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Abstract

Find new islands of tractability, that is classes of CSP instances for which polytime
algorithms exist, is a fundamental task in the study of constraint satisfaction problems.
The concept of hybrid tractable class, which allows to deal simultaneously with the
restrictions of languages and, for example, the satisfaction of structural properties, is
an approach which has already shown its interest in this domain. Here we study a
hybrid class for non-binary CSP instances. With this aim in view, we consider the
Broken Triangle Property (BTP) introduced in [8]. While this tractable class has been
defined for binary instances, the authors have suggested to extend it to instances with
constraints of arbitrary arities, using the dual representation of such CSPs. We develop
this idea by proposing a new definition without exploiting the dual representation, but
using a semantic property associated to the compatibility relations of the constraints.
This class is called DBTP for Dual Broken Triangle Property. We study it in depth,
firstly to show that it is tractable. Then we compare it to some known classes. In
particular, we prove that DBTP is incomparable with BTP and that it includes some
well known tractable classes of CSPs such as β-acyclic CSPs. Then, we compare it
with the Hyper-k-Consistency, which allows us to also present new results for BTP.
Finally, we analyse DBTP from a practical viewpoint, by first highlighting that some
benchmarks which are classically used to compare the solvers are included in DBTP
and then by explaining the efficiency of solvers of the state of the art on such instances
thanks to their membership of the DBTP class.

1 Introduction

Constraint Satisfaction Problems (CSPs, see [25] for a state of the art) provide an efficient
way of formulating problems in computer science, especially in Artificial Intelligence. Nu-
merous and various problems can be modelled as CSPs like, for instance, graph coloring,
frequency assignment problem, scheduling problem or Boolean satisfiability problem (SAT).
The CSP problem can be considered as the problem of checking whether a finite set X of
variables can be assigned in their domains of values given by D, while satisfying simultane-
ously a set C of constraints.

∗This paper is an extension of [11]. The final publication is available at Springer via http://dx.doi.

org/10.1007/s10601-015-9185-y
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Formally, a CSP instance P = (X,D,C) is defined by a set X of n variables (denoted
x1, ..., xn), a set of domains D = {d1, ..., dn} (di is the set of the possible values for the
variable xi) and a set C of e constraints (denoted c1, ..., ce). Each constraint ci involves
a set of variables called the scope of ci and denoted S(ci). A constraint ci allows a set of
tuples over

∏
xj∈S(ci)

dj defined by the relation R(ci) (i.e. we assume here that the relations

are represented by sets of allowed tuples). ri = |S(ci)| is the arity of the constraint ci
while r denotes the largest arity and ρ = maxci∈C{|R(ci)|} the size of the largest relation.
In the following, without loss of generality, we assume that the CSP are normalized (i.e.
∀ci, cj ∈ C, ci 6= cj , S(ci) 6= S(cj) [3]). Usually, we distinguish binary constraints whose
arity is equal to 2 from non-binary ones. Likewise, binary CSPs (CSPs for which all the
constraints are binary) are considered separately from CSPs with constraints of arbitrary
arities. For binary CSPs, we will denote by cij the constraint involving xi and xj . For
both binary CSPs and CSPs of arbitrary arity, the problem of deciding whether a solution
(i.e. an assignment of a value to each variable which satisfies all the constraints) exists is
NP-complete.

Although the problem CSP is NP-complete, there exist classes of instances that can be
solved (and often recognized) in polynomial time. These classes are called “tractable classes”
and rely on some properties that can be verified by the instances. There are two main kinds of
such properties. The first one concerns the properties of the structure of the CSP instance
which is represented by a hypergraph (a graph in the binary case), called the constraint
(hyper)graph, whose vertices correspond to variables and edges to the constraint scopes. For
example, it is well known that solving a tree-structured binary CSP (i.e. deciding whether
it has a solution) can be achieved in linear time [14]. Another kind of properties is related to
restrictions on the language defining the constraints. These restrictions concern the domains
and/or the compatibility relations associated with the constraints. For example, it is the
case for the class of “0-1-all constraints” (ZOA [7]). More recently, some tractable classes
have been proposed which are related to these two kinds of properties, such as the Broken
Triangle Property (BTP [8]). Their interest is that they are able to take into account both
language and structure restrictions. They are thus sometimes called “hybrid classes”.

In this paper, we study a hybrid tractable class called DBTP for Dual Broken Triangle
Property. So, this class is based on the concept of “Broken Triangle” which is the basis of
BTP. While BTP is only defined for binary constraints, DBTP is defined for CSPs whose
constraints have arbitrary arities. Using the dual representation of CSPs, we can consider
that this class has been firstly (and briefly) proposed in [8], as a non-binary version of BTP.
However, we can also define DBTP by a semantic property related to the compatibility of
tuples appearing in triples of relations associated to constraints, without an explicit link to
the dual representation. But we show that these two definitions are equivalent (see Theorem
3). Nevertheless, DBTP is a tractable class quite different from BTP. For example, we prove
that DBTP is not a generalization of BTP to constraints of arbitrary arity since in the case of
binary CSPs, BTP and DBTP are formally different (see Theorem 12). Another example of
these differences is related to the fact that DBTP is a conservative property for the filtering
of domains and for the filtering of relations while BTP is conservative only for the filtering
of domains. Moreover, we show that this tractable class includes simultaneously, structural
classes such as β-acyclic CSPs but also classes defined by language restrictions. We also
establish that DBTP is incomparable with many well known tractable classes (e.g. ZOA [7],
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row-convex [1] or max-closed [19]).
As mentioned above, we prove that DBTP is a conservative property for many classical

filterings like arc-consistency or pairwise consistency. It ensues that DBTP seems to have a
real practical interest since any instance satisfying DBTP can be solved in polytime using
algorithms similar to MAC (Maintaining Arc-Consistency [26]) or RFL (Real Full Look-
ahead [23]).

This paper is organized as follows. In Section 2, we introduce the class DBTP and provide
its main features. Then in Section 3, we study the relationship between BTP and DBTP
and show that DBTP includes β-acyclic CSPs. Section 4 examines the relationship between
DBTP and other well known tractable classes. Then, due to the relationship between BTP
and hyper-3-consistency, we study the links between (D)BTP and (hyper-)k-consistency.
Finally, we study DBTP from a practical viewpoint by showing that some benchmarks of
the CSP 2008 Competition have the DBTP property and by making the links with their
solving efficiency before concluding and giving some perspectives in Section 7.

2 The Tractable Class DBTP

In this section, we first define the DBTP class and present some of its properties (notably
its tractability) before studying the effects of filtering on DBTP instances and their conse-
quences on the efficiency of their solving by solvers of the state of the art.

2.1 Definition and Properties

First, we recall the BTP property on which the DBTP property relies:

Definition 1 (Broken Triangle Property [8]) A CSP instance (X,D,C) satisfies the
Broken Triangle Property (BTP) w.r.t. the variable ordering < if, for all triples of
variables (xi, xj , xk) s.t. xi < xj < xk, s.t. (vi, vj) ∈ R(cij), (vi, vk) ∈ R(cik) and (vj , v

′
k) ∈

R(cjk), then either (vi, v
′
k) ∈ R(cik) or (vj , vk) ∈ R(cjk). If neither of these two tuples exist,

〈(vi, vj), (vi, vk), (vj , v
′
k)〉 is called a Broken Triangle on xk.

Let BTP be the set of the instances for which BTP holds w.r.t. some variable ordering.

The BTP property is relative to the compatibility between the values of domains which
can be graphically visualized on the micro-structure graph.

Definition 2 (Micro-structure [21]) The micro-structure of a binary CSP instance
P = (X,D,C) is the undirected graph µ(P ) = (V,E) where V = {(xi, vi) : xi ∈ X, vi ∈ di}
and E = { {(xi, vi), (xj , vj)} : i 6= j, cij /∈ C or (vi, vj) ∈ R(cij)}.

As each of these compatibilities involves as many values as the arity of the considered
constraint, such a property cannot be easily generalized to non-binary CSPs. So a natural
alternative1 consists in considering the compatibilities between the relations through the
notion of dual of a CSP instance. Before defining formally the notion of dual, we introduce
the notation t[Y ′], which represents the restriction of the tuple t of

∏
xi∈Y di (where Y is a

subset of variables) to the variables of the subset Y ′ ⊆ Y .

1Such an idea has already been introduced in [8] but it was just mentioned briefly and thus, it was not
studied in depth.
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Definition 3 (Dual) The dual of the CSP instance P = (X,D,C) is the binary CSP
instance P d = (Xd, Dd, Cd) where each constraint ci of C is associated to the variable xdi of
Xd whose domain ddi is defined by the tuples ti of R(ci) s.t. ∀xj ∈ S(ci), ti[{xj}] ∈ dj, and
a constraint cdij of Cd links two variables xdi and xdj of Xd if the corresponding constraints ci
and cj of C share at least a variable (i.e. S(ci) ∩ S(cj) 6= ∅). The relation R(cd) is defined
by the tuples (ti, tj) ∈ ddi × ddj s.t. ti[S(ci) ∩ S(cj)] = tj [S(ci) ∩ S(cj)].

It is well known that, for any CSP P , P has a solution iff P d has a solution.
We now define the DBTP property:

Definition 4 (Dual Broken-Triangle Property) A CSP instance P satisfies the Dual
Broken Triangle Property (DBTP) w.r.t. the constraint ordering ≺ iff the dual of P
satisfies BTP w.r.t. ≺.
Let DBTP be the set of the instances for which the DBTP property holds for some constraint
ordering.

We can observe graphically the DBTP property on the micro-structure of the dual of
the original instance. For instance, Figure 1(a) represents the micro-structure of the dual
instance of a CSP P with three constraints c1, c2 and c3. In this example, we consider four
tuples, t1 ∈ R(c1), t2 ∈ R(c2) and t3, t

′
3 ∈ R(c3) s.t. t1[S(c1) ∩ S(c2)] = t2[S(c1) ∩ S(c2)],

t1[S(c1)∩S(c3)] = t3[S(c1)∩S(c3)], t2[S(c2)∩S(c3)] = t′3[S(c2)∩S(c3)], t1[S(c1)∩S(c3)] 6=
t′3[S(c1) ∩ S(c3)] and t2[S(c2) ∩ S(c3)] 6= t3[S(c2) ∩ S(c3)]. If we consider the ordering
c1 ≺ c2 ≺ c3, P does not satisfy DBTP w.r.t. ≺. Now, if we have P ′ (see Figure 1(b)) s.t.
either t1 and t′3 (dotted edge), or t2 and t3 (dashed edge) or both are compatible, then P ′

satisfies DBTP according to ≺.

t3

3t’t1

t2
c2

c1 c3

t3

3t’t1

t2
c2

c1 c3

(a) (b)

Figure 1: Illustration of DBTP on the constraints c1, c2 and c3.

