
Combining Restarts, Nogoods and

Bag-Connected Decompositions for Solving CSPs∗

Philippe Jégou Cyril Terrioux
Aix Marseille Université, CNRS, ENSAM, Université de Toulon,

LSIS UMR 7296, 13397 Marseille, France
{philippe.jegou,cyril.terrioux}@lsis.org

Abstract

From a theoretical viewpoint, the (tree-)decomposition methods offer a
good approach for solving Constraint Satisfaction Problems (CSPs) when
their (tree)-width is small. In this case, they have often shown their prac-
tical interest. So, the literature (coming from Mathematics, OR or AI) has
concentrated its efforts on the minimization of a single parameter, namely
the tree-width. Nevertheless, experimental studies have shown that this
parameter is not always the most relevant to consider when solving CSPs.
So, in this paper, we highlight two fundamental problems related to the
use of tree-decomposition and for which we offer two particularly appro-
priate solutions. First, we experimentally show that the decomposition
algorithms of the state of the art produce clusters (a tree-decomposition is
a rooted tree of clusters) having several connected components. We high-
light the fact that such clusters create a real disadvantage which affects
significantly the efficiency of solving methods. To avoid this problem,
we consider here a new graph decomposition called Bag-Connected Tree-
Decomposition, which considers only tree-decompositions such that each
cluster is connected. We analyze such decompositions from an algorith-
mic point of view, especially in order to propose a first polynomial time
algorithm to compute them. Moreover, even if we consider a very well
suited decomposition, it is well known that sometimes, a bad choice for
the root cluster may significantly degrade the performance of the solv-
ing. We highlight an explanation of this degradation and we propose a
solution based on restart techniques. Then, we present a new version of
the BTD algorithm (for Backtracking with Tree-Decomposition [28]) in-
tegrating restart techniques. From a theoretical viewpoint, we prove that
reduced nld-nogoods can be safely recorded during the search and that
their size is smaller than ones recorded by MAC+RST+NG [34]. We also
show how structural (no)goods may be exploited when the search restarts
from a new root cluster. Finally, from a practical viewpoint, we show
experimentally the benefits of using independently bag-connected tree-
decompositions and restart techniques for solving CSPs by decomposition
methods. Above all, we experimentally highlight the advantages brought
by exploiting jointly these improvements in order to respond to two ma-
jor problems generally encountered when solving CSPs by decomposition
methods.

∗This paper is an extension of the works published in [29, 30]. The final publication is
available at Springer via http://dx.doi.org/10.1007/s10601-016-9248-8

1

http://dx.doi.org/10.1007/s10601-016-9248-8


1 Introduction

Constraint Satisfaction Problems (CSPs, see [41] for a state of the art) pro-
vide an efficient way of formulating problems in computer science, especially in
Artificial Intelligence.

Formally, a constraint satisfaction problem, also called constraint network,
is a triple (X,D,C), where X = {x1, . . . , xn} is a set of n variables, D =
(dx1

, . . . , dxn
) is a list of finite domains of values, one per variable, and C =

{C1, . . . , Cm} is a finite set of m constraints. Each constraint Ci is a pair
(S(Ci), R(Ci)), where S(Ci) = {xi1 , . . . , xik} ⊆ X is the scope of Ci, and
R(Ci) ⊆ dxi1

× · · · × dxik
is its compatibility relation that contains assignments

of variables of the scope which satisfy the constraint Ci. The arity of Ci is
|S(Ci)|. A CSP is called binary if all constraints are of arity 2. The structure
of a constraint network is represented by a hypergraph (which is a graph in
the binary case), called the constraint (hyper)graph, whose vertices correspond
to variables and edges to the constraint scopes. In this paper, for sake of sim-
plicity, we only deal with the case of binary CSPs but this work can easily be
extended to non-binary CSP by exploiting the 2-section [2] of the constraint
hypergraph (also called primal graph), as it will be done for our experiments
since we will consider binary and non-binary CSPs. Moreover, without loss of
generality, we assume that the network is connected. To simplify the notations,
in the sequel, we denote the graph (X, {S(C1), . . . S(Cm)}) by (X,C). An as-
signment on a subset of X is said to be consistent if it does not violate any
constraint. Determining whether a CSP has a solution (i.e. a consistent assign-
ment on all the variables) is known to be NP-complete. So the time complexity
of backtracking algorithms which are usually exploited to solve CSPs, is nat-
urally exponential, at least in O(m.dn) where d is the size of the largest domain.

Many works have been realized to make the solving more efficient in practice,
by using, for example, optimized backtracking algorithms, heuristics, constraint
learning, non-chronological backtracking or filtering techniques [41]. In order
to ensure an efficient solving, most solvers commonly exploit jointly several
of these techniques. Moreover, often, they also derive benefit from the use
of restart techniques [23, 19]. In particular, restart techniques generally allow
to reduce the impact of bad choices performed thanks to heuristics (like the
variable ordering heuristic) or of the occurrence of heavy-tailed phenomena [19].
For efficiency reasons, they are usually exploited with some learning techniques
(like recording of nld-nogoods in [34]).

