
Bounded backtracking for the valued constraint
satisfaction problems

Cyril Terrioux and Philippe Jégou

LSIS - Université d’Aix-Marseille 3
Avenue Escadrille Normandie-Niemen

13397 Marseille Cedex 20 (France)

{cyril.terrioux, philippe.jegou}@univ.u-3mrs.fr

Abstract. We propose a new method for solving Valued Constraint
Satisfaction Problems based both on backtracking techniques - branch
and bound - and the notion of tree-decomposition of valued constraint
networks. This mixed method aims to benefit from the practical efficiency
of enumerative algorithms while providing a warranty of a bounded time

complexity. Indeed the time complexity of our method is O(dw++1) with
w+ an approximation of the tree-width of the constraint network and d
the maximum size of domains.
Such a complexity is obtained by exploiting optimal bounds on the sub-
problems defined from the tree-decomposition. These bounds associated
to some partial assignments are called ”structural valued goods”. Record-
ing and exploiting these goods may allow our method to save some time
and space with respect to ones required by classical dynamic program-
ming methods. Finally, this method is a natural extension of the BTD
algorithm [1] proposed in the classical CSP framework.

1 Introduction

The CSP formalism (Constraint Satisfaction Problem) offers a powerful frame-
work for representing and solving efficiently many problems. In particular, many
academic or real problems can be formulated in this framework which allows
the expression of NP-complete problems. However, in this formalism, we can’t
express some notions like possibility or preference because the constraints are
either satisfied or violated. In other words, there is no graduation in violation. To
avoid this drawback, many extensions of the CSP formalism have been proposed
(for instance [2–4]). In this paper, we focus on the valued CSP formalism (VCSP
[4]) which allows the violations of some constraints by associating a cost (called
a valuation) to each violated constraint. Solving the problem then consists in
finding a complete assignment which optimizes a given criterion about the cost
of constraint violations. Generally, we are interested by finding a complete as-
signment which minimizes the cost of all the violations. So, thanks to the VCSP
framework, we can express optimization problems.

The basic method for solving VCSP is the Branch and Bound algorithm.
Many improvements have been proposed from the CSP framework [4–8]. On

2 Cyril Terrioux and Philippe Jégou

the other hand, some methods based on dynamic programming ([9, 10]) often
provide good results on such problems.

In this article, we propose a new enumerative method for solving VCSPs.
This method, called BTDval, is a natural generalization of the BTD method [1]
defined in the classical CSP framework. Such a generalization requires the exten-
sion of the theoretical frame used for BTD and the classical CSPs. Nevertheless,
like BTD, BTDval relies on backtracking techniques (branch and bound) and the
notion of tree-decomposition of valued constraint graphs. Such an hybrid method
aims to benefit from the advantage of the two approaches, namely the practical
efficiency of enumerative algorithms and the time complexity bounds of struc-
tural decomposition methods. Thanks to the tree-decomposition notion, BTDval

divides the initial problem into several subproblems. Then, it solves each sub-
problem and records the optimal valuation of each subproblem. These optimal
valuations associated with some assignments are called structural valued goods.
Structural valued goods are then exploited in order to solve each subproblem
only once, what allows BTDval to provide time complexity bounds better than
ones of classical enumerative methods. Indeed, the time complexity of BTDval

is O(ns2m log(d).dw++1) while the space complexity is O(nsds) with w+ + 1 an
approximation of the tree-width of the constraint graph, s the size of the biggest
minimal separator, n the number of variables and d the size of the largest do-
main. These bounds only depend on the used tree-decomposition (i.e. on some
structural parameters). In [1], experimental results show that on classical CSPs,
BTD clearly outperforms an approach founded on dynamic programming like
Tree-Clustering [11, 12]. So, for VCSPs, we can hope that this behaviour will be
confirmed in practice.

The paper is organized as follows. Section 2 introduces the main definitions
about the VCSP formalism. Section 3 is devoted to the tree-decomposition no-
tion. Then, section 4 describes the method we propose and present some theo-
retical results. Finally, in section 5, we discuss about some related works, before
concluding in section 6.

2 Valued CSPs

A constraint satisfaction problem (CSP) is defined by a quadruplet (X, D, C,R).
X is a set {x1, . . . , xn} of n variables. Each variable xi takes its values in the
finite domain dxi

from D. Variables are subject to constraints from C. Each
constraint c is defined as a set {xc1 , . . . , xck

} of variables. A relation rc (from R) is
associated with each constraint c such that rc represents the set of allowed tuples
over dxc1

× · · · × dxck
. Given Y ⊆ X such that Y = {x1, . . . , xk}, an assignment

of variables from Y is a tuple A = (v1, . . . , vk) from dx1 ×· · ·×dxk
. A constraint

c is said satisfied by A if c ⊆ Y, (v1, . . . , vk)[c] ∈ rc, violated otherwise. We note
the assignment (v1, . . . , vk) in the more meaningful form (x1 ← v1, . . . , xk ← vk).

Definition 1 ([4]) A valuation structure is a 5-tuple (E,�,⊕,⊥,>) with
E a set of valuations which is totally ordered by � with a minimum element

Bounded backtracking for VCSPs 3

noted ⊥ and a maximum element noted >. ⊕ is a monotonous, commutative,
associative closed binary operation on E such that ⊥ is an identity element and
> an absorbing element.