The class DBTP differs necessarily from the class BTP since DBTP may contain non-
binary instances while BTP is restricted to binary instances. It follows a natural question
about the comparison of these two classes in the particular case of binary CSPs. In partic-
ular, a binary instance may satisfy DBTP while not satisfying BTP. For instance, Figure
2(b) depicts the micro-structure of a binary instance while Figure 2(a) represents the micro-
structure of its dual. This instance is DBTP w.r.t. the ordering cij ≺ cjk ≺ cik but not BTP
since 〈(c, e), (c, a), (e, b)〉, 〈(b, e), (b, d), (e, c)〉 and 〈(b, d), (b, e), (d, f)〉 are broken triangles re-
spectively on xi, xj and xk. Note that, given three variables (respectively constraints), the
existence of a broken triangle on each of them with respect to the two other is a sufficient con-
dition in order to prevent the existence of a suitable ordering w.r.t. to BTP (resp. DBTP).
Conversely, a binary instance can satisfy BTP but not DBTP. This case is illustrated in
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Figure 2: An instance which satisfies DBTP (a) but not BTP (b).
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Figure 3: An instance satisfying BTP (a) but not DBTP (b).

Figure 3. Indeed, BTP holds w.r.t. the ordering xi < xj < xk while DBTP does not hold
because 〈(bg, dg), (bg, bf), (dg, ad)〉, 〈(bd, dg), (bd, bi), (dg, cg)〉 and 〈(bd, bg), (bd, dh), (bg, eg)〉
are broken triangles (in broken lines in Figure 3) respectively on cij , cik and cjk. Theorem
1 is deduced from these examples.

Theorem 1 Let P be a binary CSP instance.

• P satisfies DBTP 6⇒ P satisfies BTP,

• P satisfies BTP 6⇒ P satisfies DBTP.

This first theorem shows that DBTP is then not a generalization of BTP to non-binary
CSPs.

We now prove that the class of CSP instances which satisfy DBTP is tractable, thanks
to the two next lemmas, whose proofs exploit the approach proposed in [8].

Lemma 1 Any CSP instance P which satisfies DBTP w.r.t. the constraint ordering ≺ can
be solved in O(e2.r.ρ2).

Proof: The first step consists in building the dual of P , what can be achieved in O(e2.r.ρ2).
Then, as the dual of P is BTP, we know that it can be solved in O(e2.ρ2) [8]. Hence, the
overall complexity is O(e2.r.ρ2). 2
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Lemma 2 expresses that the constraint ordering ≺ related to DBTP may be computed
(if any) in polynomial time.

Lemma 2 Given any CSP instance P , determining if a constraint ordering ≺ s.t. P is
DBTP w.r.t. ≺ exists (and finding it if any) can be achieved in polynomial time.

Proof: A possible algorithm consists in computing first the dual of P and then determining
if an ordering ≺ s.t. the dual of P is BTP exists like in [8]. Both steps are polynomial (see
the previous proof and [8]). Hence, the overall complexity is polynomial. 2

The two previous lemmas allow to establish the tractability of DBTP.

Theorem 2 DBTP is a tractable class.

We now present an alternative and equivalent characterization of DBTP:

Theorem 3 A CSP instance P = (X,D,C) satisfies the DBTP property w.r.t. the con-
straint ordering ≺ iff for all triples of constraints (ci, cj , ck) s.t. ci ≺ cj ≺ ck, for all
ti ∈ R(ci), tj ∈ R(cj) and tk, t

′
k ∈ R(ck) s.t.

• ti[S(ci) ∩ S(cj)] = tj [S(ci) ∩ S(cj)]

• ti[S(ci) ∩ S(ck)] = tk[S(ci) ∩ S(ck)]

• t′k[S(cj) ∩ S(ck)] = tj [S(cj) ∩ S(ck)]

then

• either t′k[S(ci) ∩ S(ck)] = ti[S(ci) ∩ S(ck)]

• or tj [S(cj) ∩ S(ck)] = tk[S(cj) ∩ S(ck)].

Proof: P satisfies DBTP w.r.t. ≺
⇔ P d satisfies BTP w.r.t. ≺
⇔ for all triples of variables (xdi , x

d
j , x

d
k) s.t. xdi ≺ xdj ≺ xdk, for all ti ∈ ddi , tj ∈ ddj

and tk, t
′
k ∈ ddk s.t. (ti, tj) ∈ R(cdij), (ti, tk) ∈ R(cdik) and (tj , t

′
k) ∈ R(cdjk) then either

(ti, t
′
k) ∈ R(cdik) or (tj , tk) ∈ R(cdjk)
⇔ for all triples of constraints (ci, cj , ck) s.t. ci ≺ cj ≺ ck, for all ti ∈ R(ci), tj ∈ R(cj)

and tk, t
′
k ∈ R(ck) s.t. ti[S(ci)∩S(cj)] = tj [S(ci)∩S(cj)], ti[S(ci)∩S(ck)] = tk[S(ci)∩S(ck)]

and t′k[S(cj) ∩ S(ck)] = tj [S(cj) ∩ S(ck)] then either t′k[S(ci) ∩ S(ck)] = ti[S(ci) ∩ S(ck)] or
tj [S(cj) ∩ S(ck)] = tk[S(cj) ∩ S(ck)]. 2

In order to illustrate this characterization, let us consider the CSP depicted in Figure
4 (a). Clearly, from the micro-structure of its dual (see Figure 4 (b)), we can deduce that
this instance is DBTP w.r.t. the ordering cij ≺ cik ≺ cjk but not w.r.t. cjk ≺ cik ≺
cij . Now, if we take into account the alternative characterization, we obtain the same
conclusions. Indeed, regarding the ordering cij ≺ cik ≺ cjk, there is a single quadruple of
tuples (tij , tik, tjk, t

′
jk) such that tij [{xi}] = tik[{xi}], tij [{xj}] = tjk[{xj}] and tik[{xk}] =

t′jk[{xk}], namely tij = (a, c), tik = (a, e), tjk = (c, e) and t′jk = (d, e). As we have
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Figure 4: An instance satisfying DBTP with its micro-structure (a) and the micro-structure
of its dual (b).

tik[{xk}] = tjk[{xk}], the instance is DBTP w.r.t. cij ≺ cik ≺ cjk. In contrast, for the
ordering cjk ≺ cik ≺ cij , the quadruple of tuples (tjk, tik, tij , t

′
ij) with tjk = (d, e), tik =

(a, e), tij = (b, d) and t′ij = (a, c) is such that tjk[{xk}] = tik[{xk}], tjk[{xj}] = tij [{xj}]
and tik[{xi}] = t′ij [{xi}] but we have tjk[{xj}] 6= t′ij [{xj}] and tik[{xi}] 6= tij [{xi}]. So the
instance cannot be DBTP w.r.t. cjk ≺ cik ≺ cij .

The alternative characterization introduced in Theorem 3 makes possible the recognition
of DBTP instances directly by exploiting the tuples of relations without building the dual
instance, what may be of significant interest from a practical viewpoint. We discuss this
issue in Section 6.

2.2 Conservation by filtering and its consequences on solving

A filtering consistency φ is a function which associates to each CSP instance P an equivalent
instance φ(P ) (i.e. an instance which has the same solution set as P ) by deleting values
and/or tuples which cannot appear in a solution of P (see [3] for more details). Filtering
consistencies are commonly exploited before or during the solving in order to simplify the
instances. At present, we wonder what the DBTP property becomes when applying a
filtering consistency.

Definition 5 A class C of CSP instances is said conservative w.r.t. a filtering consistency
φ if it is closed under φ, that is, if the instance obtained after the application of φ belongs
to the class C.
A property is said conservative if it defines a conservative class of instances.

Property 1 DBTP is conservative for any filtering consistency which only removes values
from domains or tuples from existing relations.

Proof: Let us consider a CSP instance P satisfying DBTP w.r.t. a given constraint order-
ing. The removal of a value from the domain of a variable x of P induces the deletion of some
tuples for the constraints whose scope contains x. In other words, it implies the deletion
of some values for the variables of the dual of P . On the other part, the deletion of some
tuples is equivalent to remove some values from domains of some dual variables. Therefore,
in both cases, the deletions of values or tuples in the original instance lead to remove values
of the dual variables. As BTP is conservative w.r.t. domain filtering consistencies, the dual
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of P after these removals still satisfies BTP. Hence, P is still DBTP. 2

For instance, this property holds for any domain filtering consistency (e.g (Generalized)
Arc-Consistency or Path Inverse Consistency [4]) applied on the original instances or their
dual. In particular, it is the case for the pairwise-consistency [18] (introduced in the field
of Relational Databases Theory [2]) which is equivalent to applying arc-consistency on the
dual instance [18]. We now recall the definitions of arc and pairwise-consistency.

Definition 6 (Arc-Consistency) Given a CSP instance P = (X,D,C), a value vi ∈ di
is arc-consistent w.r.t. c ∈ C iff there exists a valid tuple t ∈ R(c) s.t. t[{xi}] = vi. A
domain di is arc-consistent w.r.t. c iff di 6= ∅ and ∀vi ∈ di, vi is arc-consistent w.r.t. c. P
is arc-consistent iff ∀di ∈ D, di is arc-consistent w.r.t. all c ∈ C.

For example, the instance described in Figure 5(a) is arc-consistent while one depicted
in Figure 4(a) is not arc-consistent since, notably, the value b of di is not arc-consistent
w.r.t. the constraint cik. Hence, enforcing the arc-consistency on this instance will delete
the values b and d in order to make the instance arc-consistent.

Definition 7 (Pairwise-Consistency [18]) A CSP instance P = (X,D,C) is pairwise-
consistent iff ∀ 1 ≤ i ≤ e, R(ci) 6= ∅ and ∀ 1 ≤ i < j ≤ e, R(ci)[S(ci) ∩ S(cj)] =
R(cj)[S(ci) ∩ S(cj)].

For example, the instance of Figure 5(a) is pairwise-consistent while one depicted in Fig-
ure 4(a) is not pairwise-consistent since, notably, R(cij)[{xi}] 6= R(cik)[{xi}] (R(cij)[{xi}] =
{a, b} and R(cik)[{xi}] = {a}). Hence, enforcing the pairwise-consistency on this instance
will delete the tuples (b, d) and (d, e).