Another way is related to the study of tractable classes defined by proper-
ties of constraint networks. E.g., it has been shown that if the structure of this
network is acyclic, it can be solved in linear time [16]. Using and generaliz-
ing these theoretical results, some methods to solve CSPs have been defined,
such as Tree-Clustering [11] and other methods that have improved this orig-
inal approach (like BTD [28]). This kind of methods is based on the notion
of tree-decomposition of graphs [39], roughly speaking, a tree of subsets (called
clusters) of variables. Their advantage is related to their theoretical complexity,
that is dw+1 where w is the tree-width of the constraint graph, that is the size
of the larger cluster minus one. When this graph has nice topological properties
and thus when w is small, these methods allow to solve large and hard instances,
e.g. radio link frequency assignment problems [6]. Note that in practice, the



time complexity is more related to dw
++1 where w+ ≥ w is actually an approx-

imation of the tree-width because computing an optimal tree-decomposition (of
width w) is an NP-hard problem [1]. However, the practical implementation
of such methods, even though it often shows its interest, has proved that the
minimization of the parameter w+ is not necessarily the most appropriate. Be-
sides the difficulty of computing the optimal value of w+, i.e. w, it sometimes
leads to handle optimal decompositions, but whose properties are not always
adapted to a solving that would be as efficient as possible. This has led to pro-
pose graph decomposition methods that make the solving of CSPs more efficient
in practice, but for which the value of w+ can even be really greater than w [24].

In this paper, we show that this lack of efficiency for solving CSPs using
decomposition can be explained by the nature of the decompositions for which
w+ is close to w. Indeed, minimizing w+ can produce decompositions such
that some clusters have several connected components. Unfortunately, this lack
of connectedness may lead the solving method to spend a large amount of ef-
forts to solve the subproblems related to these disconnected clusters, by pass-
ing many times from a connected component to another. To avoid this prob-
lem, we consider here a new kind of graph decomposition called Bag-Connected
Tree-Decomposition1 and its associated parameter called Bag-Connected Tree-
Width [36]. This parameter is equal to the minimal width over all the tree-
decompositions for which each cluster has a single connected component. So, the
Bag-Connected Tree-Width will be the minimum width for all Bag-Connected
Tree-Decompositions. The notion of Bag-Connected Tree-Width has been in-
troduced very recently in [36] and to date, only studied from a mathematical
viewpoint [36, 13, 22] without any perspective to be used in practice. Here we
analyze this concept in terms of its algorithmic properties. So, we firstly prove
that its computation is NP-hard. Then, we propose a first polynomial time
algorithm (in O(n(n + m))) in order to approximate this parameter, and the
associated decompositions. The experiments we present show the relevance of
this parameter, since it allows to significantly improve the solving of CSPs by
decomposition.

Moreover, if the use of a well suited decomposition for solving a constraint
network is necessary to ensure some practical efficiency, a second problem often
arises. It concerns the choice of the root of the tree decomposition. Indeed,
in [25], it has been shown that this choice plays a crucial role in ensuring the
efficiency of the solving, in a similar manner to the choice of first variables to
assign for the usual backtracking methods. Generally, this issue is dealt by a
choice of the root cluster before starting the search. Of course, this solution
can be promising but it imposes strong constraints on the ordering used for the
assignment of the variables all along the search. Indeed, if this choice is not the
most appropriate, the efficiency of search can be particularly deteriorated. In
[27], an approach has been proposed to choose a variable ordering with more
freedom but its efficiency still depends on the choice of the root cluster. And
this initial choice may be inappropriate for all the search. To overcome this
difficulty, we introduce for the first time the restart techniques in the context of
decomposition methods for solving CSPs. To describe this approach, we con-

1We use the term “bag” rather than “cluster” because it is more compatible with the
terminology of Graph Theory.



sider here the BTD method [28] which is a reference in the state of the art for
decomposition methods [38]. Note that before presenting the implementation
of the restarts in BTD, we give a detailed description of BTD-MAC which has
never been described before in the literature. Indeed, previous implementations
of BTD were in fact RFL-BTD, i.e. BTD based on Real Full Look-ahead [37]
(see [43] for a comparison between MAC and RFL). While the implementa-
tion of restarts is not particularly difficult for backtracking algorithms, unless
to ensure termination, for decomposition methods, additional difficulties arise.
In particular, if we consider the use of the usual nogoods (as the nld-nogoods
[34]), the difficulty that arises is related to a possible change of the structure of
the decomposition. Moreover, the change of root can question the validity and
therefore the use of nogoods. So, from a theoretical viewpoint, we prove that
reduced nld-nogoods can be safely recorded during the search and that their
size is smaller than ones recorded by MAC+RST+NG [34]. Moreover, since
the practical efficiency of BTD is especially due to the use of structural goods
and structural nogoods (which are induced by the considered decomposition),
we need to analyze and adapt their management in case of restarts. We also
show how structural (no)goods can be exploited when the search restarts from
a new root cluster. To this end, we define here the notion of oriented struc-
tural good. From a practical viewpoint, we show experimentally the benefits
of the use of restart techniques for solving CSPs by decomposition methods.
Finally, we highlight experimentally the benefits of joint use of Bag-Connected
Tree-Decompositions and restart techniques, showing that their joint use signif-
icantly improves the efficiency of search.

Note that the present work is applied to tree-decompositions, but it can
also be adapted to most decompositions (e.g. Hypertree-Decomposition [20] or
Hinge-Decomposition [21]). Indeed, in most CSP solving methods based on a
decomposition approach, the decompositions are computed by algorithms which
aim to approximate at best a graphical parameter (width) without taking into
account the connectedness of produced clusters, neither the solving step. So,
the problems observed here for tree-decomposition can also occur for other de-
compositions.

