
How Constraint Programming Can Help Chemists to Generate Benzenoid

Structures and Assess the Local Aromaticity of Benzenoids ∗†

Yannick Carissan1 Denis Hagebaum-Reignier1

Nicolas Prcovic2 Cyril Terrioux2 Adrien Varet2

1 Aix Marseille Univ, CNRS, Centrale Marseille, ISM2, Marseille, France
2 Aix Marseille Univ, Université de Toulon, CNRS, LIS, Marseille, France

{firstname.name}@univ-amu.fr

Abstract

Benzenoids are a subfamily of hydrocarbons (molecules that are only made of hydrogen and carbon atoms) whose
carbon atoms form hexagons. These molecules are widely studied in theoretical chemistry and have a lot of concrete
applications. Then, there is a lot of problems relative to this subject, like the enumeration of all its Kekulé structures
(i.e. all valid configurations of double bonds). In this article, we focus our attention on two issues: the generation of
benzenoid structures and the assessment of the local aromaticity.

On the one hand, generating benzenoids that have certain structural and/or chemical properties (e.g. having a
given number of hexagons or a particular structure from a graph viewpoint) is an interesting and important problem.
It constitutes a preliminary step for studying their chemical properties. In this paper, we show that modeling this
problem in Choco Solver and just letting its search engine generate the solutions is a fast enough and very flexible
approach. It can allow to generate many different kinds of benzenoids with predefined structural properties by posting
new constraints, saving the efforts of developing bespoke algorithmic methods for each kind of benzenoids.

On the other hand, we want to assess the local aromaticity of a given benzenoid. This is a central issue in theoret-
ical chemistry since aromaticity cannot be measured. Nowadays, computing aromaticity requires quantum chemistry
calculations that are too expensive to be used on medium to large-sized molecules. In this article, we describe how
constraint programming can be useful in order to assess the aromaticity of benzenoids. Moreover, we show that our
method is much faster than the reference one, namely NICS.

Keywords: Constraint programming, Graph variables and constraints, Modeling, Theoretical chemistry

1 Introduction

Polycyclic aromatic hydrocarbons (PAHs) are hydrocarbons whose carbon atoms are forming cycles of different sizes.
Benzenoids are a subfamily of PAHs made of 6-membered carbon rings (i.e. each cycle is a hexagon). To fill carbon
valency, each atom of carbon is bonded to either two other carbons and one hydrogen or three carbons. For example,
Figures 1(a) and (b) are representing two benzenoids: benzene and anthracene.

PAHs are well-studied in various fields because of their energetic stability, molecular structures or optical spectra. In a
natural environment, these molecules are created by the incomplete combustion of carbon contained in combustibles [Luch,
2005]. They are popular research subjects in material sciences, e.g. molecular nanoelectronics where they are used to
store or transport energy [Wu et al., 2007, Aumaitre and Morin, 2019] or in organic synthesis [Rieger and Müllen, 2010,
Narita et al., 2015], where the controlled design of specific shapes remains challenging. PAHs are also intensively studied
in interstellar chemistry because of their suspected presence in various interstellar and circumstellar environments where
they are believed to act as catalysts for chemical reactions taking place in space [Draine, 2011]. They are also intensively
studied in other domains like molecular nanoelectronics [Wu et al., 2007].

In this context, this article addresses two important issues in theoretical chemistry. The first one concerns the generation
of specific benzenoid structures while the second one considers the assessment of the local aromaticity thanks to the
computation of the local resonance energy.

∗This work has been funded by the Agence Nationale de la Recherche project ANR-16-CE40-0028.
†This version of the article has been accepted for publication, after peer review but is not the Version of Record and does not reflect post-

acceptance improvements, or any corrections. The Version of Record is available online at: http://dx.doi.org/10.1007/s10601-022-09328-x.
Use of this Accepted Version is subject to the publisher’s Accepted Manuscript terms of use https://www.springernature.com/gp/

open-research/policies/accepted-manuscript-terms.

1

C

H

C

H
C

H

C

H

C

H
C

H

C

H

C

H
C

H

C

C

C

H

H

H

C C

C C

C C

C C

H H

H H

C

H

C

H
C

H

C

C

C

H

H

H

C

H

C

H
C

H

C

C

C

H

H

H

C C

C C

C C

C C

H H

H H

(a) (b) (c) (d)

Figure 1: Two small benzenoids: benzene (a) and anthracene (b) with their graphical representations (c) and (d).

1 2

3 4 5

6 7

1 2

3
4

5

6 7

(a) (b) (c) (d)

Figure 2: Definition of armchair edge (depicted by thick blue lines) of benzenoids (a), coronene (b), a bipartition of its
carbon atoms (c) and its hexagon graph (d).

Regarding the first issue, PAHs are well-known to exhibit a large variety of physicochemical properties depending on
size and, more specifically, on edge and bond topologies. In the astrophysical community, the so-called ”PAH hypothesis”
formulated more than 30 years ago, of whether the existence of PAHs in space could explain some unidentified mid-infrared
emission bands in astrophysical environments, has motivated numerous observational, experimental and theoretical inves-
tigations. It is now accepted that mixtures of free PAHs of different sizes, shapes and ionic states can account for the
overall appearance of the widespread interstellar infrared emission spectrum. But the question of relative abundance of
PAHs with a given size and/or shape remains open. Many studies are devoted to exploring the effect of the size, shapes
in terms of compacity and symmetry of PAHs, on band positions and intensities of the infrared spectra [Allamandola
et al., 1999, Bauschlicher et al., 2008, Ricca et al., 2012]. Very recently, a systematic investigation of a series of 328 PAHs
containing up to 150 carbon atoms showed that PAHs with armchair edges (an armchair edge is a particular configuration
of the edge of the PAH as we can see in Figure 2(a) that maximize the Clar number (i.e. the maximum number of
non-adjacent rings containing 6 electrons called a sextet) are potential emitters of a certain class of astrophysical infrared
sources [Ricca et al., 2019]. For their study, the authors needed to systematically generate all PAHs having armchair
edge topology and selecting a subclass of PAHs whose structure maximizes the Clar number. They used the algorithm
of Caporossi and Hansen [Caporossi and Hansen, 1998]. Constraint Programming (CP) is particularly well suited for the
generation of such families of PAHs.

Another interesting example where the generation of specific shapes is relevant for chemists deals with so-called
”non-Kekulean” benzenoids [Cyvin et al., 1989]. These benzenoids cannot be represented by Kekulé structures, i.e.
structures that have only simple and double bonds. From a graph-theoretical point of view, Kekulé structures are
covered by the maximal number of disjoint (double) edges so that all vertices are incident to one of the disjoint edges.
Until recently, chemists commonly admitted that ”non-Kekulean” benzenoids were very unstable due to their open-shell
electronic structure (i.e. one or more electron(s) remain unpaired, contrary to a closed-shell structure where all electrons are
paired) and thus that their synthesis would be a real challenge. The experimental realization and in-depth characterization
of small ”non-Kekulean” benzenoids were very recently achieved on gold surfaces [Mishra et al., 2019, 2020]. These
studies paved the way for the synthesis of new classes of compounds that show unconventional magnetism induced by
their topology, with promising applications in various fields like molecular electronics, nonlinear optics, photovoltaics and
spintronics. Moreover, it was shown that some PAHs with specific topologies (e.g. rhombus shapes) may ”prefer” having
an open-shell structure when reaching a certain size, although they could have a closed-shell structure and could thus
be described by a set of Kekulé structures [Trinquier and Malrieu, 2018]. Theoretically, from a quantum point of view,
the proper description of the electronic structure of open-shell benzenoids is a difficult task. The use of a constraint
programming approach for the systematic search of larger non-Kekulean or Kekulean benzenoids having an open-shell
electronic structure is undoubtedly advantageous.

In this context, many approaches have been proposed in order to generate benzenoids possibly having a particular shape
or satisfying a particular property (e.g. [Brinkmann et al., 2002, Brunvoll et al., 1990]). These are bespoke approaches
which have the advantage of being efficient but which are difficult to adapt to the needs of chemists. Moreover, designing
a new bespoke method for each new desired property often requires a huge amount of effort. So, in this paper, we prefer
to use a more generic approach based on constraint programming. With this aim in view, we present a general model

2

which can be refined depending on the desired properties by simply adding variables and/or constraints. By doing so,
our approach benefits from the flexibility of CP and requires fewer efforts of implementation. In the meantime, CP offers
efficient solvers which can be quite competitive with respect to bespoke algorithms.

The second issue we consider deals with the aromaticity of benzenoids, which is a fundamental concept in chemistry
(defined in Section 2). Since the discovery of graphene by Andre Geim and Konstantin Novoselov awarded with the
2010 Nobel price in physics, the interest in aromaticity vividly revived due to its potential importance in nanoelectronics.
Indeed, aromaticity favors electronic flow through molecules and, thus, aromatic compounds are of interest for the design
of nanoelectronic compounds. This concept allows chemists to link the energetic stability of a molecule to its molecular
structure [Clar and Schoental, 1964]. The stability of a molecule is a measure of the energy needed to break all chemical
bonds and separate all the atoms of the molecule apart. Because of aromaticity, some molecules have an extra term
in this energy: breaking them apart requires more energy than for non-aromatic molecules with the same number of
atoms. Recently, some methods using quantum chemistry were established in order to assess the aromaticity of a given
molecule. The most popular one called NICS (Nuclear Independent Chemical Shift [Chen et al., 2005]) consists of applying
a magnetic field perpendicular to the molecular plane and observe the response of the electronic cloud, which gives insight
into electronic currents. NICS values are indicators of the intensity of these currents and are complementary to energy
based methods to describe aromaticity. Analyzing the response of the electronic density allows chemists to quantify the
aromaticity of the molecule. However, this method has a very high cost and computing the aromaticity of large molecules
can easily take a few days. This large computational cost is due to the fact that quantum chemistry calculations require
many steps involving iterative procedures before doing the actual calculation of aromaticity. To circumvent this drawback,
some methods using graph theory were proposed in the 1990s [Randić et al., 1996, Lin and Fan, 1999, Lin, 2000], which
roots can be tracked back to the work of Hückel in the 1930s [Hückel, 1931]. They will be presented in the following parts.

In this paper, we describe how constraint programming can help chemists to compute the local aromaticity of ben-
zenoids. More precisely, we show that some tasks can easily be modeled as CSP instances and solved efficiently thanks
to constraint solvers like Choco [Fages et al.] while requiring a reduced implementation effort unlike usual methods
from theoretical chemistry or any bespoke methods based on algorithm engineering. Among these tasks, we can cite the
enumeration of particular cycles or one of Kekulé structures.

The paper is an extension of previous work published in [Carissan et al., 2020a,b]. It differs notably by improving
some models (e.g. the general model or the coronenoid model) and by taking into account new properties for structure
generation (e.g. having a given number of carbon/hydrogen atoms or a given irregularity) while we consider an additional
method for assessing aromaticity. It is organized as follows. First, we recall some definitions about benzenoids and
constraint programming in Section 2. Section 3 introduces the fastest existing algorithm to our knowledge for generating
benzenoid structures while Section 4 presents our approach using constraint programming, explains its advantages and
illustrates its potential by giving some examples. Section 5 is devoted to an empirical evaluation of some of the models we
propose. Regarding the second issue, Section 6 introduces some existing methods to assess the aromaticity of benzenoids
thanks to the local resonance energy. In Section 7, we describe two new methods which exploit constraint programming in
order to compute the local resonance energy. In Section 8, we present some experimental results which show the interest
of our approach. Finally, we conclude and provide some perspectives in Section 9.

2 Preliminaries

2.1 Theoretical Chemistry

Benzene, represented in Figure 1(a) is a molecule made of 6 carbon atoms and 6 hydrogen atoms. Its carbon atoms form
a hexagon (also called benzenic cycle or benzenic ring) and each of them is linked to a hydrogen atom. Benzenoids are a
subfamily of PAHs containing all molecules which can be obtained by aggregating (or fusing) benzenic rings. For example,
Figure 1(b) shows anthracene, which contains three benzenic rings.

Hereafter, we first define some graphs related to benzenoids and then we recall the concept of aromaticity.

2.1.1 Benzenoids and Graphs

In a benzenoid, each carbon atom is linked either to two other carbon atoms and one hydrogen atom or three other
carbon atoms. Therefore, benzenoids can be perfectly defined by describing only the interactions between carbon atoms.
Hydrogen atoms can then be deduced since each hydrogen atom is linked to a carbon atom which is only bonded to two
other carbon atoms. As such, any benzenoid can be represented as an undirected graph B = (V,E), with V the set of
vertices and E the set of edges. Every vertex in V represents a carbon atom and every edge of E represents a bond between
the two corresponding carbons. Moreover, this kind of graph is connected, planar and bipartite. Figures 1(c) and (d)
represent the graphs related to the molecules of benzene and anthracene. In Figure 2(c), we show why the graph related
to coronene (a well-known benzenoid depicted in Figure 2(b)) is bipartite by giving the two disjoint and independent sets.
These sets are defined by the white and black vertices respectively.

3

1 2

3 4

(a) (b)

Figure 3: Kekulé structures of anthracene (a). A benzenoid having no Kekulé structure (b).

When dealing with the generation of benzenoid structures, for any benzenoid B, we need to consider some of its faces.
A face of a planar graph is an area of the plan bounded by edges. For instance, the graph in Figure 2(b) has eight faces
namely, the seven numbered faces and the external face. Note that, in most cases, we do not take into account the external
face and so the considered faces correspond exactly to the hexagons. For example, this holds for coronene as we can see
in Figure 2(b). However, we will see later that the faces and hexagons may not match when the benzenoid contains at
least one hole (see Subsection 4.4 for more details).

In addition, given a benzenoid, we consider another graph, namely the hexagon graph. The hexagon graph of a
benzenoid B = (V,E) is the undirected graph Bh = (Vh, Eh) such that there is a vertex vh from Vh per hexagonal
face h of B (the external face and ”holes” in the benzenoid are excluded) while there is an edge {vh, vh′} in Eh if the
corresponding hexagonal faces h and h′ of B share an edge of E. Figure 2(d) presents the hexagon graph of coronene.
The hexagon graph allows us to express the interaction between the hexagons of the considered benzenoid.

2.1.2 Aromaticity

From a chemical viewpoint, the valence of an atom is the number of bonds that it can establish with its electrons (one
electron per bond). Carbon and hydrogen atoms have a valence of 4 and 1 respectively. So, we can easily deduce that
in benzenoids, each carbon atom has one of its electrons that is not used. These electrons are called π-electron and can
be used to enhance one bond by establishing double bonds (i.e. a bond involving two electrons per atom). Therefore, in
benzenoids, each carbon is involved in a double bond and two single bonds.

A Kekulé structure of a benzenoid is a valid configuration of its double bonds (i.e. a configuration in which each carbon
atom is involved in exactly one double bond). Figure 3(a) depicts all the Kekulé structures of anthracene. A benzenoid can
have several Kekulé structures or none (Figure 3(b) depicts an example of benzenoid which has no Kekulé structure). We
denote K(B) the set of all Kekulé structures of a benzenoid B. Note that the number of Kekulé structures of a benzenoid
can be exponential in the number of carbon atoms. Therefore, given a benzenoid, generating all its Kekulé structures is
a hard problem. A benzenoid continually alternates between its Kekulé structures. This dynamic is at the origin of the
notion of aromaticity. There exist some methods based on graph theory that allow computing the resonance energy of a
given benzenoid (i.e. the energy induced by its aromaticity) and these methods require to be able to enumerate all its
Kekulé structures [Randić, 2003].

Aromaticity is a concept built by chemists in the early 20th century in order to account for the surprising chemical
stability of the benzene molecule. In this molecule, after making a single bond to each of its three neighbors (two carbon
and one hydrogen), each carbon of the hexagonal geometry carries one extra electron. Electrons tend to form bonds
(i.e. pair with another electron) whenever possible. Thus, this electron forms a molecular bond with the electron of a
neighboring carbon atom. When all six electrons do the same, the electronic structure, first proposed by Kekulé [Kekulé,
1866], is obtained. Yet, two such structures exist as the pairing for one carbon can be with any of its two neighbors. The
interaction or resonance of these two coexisting solutions is described by quantum physics and leads to an over-stabilization
energy called aromaticity. This concept can be extended to fused benzene rings. It turns out that aromatic molecules
often have a characteristic smell and/or taste, hence the name of the concept.