We now investigate the consequence of Property 1 on the solving of instances which are
DBTP. Like MAC [26] maintains the arc-consistency (denoted AC) at each step of the search,
we define MPWC (for Maintaining PairWise Consistency) as the algorithm corresponding
to maintain the pairwise-consistency at each step.

Theorem 4 If a CSP instance P satisfies DBTP, then MPWC solves P in polynomial time
w.r.t. any ordering.

Proof: As the pairwise-consistency on P is equivalent to the arc-consistency on the dual of
P [18], the application of MPWC on P is equivalent to the application of MAC on the dual
of P . Moreover, as P is DBTP, P d is BTP and so, according to Theorem 7.6 of [8], MPWC
solves P in polynomial time. 2

Finally, we can derive a similar result for MAC as soon as enforcing the arc-consistency is
sufficient to entail the pairwise-consistency. We say that enforcing the arc-consistency on a
CSP P = (X,D,C) entails the pairwise-consistency if the instance P ′ = (X,D′, C) obtained
after having achieved AC is pairwise-consistent for the remaining values in the domains of
D′ (i.e. ∀ 1 ≤ i ≤ e, ∃t ∈ R(ci),∀xik ∈ S(ci), t[{xik}] ∈ d′ik and ∀ 1 ≤ i, j ≤ e, i 6= j,
∀ti ∈ R(ci) s.t. ∀xik ∈ S(ci), ti[{xik}] ∈ d′ik ,∃tj ∈ R(cj) s.t. ∀xjk ∈ S(cj), tj [{xjk}] ∈
d′jk , ti[S(ci)∩S(cj)] = tj [S(ci)∩S(cj)]). Note that we consider here a particular case where
the pairwise-consistency is a logical consequence of the application of the arc-consistency. In
other words, we obtain the pairwise-consistency simply by enforcing the arc-consistency and
so without having to enforce explicitly the pairwise-consistency. For example, the application
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of the arc-consistency on the instance depicted in Figure 4 deletes the values b and d, and
indirectly the tuples (b, d) and (d, e), what makes the obtained instance pairwise-consistent.

Lemma 3 Let P be an arc-consistent CSP instance. If the instance P ′ obtained from P
by deleting some values and enforcing AC has no empty domain and if enforcing the arc-
consistency entails the pairwise-consistency, then the dual of P ′ is arc-consistent.

Proof: Let us consider P and P ′ obtained from P by deleting some values and enforc-
ing AC such that it has no empty domain. Since P ′ is arc-consistent and enforcing the
arc-consistency entails the pairwise-consistency, P ′ is also pairwise-consistent. Thus, as the
pairwise-consistency on a CSP is equivalent to the arc-consistency on its dual [18], the dual
of P ′ is arc-consistent. 2

Theorem 5 If a CSP instance P satisfies DBTP and at each step of the search, enforcing
the arc-consistency entails the pairwise-consistency, then MAC can solve P in polynomial
time w.r.t. any ordering.

Proof: If, after having enforced arc-consistency, no domain, neither relation is empty,
then the resulting instance is pairwise-consistent and has a solution. According to lemma
3, the instance obtained after deleting some values and enforcing arc-consistency still re-
mains pairwise-consistent. Therefore, when applying MAC on the original instance, we also
maintain the pairwise-consistency. Moreover, as pairwise-consistency is equivalent to arc-
consistency on the dual problem [18], Theorem 7.6 of [8] implies that MAC can solve P in
polynomial time w.r.t. any ordering since the dual is BTP. 2

The entailment of the pairwise-consistency when enforcing the arc-consistency occurs
notably when any pair of constraints share at most one variable, as stated by the following
lemma.

Lemma 4 (Prop. 8.1, p. 146 in [20]) Let P = (X,D, C) be a CSP instance s.t. ∀ci, cj ∈
C, |S(ci) ∩ S(cj)| ≤ 1. If P is arc-consistent, then it is pairwise-consistent.

Theorem 6 If a CSP instance P = (X,D,C) s.t. ∀ci, cj ∈ C, |S(ci) ∩ S(cj)| ≤ 1 is
arc-consistent and satisfies DBTP, then MAC can solve P in polynomial time w.r.t. any
ordering.

Proof: According to Lemma 4, when any pair of constraints share at most one variable,
achieving the arc-consistency entails the pairwise-consistency. So, from Theorem 5, MAC
can solve P in polynomial time w.r.t. any ordering. 2

We can note that this theorem holds in particular for binary CSPs. Moreover, we can
also remark that Theorem 7.6 of [8] also holds for the algorithm RFL [23] since the proof
of this theorem is only based on the enforcement of the arc-consistency at each step of the
search. So, it is the same for Theorems 5 and 6. Hence, any CSP instance for which DBTP
holds can be solved in polynomial time by MAC or RFL without any additional work and
whatever the considered variable ordering. As most solvers of the state of the art rely on
either MAC or RFL, this result may explain why these solvers are efficient in practice for
solving such instances as shown in Section 6.
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Finally, if we consider the instances which do not satisfy the DBTP property, we can
observe that the simplified instances obtained by enforcing a given filtering consistency may
be DBTP. Indeed the given filtering consistency may delete all the values or tuples which
prevent the original instances from being DBTP. This issue will be studied in the next
section in which we compare DBTP and BTP and in Section 6 from a practical viewpoint.

3 DBTP vs BTP

We saw with Theorem 1, that even in the case of binary CSPs, BTP and DBTP classes
are different. Such a result was foreseeable since, even if the original instance and its dual
represent the same problem, their structure and micro-structure are quite different. This
result relies on the presence of broken triangles in the micro-structure of the instance or of
its dual instance. In both cases, these broken triangles often involve values which would
be deleted by some filtering consistency like arc-consistency. So, as DBTP and BTP are
conservative w.r.t. domain filtering consistencies, we focus our study on binary instances
which satisfy arc-consistency and thus pairwise-consistency (by lemma 3). Under these
assumptions, we can prove the following lemma:

Lemma 5 Given an arc-consistent binary CSP instance P = (X,D,C), if for some triple
(xi, xj , xk) of variables, we have a broken triangle on xk, then we have a broken triangle on
cik and one on cjk for the triple (cij , cik, cjk) in the dual.

Proof: Let xi, xj , xk ∈ X s.t. (vi, vj) ∈ R(cij), (vi, vk) ∈ R(cik), (vj , v
′
k) ∈ R(cjk),

(vi, v
′
k) 6∈ R(cik) and (vj , vk) 6∈ R(cjk). As P is pairwise-consistent, there are some val-

ues v′i ∈ di and v′j ∈ dj s.t. vi 6= v′i, vj 6= v′j , (v′i, v
′
k) ∈ R(cik) and (v′j , vk) ∈ R(cjk). So,

〈((vi, vj), (vi, vk)), ((vi, vj), (vj , v
′
k)), ((vi, vk), (v′j , vk))〉 forms a broken triangle on cjk for the

triple (cij , cik, cjk).
Likewise for 〈((vi, vj), (vj , v′k)), ((vi, vj), (vi, vk)), ((vj , v

′
k), (v′i, v

′
k))〉 on cik. 2

The presence of a broken triangle on xk for a triple (xi, xj , xk) imposes the condition xk <
max(xi, xj) on the variable ordering < (see the proof of Theorem 3.2 of [8]). Consequently,
according to lemma 5, it corresponds to impose the two conditions cjk ≺ max(cij , cik)
and cik ≺ max(cij , cjk) for the triple (cij , cik, cjk) on the constraint ordering ≺. It ensues
that any arc-consistent and pairwise-consistent binary instance which satisfies BTP and has
two broken triangles for two different variables of a same triple of variables cannot satisfy
DBTP since we will obtain all the possible broken triangles for the corresponding triple of
constraints.

Conversely, we show now that a binary instance can be arc-consistent and DBTP but not
BTP. For this purpose, let us consider a binary instance with 9 variables {xa, xb, . . . , xi}. We
define this instance by reproducing several times a same pattern s.t. each value appearing
in an instance of the pattern does not appear in any other instance. This pattern consists
in a broken triangle on a variable z for a triple (x, y, z) (i.e. which imposes the condition
z < max(x, y) on <) and each value of the variables x, y and z is linked to a given value of
any variable which is not involved in this triple. We reproduce this pattern 9 times s.t. the
following conditions are imposed:

• xa < max(xb, xc),
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Figure 5: Part of an instance satisfying DBTP, arc-consistency and pairwise-consistency but
not BTP.

• xb < max(xe, xh),

• xc < max(xe, xg),

• xd < max(xa, xg),

• xe < max(xa, xi),

• xf < max(xd, xe),

• xg < max(xh, xi),

• xh < max(xb, xd) and

• xi < max(xc, xf ).

Figure 5(b) depicts this pattern for the triple (xa, xb, xc), a broken triangle on xa (corre-
sponding to the condition xa < max(xb, xc)) and an independent variable xe while Figure
5 (a) describes the corresponding part of the dual instance. By doing this, the micro-
structure of our binary CSP or one of its dual instance have 9 connected components.
We can note that this instance is not BTP because the 9 conditions make impossible the
construction of a suitable variable ordering. In contrast, it is DBTP (w.r.t the ordering
cab ≺ cac ≺ cad ≺ cbf ≺ cbh ≺ cci ≺ cdf ≺ cdh ≺ cef ≺ cei ≺ cgh ≺ cgi ≺ caf ≺ cbc ≺ cbd ≺
cce ≺ ccg ≺ cde ≺ cdg ≺ cfi ≺ chi ≺ cae ≺ cag ≺ cbe ≺ cbg ≺ ccd ≺ ccf ≺ cdi ≺ cfh ≺ cai ≺
cbi ≺ ceg ≺ ceh ≺ cfg ≺ cah ≺ cch), arc-consistent and pairwise-consistent.

Now, we focus our study on acyclic CSP instances. [8] has already proved that such
binary CSP instances satisfy BTP. We are going to show that this is also true for DBTP.
Let TREE be the set of binary CSP instances whose constraint graph is acyclic.

Theorem 7 TREE ( DBTP .

Proof: Let DUAL-TREE be the set of binary instances which are the dual of instances
from TREE. As shown in [8], DUAL-TREE ( BTP . Hence TREE ( DBTP . 2
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Figure 6: A β-acyclic hypergraph (a), an α-acyclic and β-cyclic hypergraph (b) and an α
and β-cyclic hypergraph (c).