Section 2 recalls the principles of backtracking algorithms using nld-nogoods,
and the principles of tree-decomposition methods for solving CSPs. This section
also recalls the frame of BTD and describes in details the BTD-MAC algorithm.
Section 3 points out some problems related to the computing of “good” tree-
decompositions, i.e. for a given instance, find a suitable tree of clusters, and also,
choose for this tree, a relevant root cluster. Section 4 presents the notion of bag-
connected tree-decomposition, proposing a first algorithm to achieve one. Then,
Section 5 presents the algorithm BTD-MAC+RST which introduces restarts in
decompositions methods. In Section 6, we assess the benefits of restarts and bag-
connected tree-decomposition when solving CSPs thanks to a decomposition-
based method and we conclude in Section 7.



2 Background

In this section, we recall the necessary background about the solving of CSPs
by backtracking methods or by methods exploiting tree-decompositions.

2.1 Solving CSPs by Backtracking Methods

In the past decades, many solvers have been proposed for solving CSPs. Gen-
erally, from a practical viewpoint, they succeed in solving efficiently a large
kind of instances despite of the NP-completeness of the CSP decision prob-
lem. In most cases, they rely on optimized backtracking algorithms whose time
complexity is at least in O(m.dn). In order to ensure an efficient solving, they
commonly exploit jointly several techniques among which we can cite heuristics,
constraint learning, non-chronological backtracking, or filtering techniques (see
[41] for more details). For instance, most solvers of the state of the art main-
tain some consistency level at each step of the search, like MAC (Maintaining
Arc-Consistency [42]) or RFL (Real Full Look-ahead [37]) do for arc-consistency.

We now recall MAC with more details. During the solving, MAC devel-
ops a binary search tree unlike RFL whose search tree corresponds to a d-way
branching (see [43] for more details). More precisely, MAC can make two kinds
of decisions:

• positive decisions xi = vi which assign the value vi to the variable xi (we
denote Pos(Σ) the set of positive decisions in a sequence of decisions Σ),

• negative decisions xi 6= vi which ensure that xi cannot be assigned with
vi.

Let us consider Σ = 〈δ1, . . . , δi〉 (where each δj may be a positive or negative
decision) as the current decision sequence. A new positive decision xi+1 = vi+1

is chosen and an AC filtering is achieved. If no dead-end occurs, the search goes
on by choosing a new positive decision. Otherwise, the value vi+1 is deleted
from the domain dxi+1

, and an AC filtering is realized. If a dead-end occurs
again, we backtrack and change the last positive decision x` = v` to x` 6= v`.

More recently, restart techniques have been introduced in the CSP frame-
work (e.g. in [34]). They generally allow to reduce the impact of bad choices
performed thanks to heuristics (like the variable ordering heuristic) or of the
occurrence of heavy-tailed phenomena. For efficiency reasons, they are usually
exploited with some learning techniques (like recording of nld-nogoods in [34]).

Before introducing the reduced nld-nogoods (for negative last decision no-
goods), we first recall the notion of nogood:

Definition 1 ([34]) Given a CSP P = (X,D,C) and a set of decisions ∆,
P|∆ is the CSP (X,D′, C) with D′ = (d′x1

, . . . , d′xn
) such that for any positive

decision xi = vi, d
′
xi

= {vi} and for any negative decision xi 6= vi, d
′
xi

=
dxi
\{vi}. ∆ is a nogood of P if P|∆ is inconsistent.

In the following, like in [34], we assume that for any variable xi and value
vi, the positive decision xi = vi is considered before the decision xi 6= vi. By so
doing, nogoods can be used to represent some unfruitful part of the search tree,
as stated in the following proposition.



x11

x3

x7

x6

x10

x9

x8

x5

x4
x2

x1 x1 x2 x3x3

x2x3 x4 x5

x6x3 x4 x5 x6x3 x4 x5

x8 x9x3

x6x5 x7 x10x11

E5

E4

E3

E1

E2

E7

x8x9x10

E6

(a) (b)

Figure 1: A constraint graph on 11 variables (a) and an optimal tree-
decomposition (b).

Proposition 1 ([34]) Let Σ = 〈δ1, . . . , δk〉 be the sequence of decisions taking
along the branch of the search tree when solving a CSP P . For any subsequence
Σ′ = 〈δ1, . . . , δ`〉 of Σ s.t. δ` is a negative decision, the set Pos(Σ′) ∪ {¬δ`}
is a nogood (called a reduced nld-nogood) of P with ¬δ` the positive decision
corresponding to δ`.

In other words, given a sequence Σ of decisions taking along the branch of a
search tree, each reduced nld-nogood characterizes a visited inconsistent part of
this search tree. When a restart occurs, an algorithm like MAC+RST+NG [34]
can record several new reduced nld-nogoods and exploit them later to prevent
from exploring again an already visited part of the search space. These nld-
nogoods can be efficiently computed and stored as a global constraint with an
efficient specific propagator for enforcing AC [34].

2.2 Solving CSPs using Graph Decomposition

From a historical point of view, Tree-Clustering [11] is the reference method for
solving binary CSPs by exploiting the structure of their constraint graph. It is
based on the notion of tree-decomposition of graphs [39].