Due to the physical nature of aromaticity, hydrogen atoms do not play any role in its determination. Thus, it is
custom not to take them into account in connectivity-based methods. So, representing a benzenoid by a graph whose
vertices correspond to carbon atoms as mentioned above is sufficient. Finally, from the viewpoint of graph theory,
we can remark that the set of double bonds of a Kekulé structure is nothing more than a perfect matching on the
benzenoid. As a reminder, a perfect matching of an undirected graph G = (V,E) is a set of edges E′ ⊆ E such that
∀(e1, e2) ∈ E′ × E′, e1 6= e2, e1 ∩ e2 = ∅ and

⋃
e∈E′

e = V .

4

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 4: Catacondensed benzenoids with 5 hexagons.

2.2 Constraint Programming

An instance I of the Constraint Satisfaction Problem (CSP) is a triplet (X,D,C). X = {x1, . . . , xn} is a set of n variables.
For each variable xi ∈ X, there exists an associated domain Dxi

∈ D = {Dx1
, . . . , Dxn

} which represents the values that
xi can take. C = {c1, . . . , ce} represents a set of e constraints. Constraints represent the interactions between the variables
and describe the allowed combinations of values.

Solving a CSP instance P = (X,D,C) amounts to finding an assignment of all the variables of X with a value contained
in their associated domain which satisfies all the constraints of C. Such an assignment is called a solution. This problem
is NP-hard [Rossi et al., 2006].

Many libraries are available to represent and efficiently solve CSP instances. In this paper, we exploit the open-source
Java library Choco [Fages et al.]. This choice is highly guided by our need to be able to define graph variables and directly
apply graph-related constraints (e.g. connected or cyclic constraints). Graph variables have as domain a set of graphs
defined by a lower bound (a sub-graph called GLB) and an upper bound (a super-graph called GUB). Moreover, Choco
implements the usual global constraints which make the modeling easier and its solver is efficient and configurable.

3 Generating Benzenoid Structures

We can define the benzenoid generation problem (denoted BGP in the future) as follows: given a set of structural properties
P, generate all the benzenoids which satisfy each property of P. For instance, these structural properties may deal with
the number of carbons, the number of hexagons or a particular structure for the hexagon graph. Naturally, the most
interesting instances of the BGP problem combine several properties. For example, Figure 4 shows benzenoids having
a tree as hexagon graph and possessing five hexagons. Such a property-based design of instances allows for the search
of benzenoids with chemically relevant properties. Our interest lies in the search of benzenoids with radical electronic
structures (as in the work of Malrieu and Trinquier [Trinquier and Malrieu, 2018]), which arise from their geometrical
arrangement1.

Next, we present an existing method proposed by Brinkmann et al. [Brinkmann et al., 2002]. Given an integer n,
this method is able to generate all the benzenoids with n hexagons by generating all the hexagon graphs with at most n

1A radical structure arises when a system has an odd number of electrons. All electrons but one pair form bonds. The lonely electron is
called a radical.

5

1 2 3

4 5 6 7

8 9 10 11 12

13 14 15 16

17 18 19

1 2 3 4

5 6 7 8 9

10 11 12 13 14 15

16 17 18 19 20 21 22

23 24 25 26 27 28

29 30 31 32 33

34 35 36 37

(a) (b) (c)

Figure 5: The smallest benzenoid with hole (a) and coronenoids of size 3 (b) and 4 (c).

vertices. This is done by successively adding new vertices to the hexagon graph (which is equivalent to generate all the
wanted molecules by successively adding new hexagons).

This method is highly efficient. For instance, it could generate the 669,584 benzenoids having 12 hexagons in 1.2
seconds and 1,000 billion of benzenoids having 21 hexagons in two weeks when launched on an old computer (Intel
Pentium, 133 MHz, 2002). However, it has some disadvantages. Indeed, it is not complete in the sense that it is unable
to generate benzenoids with ”holes”. By hole, we mean a face that does not correspond to a hexagon or to the external
face. For example, Figure 5(a) depicts the smallest benzenoid (in terms of the number of hexagons) which admits a hole.
Such a benzenoid cannot be produced by this method. Indeed, when this method wants to add a new hexagon, it checks
whether the added hexagon allows closing a cycle of hexagons. If so, the hexagon is not added and, therefore, benzenoids
with holes cannot be generated. Benzenoids with holes are quite rare. There is a single one for 8 hexagons (among 1,436
benzenoids), 5 for 9 hexagons (among 6,510). Note that this proportion grows as we increase the number of hexagons
(see Tables 3 and 5). Furthermore, this method is unable to take into account other properties natively and cannot
easily be tuned to fit the needs of chemists. Indeed, it is based on an augmenting procedure that decides how to add a
vertex. Consequently, this procedure should be changed and proven adequate to avoid generating non-canonical graphs
(i.e. redundant isomorphic graphs) each time the structural property of the benzenoids to generate is changed. This can
be a relatively heavy task even for the addition of a basic property.

In the next section, we present a new method using constraint programming which is able to generate any benzenoid
structure and which benefits from the flexibility of constraint programming.

4 Generating Benzenoid Structures Thanks to CP

In this section, we see how to model a BGP instance as a CSP instance. We first present a general model which considers
the generation of all the benzenoids having a given number of hexagons. This property is the minimal property to ensure.
Then we provide some examples showing how the model can be easily specialized to take into account some additional
structural properties.

4.1 General Model

In this part, we want to generate all the benzenoids having a given number n of hexagons. Before modeling this problem
as a CSP instance, we highlight some useful properties. A coronenoid of size k is a benzene molecule (i.e. a hexagon)
to which we successively add k − 1 crowns of hexagons. Benzene corresponds to the coronenoid of size 1 (see Figure
1(c)). Figures 2(b) and 5(b)-(c) present the coronenoids of size 2 (called coronene), 3 and 4. Remark that the number of
hexagons in the ith crown grows with i. Furthermore, note that the diameter (i.e. the number of hexagons of the central
line) of a coronenoid of size k is 2 × k − 1. Our interest in coronenoids lies in the fact that they are useful to ”embed”
benzenoids of a given number of hexagons.

Property 1 Any benzenoid involving n hexagons can be embedded in a coronenoid of size at most k(n) =
⌊
n
2 + 1

⌋
.

If we reason in terms of hexagon graph, obtaining all the benzenoids with n hexagons is equivalent to finding all the

6

2× k(n)− 1

2× k(n)− 1

(a) (b) (c)

Figure 6: Upper bound of the domain of the graph variable (a) Two structures (in red solid line) of 2 hexagons embedded
in a coronenoid of size 2 which are not detected as being the same benzenoid by the constraint lex-lead (b) and (c).

connected sub-graphs2 of the hexagon graph of the coronenoid of size k(n). Hereafter, we denote Bc(k(n)) the coronenoid

of size k(n) and B
c(k(n))
h its hexagon graph. The model we propose relies on this property.

Given an integer n, we model the BGP problem where P is reduced to ”having n hexagons” as a CSP instance
I = (X,D,C). First, we consider a graph variable xG which represents the possible hexagon graph of the built benzenoid.
Its domain is the set of all the sub-graphs between the empty graph and the hexagon graph of the coronenoid of size
k(n) (see Figure 6(a)). We also exploit a set of nc Boolean variables {x1, . . . , xnc

} where nc is the number of hexagons
of the coronenoid of size k(n). The variable xi is set to 1 if the ith hexagon of the coronenoid of size k(n) is used in the
hexagon graph depicted by xG, 0 otherwise. For the sake of simplicity, hexagons are numbered from top to bottom and
from left to right like in Figure 2(b) or Figures 5(b)-(c). Likewise, given mc the number of edges of the hexagon graph of
the coronenoid of size k(n), we consider a set of mc Boolean variables yi,j . The variable yi,j is set to 1 if the edge {i, j}
of the hexagon graph of the coronenoid of size k(n) is used in the hexagon graph depicted by xG, 0 otherwise.

Finally, we model the following properties by constraints:

• Link between the graph variable xG and the variables xi As mentioned above, the variable xi specifies if the ith
hexagon of the coronenoid of size k(n) is used in the graph represented by xG. So we must ensure that their
respective values are consistent with each other. With this aim in view, we consider a channeling constraint per
variable xi which involves xi and xG and imposes that xi = 1 ⇐⇒ xG contains the vertex i.

• Link between the graph variable xG and the variables yi,j We similarly consider a channeling constraint per variable
yi,j which involves yi,j and xG and imposes that yi,j = 1 ⇐⇒ xG contains the edge {i, j}.

• xG is an induced sub-graph of the coronenoid hexagon graph. Any value of xG is not necessarily a valid hexagon
graph. For example, in Figure 2(d), removing only edge {1, 2} does not produce a valid hexagon graph. To ensure
that the hexagon graph is valid, it must correspond to a sub-graph of the coronenoid hexagon graph induced
by the vertices belonging to xG. So for every edge {i, j} in the coronenoid hexagon graph, we add a constraint
xi = 1 ∧ xj = 1⇔ yi,j = 1. In other words, the edge {i, j} exists in xG if and only if the vertices i and j appear in
xG.

• Benzenoids have n hexagons It can be easily modeled by using a sum global constraint involving all the variables
xi:

∑
i∈{1,...,nc}

xi = n.

• Benzenoids correspond to connected graphs Variable graphs come with particular constraints. Among them, we
consider the connected constraint which applies on the variable xG ensuring that only connected graphs are allowed
values for xG.

• Six hexagons forming a cycle generate a hexagon When six hexagons form a cycle, the face contained in the interior
of the cycle is not a hole but a hexagon. For instance, if we consider the cycle formed by the hexagons 1, 2, 5, 7,
6 and 3 of coronene (see Figure 2(b)), we have necessarily a hexagon in the middle of the coronenoid, namely the
hexagon 4. To ensure this property, we add a set of constraints specifying that G cannot have a hole whose size is
exactly one hexagon. For each hexagon u, we consider the set N(u) of the neighbors of u in the hexagon graph.
Then, for each vertex u having 6 neighbors, we add a constraint between xu and the variables corresponding to its
neighbors which imposes:

∑
v∈N(u)

xv = 6⇒ xu = 1.

2Remember that a graph (V ′, E′) is a sub-graph of a graph (V,E) if V ′ ⊆ V and E′ = E ∩ (V × V).

7

This model allows us to enumerate all the benzenoids having n hexagons, possibly with holes. However, some benzenoids
may be generated multiple times due to the existence of symmetries. So we add several additional constraints in order to
break as many symmetries as possible:

• Two constraints specify that G must have at least one vertex respectively on the top-border and the left-border in
order to avoid the symmetries by translation. Let T (respectively L) be the set of hexagons on the top-border (resp.
left-border) of the coronenoid of size k(n). For instance, if we consider the coronenoid of size 3 (see Figure 5(b)),
we have T = {1, 2, 3} and L = {1, 4, 8, 13, 17}. We have to create a constraint specifying that the sum of the binary
variables associated with the top border (resp. left border) is strictly positive, that is

∑
h∈T

xh > 0 (resp.
∑
h∈L

xh > 0).

This can also be expressed as the clauses
∨
h∈T

xh and
∨
h∈L

xh. In our implementation, we retain this last possibility

which turns out to be more efficient in practice.

• A set of constraints specify that G must be the only representative of its class of symmetry by axis and rotation.
There are up to twelve symmetric solutions: six 60 degrees rotation symmetries combined with a possible axis
symmetry. Symmetries are broken thanks to the compact lex-lead constraint described in [Devriendt et al., 2016].
For each of the twelve symmetries, it requires nc new Boolean variables (each associated with a Boolean variable xi
representing a hexagon) and a total of 3nc ternary clauses.

Note that the latter set of constraints only allows avoiding symmetric solutions obtained by rotations with respect to
the hexagon located at the center of the coronenoid. For instance, the two structures depicted in Figures 6(b)-(c) are
not detected as expressing the same benzenoid by the constraint lex-lead. In order to filter the remaining symmetric
solutions, we forbid some assignments thanks to nogoods. More precisely, every time a solution is found, we compute all
the structures that can be obtained by a translation or a rotation while having a hexagon on the top-border or left-border
of the coronenoid. Each of these structures can be characterized by the set S of hexagons h for which the variable xh is
assigned to true. In order to avoid generating the structure characterized by the set S, we post the nogood

∨
h∈S

xh where

xh denotes the negative literal related to xh. Remark that, by doing so, the lex-lead constraint becomes redundant.
However, the clauses it produces are shorter than ones related to nogoods and so may be exploited earlier to prune the
search tree. So its preservation in the model allows making the solving more efficient.

This model can be easily implemented with the open-source Java library Choco [Fages et al.]. Indeed, Choco natively
proposes graph variables and the more usual graph-related constraints (notably connected constraint).

As our model mainly exploits clauses, we can ask ourselves the question of formulating it directly in the form of an
SAT instance. The main difficulty in proposing a SAT model lies in the representation of the hexagon graph and its
properties. For instance, expressing a connected graph is far from being an easy task in SAT. Moreover, remember that
the graph is not known at the beginning but computed during the solving. So using graph variables and their related
constraints is much simpler.

4.2 How to Specialize the Model

The first advantage of our approach is that it is able to generate all the benzenoids, including those with holes unlike
the method described in the previous section. Moreover, using constraint programming makes the addition of most of
the structural properties wished by the chemists easier. Indeed, starting from the general model, for each new desired
property, we simply have to model it by posting new constraints and possibly by adding new variables.

For example, if chemists are interested in benzenoids whose structure is a path of hexagons, they can be easily generated
by exploiting the general model I and adding the graph constraint path on xG. Similarly, if chemists are more interested
in catacondensed benzenoids, that is benzenoids whose structure is a tree, we can just add the graph constraint tree on
xG to the general model I. Figure 4 shows nine (among twelve possible) examples of 5-hexagon benzenoids obtained by
just adding the tree constraint of Choco on xG.

Clearly, depending on the desired property, the model may be more complex. It may specifically require adding new
variables if the property cannot be directly expressed by some existing constraints. In the next subsections, we give such
examples.

4.3 Generating Benzenoid Structures Having a Rectangular or Rhombic Shape

In this part, we present how we can model the property ”all the built benzenoids have a rectangle shape”, in addition to
the property ”having n hexagons”. Let us specify that the rectangular forms which interest the chemists are full rectangles
[Rayne and Forest, 2011, Dias, 2013]. For instance, Figure 8 shows all the rectangle benzenoid structures with at most
six hexagons.

First, recall that the general model described in the previous part takes as input the number n of hexagons, and embeds
any generated benzenoid in a coronenoid of size k(n). We can easily see that the largest rectangle benzenoid which can

8

3 4

7 8 9

12 13 14 15

16 17 18 19 20 21 22

23 24 25 26 27 28

29 30 31 32 33

34 35 36 37

1 2

5 6

10 11

1 2 3 4

5 6 7 8 9

10 11 12 13 14 15

16 17 18 19 20 21 22

23 24 25 26 27 28

29 30 31 32 33

34 35 36 37

(a) (b)

Figure 7: Rectangle benzenoid (in red solid line) of dimension 2 × 3 embedded in the coronenoid of size 4 (a) and its
related hexagon graph (b).

be embedded in a coronenoid of size k(n) has a width wmax equal to k(n) and a height hmax equal to 2 × k(n) − 1 (i.e.
the diameter of the coronenoid of size k(n)). Figure 7 shows the rectangle benzenoid of dimensions 2× 3 embedded in the
coronenoid of size 4 (a) and its hexagon graph (b).

Then, starting from model I, we must add new variables to model the desired property. Namely, we add two integer
variables xw and xh whose domain is respectively {1, . . . , wmax} and {1, . . . , hmax}. These variables represent respectively
the number of columns and lines of the built benzenoid. In addition, we denote Li (resp. Ci) the set of variables xh which
appear in the ith line (resp. ith column) in the coronenoid of size k(n). Likewise, let Di the set of variables belonging to
the ith diagonal of the coronenoid of size k(n). We assume that lines (resp. columns and diagonals) are numbered from
top to bottom (resp. from left to right). For example, if we consider the hexagon graph of the coronenoid of size 4, we
have the following sets:

L1 = {x1, x2, x3, x4}
L2 = {x5, x6, x7, x8, x9}
L3 = {x10, x11, x12, x13, x14, x15}
L4 = {x16, x17, x18, x19, x20, x21, x22}
L5 = {x23, x24, x25, x26, x27, x28}
L6 = {x29, x30, x31, x32, x33}
L7 = {x34, x35, x36, x37}

C1 = {x1, x5, x10, x16}
C2 = {x2, x6, x11, x17, x23}
C3 = {x3, x7, x12, x18, x24, x29}
C4 = {x4, x8, x13, x19, x25, x30, x34}
C5 = {x9, x14, x20, x26, x31, x35}
C6 = {x15, x21, x27, x32, x36}
C7 = {x22, x28, x33, x37}

D1 = {x16, x23, x29, x34}
D2 = {x10, x17, x24, x30, x35}
D3 = {x5, x11, x18, x25, x31, x36}
D4 = {x1, x6, x12, x19, x26, x32, x37}
D5 = {x2, x7, x13, x20, x27, x33}
D6 = {x3, x8, x14, x21, x28}
D7 = {x4, x9, x15, x22}

The desired rectangular shape can be obtained either on the basis of rows and columns or on the basis of columns and
diagonals. Note that to switch from one to the other it is sufficient to apply a 60° rotation. So we introduce a new Boolean
variable r which is set to true if the rectangular shape is obtained through lines and columns, or false if it is obtained
through columns and diagonals. Next, we add several constraints to the general model in order to model the following
properties:

• The hexagons of each line are positioned contiguously We want to avoid having a Boolean variable equal to 0 between
two Boolean variables equal to 1. For the ith line, this can be modeled by imposing a global constraint regular

over the variables of Li. For this purpose, we consider the automaton presented in Figure 9.