This result can be extended to CSP instances of arbitrary arity. For this, we must
consider the notion of cyclicity in hypergraphs, for which different degrees of cyclicity have
been defined [2, 13]. Here, we are interested by α-acyclicity and β-acyclicity. We will
first prove that β-acyclic CSPs satisfy DBTP and later, we will show it is not the case for
α-acyclic CSPs. We first recall the definition of β-acyclicity of (constraint) hypergraph.

Definition 8 ([17]) H = (X,C) is a β-acyclic hypergraph iff it has no Graham cycle. A
sequence (c1, ..., cm, cm+1) with m ≥ 3 s.t. (c1, ..., cm) are distinct and c1 = cm+1 is a
Graham cycle if each ∆i = S(ci) ∩ S(ci+1) (1 ≤ i ≤ m) is nonempty, and whenever i 6= j,
∆i and ∆j are incomparable (i.e. ∆i 6⊆ ∆j and ∆j 6⊆ ∆i).

Figure 6(a) depicts a β-acyclic hypergraph while we have two β-cyclic hypergraphs in
(b) and (c).

It has been recently shown in [9] that β-acyclic hypergraphs can be defined by applying
the two following rules that yield the empty hypergraph:

(1) If a hyperedge is empty, we remove it from C.

(2) If a vertex is a nest point (i.e. the set of hyperedges containing it is a chain for the
inclusion relation), then we remove it from H (i.e. from X and from the hyperedges
that contain it).

Theorem 8 ([9]) A hypergraph H is β-acyclic if and only if, after applying the two rules
successively until none can be applied, we obtain the empty hypergraph.

Using these definitions, we can now establish the next theorem:

Theorem 9 Given a CSP instance (X,D,C), there exists a constraint ordering ≺, s.t.
∀ci, cj , ck ∈ C s.t. ci ≺ cj ≺ ck, we have S(ci) ∩ S(ck) ⊆ S(cj) ∩ S(ck) or S(cj) ∩ S(ck) ⊆
S(ci) ∩ S(ck) if and only if (X,D,C) has a β-acyclic constraint hypergraph.

Proof: (⇒) By contraposition. So we show that if the constraint hypergraph (X,C) is
β-cyclic, then, there is no constraint ordering.

Consider a constraint hypergraph (X,C) which is β-cyclic. So, it has a Graham cycle,
denoted by the sequence of hyperedges (c1, ..., cm, cm+1). Consider an arbitrary constraint
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ordering ≺. Necessarily, among the constraints of this cycle, there is a maximum constraint
ck w.r.t. the ordering ≺. Consider its two neighbors in the cycle, denoted ci and cj (with
ci, cj ≺ ck). By definition of Graham cycles, we know that S(ci) ∩ S(ck) and S(cj) ∩ S(ck)
are incomparable. So, we have neither S(ci) ∩ S(ck) ⊆ S(cj) ∩ S(ck) nor S(cj) ∩ S(ck) ⊆
S(ci) ∩ S(ck), and then no suitable constraint ordering ≺ exists.

(⇐) Here, we use Theorem 8. So, given a CSP instance (X,D,C) which admits a
constraint ordering ≺ and has a β-acyclic constraint hypergraph H, we will show that:

(1) A hyperedge S(ci) is empty iff H without S(ci) admits an ordering and is β-acyclic.

(2) A vertex x of H is a nest point such H admits an ordering iff H without x admits an
ordering and is β-acyclic.

It is immediate to see that the property holds by applying the rule (1). So, consider the
rule (2). Assume that for a hypergraph H we have an ordering ≺. So, ∀ci, cj , ck ∈ C s.t.
ci ≺ cj ≺ ck, we have S(ci) ∩ S(ck) ⊆ S(cj) ∩ S(ck) or S(cj) ∩ S(ck) ⊆ S(ci) ∩ S(ck). We
have five cases to consider:

1. x 6∈ S(ci) ∪ S(cj) ∪ S(ck): thus after the deletion of x, neither S(ci) ∩ S(ck) nor
S(cj) ∩ S(ck) have changed. So, the property holds.

2. x ∈ S(ci) ∩ S(cj) ∩ S(ck): thus after the deletion of x, it disappears from each inter-
section S(ci) ∩ S(ck) and S(cj) ∩ S(ck), and thus, the property holds.

3. x belongs to only one set S(ci) or S(cj) or S(ck): so x belongs to no intersection and
thus, the property holds after the deletion.

4. x ∈ S(ci) ∩ S(cj) and x 6∈ S(ck): so x belongs neither to S(ci) ∩ S(ck), nor to
S(ci) ∩ S(ck) and thus, the property holds after the deletion.

5. x ∈ S(ci)∩S(ck) and x 6∈ S(cj) (or symmetrically x ∈ S(cj)∩S(ck) and x 6∈ S(ci)): so
before the deletion, we have necessarily S(ci)∩S(ck) 6⊆ S(cj)∩S(ck) and S(cj)∩S(ck) (
S(ci)∩S(ck). Thus, after the deletion of x, we have at least S(cj)∩S(ck) ⊆ S(ci)∩S(ck)

So we have shown that if we can delete the whole hypergraph, which does not contradict
the property on the ordering, necessarily, the first hypergraph is β-acyclic and admits a
suitable constraint ordering. 2

We can note that this theorem explains why the condition enunciated in lemma 4.6 of
[8] (recalled below) holds independently from the scope of the constraints.

Lemma 4.6. of [8] Let P be a CSP instance (of arbitrary arity) with constraint scopes
S(c1), S(c2), . . . , S(ce), where the constraints allow all combinations of values from some
fixed domain D. The dual instance of P , with corresponding variables 1, 2, . . . , e, has the
BTP property with respect to some ordering < if, and only if, for all triples S(ci), S(cj), S(ck)
with i < j < k we have

S(ci) ∩ S(ck) ⊆ S(cj) ∩ S(ck) or S(cj) ∩ S(ck) ⊆ S(ci) ∩ S(ck).
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Moreover, if this condition holds, then the dual of any instance P ′ with the same constraint
scopes also has the BTP property with respect to <.

This lemma and the previous theorem allow us to obtain Theorem 10 where β-ACY CLIC
is the set of CSP instances whose constraint (hyper)graph is β-acyclic.

Theorem 10 β-ACY CLIC ( DBTP .

Proof: According to Theorem 9, we know that for any β-acyclic CSP instance (X,D,C),
there exists a constraint ordering ≺, s.t. ∀ci, cj , ck ∈ C s.t. ci ≺ cj ≺ ck, we have
S(ci) ∩ S(ck) ⊆ S(cj) ∩ S(ck) or S(cj) ∩ S(ck) ⊆ S(ci) ∩ S(ck). Moreover, according to
lemma 4.6 of [8], any CSP instance satisfying the latter condition has a BTP dual. Hence
β-ACY CLIC ( DBTP . 2

Note that the equivalence in this lemma 4.6 only holds for the reverse direction. However
this does not endanger the proof of Theorem 10. Clearly, it suffices to consider a binary
instance with 3 monovalent variables (i.e. variables whose domain contains a single value)
pairwise connected (each constraint allows the single tuple). Its dual satisfies BTP while
the constraint graph is not β-acyclic.

Now, we show that if α-ACY CLIC is the set of CSP instances whose constraint (hy-
per)graph is α-acyclic, then the sets α-ACY CLIC and DBTP are incomparable. So, we
recall that α-acyclicity of (constraint) hypergraphs can be defined using the “running inter-
section property” [2], namely:

Definition 9 (X,C) is an α-acyclic hypergraph iff there exists an ordering (c1, ..., ce) s.t.

∀k, 1 < k ≤ e, ∃j < k, (S(ck) ∩
k−1⋃
i=1

S(ci)) ⊆ S(cj).

Let us consider a CSP instance with six variables xa, . . . xf and four constraints whose
scope are respectively {xa, xb, xc}, {xa, xb, xd}, {xa, xc, xe} and {xb, xc, xf}. Figure 7 depicts
its constraint hypergraph (a) and the micro-structure of its dual (b). We can note that
this instance is α-acyclic but does not satisfy DBTP since no suitable constraint ordering
exist. Moreover, it is well known that β-ACY CLIC ( α-ACY CLIC [13]. In this paper,
several equivalent definitions of β-acyclicity are given, the most simple one indicating that
a hypergraph is β-acyclic if and only if every one of its subhypergraphs is α-acyclic (a
subhypergraph of a hypergraph is defined as a subset, not necessarily proper, of its set of
hyperedges). For example, in Figure 6 (b), we have a β-cyclic hypergraph which is α-acyclic
while in (c), we have an α-cyclic hypergraph which is necessary β-cyclic.
Hence, if we denote A ⊥ B two tractable classes which are incomparable (i.e. neither A ⊆ B,
nor B ⊆ A), we obtain the following theorem:

Theorem 11 α-ACY CLIC ∩DBTP 6= ∅ and α-ACY CLIC ⊥ DBTP .

Through this section, we have established:

Theorem 12 BTP ∩DBTP 6= ∅ and BTP ⊥ DBTP .

In the next section, we study the link between DBTP and some other well known tractable
classes.
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Figure 7: An α-acyclic CSP instance (a) but which does not satisfy DBTP (b).

4 DBTP vs some tractable classes

4.1 For binary CSPs

As DBTP and BTP are two different classes, we first focus on some tractable classes included
in BTP. These classes whose definitions are recalled below rely on restricted constraint
languages.

Definition 10 (Row-convex [1]) A binary CSP instance P = (X,D,C) is said row-
convex w.r.t. a variable ordering < and a value ordering, if, for each constraint cij of C
with xi < xj, ∀vi ∈ di, {vj ∈ dj |(vi, vj) ∈ R(cij)} = [aj ..bj ] for some aj , bj ∈ dj where
[aj ..bj ] denotes the values belonging to dj between aj and bj w.r.t. the value ordering. We
denote RC the set of row-convex instances.

Definition 11 (0-1-all [7]) A binary CSP instance P = (X,D,C) is said 0-1-all if for
each constraint cij of C, for each value vi ∈ di, cij satisfies one of the following conditions:

• (ZERO) for any value vj ∈ dj , (vi, vj) 6∈ R(cij),

• (ONE) there is a unique value vj ∈ dj such as (vi, vj) ∈ R(cij),

• (ALL) for any value vj ∈ dj , (vi, vj) ∈ R(cij).

We denote ZOA the set of instances which are 0-1-all.