Definition 2 Given a graph G = (X,C), a tree-decomposition of G is a pair
(E, T ) with T = (I, F ) a tree and E = {Ei : i ∈ I} a family of subsets of X,
such that each subset (called cluster or bag in Graph Theory) Ei is a node of T
and satisfies:

(i) ∪i∈IEi = X,

(ii) for each edge {x, y} ∈ C, there exists i ∈ I with {x, y} ⊆ Ei, and

(iii) for all i, j, k ∈ I, if k is in a path from i to j in T , then Ei ∩ Ej ⊆ Ek.

The width w+ of a tree-decomposition (E, T ) is equal to maxi∈I |Ei| − 1. The
tree-width w of G is the minimal width over all the tree-decompositions of G.

Figure 1(b) presents a tree-decomposition of the graph depicted in Figure
1(a). It is a possible tree-decomposition for this graph. So, we get E1 =



{x1, x2, x3}, E2 = {x2, x3, x4, x5}, E3 = {x3, x4, x5, x6}, E4 = {x5, x6, x7},
E5 = {x3, x8, x9}, E6 = {x8, x9, x10} and E7 = {x10, x11}. One can see that the
proposed tree satisfies the three conditions of a tree-decomposition. Moreover,
the tree-width of this graph is 3 since this tree-decomposition has minimal width
over all the tree-decompositions of the graph and because its maximum size of
clusters is 4.

The first version of Tree-Clustering [11], begins by computing a tree-decom-
position (using the algorithm MCS [45]). Note that the computed tree-decompo-
sition is not necessarily optimal, that is its width may be different from w. Thus,
for this width w+ (the size of the largest cluster), we have w+ 1 ≤ w+ + 1 ≤ n.
In the second step, the clusters are solved independently, considering each clus-
ter as a subproblem, and then, enumerating all its solutions. The next step
consists in building an acyclic CSP whose variables correspond to the clusters.
Finally, a global solution of the initial CSP, if one exists, can be found efficiently
by solving this acyclic CSP. The time and space complexities of this first ver-
sion is O(n.dw

++1). Note that this first approach has been improved to reach
a space complexity in O(n.s.ds) [8, 7] where s is the size of the largest inter-
section (separator) between two clusters (s ≤ w+). Unfortunately, this kind of
approach which solves completely each cluster is not efficient in practice. So,
later, the Backtracking on Tree-Decomposition method (denoted BTD [28]) has
been proposed and shown to be really more efficient from a practical viewpoint
and appears in the state of the art as a reference method for this type of approach
[38]. While this approach (which will be described in details in the next subsec-
tion) has shown its practical interest, from a theoretical viewpoint, in the worst
case, it has the same complexities as the improved version of Tree-Clustering
(e.g. [8, 7]), that is O(n.dw

++1) for time complexity, and O(n.s.ds) for space
complexity. So, to make structural methods efficient, we must a priori minimize
the values of w+ and s when computing the tree-decomposition. Unfortunately,
computing an optimal tree-decomposition (i.e. a tree-decomposition of width
w) is NP-hard [1]. So, many works deal with this problem. They often exploit
an algorithmic approach related to triangulated graphs which are also called
chordal graphs. An undirected graph is called triangulated if every cycle of
length strictly greater than 3 possesses a chord, that is, an edge joining two
nonconsecutive vertices in the cycle (see [18] for an introduction to triangu-
lated graphs). For example, if we consider the graph given in Figure 1, one
can associate a triangulated graph induced by the addition of two new edges
(depicted with dotted lines in Figure 2) which join two nonconsecutive ver-
tices in the cycles whose length is greater than 3 (cycles [x2, x3, x6, x5, x2] and
[x3, x8, x10, x9, x3]). Note that the maximal cliques of this triangulated graph
correspond to the clusters of the depicted tree-decomposition.

To compute tree-decompositions, one can distinguish different classes of ap-
proaches based on triangulated graphs. On the one hand, the methods looking
for optimal decompositions or their approximations have not shown their practi-
cal interest, due to a too expensive runtime w.r.t. the weak improvement of the
value w+. On the other hand, the methods with no guarantee of optimality (like
ones based on heuristic triangulations) are commonly used [11, 24, 31]. They
run in polynomial time (between O(n+m) and O(n3)), are easy to implement
and their advantage seems justified. Indeed, these heuristics appear to obtain
triangulations reasonably close to the optimum [32]. In practice, the most used
methods to find tree-decompositions are based on MCS [45] and Min-Fill [40]



x11

x3

x7

x6

x10

x9

x8

x5

x4
x2

x1

Figure 2: The constraint graph of Figure 1 after a triangulation.

which give good approximations of w+. Moreover, in [24], experiments have
shown that the efficiency for solving CSPs is not only related to the value of
w+, but also to the value of s. Nevertheless, to our knowledge, these studies
were only focused on the values of w+ (and sometimes s), not on the structure
of clusters which seems to be a relevant parameter. This question is studied in
the next section, showing that topological properties of clusters constitute also
a crucial parameter for solving CSPs.