The elements of E express different levels of violation. ⊥ characterizes the
satisfaction of a constraint and > an unacceptable violation. ⊕ allows to com-
bine (aggregate) several valuations. Note that, in some cases, it can have some
additional properties like idempotency or strict monotonicity. Thanks to the
valuation structure, one can formally define the notion of valued CSP [4]:

Definition 2 A valued CSP (VCSP) P = (X, D, C, R, S, φ) consists of a clas-
sical CSP (X, D, C,R) with a valuation structure S = (E,�,⊕,⊥,>) and an
application φ from C to E which associates a valuation to each constraint of C.
A VCSP is called binary if each constraint of C involves at most two variables.

The valuation of an assignment A on X is obtained by aggregating the val-
uations of the constraints violated by A:

Definition 3 Let P be a VCSP and A an assignment on X. The valuation of
A with respect to P is defined by VP(A) =

⊕
c∈C|A violates c

φ(c).

Given an instance P, the VCSP problem consists in finding an assignment on X
with a minimum valuation according to �. This optimal valuation is called the
VCSP valuation and is denoted α∗P . Determining the valuation of a VCSP is an
NP-hard problem. For instance, let us consider the VCSP whose constraint graph
is presented in figure 1(a). We suppose that each domain dx is equal to {1, 2, 3}
and each constraint cxy means ”x < y” if the letter represented by x precedes
one represented by y in the alphabetical order (for example cAB represents the
constraint A < B). We exploit the valuation structure S = (N, <, +, 0,+∞). For
each constraint c, the associated valuation is 1. For this VCSP, we obtain α∗P = 2.
(A ← 1, B ← 1, C ← 2, D ← 2, E ← 3, F ← 2, G ← 2,H ← 3, I ← 3, J ← 3)
is the best assignment. It violates the constraints cAB and cCF . The assignment
valuation notion can be extended to partial assignments:

Definition 4 Let P be a VCSP and A an assignment on Y ⊂ X. The local
valuation of A with respect to P is defined by vP(A) =

⊕
c∈C|c⊆Y and
A violates c

φ(c).

The following property establishes the link between the valuation of a complete
assignment and the local valuation:

Property 1 Let P be a VCSP, A an assignment on X and B ⊆ A. vP(B) �
vP(A) = VP(A).

So the local valuation can provide a lower bound of the global valuation. The
main interest of the local valuation consists in its computation which can be
achieved incrementally.

4 Cyril Terrioux and Philippe Jégou

The basic method for solving VCSPs is the branch and bound algorithm
(noted BB). This enumerative method exploits the local valuation of the current
assignment as a lower bound and the valuation of the best known solution as a
upper bound. If the lower bound doesn’t exceed the upper one, it extends the
current assignment by assigning a new variable. Otherwise, it backtracks to the
last assigned variable and then it tries to assign a new value to this variable. If
all the values have been tried, it backtracks again. Many improved methods have
been proposed from the classical CSP framework like valued Forward-Checking
(noted vFC [4]), Nogood Recording [5], . . . The use of the arc-consistency no-
tion has been studied too ([6–8]). On the other hand, some methods based on
dynamic programming, like the Russian Dolls Search (noted RDS) or the struc-
tural method proposed by Koster [10], often provide good results. These methods
divide the problem into different subproblems and solve the initial problem by
exploiting some informations recorded during the resolution of each subproblem.

3 Tree-decomposition

The only guarantees which can exist in terms of theoretical complexity before
solving a problem are offered by structural decomposition methods. These meth-
ods proceed by isolating the parts intrinsically exponential (i.e. intractable in
polynomial theoretical time) to induce a second step which guarantees a polyno-
mial time of resolution. These methods generally exploit topological properties
of the constraint graph and are based on the notion of tree-decomposition of
graphs as defined below by Robertson and Seymour [13].

Definition 5 ([13]) Let G = (X, E) be a graph. A tree-decomposition of G
is a pair (C, T) with T = (I, F) a tree and C = {Ci : i ∈ I} a family of subsets
of X, such that each cluster Ci is a node of T and verifies:

1. ∪i∈ICi = X,
2. for all edge {x, y} ∈ E, there exists i ∈ I with {x, y} ⊆ Ci, and
3. for all i, j, k ∈ I, if k is in a path from i to j in T , then Ci ∩ Cj ⊆ Ck

The width of a tree-decomposition (C, T) is equal to maxi∈I |Ci| − 1. The tree-
width of G is the minimal width over all the tree-decompositions of G.

For the reader who isn’t familiar with these notions, note that the above
definition refers to a tree T = (I, F) where F is a set of edges which is required
to satisfy the part (3) of this definition.

Even if finding an optimal tree-decomposition is an NP-Hard problem [14],
many works have been developed in this direction [15], which often exploit equiv-
alent definitions of this notion, including one based on an algorithmic approach
related to triangulated graphs. The link between triangulated graphs and tree-
decomposition is obvious. Indeed, given a triangulated graph, the set of maximal
cliques C = {C1, C2, . . . , Ck} of (X, E) corresponds to the family of subsets asso-
ciated with a tree-decomposition. As any graph G = (X, E) is not necessarily

Bounded backtracking for VCSPs 5

E
D

A C

B

I

J

G
H

F
C2

C1

C4 C5

C6
C3

ADE

BGH

CJ

ABC

BCF

FI

(a) (b)

Fig. 1. (a) A constraint graph on 10 variables. (b) A tree-decomposition of this con-
straint graph.

triangulated, a tree-decomposition can be approximated by a triangulation of
G which computes a triangulated graph G′. The width of G′ is equal to the
maximal size of cliques minus one in the resulting graph G′. The tree-width of
G is then equal to the minimal width over all triangulations.