Definition 12 (Renamable right monotone [8]) A binary CSP instance P = (X, D,C)
is said renamable right monotone w.r.t. a variable ordering < if, for 2 ≤ j ≤ n,
each domain dj can be ordered by lj s.t. for each constraint cij of C with xi < xj,
∀vi ∈ di, vj , v′j ∈ dj, if (vi, vj) ∈ R(cij) and vj lj v

′
j then (vi, v

′
j) ∈ R(cij).

We denote RRM the set of these instances.

The next theorem shows that these tractable classes share some instances with DBTP
but are different.

Theorem 13 RC ∩DBTP 6= ∅ and RC ⊥ DBTP .
ZOA ∩DBTP 6= ∅ and ZOA ⊥ DBTP .
RRM ∩DBTP 6= ∅ and RRM ⊥ DBTP .
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Figure 8: A CSP instance which is RC, ZOA and RRM and has a chordal micro-structure
(a) and a chordal complement of micro-structure (b), but which is not DBTP (c).

Proof: If we consider the binary CSP instance of Figure 8(a), it is 0-1-all, row-convex, and
renamable right monotone w.r.t. the lexicographic value and variable orderings. However,
as shown in Figure 8(c), this instance is not DBTP. Conversely, any non-binary DBTP
instance cannot belong to RC, ZOA or RRM .

In order to prove that DBTP intersects RC, ZOA and RRM , it is sufficient to consider
a monovalent and consistent binary CSP instance with three variables and three constraints
since such an instance satisfies both DBTP , RC, ZOA and RRM . 2

Some tractable classes are related to some graphical features of their micro-structure.
This is the case of the class of instances which have a chordal micro-structure [15, 21]:

Definition 13 (Chordal micro-structure) A graph is said chordal [16] if it has no cycle
of length greater than 3 without a chord (i.e. an edge joining two non-consecutive vertices
in the cycle).
We denote CM the set of instances which have a chordal micro-structure.

Theorem 14 CM ∩DBTP 6= ∅ and CM ⊥ DBTP .

Proof: Any monovalent and consistent binary CSP instance has a chordal micro-structure
and is DBTP. So the intersection is not empty.

Consider the instance depicted in Figure 8(a). It has a chordal micro-structure but is
not DBTP. Conversely, any non-binary DBTP instance cannot belong to CM . 2

Likewise, the instances for which the complement of their micro-structure is chordal also
form a tractable class [6]:

Definition 14 (Chordal complement of micro-structure) The complement of a graph
G = (X,E) is the graph (X,E′) with E′ = {{x, y}|x, y ∈ X s.t. {x, y} /∈ E}.
We denote CCM the set of instances for which the complement of their micro-structure is
chordal.

Theorem 15 CCM ∩DBTP 6= ∅ and CCM ⊥ DBTP .

Proof: Any monovalent and consistent binary CSP instance has a chordal complement of
micro-structure and is DBTP. So the intersection is not empty.
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Consider the instance depicted in Figure 8(a). The complement of its micro-structure,
depicted in Figure 8(b), is chordal but this instance is not DBTP. Conversely, any non-
binary DBTP instance cannot belong to CCM . 2

As chordal graphs are also perfect graphs, we can derive a similar result for the class of
instances whose micro-structure is a perfect graph [27]:

Definition 15 (Perfect micro-structure) A graph is said perfect [16] if it contains no
cycle, neither the complement of a cycle with an odd length greater than 4.
We denote PM the set of instances which have a perfect micro-structure.

Theorem 16 PM ∩DBTP 6= ∅ and PM ⊥ DBTP .

The next class relies on the number of maximal cliques of the micro-structure:

Definition 16 (Maximal clique bounded [10]) A CSP instance P is said maximal
clique bounded if the number of maximal cliques in its micro-structure is polynomial w.r.t
the size of P .
We denote CL the set of these instances.

Theorem 17 CL ∩DBTP 6= ∅ and CL ⊥ DBTP .

Proof: Any monovalent and consistent binary CSP has a single maximal clique and is
DBTP. So the intersection is not empty.

Consider any binary CSP instance s.t. its micro-structure has a polynomial number
of maximal cliques. We add to such a CSP instance additional variables with additional
values and additional constraints corresponding to the instance depicted in Figure 1, s.t.
these values are not compatible with those of the first part of this instance. So, it has a
polynomial number of maximal cliques in its micro-structure but is not DBTP. Conversely,
any non-binary DBTP instance cannot belong to CL. 2

Regarding classes based on restricted structures, we have proved in Theorem 7 that
TREE ( DBTP .

4.2 For CSPs of arbitrary arity

We first consider some known tractable classes based on restricted constraint languages like
the max-closed class.

Definition 17 (Max-closed [19]) A CSP instance P = (X,D,C) is said max-closed
if for each constraint c of arity rc, ∀(v1, v2, . . . , vrc), (v′1, v

′
2, . . . , v

′
rc) ∈ R(c), (max(v1, v

′
1),

max(v2, v
′
2), . . . ,max(vrc , v

′
rc)) ∈ R(c).

We denote MC the set of max-closed instances.

Theorem 18 MC ∩DBTP 6= ∅ and MC ⊥ DBTP .

Proof: The proof of MC ∩DBTP 6= ∅ and MC 6⊆ DBTP is similar to one of Theorem 13.
Regarding DBTP 6⊆MC, any CSP instance having two variables and one binary constraint
is DBTP but not necessarily max-closed. 2
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Figure 9: An incrementally functional instance (a) but which does not satisfy DBTP (b).
An instance which is DBTP but not triangular (c).

Definition 18 (Incrementally functional [5]) A CSP instance P = (X,D,C) is said
incrementally functional if there exists a variable ordering < s.t. for 1 ≤ i < n, each
solution of P [{x1, . . . , xi}] extends to at most one solution of P [{x1, . . . , xi+1}] where, for
X ′ ⊆ X,P [X ′] denotes the CSP instance (X ′, D′, C ′) where D′ = {di|xi ∈ X ′} and C ′ =
{c′|c ∈ C s.t. S(c) ∩X ′ 6= ∅, S(c′) = S(c) ∩X ′ and R(c′) = {t[S(c′)]|t ∈ R(c)}}. We denote
IFUN the set of these instances.

Theorem 19 IFUN ∩DBTP 6= ∅ and IFUN ⊥ DBTP .

Proof: In order to prove that the intersection is not empty, we consider a CSP instance
with four monovalent variables x1, . . . , x4 and three ternary constraints c1, c2 and c3 s.t.
S(c1) = {x1, x2, x3}, R(c1) = {(v1, v2, v3)}, S(c2) = {x1, x2, x4}, R(c2) = {(v1, v2, v4)},
S(c3) = {x2, x3, x4} and R(c3) = {(v2, v3, v4)}. This instance is incrementally functional
(using the numeration of variables as ordering) and DBTP.

The instance of Figure 9(a) is incrementally functional but not DBTP (b). Conversely,
any DBTP instance having several solutions cannot be incrementally functional. 2

Definition 19 (Dual maximal clique bounded [10]) A CSP instance P is said dual
maximal clique bounded (DMCB) if the number of maximal cliques in the micro-
structure of its dual instance is polynomial w.r.t. the size of P .
We denote DCL the set of these instances.

Theorem 20 DCL ∩DBTP 6= ∅ and DCL ⊥ DBTP .

Proof: Let us consider the first instance defined in the proof of Theorem 19. The micro-
structure of its dual instance has a single maximal clique and the instance is DBTP. So,
the intersection is not empty. Regarding the instance depicted in Figure 9(b), it has a
polynomial number of maximal cliques in the micro-structure of its dual instance but is not
DBTP. Conversely, a binary instance whose constraint graph is a star and for which each
domain has several values is DBTP but has an unbounded number of maximal cliques in
the micro-structure of its dual. 2

Now we introduce a new tractable class based on a constraint language restriction.
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Definition 20 (Triangular) A CSP instance P = (X,D,C) is said triangular w.r.t. a
constraint ordering ≺ iff ∀ci, cj , ck, ci ≺ cj ≺ ck, ∀ti ∈ R(ci), tj ∈ R(cj), tk ∈ R(ck), if
ti[S(ci) ∩ S(cj)] = tj [S(ci) ∩ S(cj)] and ti[S(ci) ∩ S(ck)] = tk[S(ci) ∩ S(ck)] then, tj [S(cj) ∩
S(ck)] = tk[S(cj) ∩ S(ck)].
We denote TR the set of triangular instances.

Theorem 21 If a CSP instance is triangular w.r.t. ≺, then it satisfies DBTP w.r.t. ≺.

Proof: Assume that P is triangular but not DBTP. So, there exist three constraints ci,
cj and ck, ci ≺ cj ≺ ck, ti ∈ R(ci), tj ∈ R(cj) and tk, t

′
k ∈ R(ck) s.t. ti[S(ci) ∩ S(cj)] =

tj [S(ci) ∩ S(cj)], ti[S(ci) ∩ S(ck)] = tk[S(ci) ∩ S(ck)], t′k[S(cj) ∩ S(ck)] = tj [S(cj) ∩ S(ck)],
t′k[S(ci) ∩ S(ck)] 6= ti[S(ci) ∩ S(ck)] and tj [S(cj) ∩ S(ck)] 6= tk[S(cj) ∩ S(ck)].
As P is triangular w.r.t. ≺, we must have t′k[S(ci) ∩ S(ck)] = ti[S(ci) ∩ S(ck)] and
tj [S(cj)∩ S(ck)] = tk[S(cj)∩ S(ck)], what is not possible since P does not satisfy DBTP. 2

Theorem 22 TR ( DBTP .

Proof: Theorem 21 shows that TR ⊆ DBTP . The instance depicted in Figure 9(c) satisfies
DBTP but is not triangular. 2

Regarding classes based on restricted structures, we have proved in Theorems 10 and 11
that β-ACY CLIC ( DBTP , α-ACY CLIC ∩ DBTP 6= ∅ and α-ACY CLIC ⊥ DBTP .
Another important tractable class based on restricted structure is related to the tree-width.
We first recall the notion of tree-decomposition of graphs [24].

Definition 21 (Tree-decomposition) A tree-decomposition of a graph G = (X,E) is
a pair (N,T ) where T = (I, F ) is a tree with nodes I and edges F and N = {Ni : i ∈ I} is
a family of subsets of X, s.t. each subset Ni is a node of T and verifies:

(i) ∪i∈INi = X,

(ii) for each edge {x, y} ∈ E, there exists i ∈ I with {x, y} ⊆ Ni, and

(iii) for all i, j, k ∈ I, if k is in a path from i to j in T , then Ni ∩Nj ⊆ Nk.