• The hexagons of each column are positioned contiguously We proceed similarly to the lines by considering Ci instead
of Li.

• The hexagons of each diagonal are positioned contiguously We proceed similarly to the lines by considering Di instead
of Li.

• Lines have a consistent size Each line must be empty or have a size equal to the current width of the rectangle.
The size of a line can be defined as the number of hexagons it contains since we know that all the hexagons are
contiguous. For the ith line, we want to add a constraint linking xw to all the variables in Li and imposing∑
xij
∈Li

xij = 0 ∨ ∑
xij
∈Li

xij = xw. However, this constraint makes sense only if lines are exploited (i.e. if r is set to

9

(a) (b) (c) (d) (e)

(f) (g) (h)

Figure 8: All the rectangular benzenoid structures with n ≤ 6.

q0 q1 q2
1

0 1

0

0

Figure 9: The automaton of the constraints regular used in order to impose that lines, columns and diagonals have
contiguous hexagons.

true). So we add instead the constraint r = 1⇒
(
∑

xij
∈Li

xij = 0 ∨ ∑
xij
∈Li

xij = xw

)
. As such a constraint is added

for each line and we make sure that all the lines have the same width when r is set to true.

• Columns have a consistent size We proceed similarly to the lines by considering Ci instead of Li, except that columns
play a different role depending on the value of r. Therefore, we add two constraints per column:

(i) r = 1⇒
(
∑

xij
∈Ci

xij = 0 ∨ ∑
xij
∈Ci

xij = xh

)
and

(ii) r = 0⇒
(
∑

xij
∈Ci

xij = 0 ∨ ∑
xij
∈Ci

xij = xw

)
.

• Diagonal have a consistent size We proceed similarly to the lines by considering Di instead of Li and xh instead of

xw: r = 0⇒
(

∑
xij
∈Di

xij = 0 ∨ ∑
xij
∈Di

xij = xh

)
.

Now, we focus on benzenoids having a rhombus shape whose chemical properties have been highlighted in [Trinquier
and Malrieu, 2018]. A rhombus shape is characterized by its width which can be defined as the number of hexagons in
the middle line. As an example, benzene is the benzenoid having a rhombus shape of width 1 while Figure 10 depicts the
ones with a width of 2 and 3. We can easily prove that the number of hexagons of a rhombic benzenoid of width w is w2.
Likewise, we can show that a rhombus has w diagonals of hexagons and each diagonal contains exactly w hexagons. So,
in this context, a rhombus is a particular kind of rectangle for which the width and the height are both equal to b√nc.
Trivially, if

√
n is not an integer, the problem has no solution. So modeling the property ”all the built benzenoids have

a rhombus shape”, in addition to the property ”having n hexagons” can be easily achieved by considering the model for
rectangular shape and fixing the value of xh and xw to b√nc and r to false.

These two extensions of our general model are given as a simple illustration of our approach. Note that we can easily
generate benzenoids having a rectangle or rhombus shape with a bespoke algorithm. However, what is interesting in
our approach is its flexibility. For instance, if some chemists are interested in identifying the rectangular or rhombic
benzenoids which have a given Clar number, we only have to model the property ”having a given Clar number” by adding
some variables and/or constraints to be able to find the wished benzenoids. The Clar number of a benzenoid is the
maximum number of non-adjacent hexagons (i.e. hexagons which have no bond in common) which admit three double
bonds [Clar, 1972].

10

(a) (b)

Figure 10: Rhombic benzenoids of width 2 (a) and 3 (b).

f

Figure 11: A coronoid of nine hexagons (in red) embedded in the coronenoid of size 5 and its complement (in green and
blue). The complement has two connected components (described respectively in blue and green). The first connected
component is depicted with blue full circle vertices and dotted edges. It includes the vertex corresponding to the external
face (represented by the vertex f) and so does not correspond to a hole. The second component is represented by green
square vertices and dashed edges. It does not contain the external face and so represents a hole.

4.4 Generating Coronoids

Chemists refer to benzenoids with at least one hole as coronoids (not to be confused with coronenoids). These molecules
are promising model structures of graphene with well-defined holes [Di Giovannantonio et al., 2020, Beser et al., 2016,
Dias, 2008]. Their enumeration and generation gave rise to several studies (e.g., [Brunvoll et al., 1990] which enumerates
2-hole coronoids and generates the smallest 18 and 19-hexagon 3-hole coronoids). The methods for generating them are
quite inefficient or too specific. The first kind of approach tries to build specific kinds of coronoids by considering cycles
of hexagons and trying all possible ways to add hexagons. The second kind of approach consists in generating all the
benzenoids with n hexagons and then detecting the ones with holes. Another possible approach consists in generating
benzenoids without holes (e.g. with the method of Brinkmann et al. [Brinkmann et al., 2002]) and then digging holes in
the obtained benzenoids. However, we can note that the two latter approaches can quickly become too time-consuming
with respect to an approach that would directly generate coronoids. There are so much fewer coronoids than benzenoids
without hole3 that posting a filtering constraint enforcing holes should be more efficient than a ”generate and test”
approach. So, in this part, we present how we can model the property ”all the built benzenoids have h holes and are
contained in a benzenoid with n hexagons”. This allows to easily generate all kinds of coronoids with any number of holes.

We start from the idea that a hole is made of hexagons of the embedding coronenoid which do not participate to the

3For instance, there exist 6,510 benzenoid structures for 9 hexagons, among which only five are coronoids (see Tables 3 and 5 for more
examples).

11

structure depicted by xG. Given the hexagon graph B
c(k(n))
h of the coronenoid of size k(n), we define Bh as the complement

of Bh in B
c(k(n))
h . In other words, the vertices of this graph are the vertices of B

c(k(n))
h which do not belong to the current

structure Bh (described by xG) while there still exists an edge between two vertices if the corresponding hexagons share
an edge in Bc(k(n)). We can easily show that any connected component of Bh such that no hexagon is located on the edge

of B
c(k(n))
h corresponds to a hole. Hence we want to use the global constraint nbConnectedComponents to constrain the

number of holes. Unfortunately, we cannot apply it directly on Bh because it can have any number of components that

touch an edge of B
c(k(n))
h (see Figure 11). However, notice that all the connected components of Bh that touch an edge

of B
c(k(n))
h are in fact connected to the external face of B

c(k(n))
h . So we just need to add the external face of B

c(k(n))
h to

form a graph B
c(k(n))
he thus ensuring that the connected components touching an edge of B

c(k(n))
h form a single connected

component in B
c(k(n))
he (i.e. the corresponding hexagons and the external face are part of a single connected component).

Therefore, we can constrain the number of connected components of B
c(k(n))
he to be equal to h+ 1.

In order to fix the number of holes, we add the following variables to the general model I:

• a new graph variable xH which represents Bh and whose vertices are related to the external face and the hexagons
that do not belong to xG. xH has the same domain as xG but an additional vertex in its upper bound graph
representing the internal face and all the edges linking this vertex to the border hexagons of the coronenoid.

• a set of nc Boolean variables {xH1 , . . . , xHnc
} (with nc the number of hexagons of the coronenoid of size k(n)). Like

xi for xG, the variable xHi is set to 1 if the ith hexagon of the coronenoid of size k(n) is used in the graph depicted
by xH , 0 otherwise. Likewise, we define the set of mc Boolean variables yHi,j . The variable yHi,j is set to 1 if the edge
{i, j} of the coronenoid of size k(n) is used in the graph depicted by xH , 0 otherwise.

Regarding the constraints, we use channeling constraints again to establish the link between xHi , yHi,j and xH . Finally,
we add the following constraints ensuring that variables xH and xC have the right properties:

• xH has h + 1 connected components This is enforced thanks to the graph constraint nbConnectedComponents of
Choco applied on variable xH and value h+ 1.

• A single hexagon does not form a hole Each vertex/hexagon of xH must have a degree strictly greater than 0. This
constraint eliminates holes that would be a sole hexagon and allows multiple holes. We simply use the minDegrees

graph constraint of Choco applied on xH .

• Any hexagon of the embedding coronenoid is either in xG or in xH . We add a xor clause between xGi and xHi (that
is xi ⊕ xHi) for any i ∈ {1, . . . , nc}.

• If a hexagon of xH is in the border of the embedding coronenoid, then there is an edge between this hexagon and

the external face. We add a clause xHi ∨ yHi,f , where f is the index of the external face, for any i ∈ {1, . . . , nc} that
corresponds to the border.

4.5 Generating Symmetric Benzenoids

Symmetry is a central concept in chemistry at atomic, molecular, and supramolecular levels. In the field of organic
chemistry, the quest for highly symmetric compounds with the skeletons of regular polyhedra (tetrahedrons, cubes, and
dodecahedrons), pseudo-spherical cages (fullerenes), propellers [Roy et al., 2020], tubes etc. has been the source of intense
research [Bauschlicher et al., 2008, Cocchi et al., 2014, Bouwman et al., 2021]. For example, the tetrahedrane molecule, a
hypothetical hydrocarbon with a tetrahedral structure has still not been synthesized as of 2021, whereas the synthesis of
cubanes and dodecahedranes dates back to the ’60s and ’80s, respectively [Eaton and Cole, 1964, Ternansky et al., 1982].

Symmetric molecules are not only fascinating due to their intrinsic ”beauty”, but also because they display a variety
of specific properties (electronic, spectroscopic, magnetic, . . .) [Kastler et al., 2006, Konishi et al., 2019]. In the field of
theoretical chemistry, the fundamental importance of symmetry has long been recognized in the development of modern
electronic structure methods. The use of the group theory formalism allows for drastic simplifications in the resolution of
the Schrödinger equation, leading to significant savings of computational times [Longuet-Higgins, 1963, Taylor, 1992].

Benzenoids are also classified by chemists by their classes of internal symmetries (symmetries that let a benzenoid
invariant by a 60, 120 or 180 degree rotation and/or mirroring). Precisely, chemists have defined 13 types of symmetries
taking into account the type of the rotational center: a hexagon, a vertex or an edge (see Figure 12). So a symmetry σ
can be defined simply by fixing the rotational center or the mirror axis.

We can generate such classes of benzenoids by adding the constraints for enforcing internal symmetries. More precisely,
for each desired symmetry σ, it suffices to post the constraint xh ⇔ xσ(h) for any hexagon h of xG, where σ(h) is the
image of h by the symmetry σ.

However, we must be careful of the location of the symmetry axis (the rotation center or the mirror axis) which is not
necessarily at the center of the embedding coronenoid for all symmetrical benzenoids. They can be shifted upward and/or

12

(a) (b) (c) (d)

Figure 12: Examples of symmetric benzenoids for which we depict in red the rotational center or the mirror axis: 120°
rotation around a hexagon (a) or a vertex (b), and mirror symmetry whose axis is an edge (c) or a hexagon (d).

Figure 13: Examples of a not centered symmetric benzenoid (depicted in blue). This benzenoid will be generated in a
smaller embedding coronenoid surrounded in red.

to the left if the benzenoid occupies a small area (remember that it is stuck to the top and left borders of the embedding
coronenoid). Rather than posting a disjunction of symmetry constraints on the set of all the possible rotational centers
or mirror axis, we use the fact that, if the center or the axis is shifted, then the benzenoid could have fit in a smaller
embedding coronenoid (see Figure 13). This is why, in the case where we post a symmetry constraint, we fix a single
rotation center (or a single mirror axis) but launch the search for symmetrical benzenoids for all the possible sizes lower
or equal to k(n) of embedding coronenoids.

4.6 Generating Benzenoid Structures Having a Given Irregularity

In this part, we consider a chemical property called irregularity parameter [Bouwman, J. et al., 2019] and describe a CSP
model able to generate benzenoid structures having a given value of this parameter. Firstly we have to introduce some
definitions :

Definition 1 ([Bouwman, J. et al., 2019]) Given a benzenoid B and h one of its hexagons, a group of the hexagon
h is a connected set of carbons of h such that each carbon is linked to one hydrogen. A group involving one carbon
(respectively two, three or four carbons) is called a solo (resp. a duo , a trio or a quarto). The size of a group is the
number of carbon atoms it involves.

Given the fact that hydrogen atoms are not present in our representation of benzenoid structures, we can also define
a group by a set of consecutive carbons of a hexagon h having a degree equal to 2. Indeed remember that in a benzenoid,
each carbon atom is linked either to two other carbon atoms and one hydrogen atom (and so has a degree of 2) or three
other carbon atoms (and so has a degree of 3). For instance, Figure 14 shows examples of a solo (a), a duo (b), a trio (c)
and a quarto (d) with the original molecule and its associated graphical representation.

Now, we can define the parameter of irregularity of a benzenoid as follows:

Definition 2 ([Bouwman, J. et al., 2019]) Given a benzenoid B, the parameter of irregularity of B, ξB is defined as
follows :

ξB = N3+N4

N1+N2+N3+N4

with Ni representing the number of carbons that belong to a group of size i.

If we consider phenanthrene depicted on Figure 15, we can easily see that it has 4 quartos and one duo. So, we have
N2 = 2, N4 = 8 (because there are two carbons that belong to a duo and eight to a quarto), and N1 = N3 = 0 (because
the phenanthrene does not contain any solo or trio). Therefore, we have ξ = 8

10 = 0.8.

13

(a) (b)

(c) (d)

Figure 14: Examples of a solo (a), a duo (b), a trio (c) and a quarto (d).

Figure 15: Groups of phenanthrene.

Chemists exploit this parameter to characterize the irregularity of PAHs. For instance, in [Bouwman, J. et al., 2019],
Bouwman et al. presented the results of the computation of infrared spectrums of PAHs classified according to their
parameter of irregularity. Generating benzenoid structures having a given parameter of irregularity (or included in an
interval) could be interesting from a chemistry point of view. For example, it could be useful in order to complete the
work of Bouwman et al. by focusing on benzenoid structures having a given irregularity parameter.

Before describing how this property can be modeled as a CSP instance, we highlight two of its features. Firstly, we
can note that, given a hexagon h, the existence of solo, duo, trio or quarto in h only depends on the presence of hexagons
around h. In other words, the hexagons which appear in the neighborhood of h in the hexagon graph allow us to determine
if a solo, a duo, a trio or a quarto occurs or not in h. In order to formally exploit this feature, we first label the positions of
the six possible neighbors of h as follows. Position 1 is associated with the top-right neighbor while the other positions are
successively labeled from 2 to 6 in a clockwise manner. Figure 16 provides an illustration of this labeling. Then, we call
neighborhood configuration of h a 6-tuple such that the ith element is equal to 1 if h has a neighbor at the ith position,
0 otherwise. For instance, Figure 16(a) shows us a hexagon h having (1, 0, 1, 0, 1, 0) as neighborhood configuration. With
this configuration, h clearly does not admit any solo, duo, trio or quarto. Secondly, we can observe that if we switch from
one neighborhood configuration to another by a 60 degree rotation, these two configurations have the same numbers of
solo, duo, trio and quarto. So, given a neighborhood configuration Nh of a hexagon h, we denote N∗h the set of all the
neighborhood configurations that can be obtained by applying rotations on Nh. For instance, Figure 16 shows the set of
configurations (1, 0, 1, 0, 1, 0)∗. We can also remark that applying a 60 degree rotation on a configuration is equivalent to
making a cyclic permutation on the associated tuple. So we can easily identify all the possible N∗h and for each, determine
the existing groups. This work must be achieved once. Figure 17 presents the 13 possible configurations N∗h and the

14

(a) (b)

Figure 16: The set of neighborhood configurations (1, 0, 1, 0, 1, 0)∗.

corresponding groups. Note that case (a) is a particular case where h has a group having a size greater than 4. As we are
only interested in groups of sizes 1 to 4, we consider that it induces no group. Nevertheless, this case has little interest
since it only occurs for a single benzenoid, namely benzene.