The graph in figure 1(a) is already triangulated. The maximum size of cliques
is three and the tree-width of this graph is two. In figure 1(b), a tree whose
nodes correspond to maximal cliques of the triangulated graph is a possible
tree-decomposition for the graph of figure 1(a). So, we get C1 = {A,B, C},
C2 = {A,D, E}, C3 = {B,C, F}, C4 = {B,G, H}, C5 = {F, I} and C6 = {C, J}.

The notion of tree-decomposition is exploited in the classical CSPs frame-
work by many structural decomposition methods (see [16] for a survey about
such methods and a theoretical comparison). These methods have the advan-
tage of providing the best known bounds for the theoretical time complexity.
For instance, the CSP decomposition method called Tree-Clustering [11, 12] is
generally presented using an approximation of an optimal triangulation. It has
a time complexity in O(m.dw++1) with w+ + 1 the size of the biggest cluster
(w+ +1 ≤ n). However, the space complexity is in O(n.s.ds) with s the maximal
size of minimal separators (i.e. the size s ≤ w+ of the biggest intersection be-
tween two clusters). Finally, note that for every decomposition which induces a
value w+, we have w ≤ w+ with w the tree-width of the initial constraint graph.

The BTD method [1] solves classical CSPs by using the tree-decomposition
notion jointly with backtracking techniques. Then, it benefits from a practical
efficiency (thanks to enumerative techniques) while providing time complexity
bounds equivalent to ones of structural decomposition methods (thanks to the
tree-decomposition notion). Its time and space complexities are then similar to
Tree-Clustering’s ones. However, in practice, BTD obtains better results than
Tree-Clustering while performing either as good as classical enumerative meth-
ods or better.

In the VCSP framework, the dynamic programming approach proposed by
Koster [10] also exploits a tree-decomposition. It has a time complexity in
O(nd3(w++1)) and a space complexity in O(dw++1). In the both frameworks,
the required space can make the structural methods unusable in practice.

6 Cyril Terrioux and Philippe Jégou

In the next section, we present an enumerative method for solving VCSPs
which, by exploiting a tree-decomposition, provides complexity bounds similar
to ones given above.

4 The BTDval algorithm for solving VCSPs

4.1 Presentation

Like BTD, BTDval (for Backtracking with Tree-Decomposition) proceeds by an
enumerative search guided by a static pre-established partial order induced by a
tree-decomposition of the constraint network. So, the first step of BTDval con-
sists in computing a tree-decomposition or an approximation of a tree-decompo-
sition. The obtained partial order allows to exploit some structural properties
of the graph, during the search, in order to prune some branches of the search
tree. Hence, BTDval differs from other techniques in the following points:

– the variable assignment order is induced by a tree-decomposition of the con-
straint graph,

– some subproblems won’t be visited again if it we have computed yet their
optimal valuation (notion of structural valued good).

Although our method is called BTDval for Backtracking with Tree-Decomposi-
tion, we will see later that the enumerative search can be based on BB or vFC.

4.2 Theoretical foundations

In the following, let us consider an instance P = (X, D, C,R, S, φ) and a tree-
decomposition (C, T) (or an approximation) of the constraint graph (X, C). We
assume that the elements of C = {Ci : i ∈ I} are indexed with respect to the
notion of compatible numbering :

Definition 6 A numbering on C compatible with a prefix numbering of T =
(I, F) with C1 the root is called compatible numbering NC.

Remark that in the previous definition, T = (I, F) is a tree (according to
definition 5) with I the set of indices and F the set of edges. For example,
figure 1(b) presents a compatible numbering on C. We note Desc(Cj) the set of
variables belonging to the union of the descendants Ck of Cj in the tree rooted
in Cj , Cj included. For instance, Desc(C3) = C3 ∪ C4 ∪ C5 = {B,C, F,G,H, I}.
Note that the numbering NC defines a partial variable ordering that permits to
get an enumeration order on the variables of P:

Definition 7 A compatible enumeration order is an order �X on the vari-
ables of X such that ∀x, y ∈ X, x �X y if ∃Ci 3 x, ∀Cj 3 y, i ≤ j.

For example, the alphabetical order A,B, . . . , I, J is a compatible enumera-
tion order. The tree-decomposition with the numbering NC permits to partition
the constraint set.

Bounded backtracking for VCSPs 7

Definition 8 Let Ci be a cluster. The set EP,Ci of proper constraints of
cluster Ci is defined by EP,Ci

= {c ∈ C|c ⊆ Ci and c 6⊆ Cp(i)} with Cp(i) the
parent cluster of Ci.

The set EP,Ci contains each constraint cxy = {x, y} with x and y two vari-
ables of Ci such that x and y don’t belong both to Cp(i) the parent cluster
of Ci. For instance, if we consider the problem described in figure 1, we ob-
tain EP,C1 = {cAB , cAC , cBC}, EP,C2 = {cAD, cAE , cDE}, EP,C3 = {cBF , cCF },
EP,C4 = {cBG, cBH , cGH}, EP,C5 = {cFI} and EP,C6 = {cCJ}.

Property 2 The sets (EP,Ci)i form a partition of C.

Proof: First, we are going to show that
⋃
Ci⊆X

EP,Ci = C.

As
⋃
Ci⊆X

EP,Ci
⊂ C is obvious, we have to prove

⋃
Ci⊆X

EP,Ci
⊃ C.