The width w of a tree-decomposition (N,T ) is equal to maxi∈I |Ni| − 1. The tree-width w
of G is the minimal width over all the tree-decompositions of G.

Classically, this definition is extended to hypergraphs by considering the notion of pri-
mal graphs. The primal graph of a hypergraph (X,E) is the graph (X,E′) where E′ =
{{x, y}|∃e ∈ E s.t. x, y ∈ e}.

Definition 22 (Bounded tree-width) Let k be a fixed positive integer. The class BTWk

is the set of the instances whose tree-width is bounded by k.

Theorem 23 BTW1 ( DBTP .
For k > 1, BTWk ∩DBTP 6= ∅ and BTWk ⊥ DBTP .
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Proof: It is well known that BTW1 is the set of tree-structured binary CSP instances. So
according to Theorem 7, we have BTW1 ( DBTP .

For k > 1, as BTW1 ( BTWk, the intersection BTWk ∩DBTP is not empty. Now, let
us consider an instance having n variables with n ≥ 3, whose tree-width is bounded by a
constant k ≥ 2 and which contains the subproblem depicted in Figure 9(a). This instance
has a bounded tree-width but does not satisfy DBTP. Conversely, any instance having n
variables and one constraint of arity n is DBTP but has an unbounded tree-width. Hence
BTWk ⊥ DBTP . 2

5 Links between (D)BTP and Directional (Hyper-)k-
Consistency

In this section, we study the links existing between (D)BTP and Directional (Hyper-)k-
Consistency. Such a study is quite natural, since, as pointed in [8], BTP is a weaker form
of hyper-3-consistency [22]. We recall the definition of the Hyper-k-Consistency:

Definition 23 (Hyper-k-Consistency [22]) Given a CSP instance P = (X,D,C) and
an integer k s.t. 1 ≤ k ≤ e, P satisfies the hyper-k-consistency if, for every subset
{c1, c2, . . . ck−1, ck} of k constraints, we have

1k−1
i=1 R(ci)[(

k−1⋃
i=1

S(ci)) ∩ S(ck)] ⊆ R(ck)[(

k−1⋃
i=1

S(ci)) ∩ S(ck)]

As the hyper-3-consistency implies BTP, we can consider that the hyper-k-consistency
is a too strong property. Hence, we define a weaker form by taking into account an ordering
over the constraints:

Definition 24 (Directional Hyper-k-Consistency) Given a CSP instance P = (X,D,C),
a constraint ordering ≺ and an integer k s.t. 1 ≤ k ≤ e, P satisfies the directional hyper-k-
consistency if for every subset of k constraints s.t. c1 ≺ c2 ≺ . . . ≺ ck−1 ≺ ck,

1k−1
i=1 R(ci)[(

k−1⋃
i=1

S(ci)) ∩ S(ck)] ⊆ R(ck)[(

k−1⋃
i=1

S(ci)) ∩ S(ck)]

It is easy to see that directional hyper-k-consistency is a weaker form of hyper-k-consistency.
For example, let us consider an instance with three constraints, c1, c2 and c3 such that:

• S(c1) = {x1, x2, x3} and R(c1) = {(a, b, c)},

• S(c2) = {x2, x3, x4} and R(c2) = {(b, c, d)},

• S(c3) = {x1, x4, x5} and R(c3) = {(a, d, e), (a, f, e)}.

With the ordering c1 ≺ c2 ≺ c3, this instance satisfies directional hyper-3-consistency
since R(c1) 1 R(c2)[(S(c1) ∪ S(c2)) ∩ S(c3)] = R(c1) 1 R(c2)[{x1, x4}] = {(a, d)} ⊆
R(c3)[{x1, x4}] = {(a, d), (a, f)}, while hyper-3-consistency is not verified since R(c1) 1

R(c3)[(S(c1) ∪ S(c3)) ∩ S(c2)] = R(c1) 1 R(c3)[{x2, x3, x4}] = {(b, c, d), (b, c, f)} which is
not a subset of R(c2)[(S(c1) ∪ S(c3)) ∩ S(c2)] = {(b, c, d)}.
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Theorem 24 If a CSP instance P satisfies DBTP w.r.t. a constraint ordering ≺ and is
directional hyper-k-consistent w.r.t. ≺ for 2 ≤ k < e, then P is directional hyper-(k + 1)-
consistent w.r.t. ≺.

Proof: Assume that P is not hyper-(k + 1)-consistent. So, there is a subset of k + 1
constraints s.t. c1 ≺ . . . ≺ ck ≺ ck+1, ∃(t1, . . . , tk) ∈ R(c1) × . . . × R(ck),∀tk+1 ∈ R(ck+1),

1k
i=1 ti[(

⋃k
i=1 S(ci)) ∩ S(ck+1)] 6= tk+1[(

⋃k
i=1 S(ci)) ∩ S(ck+1)].

Let us consider the k subsets of k constraints {c1, . . . cj−1, cj+1, . . . ck, ck+1}, for 1 ≤ j ≤ k.

As P is directional hyper-k-consistent, for 1 ≤ j ≤ k, there exists a tuple tjk+1 of R(ck+1)

s.t. 1k
i=1,i6=j ti[(

⋃k
i=1,i6=j S(ci)) ∩ S(ck+1)] = tjk+1[(

⋃k
i=1,i6=j S(ci)) ∩ S(ck+1)].

Consider 1 ≤ j < j′ ≤ k. We have two cases:

(1) tjk+1 = tj
′

k+1. Then tj′ [S(cj′)∩S(ck+1)] = tjk+1[S(cj′)∩S(ck+1)] and tj [S(cj)∩S(ck+1)] =

tj
′

k+1[S(cj) ∩ S(ck+1)].

So 1k
i=1 ti[(

⋃k
i=1 S(ci))∩S(ck+1)] = tjk+1[(

⋃k
i=1 S(ci))∩S(ck+1)] and we have a contra-

diction.

(2) tjk+1 6= tj
′

k+1. We have tj [S(cj) ∩ S(cj′)] = tj′ [S(cj) ∩ S(cj′)], tj′ [S(cj′) ∩ S(ck+1)] =

tjk+1[S(cj′)∩S(ck+1)], tj [S(cj)∩S(ck+1)] = tj
′

k+1[S(cj)∩S(ck+1)], tj′ [S(cj′)∩S(ck+1)] 6=
tj

′

k+1[S(cj′) ∩ S(ck+1)] and tj [S(cj) ∩ S(ck+1)] 6= tjk+1 [S(cj) ∩ S(ck+1)].
Hence P does not satisfy DBTP w.r.t. ≺ and we have again a contradiction.

So, P is directional hyper-(k + 1)-consistent w.r.t. the order ≺. 2

As the pairwise-consistency corresponds to the hyper-2-consistency, we can deduce this
corollary:

Corollary 1 If a CSP instance P satisfies DBTP w.r.t. a constraint ordering ≺ and is
directional pairwise-consistent w.r.t. ≺, then P is directional hyper-(k+ 1)-consistent w.r.t.
≺ for 1 ≤ k < e.

So a CSP instance which is both DBTP and directional pairwise-consistent w.r.t. a given
constraint ordering is consistent. It also ensues that such a CSP instance satisfies the
directional hyper-3-consistency.

Moreover, as the hyper-k-consistency corresponds to the k-consistency on the dual prob-
lem, we can also derive the following theorem and corollary by achieving a similar reasoning.

Theorem 25 If a binary CSP instance P satisfies BTP w.r.t. a variable ordering < and
is directional k-consistent w.r.t. < for 2 ≤ k < n, then P is directional (k + 1)-consistent
w.r.t. <.

Corollary 2 If a binary CSP instance P satisfies BTP w.r.t. a variable ordering < and is
directional arc-consistent (DAC) w.r.t. <, then P is directional (k + 1)-consistent w.r.t. <
for 1 ≤ k < n.

As a consequence, a binary CSP instance which is both BTP and DAC w.r.t. a given variable
ordering is consistent.
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Figure 10: Part of an instance satisfying directional hyper-3-consistency but not BTP.

Regarding the positioning of the directional hyper-3-consistency w.r.t. to BTP, we can
prove that the directional hyper-3-consistency does not necessarily imply BTP. For example,
we can consider a binary instance with 6 variables {xa, xb, . . . , xf}. We define this instance
by reproducing several times a same pattern s.t. each value appearing in an instance of the
pattern does not appear in any other instance. This pattern consists in a broken triangle
on a variable z for a triple (x, y, z) (i.e. which imposes the condition z < max(x, y) on <)
and each value of the variables x, y and z is linked to a given value of any variable which is
not involved in this triple. We reproduce this pattern 6 times s.t. the following conditions
are imposed:

• xa < max(xb, xc),

• xb < max(xd, xe),

• xc < max(xe, xf ),

• xd < max(xa, xb),

• xe < max(xa, xb) and

• xf < max(xa, xb).

Figure 10 depicts this pattern for the triples (xa, xb, xe), a broken triangle on xe (corre-
sponding to the condition xe < max(xa, xb)) and the independent variables xc, xd and xf .
By doing this, the micro-structure of our binary CSP instance has 6 connected components.
We can note that this instance is not BTP because the 6 conditions make impossible the
construction of a suitable variable ordering. Nevertheless, it is directional hyper-3-consistent
and arc-consistent.