As for the previous models, we start from the general model and add some variables and constraints in order to be able
to generate benzenoids having a given irregularity parameter. Firstly, we add the following variables (or sets of variables)
to the general model:

• XZ = {z1, . . . , znc
}: a set of Boolean variables ({0, 1} as domain). The variable zh is equal to 1 if the hexagon h

induces no group, 0 otherwise.

• XS = {s1, . . . , snc
}: a set of integer variables with the domain {0, 1, 2}. The variable sh is equal to the number of

carbons of the hexagon h that belong to a solo.

• XD = {d1, . . . , dnc
}: a set of integer variables with the domain {0, 2}. The variable dh is equal to the number of

carbons of the hexagon h that belong to a duo.

• XT = {t1, . . . , tnc
}: a set of integer variables with the domain {0, 3}. The variable th is equal to the number of

carbons of the hexagon h that belong to a trio.

• XQ = {q1, . . . , qnc}: a set of integer variables with the domain {0, 4}. The variable qh is equal to the number of
carbons of the hexagon h that belong to a quarto.

• N0: an integer variable of domain {0, . . . , nc} that represents the number of hexagons that do not induce any group.

• N1, N2, N3, N4: four integer variables that respectively represent the number of solos, duos, trios and quartos over
all the hexagons. Each variable has {0, . . . , nc} as domain.

• xξ: an integer variable of domain {0, 1, . . . , 100} that represents the parameter of irregularity multiplied by 100. We
have to do so because Choco does not handle variables with real numbers. By so doing we have:

xξ = 100× ξ =
100× (N3 +N4)

N1 +N2 +N3 +N4

By considering the value 100, we assume that an accuracy of 0.01 is sufficient. If this is not the case, it is naturally
possible to adapt this value according to the desired precision.

Regarding the constraints, the first task consists in expressing the relationship between the existence of h (namely the
variable xh) and the associated variables zh, sh, dh, th and qh. If the hexagon h does not exist (i.e. xh is equal to 0), by
definition, there cannot exist a group of any size. To model this, we consider the following constraints:

xh = 0⇒ zh = 0
xh = 0⇒ sh = 0
xh = 0⇒ dh = 0
xh = 0⇒ th = 0
xh = 0⇒ qh = 0

In contrast, if the hexagon h exists (and so xh = 1), we have to compute the values of zh, sh, dh, th and qh depending on
the neighborhood configuration of h. In order to do so, we consider a table constraint4 whose allowed tuples are built from

4Table constraints list explicitly the allowed (or disallowed) combinations of values that a specific set of variables can take [Lecoutre, 2009].

15

Neighborhood configuration of h zh sh dh th qh
1 0 0 0 0 0 0 0 0 0 1
0 1 0 0 0 0 0 0 0 0 1
0 0 1 0 0 0 0 0 0 0 1
0 0 0 1 0 0 0 0 0 0 1
0 0 0 0 1 0 0 0 0 0 1
0 0 0 0 0 1 0 0 0 0 1

Table 1: Part of the table constraint associated to the set of configuration (1, 0, 0, 0, 0, 0)∗ represented on Figure 17(b) for
the hexagon h.

the possible cases listed in Figure 17. In other words, we have an allowed tuple per possible neighborhood configuration
and each allowed tuple maps a configuration to the corresponding number of groups for each group. For instance, Table
1 presents the part of the table constraint which is associated to the set of configuration (1, 0, 0, 0, 0, 0)∗ represented on
Figure 17(b) for a hexagon h. Regarding the scope of the constraint, it involves all the variables xi corresponding to
hexagons in the neighborhood of h and the variables zh, sh, dh, th and qh. This table constraint is only enabled when
xh is set to 1. In Choco solver, it can be easily achieved thanks to the ifThen constraint. Note that hexagons located
on a border of the hexagon graph of the coronenoid of size k(n) cannot have their six neighbors. In such a case, we only
consider the existing neighbors in the scope and the table is computed by selecting the rows having the value 0 for the
missing hexagons and by projecting the obtained relation over the constraint scope.

With these constraints, we are able to know all the groups for each hexagon according to its neighborhood configuration.
We have to add constraints in order to set the values of N0, N1, N2, N3 and N4 by using several sum constraints:

• N0 is equal to the number of hexagon that do not induce any groups: N0 =
∑

zh∈XZ

zh

• N1 is equal to the number of solos: N1 =
∑

sh∈XS

sh

• N2 is equal to the number of duos: N2 =
∑

dh∈XD

dh

• N3 is equal to the number of trios: N3 =
∑

th∈XT

th

• N4 is equal to the number of quartos: N4 =
∑
qh∈Q

qh

Then, we have to set the value of xξ to 100×(N3+N4)
N1+N2+N3+N4

. It can be easily done by applying some predicate constraints,
that is xξ = 100× (N3 +N4)÷ (N1 +N2 +N3 +N4) where ÷ represents the quotient of the Euclidean division.

To conclude, the model can add several arithmetic constraints (≤,=,≥) on xξ, N0, N1, N2, N3 and N4 according to the
user’s wishes. For example, it is able to generate benzenoid structures having a given parameter of irregularity and/or a
given number of solos/duos/trios/quartos.

4.7 Generating Benzenoid Structures Having Given Numbers of Carbon and Hydrogen
Atoms

In this part, we describe a CSP model able to generate benzenoid structures having a given number of carbon and hydrogen
atoms. Being able to generate molecules having this property is interesting from a chemical viewpoint. Indeed, chemists
usually refer to molecules by giving their molecular formula. The molecular formula specifies the number of atoms of
each element appearing in the molecule. For instance, anthracene described in Figure 1 has C14H10 as molecular formula
meaning that it consists of 14 carbon atoms and 10 hydrogen atoms. For an illustration, in the context of PAHs, chemists
exploit the molecular formula to classify PAHs (e.g. in the NASA Ames PAH database [Bauschlicher et al., 2018]).
Moreover, they often deal with isomers that are molecules having the same molecular formula but different structures.

Given two integers ν and µ representing the wanted numbers of carbon and hydrogen atoms, we start from the general
model and add some variables and constraints in order to be able to generate benzenoid structures having a given number
of carbon and hydrogen atoms. We also describe next how to constrain the numbers of hydrogen and carbon atoms.

4.7.1 Constraining the Number of Hydrogen Atoms

In order to constrain the number of hydrogen atoms, we first need to express this number in our model. In order to do so,
we can note that the number of hydrogen atoms is equal to the number of carbon atoms involved in a solo, a duo, a trio

16

(a) (0, 0, 0, 0, 0, 0)∗ =⇒ no group (b) (1, 0, 0, 0, 0, 0)∗ =⇒ a quarto

(c) (1, 1, 0, 0, 0, 0)∗ =⇒ a trio (d) (1, 0, 1, 0, 0, 0)∗ =⇒ a duo

(e) (1, 0, 0, 1, 0, 0)∗ =⇒ two solos (f) (1, 1, 1, 0, 0, 0)∗ =⇒ a duo

(g) (1, 1, 0, 1, 0, 0)∗ =⇒ a solo (h) (1, 1, 0, 0, 1, 0)∗ =⇒ a solo

(i) (1, 0, 1, 0, 1, 0)∗ =⇒ no group (j) (1, 1, 1, 1, 0, 0)∗ =⇒ a solo

(k) (1, 1, 1, 0, 1, 0)∗ =⇒ no group (l) (1, 1, 0, 1, 1, 0)∗ =⇒ no group

(m) (1, 1, 1, 1, 1, 0)∗ =⇒ no group (n) (1, 1, 1, 1, 1, 1)∗ =⇒ no group

Figure 17: All the induced groups for all the neighborhood configurations.

17

(a) (b)

Figure 18: Benzenoid structures maximizing the number of hydrogens and which can be embedded in a coronenoid of size
3 (a) and 4 (b).

or a quarto as soon as we consider benzenoids having at least two hexagons. In the particular case of a single hexagon
(corresponding to benzene), the number of hydrogen atoms is six. So, we introduce an integer variable NH in order to
represent the number of hydrogen atoms. We now define its domain with tight bounds. Considering that the smallest
number of hydrogen atoms in a benzenoid is reached for benzene, this domain can start from 6. Regarding the largest
number, it is obtained for benzenoid structures built as follows. We start from benzene if k(n) is odd, from the coronenoid
of size two otherwise. Then, we alternatively add an empty crown and a crown of hexagons until we have k(n) crowns.
We also add a hexagon in each empty crown to ensure the connectedness of benzenoids. Figure 18 presents the obtained
benzenoids when k(n) is equal to 3 or 4. Then, we can easily see that a crown of size c has 6 × c hydrogens in its outer
border and (c− 1)× c in its inner border. Therefore, by considering the hexagons added to ensure the connectedness, we
can define the upper bound of the domain of NH thanks to the following formula:

6 if k(n) = 1
4 +

∑
1<c≤k(n), c is odd

6× c+ (c− 1)× c− 2 if k(n) is odd and greater than 1

10 +
∑

2<c≤k(n), c is even
6× c+ (c− 1)× c− 2 otherwise

If n is equal to 1, we directly fix Nh to 6. Otherwise, the value of NH relies on the number of carbon atoms involved
in a solo, a duo, a trio or a quarto. In order to do so, we add all the variables defined in the subsection 4.6 except the
variable xξ. Of course, we also consider all the related constraints. Then, we establish the link between NH and N1, N2,
N3 and N4 by posting the constraint NH = N1 +N2 +N3 +N4.

Finally, we constrain the number of hydrogen atoms by adding the adequate constraint. Indeed, similarly to the
irregularity, various arithmetic constraints can be used depending on the needs of chemists. For instance, if we want to
generate benzenoid structures having µ hydrogen atoms, we add the constraint NH = µ.

4.7.2 Constraining the Number of Carbon Atoms

Our general model mainly relies on hexagons and so carbon atoms (like hydrogen atoms) are not explicitly represented.
Moreover, some carbon atoms can be shared by two or three hexagons. Hence, when modeling the number of carbon
atoms, we must be careful not to count the same carbon atom several times. In order to avoid this problem, we exploit a
partition of the set of carbon atoms based on the hexagons. A carbon atom is attached to a hexagon h if it only appears
in h, or it appears in at least two hexagons (including h) and h is the leftmost. This can be easily implemented by
considering, for each hexagon, the part of its neighborhood located on the right and using neighborhood configuration in
a similar way to what was done for the irregularity in subsection 4.6. In other words, the neighborhood is restricted to the
hexagons 1, 2 and 3 (that is top-right, right and bottom-right hexagons). Figure 19 shows all the possible configurations
for a hexagon h and the associated number of carbon atoms according to the defined partition. For instance, Figure 20
describes the number of carbon atoms for each hexagon of coronene according to the defined partition.

This can be modeled, from the general model, by introducing first an integer variable NC in order to represent the
number of carbons of the benzenoid structure. Its domain is {6, . . . , νk(n)} with νk(n) the number of carbon atoms of the
coronenoid of size k(n). We can easily prove by induction on k(n) that νk(n) is equal to 6.k(n)2. Then, we also add to the

18

(a) 6 carbon atoms (b) 4 carbon atoms (c) 4 carbon atoms (d) 4 carbon atoms

(e) 2 carbon atoms (f) 3 carbon atoms (g) 3 carbon atoms (h) 2 carbon atoms

Figure 19: All the possible neighborhood configuration for a hexagon h and the associated number of carbon atoms
according to the defined partition.

Figure 20: The number of carbon atoms for each hexagon of coronene according to the defined partition.

general model several integer variables N1
C , . . . , N

nc

C with domain {2, 3, 4, 6}. The variable Nh
C corresponds to the number

of carbon atoms attached to the hexagon h according to the defined partition. Regarding constraints, we consider the
table constraint described in Table 2. Each tuple of this table represents one of the configurations described in Figure
19. As for the scope of the constraint and a hexagon h, it involves all the variables xi corresponding to the neighbor
hexagons at the right of h and Nh

C . Like previously, this table constraint is only enabled when xh = 1 (done again with
an ifThen constraint). Clearly, if h is located on the top, right or bottom border of the coronenoid of size k(n), we adapt
the constraint like in the previous subsection. Finally, we define NC by summing the number of carbon atoms of each
hexagon thanks to the constraint NC =

∑
i∈{1,... nc}

N i
c .

Once the number of carbon atoms is expressed, we can constrain it by adding the adequate constraint depending on
the needs of chemists. For instance, if we want to generate benzenoid structures having ν carbons atoms, we can add the
constraint NC = ν.

Configuration of h ch
0 0 0 6
0 0 1 4
0 1 0 4
0 1 1 3
1 0 0 4
1 0 1 2
1 1 0 3
1 1 1 2

Table 2: Table constraint corresponding to the possible neighborhood configurations and their associated carbons contri-
butions.

19

4.8 Combining Some Models

In this part, we discuss the possibility of combining several properties. Combining several properties is clearly a
need expressed by chemists. Notably, they often consider symmetrical molecules with some additional properties (e.g.
[Bauschlicher et al., 2008, Mishra et al., 2018, Sánchez-Grande et al., 2021, Silva and Girão, 2021, Konishi et al., 2019]).
One of the main interests of our approach based on constraint programming is its flexibility. As mentioned previously,
we can easily model new properties by adding some variables and/or constraints. It is the same for combining different
properties to generate desired benzenoid structures. Generally, combining two properties only consists in merging the
two corresponding models. This is made possible by the fact that all our models are based on the same general model.
For instance, by doing so, we can combine the symmetric benzenoid property with any other considered structural prop-
erty. In some cases, such combinations are of little interest. For example, we can combine the model of catacondensed
benzenoids with one of rectangular benzenoids but we already know that there exists a single solution (i.e. the rectangle
1× n). Likewise, we know in advance that combining the model of rectangular benzenoids with one of coronoids leads to
a problem with no solution since the rectangle must be full.

5 Generating Benzenoid Structures in Practice

In this section, we assess the ability of our model to produce benzenoid structures depending on the desired properties
from a practical viewpoint. With this aim in view, we implement our model in Choco Solver (v. 4.10.7) and use its default
setting. This generator of benzenoid structures is a part of our BenzAI software5. The experiments are carried out on
Dell PowerEdge M610 with processors Intel Xeon E5620 2.4 GHz and 24 GB of memory. A single thread is run for each
generation with at most 12 GB of memory.

First, we consider our general model. We vary the number n of hexagons from 1 to 10 by steps of 1. Table 3 provides
the number of variables and constraints of the model, the number of produced benzenoid structures (that is the number
of found solutions) and the runtime in seconds. The first observation is that the numbers of variables and constraints are
the same for any consecutive integer n and n+ 1 when n is even. This is explained by the fact that these two numbers are
directly related to the size k(n) of the considered coronenoid and, by definition, k(n) = k(n + 1) if n is even. Moreover,
Choco solver stores all the clauses (e.g. those for the lex-lead constraint or for the nogoods) in a single constraint which
is handled as a clause base. Then, we can also note that solving the problem for n + 1 hexagons is more time-expensive
than solving the problem for n hexagons even if these two problems are really close in terms of variables and constraints.
Indeed, the main differences consist of a larger clause base and a more relaxed constraint about the number of hexagons,
which requires traversing a larger part of the search space. Finally, we can remark that the runtime for generating all the
benzenoid structures with 10 hexagons starts to become important since this runtime exceeds 8 hours. Nonetheless, this
is not necessarily a hindrance because generating all structures only makes sense for chemists up to 9 hexagons. Beyond
that, the number of structures becomes too large (it increases by about 4.5 for each added hexagon) to be usable in
practice. In practice, chemists are more interested in generating structures satisfying some properties. As seen before, the
main advantage of our approach is its flexibility. The general model can be easily specialized by adding some variables
and constraints, which generally allows us to reduce the size of the search space to explore and so to obtain a reasonable
runtime.

Table 4 presents the results obtained when generating all catacondensed benzenoid structures. As we can see, the simple
addition of the tree constraint leads to a significant decrease in computation time. It is the same for the generation of
coronoids (see Table 5) even if this specialization requires the addition of a new graph variable and its associated Boolean
variables for expressing its vertices. Finally, chemists are often looking for symmetrical structures. This feature makes it
possible to reduce significantly the search space to explore and so the runtime (see Tables 6-8 for instances). Moreover,
as mentioned previously, some symmetries allow us to consider a smaller coronenoid and thus to significantly reduce the
size of considered instances and their solving runtime. For example, this is the case for 60° rotation as we can see in Table
6. As an illustration, we can note that, for 17 hexagons, we have to only consider a coronenoid of size 4 instead of a
coronenoid of size 9 usually.