Let c ∈ C. According to definition 5, there exists at less a cluster Ci such that
c ⊆ Ci. In particular, we necessarily have c ⊆ Ck where k = min{i|c ⊆ Ci}
and c 6⊆ Cp(k). Therefore, c ∈ EP,Ck

. So we obtain
⋃
Ci⊆X

EP,Ci ⊃ C and then⋃
Ci⊆X

EP,Ci
= C

Now we have to prove that ∀Ci, Cj , EP,Ci
∩ EP,Cj

= ∅.
Assume that there exists two clusters Ci and Cj such that EP,Ci ∩EP,Cj 6= ∅. Let
c ∈ EP,Ci ∩ EP,Cj . According to definition 8, we have c ⊆ Ci ∩ Cj .
Then, according to definition 5, there exists a path between Ci and Cj such that
if Ck belongs to this path, Ci ∩ Cj ⊆ Ck. The parent cluster of Ci or Cj ’s one
clearly belongs to this path. Therefore c ⊆ Cp(i) or c ⊆ Cp(j). So we obtain a
contradiction since c ∈ EP,Ci

and c ∈ EP,Cj
. So ∀i, j, EP,Ci

∩ EP,Cj
= ∅

Hence, the sets (EP,Ci)i form a partition of C. 2

Note that this property becomes fundamental when ⊕ isn’t idempotent. Indeed,
in such a case, we must be careful not to take into account a constraint several
times. Exploiting the sets EP,Ci

prevents such a problem from occurring and
so ensures that BTDval safely computes the valuation of assignments. Then, we
can define the notion of induced VCSP:

Definition 9 Let Ci and Cj be two clusters with Cj a son of Ci. Let A be an as-
signment on Ci ∩ Cj. PA,Ci/Cj

= (XPA,Ci/Cj
, DPA,Ci/Cj

, CPA,Ci/Cj
, RPA,Ci/Cj

, S, φ)
is the VCSP induced by A on the descent of Ci rooted in Cj (i.e. on Cj and
its descendants) with:

- XPA,Ci/Cj
= Desc(Cj),

- DPA,Ci/Cj
= {dx,PA,Ci/Cj

= {A[x]}|x ∈ Ci ∩ Cj} ∪ {dx,PA,Ci/Cj
= dx|x ∈

Desc(Cj)\(Ci ∩ Cj)},
- CPA,Ci/Cj

= EP,Cj
∪

⋃
Cd descendant of Cj

EP,Cd
,

- RPA,Ci/Cj
= {rc ∩

∏
x∈c

dx,PA,Ci/Cj
| c ∈ CPA,Ci/Cj

and rc ∈ R}.

8 Cyril Terrioux and Philippe Jégou

The induced VCSP PA,Ci/Cj
corresponds to the VCSP P restricted to the sub-

problem rooted in Cj such that the domain of each variable x in Ci∩Cj is reduced
to the value assigned to x in A. That is, we consider the subproblem whose vari-
ables are ones of Cj and its descendants. As for the constraint set of PA,Ci/Cj

, it
only contains the constraints which exclusively appear in Cj and its descendants.
For instance, given the assignment A = (B ← 2, C ← 2) on C1 ∩ C3, let us con-
sider PA,C1/C3 the VCSP induced by A on the descent of C1 rooted in C3. We have
XPA,C1/C3

= {B,C, F,G,H, I}, dB = dC = {2}, dF = dG = dH = dI = {1, 2, 3}
and CPA,C1/C3

= {cBF , cCF , cBG, cBH , cGH , cFI}. Note that the constraint cBC

doesn’t belong to the constraint set of PA,C1/C3 because it isn’t a proper con-
straint of C3 (cBC ⊆ C1 and C1 = Cp(3)). Now, from the sets EP,Ci

, we can
introduce the notion of local valuation for a cluster:

Definition 10 Given a cluster Ci and an assignment A on Y ⊂ X with Y ∩Ci 6=
∅. The local valuation for the cluster Ci of the assignment A with respect
to P (noted vP,Ci(A)) is the local valuation of A restricted to the constraints of
EP,Ci , that is to say vP,Ci(A) =

⊕
c∈EP,Ci

|c⊆Y

and A violates c

φ(c)

In other words, the valuation local for a cluster Ci only takes into account the
constraints proper to Ci. Remark that the local valuation for a cluster can be
computed incrementally. This valuation presents many interesting properties.
First, its computation only depends on the variables of the considered cluster.

Property 3 Let Ci be a cluster and A an assignment on Y ⊆ X such that
Ci ⊆ Y . vP,Ci(A) = vP,Ci(A[Ci])

Proof: vP,Ci
(A) =

⊕
c∈EP,Ci

|c⊆Y

and A violates c

φ(c) =
⊕

c∈EP,Ci
|c⊆Y∩Ci

and A violates c

φ(c) =
⊕

c∈EP,Ci
|c⊆Y∩Ci

and A[Ci] violates c

φ(c) =

vP,Ci
(A[Ci]) 2

Then, the aggregation of local valuations for a cluster allows us to compute the
valuation of a complete assignment.

Property 4 Let A be an assignment on X.
VP(A) =

⊕
Ci⊆X

vP,Ci(A)

Proof: Since the sets (EP,Ci)i form a partition of C (property 2), each constraint
of C is taken into account only once. So, VP(A) =

⊕
Ci⊆X

vP,Ci(A). 2

It follows from these two properties that we can compute the valuation of a
complete assignment A by exploiting only the local valuation for each cluster
Ci of the assignment A[Ci]. Finally, the next property ensures that the local
valuation for a cluster Cj of an assignment B with respect to P is preserved if
we considered an induced subproblem which contains Cj .