6 DBTP from a practical viewpoint

In this section, we study the DBTP property from a practical viewpoint. First, we show
that some benchmarks which are classically used for solver comparisons are DBTP. Then,
for these benchmarks, we highlight the consequences on the solving efficiency.
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Algorithm 1: Is DBTP

Input: a CSP instance P = (X,D,C)
Output: Boolean

1 Xo ← {xo1, . . . , xoe}
2 Do ← {do1, . . . , doe |∀1 ≤ i ≤ e, doi = {1, . . . , e}}
3 Co ← ∅
4 foreach ci, cj , ck ∈ C s.t. ci 6= cj, ci 6= ck and cj 6= ck do
5 if ∃ti ∈ R(ci), tj ∈ R(cj), tk, t

′
k ∈ R(ck) s.t. ti[S(ci) ∩ S(cj)] = tj [S(ci) ∩ S(cj)],

6 ti[S(ci) ∩ S(ck)] = tk[S(ci) ∩ S(ck)], t′k[S(cj) ∩ S(ck)] = tj [S(cj) ∩ S(ck)],
7 t′k[S(ci) ∩ S(ck)] 6= ti[S(ci) ∩ S(ck)] and tj [S(cj) ∩ S(ck)] 6= tk[S(cj) ∩ S(ck)] then
8 Co ← Co ∪ {c|S(c) = {oi, oj , ok} and R(c) = {ok < max(oi, oj)}}

9 if the CSP instance P o = (Xo, Do, Co) has a solution then
10 return true
11 else
12 return false

6.1 Benchmarks which are DBTP

Checking whether an instance P has the DBTP property can be achieved by testing the
existence of a constraint ordering ≺ s.t. P is DBTP w.r.t. ≺. To do this, the proof
of Lemma 2 suggests a method which consists in computing first the dual of P and then
checking if a constraint ordering s.t. the dual of P is BTP exists like in [8]. However, in
practice, computing the dual may require a prohibitive amount of memory. It is especially
the case if the constraints allow a large number of tuples. Moreover, if the constraints are
expressed in intention (e.g. by predicates), the memory space required for representing the
dual instance may be greatly larger than one for representing the original instance. We can
avoid building the dual by considering it in a virtual manner and by exploiting the alternative
characterization of DBTP provided in Theorem 3. Indeed, in this characterization, we
only need to manage the interactions between tuples of constraints. These interactions are
directly expressed in the dual instance but can also be deduced on the fly by taking into
account the intersection between tuples of different constraints. The second step can then be
achieved by building and solving a max-closed instance P o with a variable oi (with domain
{1, . . . , e}) per constraint ci of P and a constraint imposing ok < max(oi, oj) for all triples
of constraints (ci, cj , ck) s.t. ∃ti ∈ R(ci), tj ∈ R(cj) and tk, t

′
k ∈ R(ck), ti[S(ci) ∩ S(cj)] =

tj [S(ci) ∩ S(cj)], ti[S(ci) ∩ S(ck)] = tk[S(ci) ∩ S(ck)], t′k[S(cj) ∩ S(ck)] = tj [S(cj) ∩ S(ck)],
t′k[S(ci) ∩ S(ck)] 6= ti[S(ci) ∩ S(ck)] and tj [S(cj) ∩ S(ck)] 6= tk[S(cj) ∩ S(ck)].

Algorithm 1 implements this method. Given a CSP instance P , it returns true if P
satisfies the DBTP property, false otherwise. Lines 1-8 are devoted to the construction of
the max-closed instance P o while Line 9 consists in solving this instance in polynomial time.
Note that, if we consider the recognition method used in the proof of Lemma 2, checking
whether the dual of P is BTP requires to build exactly the same max-closed instance as P o,
what ensures the validity of Algorithm 1.

We are interested here in the 7,272 benchmark instances from the CSP 2008 Compe-
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tition2. These instances have binary or non-binary constraints which are represented in
extension (by list of allowed tuples or list of forbidden tuples) or in intention (by predicate
or global constraints). Most of the tractable classes we consider require that the constraints
are expressed in extension by lists of allowed tuples in order to guarantee a polynomial
recognition. Their recognition (including one of DBTP) may take from a few seconds to
several hours (notably for instances having constraints in intention with large arity). So,
for our experimentations, we exclude the instances containing constraints in intention with
large arity (to ensure a reasonable runtime) or global constraints (because our CSP library
does not take them into account yet). At the end, we have considered 2,800 instances for
which we have checked the belonging to the classes DBTP and BTP but also to some of the
classes previously introduced, namely TREE, β-ACY CLIC, ZOA, CM , CCM , IFUN ,
MC, TR and BTWk.

If we check the property directly on the original instances, the only instances that are
detected as DBTP are those which are acyclic or β-acyclic. We find 8 binary instances with
an acyclic constraint graph (e.g. all the instances of the hanoi family) and 23 non-binary
instances with a β-acyclic constraint hypergraph.

Tables 1 and 2-3 provide respectively the list of the binary and non-binary instances
which are detected as DBTP after having enforced the arc-consistency. They also indicate
the value of some parameters of the instances and their tree-width3 w or a range of values
when the exact value is unknown (we recall that computing w is NP-hard). Table 1 presents
the belonging of the original instances to the classes DBTP , MC, ZOA and CM (i.e. before
enforcing arc-consistency) while Tables 2 and 3 do the same for the classes DBTP and MC
before the filtering and for the class MC after having enforced the arc-consistency.

The absence of instances for which DBTP holds thanks to relational properties is partially
due to the presence of useless values in the domains and so to useless tuples in relations.
To avoid this problem, a possible solution consists in simplifying the instances by enforcing
some level of consistency (in the same spirit of hidden tractable classes introduced in [12]),
namely here the arc-consistency. The choice of the arc-consistency is quite natural since
most solvers exploit a level of consistency at least as powerful as the arc-consistency. By so
doing, 362 instances belong trivially to DBTP or to any other relational or hybrid tractable
classes since they are detected as inconsistent and so all the domains are empty (we assume
that the filtering process is not stopped as soon as a domain becomes empty). We have
found 105 instances which are arc-consistent and DBTP.

For binary instances, 37 instances have been detected as DBTP. We can note that all the
instances of families domino and hanoi are DBTP after an AC filtering. Moreover, for the
instances from families hanoi and the instances graph12-w0 and graph13-w0, the DBTP
property holds because these instances have an acyclic constraint graph. Finally, we have
observed that, once the arc-consistency has been enforced, all the instances in Table 1 also
belong to BTP , ZOA and TR while all of them except graph12-w0 and graph13-w0 are in
CM , CC, IFUN and MC. However, all the instances of the competition which are BTP are
not necessarily DBTP. For example, the instance fapp17-0300-10 is BTP, but not DBTP.
Regarding the class BTWk, the instances large-* can be assimilated to instances having
an unbounded tree-width (even if formally, it is not the case since they are instances) since

2See http://www.cril.univ-artois.fr/CPAI08 for more details.
3We recall that this notion is extended to hypergraphs by considering the notion of primal graphs.
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their tree-width is equal to their number of variables minus one.
Regarding non-binary instances, the instances of the family mknap are trivially DBTP

and β-acyclic since each one contains a single constraint. Then, we can observe that more
than 33% of instances from the primes-* families are DBTP. For ten of these instances,
the DBTP property holds because they have a β-acyclic constraint hypergraph. It follows
that the remaining instances are DBTP thanks to the features of their relations. So the
primes-* families illustrate perfectly the fact that the class DBTP is hybrid. We note that
all the DBTP instances are also triangular like in the binary case while none is incrementally
functional. The instances of the mknap family belong to MC. It is the same for some
instances of the prime-* families once the arc-consistency is enforced. Finally, the tree-width
of the DBTP instances is not necessarily bounded due to the arbitrary arity of constraints.
For example, the tree-width of the mknap-1-6 is equal to its number of variables minus one.

Table 4 provides the list of families for which no instance is DBTP, what corresponds
to 1,640 instances. The other instances which are not DBTP belong to families for which
at least one instance is DBTP or has an unknown status. At the end, the DBTP instances
only represent about 4% of the considered instances (17% if we also consider the instances
which are arc-inconsistent and so trivially DBTP). However, on the one hand, this shows
that this tractable class is not artificial, and on the other hand, their membership of DBTP
will make it possible to explain the efficiency of their solving in the next part.

6.2 Links with the solving

Generally, the instances of a given tractable class are solved thanks to a specific algorithm
which is dedicated to this particular tractable class. Here, our aim is not to solve the DBTP
instances with a specific algorithm, but to exploit the DBTP property to explain why some
instances are solved efficiently by classical algorithms like MAC [26] or RFL [23], on which
most solvers of the state of the art rely. Of course, we focus our study on instances which
are both DBTP and arc-consistent.

For the binary instances which are DBTP and arc-consistent, Theorem 5 states that
MAC solves these instances in polynomial time. In practice, MAC turns to be very efficient
since it solves all the instances listed in Table 1 in a backtrack-free manner.

Regarding the non-binary instances, the 54 DBTP instances of the primes-* families are
also solved efficiently by MAC in a backtrack-free manner (except two which require a single
backtrack). For 10 instances, the size of the largest intersection between the scopes of two
constraints does not exceed one. So, Theorem 6 holds, what explains the solving efficiency we
observe. However, this theorem concerns a particular case where the arc-consistency of the
instance entails its pairwise-consistency. Other cases may exist depending on the features of
relations. For 38 instances, enforcing the arc-consistency entails the pairwise-consistency at
each step of the search and so MAC solves them in polynomial time as stated by Theorem
5. For 6 instances, enforcing the arc-consistency is unable to entail the pairwise-consistency,
the membership of the class DBTP is not a sufficient reason to explain the efficient solving.

The mps-sentoy instance and the three first instances of the mknap family are solved
efficiently in a backtrack-free manner. As they have a single constraint, Theorem 5 holds,
what explains the efficient solving. In contrast, for the other instances of the mknap family
or the instances of the mps family, MAC does not succeed in solving them efficiently. The
explanation of this phenomenon is related to the assumption that the relations are expressed
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Instance n e d w DBTP MC ZOA CM
domino-100-100 100 100 100 2 no no no yes
domino-100-200 100 100 200 2 no no no yes
domino-100-300 100 100 300 2 no no no yes
domino-1000-100 1,000 1,000 100 2 no no no yes
domino-1000-1000 1,000 1,000 1,000 2 no no no yes
domino-1000-200 1,000 1,000 200 2 no no no yes
domino-1000-300 1,000 1,000 300 2 no no no yes
domino-1000-500 1,000 1,000 500 2 no no no yes
domino-1000-800 1,000 1,000 800 2 no no no yes
domino-2000-2000 2,000 2,000 2,000 2 no no no yes
domino-300-100 300 300 100 2 no no no yes
domino-300-200 300 300 200 2 no no no yes
domino-300-300 300 300 300 2 no no no yes

domino-3000-3000 3,000 3,000 3,000 2 no no no yes
domino-500-100 500 500 100 2 no no no yes
domino-500-200 500 500 200 2 no no no yes
domino-500-300 500 500 300 2 no no no yes
domino-500-500 500 500 500 2 no no no yes

domino-5000-5000 5,000 5,000 5,000 2 no no no yes
domino-800-100 800 800 100 2 no no no yes
domino-800-200 800 800 200 2 no no no yes
domino-800-300 800 800 300 2 no no no yes
domino-800-500 800 800 500 2 no no no yes
domino-800-800 800 800 800 2 no no no yes
hanoi-3_ext 6 5 27 1 yes no no no
hanoi-4_ext 14 13 81 1 yes no no no
hanoi-5_ext 30 29 243 1 yes no no no
hanoi-6_ext 62 61 729 1 yes no no no
hanoi-7_ext 126 125 2,187 1 yes no no no

large-80-sat_ext 80 3,160 80 79 no no no no
large-84-sat_ext 84 3,486 84 83 no no no no
large-88-sat_ext 88 3,828 88 87 no no no no
large-92-sat_ext 92 4,186 92 91 no no no no
large-96-sat_ext 96 4,560 96 95 no no no no

mps-diamond 2 1 2 1 yes yes yes yes
graph12-w0 680 340 44 1 yes yes no no
graph13-w0 916 458 44 1 yes yes no no