Before that, we recall how the Min-Fill heuristic computes a tree-decomposi-
tion. The first step is to calculate a triangulation of the graph. For a given
graph G = (X,C), a set of edges C ′ will be added so that the resulting graph
G′ = (X,C ∪ C ′) is triangulated. Min-Fill will order the vertices from 1 to
n. At each step, a vertex is numbered by choosing a unnumbered vertex x
that minimizes the number of edges to be added in G′ to make a clique with
the set of unnumbered neighboring vertices of x. Once a vertex is numbered,
it is eliminated. After this processing, the vertices have been numbered from
1 to n, and it is ensured that for a given vertex x with number i, its neigh-
boring vertices in G′ with a higher number j > i, form a clique. The or-
der defined by these numbers is called a perfect elimination order. For ex-
ample, if we consider the graph given in Figure 1, a possible order found by
Min-Fill is [x1, x7, x11, x10, x8, x9, x2, x3, x4, x5, x6]. So, when the vertex x10

is numbered, Min-Fill adds the edge {x8, x9} while when the vertex x2 is
numbered, Min-Fill adds the edge {x3, x5}. So, one can see in Figure 2 that
[x1, x7, x11, x10, x8, x9, x2, x3, x4, x5, x6] is a perfect elimination order. The cost
of this first step is O(n3).

The second step is to compute the maximal cliques of G′. Since G′ is tri-
angulated and we have a perfect elimination order, it can be achieved in linear
time, i.e. in O(n+m′) where m′ = |C ∪ C ′| [17, 18]. Each maximal clique cor-
responds to a cluster of the associated tree-decomposition. In the example in
Figure 2, the maximal cliques are {x1, x2, x3}, {x2, x3, x4, x5}, {x3, x4, x5, x6},
{x5, x6, x7}, {x3, x8, x9}, {x8, x9, x10} and {x10, x11} which correspond to the
clusters of the tree-decomposition.

The third step computes the tree structure of the decomposition. Several
approaches exist. A simple way consists in computing a maximum spanning
tree (the constraint graph is assumed to be connected) of a graph whose ver-
tices correspond to the maximal cliques (i.e. clusters Ei), and edges link two
maximal cliques sharing at least one vertex and are labeled with the size of
these intersections. This treatment can be achieved in O(n3) (e.g. by Prim’s



algorithm). Overall, the cumulative cost of these three steps is in O(n3).

2.3 Backtracking on Tree-Decomposition: The BTD Method

It is well known that the backtracking methods (with additional improvements
described above) can be really efficient in practice, even if they do not give
guarantee with respect to the time complexity in the worst case. In contrast,
the decompositions methods have complexity bounds which can be significantly
better, but sometimes at the expense of a good practical efficiency. Following
these observations, the BTD method (for Backtracking on Tree-Decomposition)
has been proposed to take advantage of both the practical efficiency of back-
tracking algorithms and complexity bounds of decomposition methods. We
now describe BTD [28] in more detailed way. Given a tree-decomposition
(E, T ) and a root cluster Er, we denote Desc(Ej) the set of vertices (vari-
ables) belonging to the union of the descendants Ek of Ej in the tree rooted in
Ej , Ej included. As indicated before, Figure 1(b) presents a possible tree-
decomposition of the graph depicted in Figure 1(a), whose root is E1 and
such that Desc(E1) = X, Desc(E2) = E2 ∪ E3 ∪ E4 = {x2, x3, x4, x5, x6, x7},
Desc(E3) = E3 ∪ E4 = {x3, x4, x5, x6, x7} and Desc(E4) = E4 = {x5, x6, x7}.

Given a compatible cluster ordering < (i.e. an ordering which can be pro-
duced by a depth-first traversal of T from the root cluster Er), BTD achieves a
backtrack search by using a variable ordering � (said compatible) s.t. ∀x ∈ Ei,
∀y ∈ Ej , with Ei < Ej , x � y. In other words, the cluster ordering induces a
partial ordering on the variables since the variables in Ei are assigned before
those in Ej if Ei < Ej . For the example of Figure 1, E1 < E2 < E3 < E4 <
E5 < E6 < E7 (respectively x1 � x2 � x3 � . . . � x11) is a possible compatible
ordering on E (respectively X). In practice, BTD starts its backtrack search
by assigning consistently the variables of the root cluster Er before exploring a
child cluster. When exploring a new cluster Ei, since the variables in the parent
cluster Ep(i) (and so in the separator Ei ∩ Ep(i)

2) are already assigned, it only
has to assign the variables which appear in Ei\(Ei ∩ Ep(i)).

In order to solve each cluster, BTD can exploit any solving algorithm which
does not alter the structure. For instance, BTD can rely on the algorithm MAC
(for Maintaining Arc-Consistency [42]). We denote BTD-MAC the version of
BTD relying on MAC for solving each cluster. We can note that, in BTD-MAC,
the next positive decision necessarily involves a variable of the current cluster Ei

and that only the domains of the future variables in Desc(Ei) can be impacted
by the AC filtering (since Ei ∩ Ep(i) is a separator of the constraint graph and
all its variables have already been assigned).

When BTD has consistently assigned the variables of a cluster Ei, it then
tries to solve each subproblem rooted in each child cluster Ej . More precisely, for
a child Ej and a current decision sequence Σ, it attempts to solve the subproblem
induced by the variables of Desc(Ej) and the decision set Pos(Σ)[Ei ∩Ej ] (i.e.
the set of positive decisions involving the variables of Ei ∩ Ej). Once this
subproblem solved (by showing that there is a solution or showing that there is
none), it records a structural good or nogood. Formally, given a cluster Ei and
Ej one of its children, a structural good (resp. nogood) of Ei with respect to
Ej is a consistent assignment A of Ei ∩ Ej such that A can (resp. cannot) be

2We assume that Ei ∩ Ep(i) = ∅ if Ei is the root cluster.