Bounded backtracking for VCSPs 9

Property 5 Let Ci and Cj two clusters with Cj a descendant of Ci. Let A be an
assignment on Ci ∩ Cp(i) and P ′ = PA,Cp(i)/Ci

. If B is an assignment on Cj such
that B[Cj ∩ Ci ∩ Cp(i)] = A[Cj ∩ Ci ∩ Cp(i)], vP,Cj (B) = vP′,Cj (B).

Proof: as EP,Cj
= EP′,Cj

vP,Cj
(B) = vP′,Cj

(B). 2

Now, we are able to define the notion of structural valued good.

Definition 11 Let Ci and Cj two clusters with Cj a son of Ci. A structural
valued good of Ci with respect to Cj is a pair (A, v) with A an assignment on
Ci ∩ Cj and v the optimal valuation of the VCSP PA,Ci/Cj

.

For instance, if we consider the assignment A = (B ← 2, C ← 2) on C1 ∩
C3, we obtain the good (A, 2) since the best assignment on Desc(C3) is (B ←
2, C ← 2, F ← 3, G← 3,H ← 3, I ← 3). Note that this assignment violates the
constraints cBC , cGH and cFI , but cBC is discarded (since cBC 6∈ EP,C3).

Given an assignment A on Ci, the following theorem expresses that we can
compute the valuation of the best assignment B on Desc(Ci) with B[Ci] = A by
exploiting the optimal valuation of each subproblem rooted in a son Cf of Ci and
induced by A[Ci ∩ Cf]. Note that the optimal valuation of each subproblem is
provided either by solving the considered subproblem or by exploiting a struc-
tural valued good. Finally, remark that this optimal valuation can be computed
independently of ones of other subproblems.

Theorem 1 Let Ci be a cluster, A an assignment on Ci and P ′ = PA[Ci∩Cp(i)],Cp(i)/Ci
.

min
B|XB=Desc(Ci)

and B[Ci]=A

vP′(B) = vP,Ci(A)⊕
⊕

Cf son of Ci

α∗PA[Ci∩Cf],Ci/Cf

The proof of this theorem requires the following lemma:

Lemma 1 Let Ci be a cluster and A an assignment on Ci. Let P ′ = PA[Ci∩Cp(i)],Cp(i)/Ci
.

Let λ = min
B|XB=Desc(Ci)

and B[Ci]=A

(⊕
Cj∈Sons(Ci)

[⊕
Ck⊆Desc(Cj)

vP′,Ck
(B)

])
.

Let λ′ =
⊕

Cj∈Sons(Ci)

 min
B|XB=Desc(Cj)∪Ci

and B[Ci]=A

[⊕
Ck⊆Desc(Cj)

vP′,Ck
(B)

].

We have λ = λ′.

Proof (lemma 1):

For each Cj son of Ci, we note λCj
= min

B|XB=Desc(Cj)∪Ci
and B[Ci]=A

[⊕
Ck⊆Desc(Cj)

vP′,Ck
(B)

]
. We

then have λ′ =
⊕

Cj∈Sons(Ci)

λCj
.

For each Cj son of Ci, there exists an assignment BCj
on Desc(Cj)∪Ci such that

BCj
[Ci] = A and λCj

=
⊕

Ck⊆Desc(Cj)

vP′,Ck
(BCj

). Likewise, there is an assignment

10 Cyril Terrioux and Philippe Jégou

Bλ on Desc(Ci) such that Bλ[Ci] = A and λ =
⊕

Cj∈Sons(Ci)

[⊕
Ck⊆Desc(Cj)

vP′,Ck
(Bλ)

]
.

We want to prove that for each son Cj of Ci, we have
⊕

Ck⊆Desc(Cj)

vP′,Ck
(Bλ[Desc(Cj)∪

Ci]) = λCj
.

Assume there exists a son Cs of Ci such that
⊕

Ck⊆Desc(Cs)

vP′,Ck
(Bλ[Desc(Cs) ∪

Ci]) 6= λCs .
By definition of λCs , λCs ≺

⊕
Ck⊆Desc(Cs)

vP′,Ck
(Bλ[Desc(Cs)∪Ci]) =

⊕
Ck⊆Desc(Cs)

vP′,Ck
(Bλ)

Let B′ be an assignment on Desc(Ci) such that B′[Ci] = A and ∀Cj ∈ Sons(Ci),
B′[Desc(Cj) ∪ Ci] = BCj

. Such an assignment exists since ∀Cj , Cj′ ∈ Sons(Ci),
Desc(Cj) ∩Desc(Cj′) ⊆ Ci.
Furthermore, we have λCs

=
⊕

Ck⊆Desc(Cs)

vP′,Ck
(B′[Desc(Cs) ∪ Ci]).

So,
⊕

Cj∈Sons(Ci)

[⊕
Ck⊆Desc(Cj)

vP′,Ck
(B′)

]
=

⊕
Cj∈Sons(Ci)

λCj
= λ′

λ′ = λCs ⊕
⊕

Cj∈Sons(Ci)\{Cs}
λCj

≺
⊕

Ck⊆Desc(Cs)

vP′,Ck
(Bλ[Desc(Cs) ∪ Ci])⊕

⊕
Cj∈Sons(Ci)\{Cs}

[⊕
Ck⊆Desc(Cj)

vP′,Ck
(Bλ[Desc(Cj) ∪ Ci])

]

≺
⊕

Ck⊆Desc(Cs)

vP′,Ck
(Bλ)⊕

⊕
Cj∈Sons(Ci)\{Cs}

[⊕
Ck⊆Desc(Cj)

vP′,Ck
(Bλ)

]
= λ

Hence, we obtain a contradiction with the definition of λ. So, for each son Cj of
Ci,

⊕
Ck⊆Desc(Cj)

vP′,Ck
(Bλ[Desc(Cj) ∪ Ci]) = λCj . It ensues that λ = λ′. 2

Proof (theorem 1):
We note M = min

B|XB=Desc(Ci)
and B[Ci]=A

vP′(B).