5BenzAI is an open source software for chemists that includes the work presented in this article (generation of benzenoid structures and
estimation of the aromaticity) in a user-friendly graphical interface. More information and source code can be found at https://benzai-team.

github.io/BenzAI/.

20

n k(n) |X| |C| #structures runtime
3 2 113 30 3 0.11
4 3 287 90 7 0.21
5 3 287 90 22 0.35
6 4 551 186 81 1.13
7 4 551 186 331 3.29
8 5 905 318 1,436 38.62
9 5 905 318 6,510 466.31

10 6 1,349 486 30,129 29,958.01

Table 3: The size k(n) of the embedding coronenoid, the number of variables and constraints of the general model, the
number of produced benzenoid structures and the runtime (in seconds) for the general model when the number n of
hexagons varies from 3 to 10.

n k(n) |X| |C| #structures runtime
3 2 113 31 2 0.11
4 3 287 91 5 0.20
5 3 287 91 12 0.28
6 4 551 187 36 0.73
7 4 551 187 118 1.72
8 5 905 319 411 12.83
9 5 905 319 1,489 47.88

10 6 1,349 487 5,572 1,342.69

Table 4: The size k(n) of the embedding coronenoid, the number of variables and constraints of the general model, the
number of produced benzenoid structures and the runtime (in seconds) for the catacondensed model when the number n
of hexagons varies from 3 to 10.

6 Computing the Resonance Energy of a Benzenoid

6.1 Definitions

6.2 Computing the Resonance Energy

6.2.1 Computing Resonance Energy by Enumerating Kekulé Structures

In this part, we represent a hexagon by a 6-tuple of vertices h = (v1, v2, v3, v4, v5, v6) in which the vertices are listed in a
clockwise manner from the vertex at the top of h. In other words, v1 refers to the vertex at the top of the hexagon, v2 to
the top-right vertex, etc.

In 1999, Lin and Fan [Lin and Fan, 1999] proposed a method able to estimate the aromaticity of benzenoids based on
the definition of the resonance energy. Given a benzenoid B, this method (described in Algorithm 1) first enumerates all
minimal conjugated circuits (i.e. computes a h-MCC for all its hexagons h) for each Kekulé structure. Then, it deduces
the energy induced by each minimal conjugated circuit and adds them up. Finally, it divides the obtained sum by the
number of Kekulé structures to obtain the resonance energy. Such a method was implied in Randić’s work. The main
contribution of Lin and Fan consists in describing how to compute the h-MCCs.

To this end, given a benzenoid B, a Kekulé structure K and h a hexagon of B, Lin and Fan carefully identify all the
specific forms of the h-MCC depending on the location of the double bonds of h. For each configuration of double bonds

n #crowns |X| |C| #structures runtime
8 3 376 113 1 0.91
9 3 376 113 5 1.08

10 4 730 227 43 47.89
11 4 730 227 283 159.93
12 5 1,206 383 1,954 9,900.50
13 5 1,206 383 12,364 182,386.19

Table 5: The size #crowns of the embedding coronenoid, the number of variables and constraints of the general model,
the number of produced benzenoid structures and the runtime (in seconds) for the coronoid model when the number n of
hexagons varies from 8 to 13.

21

n #crowns
∑ |X| max |X| ∑ |C| max |C| #structures runtime

3 2 111 111 29 29 0 0.05
4 2 111 111 29 29 0 0.05
5 2 111 111 29 29 0 0.05
6 2 111 111 29 29 0 0.06
7 2 113 113 30 30 1 0.10
8 3 396 285 118 89 0 0.08
9 3 396 285 118 89 0 0.08

10 3 396 285 118 89 0 0.09
11 3 396 285 118 89 0 0.09
12 3 398 287 119 90 1 0.15
13 3 398 287 119 90 2 0.16
14 4 945 549 303 185 0 0.16
15 4 945 549 303 185 0 0.12
16 4 945 549 303 185 0 0.18
17 4 945 549 303 185 0 0.15

Table 6: The size #crowns of the largest considered embedding coronenoid, the total and maximal number of variables
and constraints of the general model, the number of produced benzenoid structures and the runtime (in seconds) for the
symmetric benzenoid model (60° rotation) when the number n of hexagons varies from 3 to 17.

n #crowns
∑ |X| max |X| ∑ |C| max |C| #structures runtime

3 2 111 111 29 29 0 0.05
4 2 113 113 30 30 1 0.10
5 3 396 285 118 89 0 0.08
6 3 396 285 118 89 0 0.09
7 3 400 287 120 90 3 0.16
8 4 945 549 303 185 0 0.15
9 4 945 549 303 185 0 0.17

10 4 949 551 305 186 9 0.27
11 5 1,848 903 620 317 0 0.40
12 5 1,854 905 623 318 2 0.56
13 5 1,854 905 623 318 32 1.19
14 6 3,195 1,347 1,105 485 0 1.44
15 6 3,203 1,349 1,109 486 7 2.20
16 6 3,203 1,349 1,109 486 130 5.18
17 7 5,076 1,881 1,794 689 0 10.94

Table 7: The size #crowns of the largest considered embedding coronenoid, the total and maximal number of variables
and constraints of the general model, the number of produced benzenoid structures and the runtime (in seconds) for the
symmetric benzenoid model (120° rotation) when the number n of hexagons varies from 3 to 17.

of h, they compute paths of minimal size whose edges correspond alternately to single and double bonds between some
vertices of h (denoted minimal conjugated path in this part). Note that a minimal conjugated path between two vertices
of h must not contains any edge of h. Figure 21 lists all the double bond configurations and their associated h-MCC forms
identified by Lin and Fan. For instance, if h = (v1, v2, v3, v4, v5, v6) has the double bond configuration represented in the
configuration 2 of Figure 21, Lin and Fan build the minimal circuit of h by finding a minimal conjugated path between v4
and v1 and adding it to the path described by v1− v2− v3− v4 (or v1− v6− v5− v4), where v1− v2− v3− v4 denotes the
path using the edges {v1, v2}, {v2, v3} and {v3, v4}. Note that the concatenation of two paths is denoted by the operator
⊕ in Algorithm 1.

Algorithm 1 describes this method. Firstly, given a hexagon h and two of its vertices u and v, the procedure min path
computes a minimal conjugated path between u and v. Secondly, given a Kekulé structure K and a hexagon h, the
function double bond configuration returns the double bond configuration of h in K, that is an integer between 1 and 4
according to the four configurations described in Figure 21. The function min size returns the circuit having the smallest
size among the circuits given as input.

The main drawback of this method is that it requires generating all the Kekulé structures of the benzenoid. As the
number of Kekulé structures may be exponential, this method is clearly inefficient in practice and can only be used for
benzenoids with a small number of Kekuké structures.

22

(a) (b)

Configuration 1

(c) (d)

Configuration 2

(e) (f)

Configuration 3

(g) (h)

Configuration 4

Figure 21: All the double bonds configurations for a hexagon [Lin and Fan, 1999].

23

n #crowns
∑ |X| max |X| ∑ |C| max |C| #structures runtime

3 2 113 113 30 30 1 0.10
4 3 396 285 118 89 0 0.08
5 3 400 287 120 90 2 0.13
6 4 945 549 303 185 0 0.15
7 4 951 551 306 186 6 0.28
8 5 1,848 903 620 317 0 0.43
9 5 1,854 905 623 318 20 0.81

10 6 3,203 1,349 1,109 486 1 1.87
11 6 3,203 1,349 1,109 486 72 4.38
12 7 5,086 1,883 1,799 690 5 13.53
13 7 5,086 1,883 1,799 690 304 42.56
14 8 7,593 2,507 2,729 930 16 143.36
15 8 7,593 2,507 2,729 930 1341 626.74
16 9 10,814 3,221 3,935 1,206 108 686.64
17 9 10,814 3,221 3,935 1,206 342 345.60

Table 8: The size k(n) of the embedding considered coronenoid, the number of variables and constraints of the general
model, the number of produced benzenoid structures and the runtime (in seconds) for the symmetric benzenoid model
(180° rotation) when the number n of hexagons varies from 3 to 17.

C

B

− =

B[C]

(a) (b)

Figure 22: A cycle C such as M(C) = 2 (a) and an example of computation of the number of occurrences of a cycle (b).

6.2.2 Computing Resonance Energy Without Enumerating Kekulé Structures

To overcome the issues described in the previous part, Lin [Lin, 2000] proposed another method that is able to compute
all the minimal circuits of a given benzenoid without generating its Kekulé structures. This method only considers circuits
having a size at most 4. So, it provides an approximation of the resonance energy. Before describing this method, let us
introduce some needed definitions.

Definition 3 Let B be a benzenoid and C a cycle of B (with 4i+2 edges, i ∈ N). M(C) is the number of perfect matchings
of C and its interior inducing a minimal circuit for at least one of the hexagons it covers.

For example, let us consider C as being the cycle of size 2 represented in Figure 22(a). C can induce two different conjugated
circuits that are clearly minimal and cover the two hexagons. So we have M(C) = 2.

Definition 4 ([Randić et al., 1996]) Let B = (V,E) be a benzenoid and C a cycle of B (with 4i + 2 edges, i ∈ N).
B[C] is the sub-graph of B induced by C and its interior.

The method presented by Lin [Lin, 2000] relies on the following theorem:

Theorem 1 ([Randić et al., 1996]) Let B be a benzenoid and C a cycle of B (with 4i+ 2 edges, i ∈ N). C is a h-MCC
in |K(B − B[C])| ×M(C) Kekulé structures of B where B − B[C] is the sub-graph induced by the removal of the vertices
belonging to C and its interior.

Let us consider the benzenoid B described in Figure 22(b) and the cycle C depicted in red thick line. So, B[C]
corresponds exactly to all the hexagons in the interior of C, namely the hexagons depicted in red thick line in the middle
figure. To compute the number of occurrences of C as a h-MCC, we have to compute the number of perfect matchings
of the sub-graph induced by B − B[C]. In this example, this sub-graph (depicted in red thick solid line in the rightmost

24

Algorithm 1: Compute Resonance Energy (CRE-LF)

Input: a benzenoid B
Output: the resonance energy E(B)

1 energy ← 0
2 foreach K ∈ K(B) do
3 foreach h = (v1, v2, . . . , v6) ∈ hexagons(B) do
4 config ← double bonds configuration(K,h)
5 if config = 1 then
6 P ← min path(h, v5, v6)
7 if straight path(P) then
8 C ← v6 − v1 − v2 − v3 − v4 − v5 ⊕min path(h, v5, v6)
9 else C ← v6 − v5 ⊕min path(h, v5, v6)

10 else if config = 2 then
11 C ← v1 − v2 − v3 − v4 ⊕min path(h, v4, v1)
12 else if config = 3 then
13 C1 ← v1 − v2 ⊕min path(h, v2, v5)⊕ v5 − v6 ⊕min path(h, v6, v1)
14 C2 ← min path(h, v1 − v2)⊕ v2 − v3 − v4 − v5 ⊕min path(h, v5, v6)
15 C ← min size(C1, C2)

16 else if config = 4 then
17 C1 ← min path(h, v1, v2)⊕ v2 − v3 ⊕min path(h, v3, v4)⊕ v4 − v5 ⊕min path(h, v5, v6)⊕ v6 − v1
18 C2 ← v1 − v2 ⊕min path(h, v2, v3)⊕ v3 − v4 ⊕min path(h, v4, v5)⊕ v5 − v6 ⊕min path(h, v6, v1)
19 C ← min size(C1, C2)

20 energy ← energy +R|C|

21 return energy
|K(B)|

figure) has two perfect matchings. Moreover, we have M(C) = 1 because if we consider the two Kekulé structures of C
which allow it to be a conjugated circuit, there is only one of them for which C is a minimal circuit for at least one of its
hexagon. So, we can conclude that C appears twice as an h-MCC in all the Kekulé structures of B.

To sum up, the method presented by Lin [Lin, 2000] (described in Algorithm 2) takes as input a benzenoid B and a
base containing all the cycles of size at most 4 which can induce at least one h-MCC, and another base containing all
the redundant circuits of the same sizes. In Line 1, it generates the set of cycles of B which belongs to the first base (we
denote this set C∗). Then, for each cycle in C∗, it counts how many h-MCC are induced by this cycle in all the Kekulé
structures of B (Lines 3-4), as shown in Figure 22(b). Then, it needs to find all couple of cycles of B which can produce
one of the redundant circuits described in the second base and to ensure that the cycle having the largest size is not
counted (Lines 5-8).

The main interest of this method is that it does not require to enumerate all the Kekulé structures of the given
benzenoid. The only problem it has to solve is counting the number of perfect matchings in a graph. In the general
case, counting the number of perfect matchings in a graph is a #P-complete problem. It is the same when the graph is
bipartite. Fortunately, this task is proved to be polynomial for planar graphs [Kasteleyn, 1967] and an efficient method
has been proposed for benzenoids [Rispoli, 2001].

7 Computing the Local Resonance Energy Thanks to CP

In this section, we describe how we implement the method of Lin and Fan and refine the method of Lin with the help of
CP.

7.1 Implementing the Method of Lin and Fan Using CP

Lin and Fan have developed a software based on their method [Lin and Fan, 1999]. Unfortunately, this implementation
is not available. As a consequence, in this part, we describe our implementation of their method based on constraint
programming. As mentioned previously, this method cannot be efficient when the size of the considered benzenoids
increases, due to the enumeration of all the Kekulé structures since the number of Kekulé structures may be exponential.
Here, we mainly implement this method in order to assess the relevance of the approximation of the resonance energy
made by the method described in Subsection 7.2.

Our implementation (denoted LFCP) exploits CP in order to enumerate all the Kekulé structures of a benzenoid

25

Algorithm 2: Approximate Resonance Energy

Input: a benzenoid B, a base of h-MCC, a base of redundant circuits
Output: the resonance energy E(B)

1 C∗ ← generate circuits(B, 1, 4)
2 energy ← 0
3 foreach C ∈ C∗ do
4 energy ← energy +R|C| × |K(B −B[C])| ×M(C)
5 foreach (C1, C2) ∈ C∗ × C∗ do
6 if redundant(C1, C2) then
7 size← max(|C1|, |C2|)
8 energy ← energy −Rsize × |K(B −B[C1 ∪ C2])|

9 return energy
|K(B)|

(Line 2 of Algorithm 1). To do so, we model this problem as a CSP instance P1 = (X1, D1, C1) for which every solution
corresponds to a Kekulé structure. As any benzenoid B = (V,E) is a bipartite graph, we can divide V into two disjoint
sets V1 and V2 such that every edge of E links a vertex of V1 to one of V2. We consider a variable yv per vertex v of V1
whose domain contains every vertex w from V2 such that {v, w} ∈ E. By so doing, if the variable yv is assigned with
value w, it means that the edge {v, w} corresponds to a double bond. By definition of a solution, this ensures that there
is a single double bond for any carbon atom of V1. It remains to ensure the same property for the vertices of V2. This
can be achieved by considering an all-different constraint involving all the variables of X1. So we obtain the following
instance P1:

X1 = {yv|v ∈ V1}
D1 = {Dyv |v ∈ V1} with Dyv = {w|w ∈ V2, {v, w} ∈ E}
C1 = {all-different(X1)}

Clearly, the solutions of P1 correspond to the Kekulé structures of B and so to perfect matchings of B. Regarding the
filtering of the all-different constraint, Regin proposed an efficient algorithm based on the matchings of a particular
graph, called the value graph [Régin, 1994]. Note that, for our instance P1, the value graph related to the all-different

constraint we use is exactly the graph B. Moreover, any solver enforcing this filtering at each step of the search is able to
enumerate efficiently the Kekulé structures since only assignments leading to solutions are explored. Note that another
model was proposed [Mann and Thiel, 2013]. It considers binary variables and sum global constraints. In contrast, it does
not provide any theoretical guarantee about the efficiency, unlike the model we propose.

7.2 Approximating the Local Resonance Energy

In this part, we propose a new method, using constraint programming, which refines the method proposed by Lin [Lin,
2000] in order to compute local aromaticity. Remember that local aromaticity is more useful than the global one since it
helps to predict the parts of molecules where chemical reactions may take place while leading to global information like
global aromaticity. Before going into details, we have to introduce some definitions.

7.2.1 Preliminary Definitions

First, we need to handle coordinates:

Definition 5 Let B = (V,E) be a benzenoid. A coordinate function c : V → Z2 of B is a function that maps a couple
of integers (c(v).x, c(v).y) (i.e. an abscissa and an ordinate in the Cartesian coordinate plane) to each vertex v of B
such that if (v1, v2, v3, v4, v5, v6) are the vertices forming a hexagon (given clockwise) with v1 the vertex having the largest
ordinate, we have:

c(v2) = (c(v1).x+ 1, c(v1).y − 1)
c(v3) = (c(v1).x+ 1, c(v1).y − 2)
c(v4) = (c(v1).x, c(v1).y − 3)
c(v5) = (c(v1).x− 1, c(v1).y − 2)
c(v6) = (c(v1).x− 1, c(v1).y − 1)

Figure 23(a) describes a simple example of coordinates for benzene.
Then, we consider some particular edges:

Definition 6 Let B be a benzenoid and c a coordinate function. An edge e = {u, v} ∈ E is a vertical edge of B if and
only if c(u).x = c(v).x.

