algorithm halts returning
this result. If not then we simply delete 〈x, a〉 from all nogoods in which it oc-
curs. This operation of variable elimination clearly preserves satisfiability. It is
polynomial time to recursively apply this merging and variable elimination al-
gorithm until a nogood corresponding to a singleton domain is discovered or
until all variables have been eliminated (in which case I is satisfiable).

To complete the proof of correction of this algorithm, it only remains to show
that elimination of the last variable x cannot introduce a DGA broken triangle
on another variable y. For all tuples t, u and all values c, d ∈ D(y), none of
Good(I, t<y ∪ u<y), Good(I, t<y ∪ {〈y, c〉}) and Good(I, u<y ∪ {〈y, d〉}) can be-
come true due to the variable elimination operation described above. On the
other hand it is possible that t ∪ {〈y, d〉} or u ∪ {〈y, c〉} becomes a nogood due
to variable elimination. Without loss of generality, suppose that t ∪ {〈y, d〉} be-
comes a nogood and that t′ ∪ {〈y, d〉} is not a nogood for some t′ such that
(t′)<y = t<y . Then by construction there was a nogood t ∪ {〈y, d〉} ∪ {〈x, a〉}
before the variable x (with singleton domain {a}) was eliminated, and t′ ∪
{〈y, d〉} ∪ {〈x, a〉} was not a nogood. But then there was a DGA broken tri-
angle (given by tuples t ∪ {〈x, a〉}, u on values c, d ∈ D(y)) before elimination
of x. This contradiction shows that variable elimination cannot introduce DGA
broken triangles. 2

5.4 Finding a DGABTP variable ordering is NP-hard

An important question is the tractability of the recognition problem of the class
DGABTP when the variable order is not given, i.e. testing the existence of a
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variable ordering for which a given instance satisfies the DGABTP. In the case of
binary CSP, this test can be performed in polynomial time [5]. Unfortunately, as
the following theorem shows, the problem becomes NP-complete in the general-
arity case.

Theorem 2. Testing the existence of a variable ordering for which a CSP instance
satisfies the DGABTP is NP-complete (even if the arity of constraints is at most 5).

Proof. The problem is in NP since verifying the DGABTP is polytime for a given
order, so it suffices to give a polynomial-time reduction from the well-known
NP-complete problem 3SAT. Let I3SAT be an instance of 3SAT with variables
X1, . . . , XN and clauses C1, . . . , CM . We will create a CSP instance ICSP which
has a DGABTP variable-ordering if and only if I3SAT is satisfiable. For each
variable Xi of I3SAT , we add two variables xi, yi to ICSP . To complete the set
of variables in ICSP , we add three special variables v, w, z. We add constraints
to ICSP in such a way that each DGABTP ordering of its variables corresponds
to a solution to I3SAT (and vice versa). The role of the variable z is critical: a
DGABTP ordering > of the variables of ICSP corresponds to a solution to I3SAT

in which Xi = true ⇔ xi > z. The variables yi are used to code Xi: yi > z in a
DGABTP ordering if and only if Xi = false in the corresponding solution to
I3SAT . The variables v, w are necessary for our construction and will necessarily
satisfy v, w < z in a DGABTP ordering. Each clause C = l1∨l2∨l3, where l1, l2, l3
are literals in I3SAT , is imposed in ICSP by adding constraints which force one
of l1, l2, l3 to be false. To give a concrete example, if C = X1 ∨ X2 ∨ X3, then
constraints are added to ICSP to force y1 < z or y2 < z or y3 < z in a DGABTP
ordering. If the clause C contains a negated variable Xi instead of Xi, it suffices
to replace yi by xi.

We now give in detail the necessary gadgets in ICSP to enforce each of the
following properties in a DGABTP ordering:

1. v, w < z
2. yi < z ⇔ xi > z
3. yi < z or yj < z or yk < z

We introduce broken triangles in order to impose these properties. However,
it is important not to inadvertently introduce other broken triangles. This can
be avoided by making all pairs of assignments 〈x, a〉, 〈x′, a′〉 from two different
gadgets incompatible (i.e. {〈x, a〉, 〈x′, a′〉} ∈ NoGoods(ICSP )). We also assume
that two gadgets which use the same variable x use distinct domain values in
D(x). To avoid creating a trivial instance in which the gadgets disappear after
establishing arc consistency, we can also add extra values in each domain which
are compatible with all variable-value assignments in the gadgets.