M =
property 1 min

B|XB=Desc(Ci)
and B[Ci]=A

VP′(B).

=
property 4 min

B|XB=Desc(Ci)
and B[Ci]=A

(⊕
Cj⊆Desc(Ci)

vP′,Cj
(B)

)

= min
B|XB=Desc(Ci)

and B[Ci]=A

vP′,Ci
(B)⊕

⊕
Cj |j 6=i,

Cj⊆Desc(Ci)

vP′,Cj
(B)

=

property 3 min
B|XB=Desc(Ci)

and B[Ci]=A

vP′,Ci
(B[Ci])⊕

⊕
Cj |j 6=i,

Cj⊆Desc(Ci)

vP′,Cj
(B)

For every assignment B such that XB = Desc(Ci) and B[Ci] = A, we have
vP′,Ci(B[Ci]) = vP′,Ci(A). As vP′,Ci(A) is a constant, we have:

Bounded backtracking for VCSPs 11

M = vP′,Ci
(A)⊕ min

B|XB=Desc(Ci)
and B[Ci]=A

 ⊕
Cj |j 6=i,

Cj⊆Desc(Ci)

vP′,Cj
(B)

= vP′,Ci(A)⊕ min

B|XB=Desc(Ci)
and B[Ci]=A

(⊕
Cj∈Sons(Ci)

[⊕
Ck⊆Desc(Cj)

vP′,Ck
(B)

])

=
lemma 1 vP′,Ci

(A)⊕
⊕

Cj∈Sons(Ci)

 min
B|XB=Desc(Cj)∪Ci

and B[Ci]=A

[⊕
Ck⊆Desc(Cj)

vP′,Ck
(B)

]
M = vP′,Ci

(A)⊕
⊕

Cj∈Sons(Ci)

 min
B|XB=Desc(Cj) and

B[Ci∩Cj]=A[Ci∩Cj]

[⊕
Ck⊆Desc(Cj)

vP′,Ck
(B)

]
=

property 5 vP,Ci
(A)⊕

⊕
Cj∈Sons(Ci)

 min
B|XB=Desc(Cj) and

B[Ci∩Cj]=A[Ci∩Cj]

[⊕
Ck⊆Desc(Cj)

vP,Ck
(B)

]
=

property 4 vP,Ci
(A)⊕

⊕
Cj∈Sons(Ci)

 min
B|XB=Desc(Cj)

and B[Ci∩Cj]=A[Ci∩Cj]

VPA[Ci∩Cj],Ci/Cj
(B)

= vP,Ci(A)⊕

⊕
Cj son of Ci

α∗PA[Ci∩Cj],Ci/Cj
2

From theorem 1, we deduce the following corollary. This corollary establishes
the link between the optimal valuation of a subproblem rooted in Ci and the
optimal valuation of each subproblem rooted in a son Cj of Ci.

Corollary 1 Let Ci be a cluster and A an assignment on Ci ∩ Cp(i).

α∗PA,Cp(i)/Ci
= min

B|XB=Ci and

B[Ci∩Cp(i)]=A

(
vP,Ci

(B)⊕
⊕

Cj son of Ci

α∗PB[Ci∩Cj],Ci/Cj

)

4.3 The BTDval algorithm

The BTDval method is based on the BB algorithm (note that we can also base
it on vFC). It explores the search space by exploiting a compatible order, which
begins with the variables of the root cluster C1. Inside a cluster Ci, it proceeds
classically like BB by assigning a value to a variable, by maintaining and compar-
ing upper and lower bounds and by backtracking if a lower bound is greater than
(or equal to) the corresponding upper bound. However, unlike BB, BTDval uses
two kinds of bounds: local bounds and global ones. The local bounds only take
into account the subproblem rooted in Ci (namely the induced VCSP PA,Cp(i)/Ci

with A the current assignment on Ci∩Cp(i)). The local lower bound corresponds
to the valuation of the current assignment on Desc(Ci), that is to say, the local
valuation of the current assignment with respect to PA,Cp(i)/Ci

. The local up-
per bound is then defined by the valuation of the best known assignment B on
Desc(Ci) such that B[Ci ∩ Cp(i)] = A. In other words, it’s the valuation of the
best known solution for PA,Cp(i)/Ci

. The global bounds are similar to BB’s ones,

12 Cyril Terrioux and Philippe Jégou

that is to say the local valuation of the current assignment for the lower bound
and the valuation of the best known solution for the upper one.

When every variable in Ci is assigned, if each lower bound is less than the
corresponding upper bound, BTDval keeps on the search with the first son of
Ci (if there is one). More generally, let us consider a son Cj of Ci. Given the
current assignment A on Ci, BTDval checks whether the assignment A[Ci ∩ Cj]
corresponds to a valued structural good:

- if so, BTDval aggregates the valuation associated to this valued good with
each lower bound.

- else, it extends A on Desc(Cj) in order to compute the valuation v of the
best assignment B such that B[Ci ∩ Cj] = A[Ci ∩ Cj]. Then, it aggregates v
with each lower bound and it records the valued good (A[Ci ∩ Cj], v).