Algorithm 1: BTD-MAC (InOut: P = (X,D,C): CSP; In: Σ: sequence of
decisions, Ei: Cluster, VEi : set of variables; InOut: G: set of goods, N : set of
nogoods)

1 if VEi
= ∅ then

2 result← true
3 S ← Sons(Ei)
4 while result = true and S 6= ∅ do
5 Choose a cluster Ej ∈ S
6 S ← S\{Ej}
7 if Pos(Σ)[Ei ∩ Ej ] is a nogood in N then result← false
8 else if Pos(Σ)[Ei ∩ Ej ] is not a good of Ei w.r.t. Ej in G then
9 result← BTD-MAC(P ,Σ,Ej ,Ej\(Ei ∩ Ej),G,N)

10 if result = true then
11 Record Pos(Σ)[Ei ∩ Ej ] as good of Ei w.r.t. Ej in G

12 else if result = false then
13 Record Pos(Σ)[Ei ∩ Ej ] as nogood of Ei w.r.t. Ej in N

14 return result

15 else
16 Choose a variable x ∈ VEi

17 Choose a value v ∈ dx

18 dx ← dx\{v}
19 if AC (P ,Σ∪〈x = v〉) then result← BTD-MAC(P , Σ∪〈x = v〉, Ei, VEi

\{x}, G, N)

20 else result← false
21 if result = false then
22 if AC (P ,Σ ∪ 〈x 6= v〉) then result← BTD-MAC(P ,Σ ∪ 〈x 6= v〉,Ei,VEi

,G,N)

23 return result

consistently extended on Desc(Ej) [28]. In the particular case of BTD-MAC,
the consistent assignment of A will be represented by the restriction of the set
of positive decisions of Σ on Ei ∩Ej , namely Pos(Σ)[Ei ∩Ej ]. These structural
(no)goods can be used later in the search in order to avoid exploring a redundant
part of the search tree. Indeed, once the current decision sequence Σ contains
a good (resp. nogood) of Ei w.r.t. Ej , BTD has already proved previously
that the corresponding subproblem induced by Desc(Ej) and Pos(Σ)[Ei ∩ Ej ]
has a solution (resp. none) and so does not need to solve it again. In the
case of a good, BTD keeps on the search with the next child cluster. In the
case of a nogood, it backtracks. For example, let us consider a CSP on 11
variables x1, . . . , x11 for which each domain is {a, b, c} and whose constraint
graph and a possible tree-decomposition are given in Figure 1. Assume that
the current consistent decision sequence Σ = 〈x1 = a, x2 6= b, x2 = c, x3 = b〉
has been built according to a variable order compatible with the cluster order
E1 < E2 < E3 < E4 < E5 < E6 < E7. BTD tries to solve the subproblem
rooted in E2 and once solved, records {x2 = c, x3 = b} as a structural good or
nogood of E1 w.r.t. E2. If, later, BTD tries to extend the consistent decision
sequence 〈x1 6= a, x3 = b, x1 = b, x2 6= a, x2 = c〉, it keeps on its search with the
next child cluster of E1, namely E4, if {x2 = c, x3 = b} has been recorded as a
good, or backtracks to the last decision in E1 if {x2 = c, x3 = b} corresponds to
as a nogood.

Algorithm 1 corresponds to the algorithm BTD-MAC. Initially, the current
decision sequence Σ and the sets G and N of recorded structural goods and
nogoods are empty and the search starts with the variables of the root cluster
Er. Given a current cluster Ei and the current decision sequence Σ, lines 16-
23 consist in exploring the cluster Ei by assigning the variables of VEi

(with



VEi
the set of unassigned variables of the cluster Ei) like MAC would do while

lines 1-14 allow to manage the children of Ei and so to use and record struc-
tural (no)goods. BTD-MAC(P ,Σ,Ei,VEi

,G,N) returns true if it succeeds in
extending consistently Σ on Desc(Ei)\(Ei\VEi), false otherwise. It has a time

complexity in O(n.s2.m. log(d).dw
++2) while its space complexity is O(n.s.ds)

with w+ the width of the used tree-decomposition and s the size of the largest
intersection between two clusters.

The next section discusses some issues related to the computation of suitable
tree-decompositions, both as regards the construction of the clusters, but also
for the choice of the root cluster.

3 What Impacts the Efficiency of Decomposi-
tion Methods?

The fact that a constraint network has a small tree-width should allow, using a
suitable decomposition, to take advantage of this topological property of the in-
stance. However, besides the computation of a decomposition that well approxi-
mates an optimal decomposition, several problems may be encountered. Assum-
ing that we have a very good approximation of an optimal tree-decomposition,
a very important problem may arise due to the choice of the root. Indeed, the
search will begin with the assignment of variables contained in this root clus-
ter. Because of the imposed ordering to guarantee the complexity bounds, this
ordering will not be changed all along the search. This point has already been
discussed in the literature and the proposed solutions try to offer a little more
freedom in that ordering, sometimes with significant improvements of the effi-
ciency, but not systematically [25, 26, 27]. Note that this is similar to the goal of
ordering heuristics for classical backtracking algorithms. However, for decom-
position methods, this issue has never been quantified for truly identifying this
problem and we will revisit it in this section. A second problem concerns the
existence of clusters that may consist of several connected components. This
can lead to the existence of subproblems circumscribed to such clusters that are
too under-constrained. We develop first this second problem.