26

(a) (b)

Figure 23: Benzene with coordinates (a) and example of interval (b).

The vertical edges of the benzenoid depicted in Figure 23(a) are {v2, v3} and {v5, v6}. We now introduce the notion
of interval related to vertical edges:

Definition 7 Let B be a benzenoid and c a coordinate function. An interval I of B is a couple I = (e1, e2) of vertical
edges such as:

e1 = {u1, v1} ∈ E
e2 = {u2, v2} ∈ E
c(u1).y = c(u2).y
c(v1).y = c(v2).y

We denote:

I.x1 = c(u1).x
I.y1 = c(u1).y
I.x2 = c(u2).x
I.y2 = c(v1).y

We denote |I| = |I.x2 − I.x1| the size of I.

To sum up, an interval represents the space contained between two vertical edges that have the same ordinates. Figure
23(b) shows an example of interval.

7.2.2 Algorithm Description

We now describe our refined algorithm (called CRECP and described in Algorithm 3) based on constraint programming.
This method takes as inputs a benzenoid B = (V,E), a coordinate function c, a base containing all the cycles of size at
most 4 that can induce at least one h-MCC, and another one containing all the couples of cycles of the first base which can
form redundant circuits and it returns an approximation of the local energy E(B, h) for each hexagon h. With this aim in
view, we first compute the set C∗ of all the cycles of B whose size is at most 6 (Line 1). Then, for each cycle C of C∗ (Line
2), we first identify the cycle by a collection of intervals (Line 3) and, if C appears in the base of minimal circuits (Line
4), we enumerate all of the minimal circuits it induces and for each of them (Line 5), we add its contribution to the local
resonance energy of the hexagon for which it is minimal (Lines 6-7). Note that for each cycle C, we separately treat each
of its minimal circuits, so we do not have to consider M(C) anymore. However, C can also correspond to the contouring
of the union of two redundant circuits over a hexagon h (Lines 8-9). If so, we do not have to take the contribution of the
largest circuit into account (Lines 10-11). Finally, we divide the contribution of each hexagon by the number of Kekulé
structures of B (Line 12). The main steps of Algorithm 3 are detailed below.

7.2.3 Enumeration of All the Cycles

We need to identify all the cycles which correspond to either a h-MCC of size at most 4 (Line 4 of Algorithm 3) or a union
of two h-MCCs (Line 6). As the union of two h-MCCs of size 4 is at most of size 6, we have to enumerate all the cycles
of size at most 6.

In order to enumerate all the cycles of size at most 6, we model this problem as a CSP instance P2 = (X2, D2, C2).
First, we consider a graph variable xG whose domain is all the possible graphs between the empty graph and the graph
B. This variable models the cycle we look for. To ensure that the value of this variable is a cycle, we impose the graph
constraint cycle [Fages, 2014] on xG. It remains to be ensured that the size of this cycle is at most 6. To this end, we
introduce a Boolean variable xe per edge e of B. xe is set to 1 if the edge e appears in the graph depicted by xG, 0
otherwise. Then, we use a collection of channeling constraints in order to link the variables xe and the variable xG. More
precisely, for each edge e, we use a channeling constraint between xe and xG which imposes xe = 1 ⇐⇒ e appears in xG.
Finally, we add a global constraint sum over all the variables xe to impose

∑
xe|e∈E

xe ∈ {6, 10, 14, 18, 22, 26} because we

27

Algorithm 3: Compute Resonance Energy CP (CRECP)

Input: a benzenoid B, a coordinate function c, a base of h-MCC, a base of redundant circuits
Output: the local resonance energy E(B, h) for each hexagon h of B

1 C∗ ← generate cycles choco(B, 1, 6)
2 foreach C ∈ C∗ do
3 id← identify cycle(C)
4 if in minimal circuits base(id) then
5 foreach Cm ∈ minimal circuits(C) do
6 h← hexagon s.t Cm is a h-MCC
7 energy[h]← energy[h] +R|Cm| × |K(B −B[Cm])|
8 else if in redudant circuits base(id) then
9 foreach (C1, C2) s.t. C = C1

⋃ C2 and redundant(C1, C2, h) do
10 C′ ← circuit with max size(C1, C2)
11 energy[h]← energy[h]− |K(B −B[C])| ×R|C′|

12 foreach h of B do energy[h]← energy[h]/|K(B)|
13 return energy

consider circuits of size at most 6 and a circuit of size i has 4i+ 2 edges. The channeling and sum constraints ensure that
the size of the built cycle is suitable. At the end, we obtain the following instance P2:

X2 = {xG} ∪ {xe|e ∈ E}
D2 = {DxG

} ∪ {Dxe
|e ∈ E} with DxG

= {g|∅ ⊆ g ⊆ B} and Dxe
= {0, 1}

C2 = {cycle(xG),
∑

xe|e∈E
xe ∈ {6, 10, 14, 18, 22, 26}} ∪ {channeling(xe, xG)|e ∈ E}

As Choco implements graph variables and offers a large amount of graph-related constraints and global constraints,
this model can be easily expressed with Choco.

7.2.4 Counting the Number of Kekulé Structures

We need to count the number of Kekulé structures of B (Line 12) or B−B[C] for some cycles C of C∗ (Lines 7 and 11). In
[Rispoli, 2001], Rispoli presented a method that computes the number of Kekulé structures of a benzenoid. His method
consists in transforming the given benzenoid B = (V,E) into a specific matrix whose determinant is the number of Kekulé
structures of B. Formally, it relies again on the property that V can be divided into two disjoint sets V1 and V2 such that
every edge of E links a vertex of V1 to one of V2. It computes the biadjacency matrix of B whose rows (resp. columns)
are labeled by the vertices of V1 (resp. V2) and such that the value for row v1 ∈ V1 and column v2 ∈ V2 is 1 if the edge
{v1, v2} ∈ E, 0 otherwise. Rispoli showed that the determinant of the biadjacency matrix of B corresponds to the number
of Kekulé structures of B assuming that |V1| = |V2|6. Interestingly, this computation can be achieved in polynomial time.
So we exploit it in order to efficiently compute the number of Kekulé structures of B (Line 12).

Regarding Lines 7 and 12, we consider the number of Kekulé structures of B − B[C]. B − B[C] is the part of the
benzenoid B (i.e. a sub-graph) induced by the removal of the vertices belonging to C (including its interior). In practice,
this sub-graph does not necessarily correspond to a benzenoid and so the method of Rispoli cannot be applied directly. For
instance, in Figure 22(b), the corresponding sub-graph has two connected components. Reasoning in terms of connected
components is not enough since, in this figure, the bottom component is not a benzenoid unlike the top one. A solution
consists in removing all vertices having a degree of one and their neighbors until no such vertices remain. Indeed, by
construction, a vertex having a degree of one is necessarily connected by a double bond to its neighbor and so has no
impact on the number of Kekulé structures. At the end of the process, the remaining vertices have a degree of zero or at
least two. In the first case, the connected component contains a single vertex and has no Kekulé structure. In contrast,
in the second case, the connected component has several vertices. Moreover, every vertex belongs to cycles whose length
is 4i+ 2 where i is an integer. This latter condition is important since we can easily show that the result of Rispoli can be
extended to such graphs. Indeed, the proof of this result relies on these cycles of length 4i+ 2. So the method of Rispoli
can be used for counting the number of Kekulé structures of B (Line 12) or B −B[C]7.

6If |V1| 6= |V2|, it is trivial to show that the benzenoid has no Kekulé structure.
7In [Carissan et al., 2020a], this step is achieved by enumerating all the Kekulé structures thanks to the CSP model P1. This choice was

justified by the long computation time of the determinant as well as by the fact that B −B[C] was not a benzenoid. The extension of Rispoli’s
result and the use of a more efficient library for the computation of the determinant allow us to make a different choice here. Note that we
compared experimentally (not reported here) the determinant calculation, the solution counting for the model P1 or one of Mann and Thiel
[Mann and Thiel, 2013], and not surprisingly, the first method is the most efficient.

28

I1

I2

I3

(a) (b)

Figure 24: A cycle and the relations between its intervals (a), and a second example of redundant circuits (b).

7.2.5 Identification of Cycles

Once Choco returns a cycle, we need to determine if this cycle belongs to the base of h-MCCs (Line 4) or one of the
redundant circuits (Line 6). For achieving this task, we first represent any cycle by the bias of a set of intervals and some
relations between these intervals. The purpose of these relations is to represent the distance between two vertical edges
of each couple of intervals (either the two left edges or the two right edges). So, given a set of intervals with this kind of
relations, we are able to build the associated cycle and vice versa. Figures 24(a) shows an example of such a representation.
Accordingly, we construct each base by describing every cycle (h-MCC or redundant cycle) identified by Lin [Lin, 2000]
by a set of intervals and some relations between them. Now, each time a new cycle is returned by Choco, we translate it
into a set of intervals and their relations, and check if it belongs to one of the two bases by simply comparing sets and
relations. So, we are able to determine if this cycle can induce h-MCC or if it can be obtained by the union of redundant
circuits.

Furthermore, the second base contains, for each cycle C, a set of a couple of cycles whose union forms C. This allows
us to remove the energy that we have over-counted due to redundant circuits (Line 10). For example, let us consider C
as being the union of the two circuits represented in Figure 24(b). It can be obtained either by the union of the cycles of
the leftmost figure (of sizes 3 and 4), or by the cycles of the rightmost one (of sizes 3 and 4 too). So, each time Choco
finds C in a benzenoid, we need to remove the energy associated with two circuits of size 4.

8 Computing the Local Resonance Energy in Practice

This section is devoted to an experimental comparison of three methods able to estimate the aromaticity of benzenoids.
More precisely, we assess the behavior of the two methods we define, namely CRECP and LFCP, and the reference method
NICS. CRECP and LFCP consist of accounting for the energy attached to certain circuits thanks to CP techniques while
NICS relies on quantum calculations. We first describe our experimental protocol. Then, as CRECP only takes into
account a part of the circuits considered by LFCP, we compare empirically, these two methods in order to assess the
relevance of this approximation. Finally, CRECP is compared with NICS.

8.1 Experimental Protocol

The methods CRECP and LFCP are implemented in Java and compiled with Java SE 1.8. They can be found as a part
of our BenzAI software8. Their implementation relies on Choco Solver (v. 4.10.7) for which we used the default settings of
Choco. Note that, according to [Lin, 2000], the method proposed by Lin has already been implemented. Unfortunately,
it does not seem to be available. We use Ri = 1

i2 instead of the optimized values because the optimized values are only
defined for circuits of size at most 4, which is not sufficient for LFCP. However, using the optimized values (or not) does
not influence the comparisons of CRECP and NICS. For NICS, we exploit the implementation provided in a commercial
program (see http://gaussian.com/). Remember that NICS is the reference method for chemists when they want to
estimate aromaticity. All the methods are run on servers with 2.20 GHz Intel Xeon Gold processor and 256 Gb under
CentOS Linux release 8.1.1911. We limit the runtime to 24 hours.

Now, we describe the set of molecules we consider for our experiments. This set is divided into three subsets:

• B1 is a set of 48 benzenoids whose size varies from one hexagon to 109. It is composed of several molecules which are
well known to chemists and often used in such comparisons (e.g. [Randić, 2019, Ruiz-Morales, 2004]). It corresponds
to the set used in [Carissan et al., 2020a, Randić, 2019] augmented by the molecules used in [Ruiz-Morales, 2004].
All the considered molecules are depicted in Appendix (see Figures 28-33).

• B2 is a selection of 50 catacondensed benzenoids having from 5 to 10 hexagons. For each considered value of
n, we randomly select 10 molecules among all the catacondensed benzenoids having n hexagons. Catacondensed
benzenoids are well known to be benzenoids having a lot of circuits of small sizes.

8Available at https://benzai-team.github.io/BenzAI/.

29

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

 0.01 0.1 1 10 100 1000 10000 100000

L
F

C
P

 -
 r

un
ti

m
e

(s
)

CRECP - runtime (s)

B1 B2
 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

 0.01 0.1 1 10 100 1000 10000 100000

N
IC

S
 -

 r
u
nt

im
e

(s
)

CRECP - runtime (s)

B1 B2

(a) (b)

Figure 25: Comparison of runtimes on sets B1 and B2: CRECP vs LFCP (a)and CRCEP vs NICS (b).

• B3 contains rectangular benzenoids. We fix their height to 5 hexagons and vary their width from 1 to 20. Rectangular
benzenoids are benzenoids having circuits of various sizes and, in particular, circuits of large sizes. Note that we also
achieved experiments by varying the height. However, they led to similar trends. So we do not report them here.

The comparisons rely on two criteria: the runtime and the quality of the estimation. For the runtime, we consider the
CPU time required for the run of each method. The second criterion is more difficult to assess and is an important question
from a chemical viewpoint. First, remember that aromaticity cannot be measured. So, there is no exact value to which we
can refer in order to estimate the quality of our computation. The methods CRECP and LFCP are quite different from
NICS. In particular, the values they return cannot lead to similar numbers for NICS, even if all these approaches describe
local aromaticity. More precisely, CRECP and LFCP give values between 0 and 1, whereas, for NICS, the values are not
bound to a specific interval. Indeed, CRECP and LFCP aim to describe the behavior of the electronic structure of the
molecule as a superposition of closed electronic circuits whereas the NICS approach measures how much the electronic
structure would be distorted by an external magnetic field. However, their trends should coincide. Hence, whatever the
two considered methods M1 and M2, we compare them by computing the sample Pearson correlation coefficient from the
values they produce. More precisely, given a benzenoid B, we apply M1 and M2 on B. In return, we obtain two values
vM1

h and vM2

h per hexagon h which assess the aromaticity of h according to methods M1 and M2 respectively. The sample
Pearson correlation coefficient for the benzenoid B is then computed thanks to the following formula:

rM1,M2 =

n
∑
h

vM1

h vM2

h −∑
h

vM1

h

∑
h

vM2

h

√
n
∑
h

vM1

h −
(∑
h

vM1

h

)2
√
n
∑
h

vM2

h −
(∑
h

vM2

h

)2

where n is the number of hexagons of B.

8.2 Comparing CRECP with LFCP

We first compare CRECP and LFCP with respect to the runtime. Regarding the set B1 (see Table 9 and Figure 25(a)),
the two methods obtain similar results for most of the molecules even if we can note that CRECP seems to be slower
for the more compact ones. Indeed, by considering the set B2, we can see that both methods require a similar runtime,
which is foreseeable since catacondensed benzenoids have a tree structure and so are far from being compact molecules.
In contrast, for rectangle benzenoids which are by definition compact molecules, CRECP seems to be slower than LFCP
(see Figure 26). However, this holds until a given size above which CRECP turns out to be significantly faster than LFCP.
A possible explanation is related to the number of Kekulé structures. This number may grow exponentially with the
number of hexagons. At some point, enumerating all the Kekulé structures becomes too time-expensive. For instance,
we can see that LFCP reaches the timeout (TO) for the three benzenoids in Table 9 that have the largest number of
Kekulé structures. At the same time, the number of circuits grows but more slowly and so CRECP is still usable. For
instance, LFCP requires about 23,300 s to process the rectangle benzenoid of dimensions 5× 14 while CRECP treats one
of the dimensions 5× 16 in a similar runtime (22,516 s). Moreover, in our experiments, CRECP processes each considered
benzenoid within the time limit.