If, after having proceeded the son Cj , the two lower bounds don’t exceed their
respective upper bound, BTDval keeps on the search with the next son of Ci. Re-
mark that by exploiting the structural valued goods, BTDval doesn’t solve again
some subproblems. So the variables of these subproblems aren’t assigned again.
Hence we call such a phenomenon a forward-jump (by analogy with backjump).
For instance, suppose that we use the alphabetical order as variable order and
that, after assigning the variable F in C3, we exploit a good on C3 ∩ C4. Then,
we try to assign I without exploring again Desc(C4). If every son has been pro-
ceeded and each lower bound doesn’t exceed its corresponding upper bound,
then a better solution for PA,Cp(i)/Ci

has been found. Finally, if a failure occurs,
BTDval tries to modify the current assignment on Ci.

In fact, due to the structural valued good definition, the global lower bound
is defined by the valuation of the best extension of A on every cluster which
precedes the current cluster in the used compatible enumeration. It’s the same
for the local lower bound, but we only consider the clusters belonging to the
descent of the current cluster. Remark that we consider an extension of A, and
not A, because A only contains the variables belonging to a cluster located on
the path between the root cluster and the current cluster. Finally note that the
global upper bound is the same as BB’s one, unlike the global lower bound which
is better than BB’s one.

Figure 2 describes the BTDval algorithm. Given an assignment A and a
cluster Ci, BTDval looks for the best assignment B on Desc(Ci) such that
A[Ci\VCi

] = B[Ci\VCi
] and vPA[Ci∩Cp(i)],Cp(i)/Ci

(B) ≺ αCi
, where:

- VCi
is the set of unassigned variables in Ci,

- αC1 is the valuation of the best known solution,
- ltot is the valuation of the best extension A′ of A on all the clusters which

precede Ci according to the compatible numbering (ltot = vP(A′) ≺ αC1),
- αCi

is the valuation of the best known assignment B′ on Desc(Ci) such that
A[Ci ∩ Cp(i)] = B′[Ci ∩ Cp(i)]

- lCi
= vP,Ci

(A) ≺ αCi
.

If BTDval finds such an assignment, it returns its valuation, otherwise it returns a
valuation greater than (or equal to) αCi

. The initial call is BTDval(∅, C1, C1,⊥,>,⊥,>).

Bounded backtracking for VCSPs 13

Theorem 2 BTDval is sound, complete and terminates.

Finally, we provide the time and space complexities of BTDval. We suppose that
a tree-decomposition (or an approximation) has been computed. Therefore the
parameters used in the next theorem are related to this decomposition. BTDval

obtains complexities similar to Tree-Clustering’s ones:

Theorem 3 BTDval has a time complexity in O(n.s2.m. log(d).dw++1) and a
space complexity in O(n.s.ds) with w+ + 1 the size of the biggest Ck and s the
size of the biggest intersection Ci ∩ Cj where Cj is a son of Ci.

5 Related works

BTDval is mostly based on tree-decomposition. So, works like Tree-Clustering
and its improvements [11, 12] or the dynamic programming approach of Koster
[10] are close to our approach. BTDval can be considered as an hybrid approach

BTDval(A, Ci, VCi
, ltot, αC1 , lCi

, αCi
)

1. If VCi
= ∅

2. Then
3. If Sons(Ci) = ∅ Then Return lCi
4. Else
5. F ← Sons(Ci)
6. α← ⊥
7. While F 6= ∅ and α⊕ ltot ≺ αC1 and α⊕ lCi

≺ αCi
Do

8. Choose Cj in F
9. F ← F\{Cj}
10. If (A[Cj ∩ Ci], v) is a good of Ci/Cj in G Then α← α⊕ v
11. Else
12. v ← BTDval(A, Cj , Cj\(Cj ∩ Ci), ltot ⊕ α, αC1 ,⊥, αCi

)
13. α← α⊕ v
14. Record the good (A[Cj ∩ Ci], v) of Ci/Cj in G
15. EndIf
16. EndWhile
17. Return α⊕ lCi
18. EndIf
19. Else
20. Choose x ∈ VCi
21. d← dx

22. While d 6= ∅ and ltot ≺ αC1 and lCi
≺ αCi

Do
23. Choose a in d
24. d← d\{a}
25. L← {c = {x, y} ∈ EP,Ci

|y 6∈ VCi
}

26. la ← ⊥
27. While L 6= ∅ and ltot ⊕ la ≺ αC1 and lCi

⊕ la ≺ αCi
Do

28. Choose c in L
29. L← L\{c}
30. If c violates A ∪ {x← a} Then la ← la ⊕ φ(c)
31. EndWhile
32. If ltot ⊕ la ≺ αC1 and lCi

⊕ la ≺ αCi
33. Then αCi

← min(αCi
, BTDval(A ∪ {x← a}, Ci, VCi

\{x}, ltot ⊕ la, αC1 , lCi
⊕ la, αCi

))
34. EndIf
35. EndWhile
36. Return αCi
37. EndIf

Fig. 2. The BTDval algorithm.

14 Cyril Terrioux and Philippe Jégou

realizing a tradeoff between practical time and space complexity. In [12], Dechter
and El Fattah present a time-space tradeoff scheme. This scheme allows them
to propose a spectrum of algorithms such that tree-clustering and cycle-cutset
conditioning (linear for space complexity) are two extremes in this spectrum.
Another interesting idea in their work is the possibility to modify the size of
separators to minimize space. This idea can also be exploited in BTDval.