3.1 Tree-Decompositions with Disconnected Clusters

The study of the tree-decompositions shows they can frequently possess clusters
that have several connected components. For example, consider a cycle without
chord (that is without edge joining two non-consecutive vertices in the cycle) of n
vertices (with n ≥ 4). Any optimal tree-decomposition has exactly n−2 clusters
of size 3, and among them, n− 4 clusters have two connected components. For
example, a triangulation using Min-Fill can find an optimal tree-decomposition
for the graph given in Figure 3. The order found by Min-Fill is given by the
numbering of vertices. We get n − 2 = 8 clusters of size 3, whose two are
connected ({x1, x2, x3} and {x8, x9, x10}), while n− 4 = 6 clusters, {x2, x3, x4},
{x3, x4, x5}, . . . and {x7, x8, x9}, have two connected components.

Such an example can be generalized to more complicated constraint graphs.
Let us consider, for example, the graph whose a partial view is given in Fig-
ure 4. We assume here that x8, x9, x10, . . . x15, . . . have a large number of



x3

x6

x7

x10

x9

x8

x5

x4x2

x1

Figure 3: Cycle without chord on n = 10 vertices with added edges (dotted
lines) by a triangulation using Min-Fill.

x3

x6

x7

x9

x10

x11

x13

x12

x15

x14

x8

x5

x4x2

x1

Figure 4: A graph for which the triangulation using Min-Fill can induce clusters
of arbitrarily large size.

neighboring vertices which are not represented in the figure. So, a triangu-
lation using Min-Fill can find an order which is compatible with the one given
by the numbering of vertices. A such order induces the clusters {x1, x2, x3}
which is connected, but also {x2, x3, x4}, {x3, x4, x5}, {x4, x5, x6}, {x4, x5, x6}
and {x5, x6, x7} which have two connected components. But such a triangu-
lation finds the cluster {x6, x7, x8, x9, x10}. Worse, we will find the cluster
{x7, x8, x9, x10, x11, x12, x13}. Of course, this example can be generalized to
find disconnected clusters of larger size.

This phenomenon is also observed for real instances, when we consider tree-
decompositions of good quality. For example, the well known RLFAP instance
Scen-06 appearing in the CSP 2008 Competition3 is defined on 200 variables
and its network admit good tree-decompositions which can be found quite eas-
ily (e.g. Min-Fill finds one with w+ = 20). A detailed analysis of these tree-
decompositions shows that they have disconnected clusters. More generally, it
turns out that about 32% of the 7,272 instances of the CSP 2008 Competition
have a tree-decomposition with at least one disconnected cluster when MCS or
Min-Fill are used, what is generally the case of most tree-decomposition meth-
ods for solving CSPs. Among these instances for which MCS or Min-Fill pro-
duce tree-decompositions with disconnected clusters, we can notably find most
of the RLFAP or FAPP instances which are often exploited as benchmarks for
decomposition methods for both decision and optimization problems. Moreover,
sometimes, the percentage of disconnected clusters in one instance may be very
large up to 99% and about 35% in average. For the FAPP instances, the aver-

3See http://www.cril.univ-artois.fr/CPAI08 for more details.



age is about 48% for tree-decompositions produced by Min-Fill, and a greater
average using MCS. This observation will be even more striking for algorithms
that find decompositions with smaller widths, as suggested by the example of
the cycle without chord.

The presence of disconnected clusters in the considered tree-decomposition
can have a negative impact on the practical efficiency of decomposition meth-
ods which can be penalized by a large amount of time or memory to solve the
instance. Firstly, the fact that a constraint network is not connected can have
important consequences on the efficiency of its solving. For example, if one of its
connected components has no solution, and if the solving first addresses a con-
nected component that has solutions, all of them should be listed before proving
the inconsistency of the whole CSP. In the case of decomposition methods, the
existence of disconnected clusters is perhaps even more pernicious. In the case
of Tree-Clustering, let us consider a disconnected cluster. On the one hand,
the phenomenon already encountered in the case of disconnected networks may
arise. But it is also possible that this cluster has solutions. All these solutions
will be calculated and stored before processing another cluster. Their number
can be very high as it is the product of the number of solutions of each of its
connected components. Note that for some benchmarks coming from the FAPP
instances, the number of connected components in one cluster can be greater
than 100 while domains may have more than 100 values. However, many local
solutions of this cluster may be globally incompatible, because these connected
components may be linked by some constraints which appear in other clusters.
Consider again the constraint graph given in Figure 4. Assume that the con-
straints whose scopes are {x1, x2} and {x1, x3} are equality constraints while
all other constraints are constraints of differences. In this case, assuming that
during the solving, the cluster {x7, x8, x9, x10, x11, x12, x13} will be solved before
clusters containing variables located on the left in Figure 4, a large number of
local solutions will be considered before finding an incompatibility one time the
equality constraints will be checked. This example can be generalized by the
constraint graph given in Figure 5 which shows an example of decomposition for
which two connected components of a cluster Ei are connected by a sequence
of constraints that appear in the subproblem rooted in this cluster. Thus, the
overall inconsistency of local solutions of Ei can only be detected when all these
clusters have been solved, during the composition of global solutions produced
by Tree-Clustering in its last step. This leads Tree-Clustering to a large con-
sumption of time and memory, making this approach unrealistic in practice.