Now, regarding the quality of the estimation of the aromaticity, we compute the sample Pearson correlation coefficient
between CRECP and LFCP. Whatever the benzenoid belonging to sets B1, B2 or B3, the coefficient has a value between

30

Id n # Kekulé structures
Runtime

coef.
CRECP LFCP NICS

1 1 2 0.19 0.16 69 1.00
2 2 3 0.20 0.16 235 1.00
3 3 5 0.20 0.17 872 1.00
4 3 4 0.20 0.17 631 1.00
5 4 5 0.21 0.18 831 1.00
6 4 8 0.21 0.18 1,377 1.00
7 4 9 0.21 0.19 1,827 1.00
8 4 6 0.22 0.18 661 1.00
9 4 7 0.21 0.18 1,950 0.79

10 5 6 0.22 0.33 894 1.00
11 5 9 0.22 0.19 3,069 0.55
12 5 10 0.22 0.19 2,415 0.99
13 5 12 0.22 0.20 3,979 0.93
14 5 11 0.22 0.20 6,684 0.73
15 5 13 0.22 0.20 7,351 0.99
16 5 13 0.23 0.20 2,557 0.85
17 5 14 0.23 0.20 16,148 0.96
18 5 11 0.23 0.19 1,580 0.90
19 5 9 0.23 0.19 3,137 0.92
20 5 9 0.23 0.19 1,116 1.00
21 7 20 0.28 0.22 3,373 1.00
22 13 250 0.95 0.58 9,968 0.94
23 20 3,250 4.47 4.15 18,929 0.93
24 19 3,100 3.04 3.60 19,854 0.90
25 24 16,100 11.78 18.97 33,035 0.93
26 25 34,560 10.57 46.10 38,727 0.84
27 11 25 0.46 0.26 7,425 0.97
28 17 1,320 2.20 1.78 10,722 0.93
29 8 34 4.47 0.66 1,121 0.87
30 8 31 4.43 0.64 23,420 0.96
31 8 19 4.43 0.21 1,124 0.97
32 8 16 4.46 0.34 615 1.00
33 9 40 1.06 3.57 2,408 0.94
34 9 20 3.10 3.38 1,229 0.99
35 9 30 3.10 3.40 2,662 0.99
36 10 50 3.31 3.56 1,383 0.99
37 14 175 4.98 5.06 1,842 0.99
38 8 45 0.76 4.40 1,460 0.96
39 10 101 1.05 4.48 2,034 0.96
40 6 14 4.26 4.29 716 0.96
41 6 10 4.24 3.64 618 0.99
42 6 14 4.27 3.65 1,155 0.91
43 13 432 5.04 5.23 81,822 0.94
44 61 267,227,532 635.58 TO 35,322 0.97
45 49 126,672,896 225.23 TO TO -
46 30 27,508 16.10 48.60 11,222 0.48
47 37 232,848 84.99 399.15 12,276 0.99
48 109 53,930,238,785,494,000 4,324.50 TO 84,396 0.91

Table 9: Number of hexagons, Runtime (in seconds) of CRECP, LFCP and NICS, and value of the Pearson correlation
coefficient between CRECP and NICS for the molecules of B1.

31

 0.1

 1

 10

 100

 1000

 10000

 100000

 2 4 6 8 10 12 14 16 18 20

ru
nt

im
e

(s
)

width

CRECP LFCP NICS

Figure 26: Runtime (in seconds) of CRECP, LFCP and NICS for rectangle benzenoids whose height is fixed to five and
whose width varies from 1 to 20.

 0

 10

 20

 30

 40

 50

 60

 70

 80

[0,0.1]]0.1,0.2]]0.2,0.3]]0.3,0.4]]0.4,0.5]]0.5,0.6]]0.6,0.7]]0.7,0.8]]0.8,0.9]]0.9,1]

#
 b

en
ze

no
id

s

coefficient

B1 B2 B3

Figure 27: The sample Pearson correlation coefficient between CRECP and NICS for sets B1, B2 and B3.

0.9997 and 1. In other words, the linear relationship is almost perfect. We can therefore consider the two methods as
equivalent with respect to this criterion. Such a result was foreseeable. Indeed, both methods rely on the same idea by
evaluating the resonance energy of each hexagon. The main difference is that LFCP considers circuits of any size while
CRECP only takes into account circuits of size at most 4. Since the contribution of circuits to the resonance energy
decreases with their size, disregarding circuits of size greater than 4 has little influence on the final result.

8.3 Comparing CRECP with NICS

As CRECP and LFCP obtain similar results, we only compare CRECP with NICS. Clearly, the runtime is in favor of
CRECP which turns out to be more efficient with several orders of magnitude whatever the benzenoid and the benchmark
we consider (see Figures 25(b) and 26). For example, CRECP processes molecule 26 of B1 in 10.57 s against 38,727 s
for NICS. For some benzenoid structures (e.g. the largest considered rectangular benzenoids), NICS exceeds the time
limit and may require several days of computations. In some way, this result was foreseeable since NICS requires complex
quantum calculations and such calculations are very time-consuming.

Regarding the quality of the estimation of the aromaticity, we consider the sample Pearson correlation coefficient
between CRECP and NICS (see Figure 27 and Table 9). Figure 27 provides the number of benzenoids for various intervals
of values of the coefficient for each considered set. Globally, we can note that for about 78% of the considered benzenoids,
the coefficient is greater than 0.8. Better still, for 57%, the coefficient is greater than 0.9. The coefficient is less than 0.5
for only 3% of the considered benzenoids. Looking more closely at the results, we can note that the value of the coefficient
is not related to the size of the benzenoid. However, the shape may have some influence as shown in Figure 27. In the end,
it turns out that the CRECP and NICS trends coincide most of the time. It follows that chemists can exploit CRECP to
assess the aromaticity in a faster way than with NICS while having a reliable estimate.

32

9 Conclusions and Perspectives

In this paper, we addressed two important issues in theoretical chemistry. On one hand, we considered the exhaustive
generation of benzenoid structures satisfying a certain amount of properties. In this context, we proposed an approach
based on constraint programming. Its main advantage w.r.t. existing methods in the literature lies in its flexibility. Indeed,
we can take into account the wishes of chemists by simply adding variables and/or constraints to our general model while
existing bespoke methods rely on more rigid and complex notions and cannot be adapted without requiring heavy tasks.
Moreover, our approach turns out to be more general, making it possible to generate benzenoids with holes for instance.
On the other hand, we tackled the problem of estimating the aromaticity, which is a fundamental concept in chemistry.
We mainly presented a new method based on constraint programming for computing the local aromaticity of benzenoids.
This method refines the method proposed by Lin by dealing with local aromaticity instead of global one. In practice, it
provides a reliable estimate by mainly giving the same trends as NICS (which is considered as a reference by theoretical
chemists) while turning out to be significantly faster than NICS by several orders of magnitude.

Chemists are interested in exhaustively generating benzenoid structures with particular shapes (e.g. [Trinquier and
Malrieu, 2018, Bauschlicher et al., 2018]). We have already dealt with the main shapes in this paper. So a natural
extension of this work relies on taking into account other specific properties related to the needs of chemists. Among
these properties, a hot topic in theoretical chemistry is related to local properties which can be described as patterns (e.g.
[Qiu et al., 2020, Liu and Feng, 2020, Ajayakumar et al., 2021, Chen et al., 2021, Cheung et al., 2021, Fujise et al., 2021,
Kancherla and Jørgensen, 2020, Uryu et al., 2020, Xia et al., 2021]). We have already started to explore this promising
avenue [Carissan et al., 2021]. Another step consists in studying the limit of our approach both in terms of properties we
can express and our ability to exhaustively generate benzenoids of large size. In addition, we need to look at the impact
from a chemistry perspective. Our exhaustive generation can be useful to complete some databases (e.g. [Bauschlicher
et al., 2018]). By combining our two contributions, we offer chemists the opportunity to study aromaticity on much larger
collections of benzenoids than ever before. Beyond these contributions, this paper shows how, once again, constraint
programming can be useful to tackle and solve problems related to theoretical chemistry [Mann et al., 2014, Wu, 2004,
Simoncini et al., 2015, Ismail et al., 2019, Kim et al., 2018]. In particular, many questions about benzenoids can be
modeled as decision or optimization problems under constraints (e.g. computing the Clar number or finding the closest
structure to a Kekulé structure when no Kekulé structure exists) and can correspond to difficult tasks (e.g. computing
the Clar number is NP-hard [Bérczi-Kovács and Bernáth, 2018]). It could be of interest for both communities to study
them.

10 Acknowledgements

The authors would like to thank Mohamed Sami Cherif and the anonymous reviewers for their useful comments.

References

M. R. Ajayakumar, Ji Ma, Andrea Lucotti, Karl Sebastian Schellhammer, Gianluca Serra, Evgenia Dmitrieva, Marco
Rosenkranz, Hartmut Komber, Junzhi Liu, Frank Ortmann, Matteo Tommasini, and Xinliang Feng. Persistent peri-
Heptacene: Synthesis and In Situ Characterization. Angew. Chem. Int. Ed., 2021. ISSN 1521-3773. doi: 10.1002/anie.
202102757.

L. J. Allamandola, D. M. Hudgins, and S. A. Sandford. Modeling the Unidentified Infrared Emission with Combinations
of Polycyclic Aromatic Hydrocarbons. The Astrophysical Journal, 511(2):L115–L119, 1999. doi: 10.1086/311843.

Cyril Aumaitre and Jean-François Morin. Polycyclic Aromatic Hydrocarbons as Potential Building Blocks for Organic
Solar Cells. The Chemical Record, 19(6):1142–1154, 2019. doi: 10.1002/tcr.201900016. URL https://onlinelibrary.

wiley.com/doi/abs/10.1002/tcr.201900016.

Charles W. Bauschlicher, A. Ricca, C. Boersma, and L. J. Allamandola. The NASA ames PAH IR spectroscopic database:
Computational version 3.00 with updated content and the introduction of multiple scaling factors. The Astrophysical
Journal Supplement Series, 234(2):32, feb 2018. doi: 10.3847/1538-4365/aaa019. URL https://doi.org/10.3847%

2F1538-4365%2Faaa019.

Charles W. Bauschlicher, Jr., Els Peeters, and Louis J. Allamandola. The Infrared Spectra of Very Large, Compact,
Highly Symmetric, Polycyclic Aromatic Hydrocarbons (PAHs). The Astrophysical Journal, 678(1):316–327, 2008. doi:
10.1086/533424.

33

Uliana Beser, Marcel Kastler, Ali Maghsoumi, Manfred Wagner, Chiara Castiglioni, Matteo Tommasini, Akimitsu Narita,
Xinliang Feng, and Klaus Müllen. A C216-Nanographene Molecule with Defined Cavity as Extended Coronoid. Journal
of the American Chemical Society, 138(13):4322–4325, 2016. doi: 10.1021/jacs.6b01181.

Jordy Bouwman, Harold Linnartz, and Alexander G.G.M. Tielens. Mid-infrared spectroscopic signatures of dibenzopyrene
cations – the effect of symmetry on pah ir spectroscopy. Journal of Molecular Spectroscopy, 378:111458, 2021. ISSN 0022-
2852. doi: https://doi.org/10.1016/j.jms.2021.111458. URL https://www.sciencedirect.com/science/article/

pii/S0022285221000424.

Bouwman, J., Castellanos, P., Bulak, M., Terwisscha van Scheltinga, J., Cami, J., Linnartz, H., and Tielens, A. G. G.
M. Effect of molecular structure on the infrared signatures of astronomically relevant pahs. A&A, 621:A80, 2019. doi:
10.1051/0004-6361/201834130. URL https://doi.org/10.1051/0004-6361/201834130.

G. Brinkmann, G. Caporossi, and P. Hansen. A Constructive Enumeration of Fusenes and Benzenoids. Journal of
Algorithms, 45(2), 2002.

J. Brunvoll, R. N. Cyvin, and S. J. Cyvin. Enumeration and Classification of Double Coronoid Hydrocarbons – Appendix:
Triple Coronoids. Croatica Chemica Acta, 63(4):585–601, 1990.

E.R. Bérczi-Kovács and A. Bernáth. The complexity of the Clar number problem and an exact algorithm. J Math Chem,
56:597–605, 2018. doi: 10.1007/s10910-017-0799-8.

Gilles Caporossi and Pierre Hansen. Enumeration of polyhex hydrocarbons to h = 21. Journal of Chemical Information
and Computer Sciences, 38(4):610–619, 1998. doi: 10.1021/ci970116n. URL https://doi.org/10.1021/ci970116n.

Y. Carissan, C.-A. Dim, D. Hagebaum-Reignier, N. Prcovic, C. Terrioux, and A. Varet. Computing the Local Aromaticity
of Benzenoids Thanks to Constraint Programming. In CP, pages 673–689, 2020a.

Y. Carissan, D. Hagebaum-Reignier, N. Prcovic, C. Terrioux, and A. Varet. Using Constraint Programming to Generate
Benzenoid Structures in Theoretical Chemistry. In CP, pages 690–706, 2020b.

Y. Carissan, D. Hagebaum-Reignier, N. Prcovic, C. Terrioux, and A. Varet. Exhaustive Generation of Benzenoid Structures
Sharing Common Patterns. In CP, pages 19:1–19:18, 2021.

Ying Chen, Chaojun Lin, Zhixing Luo, Zhibo Yin, Haonan Shi, Yanpeng Zhu, and Jiaobing Wang. Double π-Extended
Undecabenzo[7]helicene. Angew. Chem. Int. Ed., 60(14):7796–7801, 2021. ISSN 1521-3773. doi: 10.1002/anie.202014621.

Z. Chen, C. S. Wannere, C. Corminboeuf, R. Puchta, and P. von Ragué Schleyer. Nucleus-Independent Chemical Shifts
(NICS) as an Aromaticity Criterion. Chem Rev, 105:3842–3888, 2005.

Kwan Yin Cheung, Kosuke Watanabe, Yasutomo Segawa, and Kenichiro Itami. Synthesis of a zigzag carbon nanobelt.
Nat. Chem., 13(3):255–259, March 2021. ISSN 1755-4349. doi: 10.1038/s41557-020-00627-5.

E. Clar. The Aromatic Sextet. Wiley, 1972.

E. Clar and R. Schoental. Polycyclic Hydrocarbons Volume 1. Springer Berlin, Berlin, 1964.

Caterina Cocchi, Deborah Prezzi, Alice Ruini, Marilia J. Caldas, and Elisa Molinari. Anisotropy and size effects on the
optical spectra of polycyclic aromatic hydrocarbons. The Journal of Physical Chemistry A, 118(33):6507–6513, 2014.
doi: 10.1021/jp503054j.

J Cyvin, J Brunvoll, and B N Cyvin. Search for Concealed Non-Kekuléan Benzenoids and Coronoids. J. Chem. Inf.
Comput. Sci., 29(4):237, 1989.

Jo Devriendt, Bart Bogaerts, Maurice Bruynooghe, and Marc Denecker. Improved static symmetry breaking for sat.
In Nadia Creignou and Daniel Le Berre, editors, Theory and Applications of Satisfiability Testing – SAT 2016, pages
104–122, 2016.

Marco Di Giovannantonio, Xuelin Yao, Kristjan Eimre, José I. Urgel, Pascal Ruffieux, Carlo A. Pignedoli, Klaus Müllen,
Roman Fasel, and Akimitsu Narita. Large-Cavity Coronoids with Different Inner and Outer Edge Structures. Journal
of the American Chemical Society, 142(28):12046–12050, 2020. doi: 10.1021/jacs.0c05268.

J. R. Dias. Valence-bond determination of diradical character of polycyclic aromatic hydrocarbons: From acenes to
rectangular benzenoids. J. Phys. Chem. A, 117:4716–4725, 2013.

34

Jerry Ray Dias. Structure and Electronic Characteristics of Coronoid Polycyclic Aromatic Hydrocarbons as Potential
Models of Graphite Layers with Hole Defects. The Journal of Physical Chemistry A, 112(47):12281–12292, 2008. doi:
10.1021/jp806987f.

B. T. Draine. Astronomical Models of PAHs and Dust. EAS Publications Series, 46:29–42, 2011. doi: 10.1051/eas/1146003.

Philip E. Eaton and Thomas W. Cole. Cubane. Journal of the American Chemical Society, 86(15):3157–3158, 1964. doi:
10.1021/ja01069a041.

J.-G. Fages, X. Lorca, and C. Prud’homme. Choco solver user guide documentation. https://choco-solver.

readthedocs.io/en/latest/.

Jean-Guillaume Fages. Exploitation de structures de graphe en programmation par contraintes. PhD thesis, École des
mines de Nantes, France, 2014.

Kei Fujise, Eiji Tsurumaki, Kan Wakamatsu, and Shinji Toyota. Construction of Helical Structures with Multiple Fused
Anthracenes: Structures and Properties of Long Expanded Helicenes. Chemistry – A European Journal, 27(14):4548–
4552, March 2021. ISSN 0947-6539. doi: 10.1002/chem.202004720.

E. Hückel. Quantentheoretische Beiträge zum Benzolproblem. Zeitschrift für Physik, 70:204–286, 1931.

Idil Ismail, Holly B. V. A. Stuttaford-Fowler, Curtis Ochan Ashok, Christopher Robertson, and Scott Habershon. Auto-
matic Proposal of Multistep Reaction Mechanisms using a Graph-Driven Search. The Journal of Physical Chemistry
A, 123(15):3407–3417, 2019. doi: 10.1021/acs.jpca.9b01014.