We give the details of the three types of gadget:

1. The gadget to force v, w < z in a DGABTP ordering consists of values
a0 ∈ D(z), b0, b1 ∈ D(v), c0, c1 ∈ D(w) and three nogoods {〈z, a0〉, 〈v, b0〉},
{〈z, a0〉, 〈w, c0〉}, {〈v, b1〉, 〈w, c1〉}. The only way to satisfy the DGABTP on
this triple of variables is to have v, w < z since there are broken triangles on
variables v and w.
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2. To force yi < z ⇔ xi > z in a DGABTP ordering we use two gadgets, the
first to force yi > z ∨ xi > z and the second to force yi < z ∨ xi < z.
The first gadget is a broken triangle consisting of values a1, a2 ∈ D(z), d0 ∈
D(xi), e0 ∈ D(yi) and two nogoods {〈z, a1〉, 〈xi, d0〉}, {〈z, a2〉, 〈yi, e0〉}. In a
DGABTP ordering we must have yi > z ∨ xi > z.
The second gadget consists of values a3, a4 ∈ D(z), b2 ∈ D(v), c2 ∈ D(w),
d1 ∈ D(xi), e1 ∈ D(yi) and four nogoods {〈z, a3〉, 〈v, b2〉, 〈xi, d1〉}, {〈z, a4〉,
〈v, b2〉, 〈xi, d1〉}, {〈z, a4〉, 〈w, c2〉, 〈yi, e1〉}, {〈z, a3〉, 〈w, c2〉, 〈yi, e1〉}. We assume
that we have forced v, w < z using the gadget described in point (1). The
tuples t = {〈v, b2〉, 〈xi, d1〉}, u = {〈w, c2〉, 〈yi, e1〉} then form a DGA bro-
ken triangle on assignments a3, a4 ∈ D(z) if xi, yi > z. If either xi < z or
yi < z then there is no DGA broken triangle; for example, if xi < z, then we
longer have Good(ICSP ,t<z ∪ {〈z, a3〉}) since t<z ∪ {〈z, a3〉 is precisely the
nogood {〈z, a3〉, 〈v, b2〉, 〈xi, d1〉}. Thus this gadget forces yi < z ∨ xi < z in
a DGABTP ordering.

3. The gadget to force yi < z or yj < z or yk < z in a DGABTP ordering con-
sists of values a5, a6 ∈ D(z), b3 ∈ D(v), c3 ∈ D(w), e2 ∈ D(yi), e3 ∈ D(yj),
e4 ∈ D(yk) and five nogoods, namely {〈z, a6〉, 〈v, b3〉, 〈yi, e2〉, 〈yj , e3〉, 〈yk, e4〉},
{〈z, a5〉, 〈w, c3〉}, {〈z, a5〉, 〈yi, e2〉}, {〈z, a5〉, 〈yj , e3〉}, {〈z, a5〉, 〈yk, e4〉}. The
tuples t = {〈v, b3〉, 〈yi, e2〉, 〈yj , e3〉, 〈yk, e4〉}, u = {〈w, c3〉} form a DGA bro-
ken triangle on a5, a6 ∈ D(a) if yi, yj , yk > z. If yi < z or yj < z or yk < z,
then there is no DGA broken triangle; for example, if yi < z, then we longer
have Good(ICSP ,t<z ∪ {〈z, a5〉}) since {〈z, a5〉, 〈yi, e2〉} is a nogood. Thus
this gadget forces yi < z or yj < z or yk < z in a DGABTP ordering.

The above gadgets allow us to code I3SAT as the problem of testing the exis-
tence of a DGABTP ordering in the corresponding instance ICSP . To complete
the proof it suffices to observe that this reduction is clearly polynomial. 2

Our proof of Theorem 2 used large domains. The question still remains
whether it is possible to detect in polynomial time whether a DGABTP vari-
able ordering exists in the case of domains of bounded size, and in particular in
the important case of SAT.

6 Conclusion

This paper described a novel reduction operation for binary CSP, called BTP-
merging, which is strictly stronger than neighbourhood substitution. Experi-
mental trials have shown that in several benchmark-domains applying BTP-
merging until convergence can significantly reduce the total number of variable-
value assignments. We gave a general-arity version of BTP-merging and demon-
strated a theoretical link with resolution in SAT. From a theoretical point of
view, we then went on to define a general-arity version of the tractable class
defined by the broken-triangle property for a known variable ordering. Further
research is required to find optimal algorithms for BTP-merging and to inves-
tigate the tractability of applying BTP-merging in instances containing global
constraints.
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