BTDval presents a better time complexity than the dynamic programming
approach of Koster. Then, BTDval differs from this approach in computing a
tree-decomposition (or an approximation of a tree-decomposition). BTDval ex-
ploits a triangulation of the constraint graph, while the dynamic programming
approach uses a heuristic method and network flow techniques. Furthermore,
Koster proposes several pretreatments. In particular, one of these pretreatments
allows to reduce the size of the constraint graph, which may also reduce the time
complexity. So adding such pretreatments may be useful for our approach.

BTDval is close to a method like the russian dolls search [9]. Indeed, in or-
der to find the optimal valuation of a VCSP, BTDval solves many subproblems
according a pre-established compatible order. The BTDval’s clusters have a role
similar to one of variables in RDS. Nevertheless, the two methods exploit dif-
ferently the optimal valuations of subproblems. Like BTDval, the method Tree-
RDS [17] (a variant of RDS) takes advantage of the constraint graph in order to
determine whether some problems are independent or not. However, if the in-
dependence of subproblems is used similarly, the Tree-RDS’s subproblems differ
conceptually from BTDval’s ones. It’s the same for the adaptation [18] of the
algorithm Pseudo-Tree Search and its combination with a variant of RDS.

6 Conclusion

In this paper, we have defined a new method (called BTDval) for solving valued
CSPs. This method can actually be based on BB or on vFC. Thanks to the no-
tion of structural valued goods we have introduced, BTDval obtains complexity
bounds similar to (or better than) the best known ones. Indeed, the time com-
plexity of BTDval is O(ns2m log(d).dw++1) with w+ + 1 the size of the biggest
cluster while the space complexity is O(nsds) with s the size of the biggest inter-
section between two clusters. Now, an experimental study is required to assess
the practical interest of our approach.

Among the possible extensions of this work, we must base our algorithm on
more efficient methods like the russian dolls search or algorithms which use direc-
tional arc-consistency [19–21]. Using such methods seems natural since BTDval

exploits a compatible enumeration order.

References

1. P. Jégou and C. Terrioux. Hybrid backtracking bounded by tree-decomposition of
constraint networks. Artificial Intelligence, 146:43–75, 2003.

Bounded backtracking for VCSPs 15

2. E. Freuder and R. Wallace. Partial constraint satisfaction. Artificial Intelligence,
58:21–70, 1992.

3. S. Bistarelli, U. Montanari, and F. Rossi. Constraint solving over semirings. In
Proc. of the 14th IJCAI, pages 624–630, 1995.

4. T. Schiex, H. Fargier, and G. Verfaillie. Valued Constraint Satisfaction Problems:
hard and easy problems. In Proc. of the 14th IJCAI, pages 631–637, 1995.

5. P. Dago and G. Verfaillie. Nogood Recording for Valued Constraint Satisfaction
Problems. In Proc. of ICTAI 96, pages 132–139, 1996.

6. J. Larrosa, P. Meseguer, and T. Schiex. Maintaining reversible DAC for Max-CSP.
Artificial Intelligence, 107(1):149–163, 1999.

7. T. Schiex. Une comparaison des cohérences d’arc dans les Max-CSP. In Actes des
JNPC’2002, pages 209–223, 2002. In french.

8. J. Larrosa. On arc and node consistency. In Proc. of AAAI, 2002.
9. G. Verfaillie, M. Lemâıtre, and T. Schiex. Russian Doll Search for Solving Con-

straint Optimization Problems. In Proc. of the 14th AAAI, pages 181–187, 1996.
10. A. Koster. Frequency Assignment - Models and Algorithms. PhD thesis, University

of Maastricht, November 1999.
11. R. Dechter and J. Pearl. Tree-Clustering for Constraint Networks. Artificial In-

telligence, 38:353–366, 1989.
12. R. Dechter and Y. El Fattah. Topological Parameters for Time-Space Tradeoff.

Artificial Intelligence, 125:93–118, 2001.
13. N. Robertson and P.D. Seymour. Graph minors II : Algorithmic aspects of tree-

width. Algorithms, 7:309–322, 1986.
14. S. Arnborg, D. Corneil, and A. Proskuroswki. Complexity of finding embedding

in a k-tree. SIAM Journal of Discrete Mathematics, 8:277–284, 1987.
15. A. Becker and D. Geiger. A sufficiently fast algorithm for finding close to optimal

clique trees. Artificial Intelligence, 125:3–17, 2001.
16. G. Gottlob, N. Leone, and F. Scarcello. A Comparison of Structural CSP Decom-

position Methods. Artificial Intelligence, 124:343–282, 2000.
17. P. Meseguer and M. Sánchez. Tree-based Russian Doll Search. In Proc. of Work-

shop on soft constraint. CP’2000, 2000.
18. J. Larrosa, P. Meseguer, and M. Sánchez. Pseudo-Tree Search with Soft Con-

straints. In Proc. of the 15th ECAI, pages 131–135, 2002.
19. R. Wallace. Directed arc consistency preprocessing. In Proc. of the ECAI-94

Workshop on Constraint Processing, LNCS 923, pages 121–137, 1994.
20. R. Wallace. Enhancements of Branch and Bound Methods for the Maximal Con-

straint Satisfaction Problem. In Proc. of AAAI, pages 188–195, 1996.
21. J. Larrosa and P. Meseguer. Exploiting the use of DAC in Max-CSP. In Proc. of

the 2nd CP, pages 308–322, 1996.