Sindhu Kancherla and K̊are B. Jørgensen. Synthesis of Phenacene–Helicene Hybrids by Directed Remote Metalation. J.
Org. Chem., 85(17):11140–11153, September 2020. ISSN 0022-3263. doi: 10.1021/acs.joc.0c01097.

P. W. Kasteleyn. Graph theory and crystal physics, page 43–110. Academic Press, 1967.

Marcel Kastler, Jochen Schmidt, Wojciech Pisula, Daniel Sebastiani, and Klaus Müllen. From Armchair to Zigzag
Peripheries in Nanographenes. Journal of the American Chemical Society, 128(29):9526–9534, 2006. doi: 10.1021/
ja062026h.

Aug. Kekulé. Untersuchungen über aromatische verbindungen ueber die constitution der aromatischen verbindun-
gen. Justus Liebigs Annalen der Chemie, 137(2):129–196, 1866. doi: 10.1002/jlac.18661370202. URL https:

//chemistry-europe.onlinelibrary.wiley.com/doi/abs/10.1002/jlac.18661370202.

Yeonjoon Kim, Jin Woo Kim, Zeehyo Kim, and Woo Youn Kim. Efficient prediction of reaction paths through molecular
graph and reaction network analysis. Chemical Science, 9(4):825–835, 2018. doi: 10.1039/C7SC03628K.

Akihito Konishi, Koki Horii, Daisuke Shiomi, Kazunobu Sato, Takeji Takui, and Makoto Yasuda. Open-Shell and An-
tiaromatic Character Induced by the Highly Symmetric Geometry of the Planar Heptalene Structure: Synthesis and
Characterization of a Nonalternant Isomer of Bisanthene. Journal of the American Chemical Society, 2019. doi:
10.1021/jacs.9b04080.

C. Lecoutre. Constraint Networks: Techniques and Algorithms. Wiley, 2009.

C. Lin. Efficient Method for Calculating the Resonance Energy Expression of Benzenoid Hydrocarbons Based on the
Enumeration of Conjugated Circuits. J. Chem. Inf. Comput. Sci., 40:778–783, 2000.

C. Lin and G. Fan. Algorithms for the Count of Linearly Independent and Minimal Conjugated Circuits in Benzenoid
Hydrocarbons. J. Chem. Inf. Comput. Sci, 39:782–787, 1999.

Junzhi Liu and Xinliang Feng. Synthetic tailoring of graphene nanostructures with Zigzag-Edged topologies: Progress
and perspectives. Angewandte Chemie International Edition, 59:2–18, 2020. doi: 10.1002/anie.202008838.

H.C. Longuet-Higgins. The symmetry groups of non-rigid molecules. Molecular Physics, 6(5):445–460, 1963. doi: 10.
1080/00268976300100501.

A. Luch. The Carcinogenic Effects of Polycyclic Aromatic Hydrocarbons. Imperial College Press, London, 2005. URL
https://www.worldscientific.com/worldscibooks/10.1142/p306.

M. Mann and B. Thiel. Kekulé Structures Enumeration Yields Unique SMILES. In Proceedings of Workshop on Constraint
Based Methods for Bioinformatics, 2013.

35

Martin Mann, Feras Nahar, Norah Schnorr, Rolf Backofen, Peter F. Stadler, and Christoph Flamm. Atom mapping with
constraint programming. Algorithms for Molecular Biology, 9(1):23, 2014. doi: 10.1186/s13015-014-0023-3.

Shantanu Mishra, Thorsten G. Lohr, Carlo A. Pignedoli, Junzhi Liu, Reinhard Berger, José I. Urgel, Klaus Müllen,
Xinliang Feng, Pascal Ruffieux, and Roman Fasel. Tailoring Bond Topologies in Open-Shell Graphene Nanostructures.
ACS Nano, 12(12):11917–11927, 2018. doi: 10.1021/acsnano.8b07225.

Shantanu Mishra, Doreen Beyer, Kristjan Eimre, Junzhi Liu, Reinhard Berger, Oliver Gröning, Carlo A. Pignedoli, Klaus
Müllen, Roman Fasel, Xinliang Feng, and Pascal Ruffieux. Synthesis and Characterization of π-Extended Triangulene.
Journal of the American Chemical Society, 141(27):10621–10625, 2019. doi: 10.1021/jacs.9b05319.

Shantanu Mishra, Doreen Beyer, Kristjan Eimre, Shawulienu Kezilebieke, Reinhard Berger, Oliver Gröning, Carlo A.
Pignedoli, Klaus Müllen, Peter Liljeroth, Pascal Ruffieux, Xinliang Feng, and Roman Fasel. Topological frustration
induces unconventional magnetism in a nanographene. Nature Nanotechnology, 15(1):22–28, 2020. doi: 10.1038/
s41565-019-0577-9.

Akimitsu Narita, Xiao-Ye Wang, Xinliang Feng, and Klaus Müllen. New advances in nanographene chemistry. Chemical
Society Reviews, 44(18):6616–6643, 2015. doi: 10.1039/C5CS00183H.

Zijie Qiu, Akimitsu Narita, and Klaus Müllen. Carbon nanostructures by macromolecular design from branched
polyphenylenes to nanographenes and graphene nanoribbons. Faraday Discussions, 2020. doi: 10.1039/D0FD00023J.
Publisher: The Royal Society of Chemistry.

M. Randić. Aromaticity of Polycyclic Conjugated Hydrocarbons. Chemical Reviews, 103(9):3449–3606, 2003. doi: 10.
1021/cr9903656.

M. Randić. Benzenoid Rings Resonance Energies and Local Aromaticity of Benzenoid Hydrocarbons. Journal of Compu-
tational Chemistry, 40(5):753–762, 2019.

M. Randić, X. Guo, and D. J. Klein. Analytical Expressions for the Count of LM-Conjugated Circuits of Benzenoid
Hydrocarbons. Int. J. Quantum Chem., 60:943–958, 1996.

S. Rayne and K. Forest. Singlet-triplet (S0 → T1) excitation energies of the [4×n] rectangular graphene nanoribbon series
(n=2-6): A comparative theoretical study. Comput. Theor. Chem., 976:105–112, 2011.

Alessandra Ricca, Charles W. Bauschlicher, Christiaan Boersma, Alexander G. G. M. Tielens, and Louis J. Allamandola.
The Infrared spectroscopy of compact polycyclic aromatic hydrocarbons containing up to 384 carbons. The Astrophysical
Journal, 754(1):75, 2012. doi: 10.1088/0004-637X/754/1/75.

Alessandra Ricca, Joseph E. Roser, Els Peeters, and Christiaan Boersma. Polycyclic Aromatic Hydrocarbons with Arm-
chair Edges: Potential Emitters in Class B Sources. The Astrophysical Journal, 882(1):56, 2019. doi: 10.3847/1538-4357/
ab3124.

R. Rieger and K. Müllen. Forever young: Polycyclic aromatic hydrocarbons as model cases for structural and optical
studies. Journal of Physical Organic Chemistry, 23(4):315–325, 2010. doi: 10.1002/poc.1644.

Fred J. Rispoli. Counting perfect matchings in hexagonal systems associated with benzenoids. Mathematics Magazine,
14:194–200, 2001.

F. Rossi, P. van Beek, and T. Walsh. Handbook of Constraint Programming. Elsevier, 2006.

Myriam Roy, Veronika Berezhnaia, Marco Villa, Nicolas Vanthuyne, Michel Giorgi, Jean-Valère Naubron, Salomé Poyer,
Valérie Monnier, Laurence Charles, Yannick Carissan, Denis Hagebaum-Reignier, Jean Rodriguez, Marc Gingras, and
Yoann Coquerel. Stereoselective Syntheses, Structures, and Properties of Extremely Distorted Chiral Nanographenes
Embedding Hextuple Helicenes. Angewandte Chemie International Edition, 59(8):3264–3271, 2020.

Yosadara Ruiz-Morales. The Agreement between Clar Structures and Nucleus-Independent Chemical Shift Values in
Pericondensed Benzenoid Polycyclic Aromatic Hydrocarbons: An Application of the Y-Rule. J. Phys. Chem. A, 108:
10873–10896, 2004.

J.-C. Régin. A filtering algorithm for constraints of difference in CSPs. In Proceedings of AAAI, pages 362–367, 1994.

Ana Sánchez-Grande, José I. Urgel, Libor Veis, Shayan Edalatmanesh, José Santos, Koen Lauwaet, Pingo Mutombo,
José M. Gallego, Jiri Brabec, Pavel Beran, Dana Nachtigallová, Rodolfo Miranda, Nazario Mart́ın, Pavel Jeĺınek, and
David Écija. Unravelling the Open-Shell Character of Peripentacene on Au(111). The Journal of Physical Chemistry
Letters, 12(1):330–336, 2021. doi: 10.1021/acs.jpclett.0c02518.

36

Paloma Vieira Silva and Eduardo Costa Girão. Electronic and Transport Properties of Graphene Nanoribbons Based
on Super-Heptazethrene Molecular Blocks. The Journal of Physical Chemistry C, 125(20):11235–11248, 2021. doi:
10.1021/acs.jpcc.1c02514.

David Simoncini, David Allouche, Simon de Givry, Céline Delmas, Sophie Barbe, and Thomas Schiex. Guaranteed
Discrete Energy Optimization on Large Protein Design Problems. Journal of Chemical Theory and Computation, 11
(12):5980–5989, 2015. doi: 10.1021/acs.jctc.5b00594.

Peter R. Taylor. Molecular symmetry and quantum chemistry. In Björn O. Roos, editor, Lecture Notes in Quantum
Chemistry: European Summer School in Quantum Chemistry, Lecture Notes in Chemistry. 1992.

Robert J. Ternansky, Douglas W. Balogh, and Leo A. Paquette. Dodecahedrane. Journal of the American Chemical
Society, 104(16):4503–4504, 1982. doi: 10.1021/ja00380a040.

Georges Trinquier and Jean-Paul Malrieu. Predicting the Open-Shell Character of Polycyclic Hydrocarbons in Terms of
Clar Sextets. The Journal of Physical Chemistry A, 122(4):1088–1103, 2018. doi: 10.1021/acs.jpca.7b11095.

Mizuho Uryu, Taito Hiraga, Yoshito Koga, Yutaro Saito, Kei Murakami, and Kenichiro Itami. Synthesis of Polyben-
zoacenes: Annulative Dimerization of Phenylene Triflate by Twofold C-H Activation. Angew. Chem., 132(16):6613–6616,
2020. ISSN 1521-3757. doi: 10.1002/ange.202001211.

Christine Wei Wu. Modelling Chemical Reactions Using Constraint Programming and Molecular Graphs. In Principles
and Practice of Constraint Programming, pages 808–808, 2004.

Jishan Wu, Wojciech Pisula, and Klaus Müllen. Graphenes as Potential Material for Electronics. Chemical Reviews, 107
(3):718–747, 2007. doi: 10.1021/cr068010r.

Zeming Xia, Sai Ho Pun, Han Chen, and Qian Miao. Synthesis of Zigzag Carbon Nanobelts through Scholl Reactions.
Angew. Chem. Int. Ed., 60(18):10311–10318, 2021. ISSN 1521-3773. doi: 10.1002/anie.202100343.

37

A Detailed Results for The Subset B1

Figures 28-33 describe the benzenoid structures considered in the subset B1. These structures have various sizes or shapes.
They may admit or not some symmetries. Moreover, in these figures, we also specify the values computed by CRECP
and NICS in blue and red respectively. For sake of readability, we only provide them for a single hexagon per symmetry
class. Indeed, all the hexagons of a symmetry class have the same value whatever the considered method.

1.0
13.8

0.75
14.0

0.85
14.1

0.52
11.1

0.59
13.2

0.62
16.1

0.48
12.5

0.52
16.2

(1) (2) (3) (4) (5)

0.81
14.1

0.61
11.8

0.92
13.3

0.35
7.2

0.75
16.0

0.45
9.4

0.66
13.5

0.68
15.2

0.40
9.3

0.89
14.0

(6) (7) (8) (9)

0.41
12.0

0.44
15.9

0.45
16.9

0.53
12.8

0.57
16.2

0.55
14.8

0.32
8.3

0.92
13.8

0.69
13.5

0.70
14.7

0.30
7.5

(10) (11) (12)

0.88
14.0

0.45
10.0

0.75
14.8

0.63
13.4

0.66
15.4

0.47
10.1

0.65
12.0

0.80
14.0

0.83
14.0

0.57
11.5

0.70
12.4

(13) (14) (15)

0.94
12.9

0.26
5.6

0.71
14.1

0.70
13.3

0.89
8.5

0.41
3.2

0.89
8.0

0.67
6.8

0.79
9.2

0.80
15.1

0.48
9.8

0.30
5.6

0.93
12.9

0.73
14.3

0.57
14.4

0.55
7.3

0.75
10.6

0.33
15.6

(16) (17) (18) (19)

Figure 28: Results on the set of 48 molecules of the subset B1.

38

0.00
0.6

0.75
11.7

0.60
14.1

0.33
5.4

0.85
13.5

0.31
3.8

0.62
15.5

(20) (21) (22)

0.85
13.2

0.84
13.7

0.30
3.1

0.31
4.6

0.60
15.1

0.76
13.8

0.31
4.6

0.89
13.4

0.38
7.8

0.74
13.8

0.30
2.5

0.38
7.5

0.58
14.8

(23) (24)

0.84
13.6

0.85
13.2

0.31
3.4

0.30
3.6

0.70
13.5

0.31
3.3

0.60
15.4

0.35
4.2

0.68
15.9

0.92
12.8

0.31
5.2

0.35
5.5

0.56
14.8

(25) (26)

0.48
10.6

0.52
9.3

0.00
0.3

0.00
2.5

0.82
14.4

0.77
13.4

0.33
4.8

0.90
13.1

0.36
7.1

0.31
2.9

0.60
15.3

(27) (28)

Figure 29: Results on the set of 48 molecules of the subset B1 (Figure 28 continued).

39

0.51
12.8

0.60
14.1

0.56
14.5

0.27
4.3

0.37
9.4

0.75
13.9

0.45
9.8

0.64
13.7

0.69
14.2

0.28
2.1

0.63
16.2

0.38
10.9

0.37
9.0

0.15
4.5

0.49
14.

0.52
10.6

0.56
10.8

0.00
-0.3

(29) (30) (31) (32)

0.45
12.1

0.57
14.8

0.54
16.0

0.29
4.4

0.50
12.4

0.36
8.0

0.33
7.3

0.61
14.0

0.68
15.9

0.61
16.5

0.37
10.7

0.14
4.2

0.47
14.2

0.33
6.9

0.61
16.1

0.52
12.2

0.34
8.4

0.60
13.9

0.12
0.4

(33) (34) (35)

0.41
10.9

0.53
16.2

0.58
16.7

0.32
7.2

0.49
14.5

0.49
15.7

0.29
5.8

0.27
6.7

0.41
11.7

0.80
12.8

0.31
5.9

0.74
13.8

0.69
14.1

0.26
4.2

0.80
12.8

0.30
5.8

0.74
13.7

0.69
13.9

0.28
4.3

(36) (37) (38) (39)

0.48
9.9

0.69
14.5

0.59
15.1

0.22
3.3

0.27
6.7

0.47
13.2

0.61
16.0

0.20
5.3

0.49
13.1

0.68
14.3

0.58
11.6

(40) (41) (42)

Figure 30: Results on the set of 48 molecules of the subset B1 (Figure 29 continued).

40

0.73
12.7

0.47
13.0

0.13
1.8

(43)

0.16
1.4

0.37
12.8

0.46
19.4

0.46
17.5

0.32
8.7

0.35
9.4

0.34
8.8

0.42
15.3

(44)

0.66
13.2

0.69
13.3

0.50
9.6

0.32
4.9

0.24
0.9

0.51
13.2

0.29
5.5

0.48
13.9

(45)

Figure 31: Results on the set of 48 molecules of the subset B1 (Figure 30 continued).

41

0.26
5.9

0.42
20.1

0.28
16.7

0.45
11.6

(46)

0.24
5.4

0.45
16.9

0.40
13.5

0.29
6.2

0.40
13.2

0.30
6.1

(47)

Figure 32: Results on the set of 48 molecules of the subset B1 (Figure 31 continued).

42

0.63
15.2

0.67
15.4

0.51
9.8

0.26
3.4

0.39
5.9

0.28
0.5

0.47
12.5

0.22
-0.4

0.24
1.3

0.39
8.0

0.42
11.8

0.25
0.8

0.40
10.9

0.25
1.4

(48)

Figure 33: Results on the set of 48 molecules of the subset B1 (Figure 32 continued).

43