Table 1: List of binary instances which are detected as DBTP after having enforced the
arc-consistency and for each instance, the values of some parameters, its tree-width w and
its belonging or not to the classes DBTP , MC, ZOA and CM before enforcing the arc-
consistency.
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Instance n e d r w DBTP MC
MC
after
AC

mknap-1-0 6 1 2 6 5 yes yes yes
mknap-1-2 15 1 2 15 14 yes yes yes
mknap-1-3 20 1 2 20 19 yes yes yes
mknap-1-4 28 1 2 28 27 yes yes yes
mknap-1-5 39 1 2 39 38 yes yes yes
mknap-1-6 50 1 2 50 49 yes yes yes

primes-10-20-2-1 100 20 28 3 2 yes no no
primes-10-20-3-1 100 20 28 4 3 yes no no
primes-10-40-2-1 100 40 28 3 2 no no no
primes-10-40-3-1 100 40 28 4 [3,9] no no no
primes-10-60-2-1 100 60 28 3 [2,5] no no no
primes-10-60-2-3 100 60 28 5 [4,21] no no no
primes-10-60-2-5 100 60 28 7 [6,35] no no no
primes-10-60-3-1 100 60 28 4 [3,20] no no no
primes-10-80-2-1 100 80 28 3 [2,8] no no yes
primes-10-80-2-3 100 80 28 5 [4,27] no no no
primes-10-80-2-5 100 80 28 7 [6,42] no no yes
primes-10-80-3-1 100 80 28 4 [3,27] no no no
primes-10-80-3-3 100 80 28 6 [5,42] no no yes
primes-15-20-2-1 100 20 46 3 2 yes no no
primes-15-20-3-1 100 20 46 4 3 yes no no
primes-15-40-2-1 100 40 46 3 2 no no no
primes-15-40-2-3 100 40 46 5 [4,10] no no no
primes-15-40-3-1 100 40 46 4 [3,9] no no no
primes-15-60-2-1 100 60 46 3 [2,5] no no yes
primes-15-60-2-3 100 60 46 5 [4,21] no no no
primes-15-60-3-1 100 60 46 4 [3,20] no no no
primes-15-60-3-3 100 60 46 6 [5,34] no no no
primes-15-80-2-1 100 80 46 3 [2,8] no no yes
primes-15-80-2-3 100 80 46 5 [4,27] no no no
primes-15-80-3-1 100 80 46 4 [3,27] no no no
primes-15-80-3-3 100 80 46 6 [5,42] no no yes
primes-20-20-2-1 100 20 70 3 2 yes no no
primes-20-20-3-1 100 20 70 4 3 yes no no

Table 2: List of non-binary instances which are detected as DBTP after having enforced the
arc-consistency and for each instance, the values of some parameters, its tree-width w (or
a range) and its belonging or not to the classes DBTP and MC before enforcing the arc-
consistency and to the class MC after having enforced the arc-consistency. A dash means
that the computation cannot be achieved due to an expensive runtime.
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Instance n e d r w DBTP MC
MC
after
AC

primes-20-40-2-1 100 40 70 3 2 no no no
primes-20-40-3-1 100 40 70 4 [3,9] no no no
primes-20-60-2-1 100 60 70 3 [2,5] no no no
primes-20-60-2-3 100 60 70 5 [4,21] no no no
primes-20-60-3-1 100 60 70 4 [3,20] no no no
primes-20-80-2-1 100 80 70 3 [2,8] no no yes
primes-20-80-2-3 100 80 70 5 [4,27] no no no
primes-20-80-3-1 100 80 70 4 [3,27] no no no
primes-25-20-2-1 100 20 96 3 2 yes no no
primes-25-20-3-1 100 20 96 4 3 yes no no
primes-25-40-2-1 100 40 96 3 2 no no no
primes-25-40-3-1 100 40 96 4 [3,9] no no no
primes-25-60-2-1 100 60 96 3 [2,5] no no no
primes-25-60-2-3 100 60 96 5 [4,21] no no no
primes-25-60-3-1 100 60 96 4 [3,20] no no no
primes-25-80-2-1 100 80 96 3 [2,8] no no yes
primes-25-80-2-3 100 80 96 5 [4,27] no no no
primes-25-80-3-1 100 80 96 4 [3,27] no no no
primes-30-20-2-1 100 20 112 3 2 yes no no
primes-30-20-3-1 100 20 112 4 3 yes no no
primes-30-40-2-1 100 40 112 3 [2,2] no no no
primes-30-40-3-1 100 40 112 4 [3,9] no no no
primes-30-60-2-1 100 60 112 3 [2,5] no no no
primes-30-60-3-1 100 60 112 4 [3,20] no no no
primes-30-80-2-1 100 80 112 3 [2,8] no no yes
primes-30-80-3-1 100 80 112 4 [3,27] no no no

mps-sentoy 60 1 2 60 59 yes no -
mps-red-markshare1-1 280 11 2 130 129 yes no -
mps-red-markshare1 230 6 2 80 79 yes no -
mps-red-markshare2 270 7 2 90 89 yes no -
mps-red-blend2 2,944 196 2 2,659 2,658 yes no -
mps-red-est 146 4 2 74 73 yes no -

mps-red-markshare2-1 330 13 2 150 149 yes no -

Table 3: List of non-binary instances (Table 2 continued) which are detected as DBTP after
having enforced the arc-consistency and for each instance, the values of some parameters,
its tree-width w (or a range) and its belonging or not to the classes DBTP and MC before
enforcing the arc-consistency and to the class MC after having enforced the arc-consistency.
A dash means that the computation cannot be achieved due to an expensive runtime.
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binary non binary
BH-4-4 frb50-23 aim-100

bqwh-15-106 frb56-25 aim-200

bqwh-18-141 frb59-26 aim-50

coloring geom dubois

composed-25-1-2 graphColoring/mug pret

composed-25-1-25 graphColoring/sgb/book pseudo/aim

composed-25-1-40 graphColoring/sgb/games

composed-25-1-80 QCP-10

composed-25-10-20 QCP-15

composed-75-1-2 QCP-20

composed-75-1-25 QWH-10

composed-75-1-40 QWH-15

composed-75-1-80 QWH-20

ehi-85 rand-2-30-15-fcd

ehi-90 rand-2-40-19

fapp/fapp17 rand-2-40-19-fcd

fapp/fapp18 Rand-2-50-23

fapp/fapp19 rand-2-50-23-fcd

fapp/fapp20 tightness0.1

frb30-15 tightness0.2

frb35-17 tightness0.35

frb40-19 tightness0.5

frb45-21

Table 4: List of binary and non-binary families for which none instance is DBTP.
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in extension and to the large value of the arity of the constraint. If, the violation of this
assumption often has no consequence on the efficiency of MAC applied on DBTP instances
(all the instances of Tables 2 and 3 have constraints defined by predicates), it is not the case
here.

Finally, note that we have made the same observations when using RFL instead of MAC,
what was foreseeable since Theorems 5 and 6 also hold for RFL.

7 Conclusion and future works

In this paper, we have studied a hybrid tractable class whose instances can be solved in
polynomial time by MAC-like algorithms. We have then proved that it is incomparable
with several known tractable classes (notably BTP) and that it captures both structural
and relational tractable classes (namely β-acyclic CSPs and Triangular CSPs). We have
also compared DBTP with the Directional Hyper-k-Consistency, which led us to present new
results for BTP. Finally, we have analysed DBTP from a practical point of view. This study
has shown that DBTP is not an artificial tractable class since several classical benchmarks
among the ones used in the CSP 2008 Competition belong to DBTP. Moreover, for most of
these instances, their membership of DBTP allows us to explain their ability to be efficiently
solved by solvers of the state of the art based on algorithms like MAC or RFL.

A first extension consists in studying the link between DBTP and other tractable classes
we have not mentioned in this paper. Another one consists in considering other properties
and then in extending other tractable classes to non-binary CSPs using a similar approach,
using the dual representation. One interesting candidate could be the min-of-max extendable
property also introduced in [8].

Then, in the same spirit, we can also explore the possibility of defining new tractable
classes, taking properties like BTP (or some others) and exploiting other encodings of non-
binary CSPs.
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dynamiques. Ph.D. thesis, Université des Sciences et Techniques du Languedoc (1991)

[21] Jégou, P.: Decomposition of Domains Based on the Micro-Structure of Finite Constraint
Satisfaction Problems. In: Proceedings of AAAI, pp. 731–736 (1993)

[22] Jégou, P.: On the Consistency of General Constraint-Satisfaction Problems. In: Pro-
ceedings of AAAI, pp. 114–119 (1993)

[23] Nadel, B.: Tree Search and Arc Consistency in Constraint-Satisfaction Algorithms, pp.
287–342. In Search in Artificial Intelligence. Springer-Verlag (1988)

[24] Robertson, N., Seymour, P.: Graph minors II: Algorithmic aspects of treewidth. Algo-
rithms 7, 309–322 (1986)

[25] Rossi, F., van Beek, P., Walsh, T.: Handbook of Constraint Programming. Elsevier
(2006)

[26] Sabin, D., Freuder, E.: Contradicting Conventional Wisdom in Constraint Satisfaction.
In: Proceedings of ECAI, pp. 125–129 (1994)

[27] Salamon, A., Jeavons, P.: Perfect Constraints Are Tractable. In: Proceedings of CP,
pp. 524–528 (2008)

32


	Introduction
	The Tractable Class DBTP
	Definition and Properties
	Conservation by filtering and its consequences on solving

	DBTP vs BTP
	DBTP vs some tractable classes
	For binary CSPs
	For CSPs of arbitrary arity

	Links between (D)BTP and Directional (Hyper-)k-Consistency
	DBTP from a practical viewpoint
	Benchmarks which are DBTP
	Links with the solving

	Conclusion and future works