To avoid this kind of phenomenon where clusters are initially solved indepen-
dently, other methods were proposed like BTD. Although BTD has shown its
practical advantage, unfortunately, the observed phenomenon still exists, even
if it will generally be attenuated. To well understand this, let us consider a
disconnected cluster Ei. We have two cases:

• if G[Ei\(Ei ∩ Ep(i))]
4 is disconnected: BTD has to consistently assign

variables which are distributed in several connected components. If the
subproblem rooted in Ei is trivially consistent (for instance it admits a
large number of solutions), BTD will find a solution by doing at most a
few backtracks and keep on the search on the next cluster. So, in such a

4For any Y ⊆ X, the subgraph G[Y ] of G = (X,C) induced by Y is the graph (Y,CY )
where CY = {{x, y} ∈ C|x, y ∈ Y }.



E     = parent of Ep(i) i

child of Ei

        E

sub-tree of clusters

i

child of Ei

Figure 5: Disconnected cluster in a Tree-Decomposition.

case, the non-connectivity of Ei does not entail any problem.

In contrast, if this subproblem has few solutions or none, we have a signif-
icant probability that BTD passes many times from a connected compo-
nent of G[Ei\(Ei ∩Ep(i))] to another when it solves this cluster. Roughly
speaking, BTD may have to explore all the consistent assignments of each
connected component by interleaving eventually the variables of the differ-
ent connected components. Indeed, if BTD exploits filtering techniques,
the assignment of a value to a variable x of Ei\(Ei ∩ Ep(i)) has mainly
impact on the variables of the connected component of G[Ei\(Ei ∩Ep(i))]
which contains x. In contrast, the filtering removes no or few values from
the domain of any variable in another connected component. This entails
that inconsistencies are often detected later and not necessarily in Ei but
in one of its descendant cluster (as illustrated previously by Figures 4 and
5). If so, BTD may require a large amount of time or memory (due to
(no)good recording) to solve the subproblem rooted in Ei, especially if the
variables have large domains. For example, this negative phenomenon has
been empirically observed on some FAPP instances (e.g the fapp05-0350-
10 instance) with a BTD version using MAC [42].

• if G[Ei\(Ei∩Ep(i))] is connected: since Ei is a disconnected cluster, G[Ei∩
Ep(i)] is necessarily disconnected. As the variables of the separator Ei ∩
Ep(i) are already assigned, the non-connectivity of Ei does not cause any
problem.

This negative impact of disconnected clusters is compatible with empirical
results reported in the literature. We have observed that sometimes, the per-
centage of disconnected clusters for Min-Fill differs significantly from one for
MCS, which may explain some differences of efficiency observed in the literature
(e.g. in [24]). Indeed, even if the width is the same, decompositions computed
by Min-Fill offer best results for solving than the ones obtained by MCS [24]
and is considered as the best heuristic of the state of the art now [7]. Moreover,
the analysis of tree-decompositions shows also that the connection between con-
nected components of some clusters is frequently observed in the leaves (clusters)



of the decomposition, further increasing more the negative effects observed.
The occurrence of the negative effect of the presence of disconnected clus-

ters is confirmed by the following observation. If we consider a version of BTD
using a less powerful filtering than AC like Forward Checking, we see that the
phenomenon is accentuated. In order to illustrate this, we analyze the solving
with a particular implementation of BTD using nFC5 [3] which is the most
powerful non-binary version of Forward Checking. We can thus observed that,
with Min-Fill, BTD-nFC5 only solves 520 instances over the 1,668 instances
with disconnected clusters we will consider in Section 6 while BTD-MAC solves
1,167 instances (see Section 6 for more details about the experimental proto-
col). Moreover, if we consider the gap between the number of instances solved
by BTD-MAC and BTD-nFC5 for a given decomposition method, we can note
that this gap is reduced when exploiting the tree-decompositions with connected
clusters introduced in the next section, namely between 485 and 499 instances
against 647 with Min-Fill. This is explained by the fact that the use of a more
powerful filtering as AC may lessen the phenomenon. Indeed the propagation
is not limited to the neighborhood of the last assigned variable, but can reach
the leaf clusters, and thus, to find some connectivity as we can see in Figure
5. Nevertheless, this level of filtering may be ineffective if one considers the
example of the constraint graph given in Figure 4 with equality constraints on
{x1, x2} and {x1, x3} and constraints of differences for all other constraints. In-
deed, for this instance, the inconsistency appears on most cases, when x2 and
x3 are assigned, and not when we are looking for a local solution in the cluster
{x7, x8, x9, x10, x11, x12, x13}.

To avoid this kind of phenomenon, in Section 4 we study classes of tree-
decompositions for which all the clusters are connected.

3.2 The Importance of the Choice of the Root

From a practical viewpoint, generally, BTD efficiently solves CSPs having a
small tree-width. However, sometimes, a bad choice for the root cluster may
drastically degrade the performance of the solving. The choice of the root
cluster is crucial since it impacts on the variable ordering, in particular on the
choice of the first variables. Hence, in order to make a smarter choice, we have
selected some instances of the CSP 2008 Competition and, for each instance,
we run BTD from each cluster of its considered tree-decomposition. First, we
have observed that for a given instance, the runtimes may differ from several
orders of magnitude according to the chosen root cluster. For instance, for the
scen11-f12 instance (which is the easiest instance of the scen11 family), BTD
succeeds in proving the inconsistency for only 75 choices of root cluster among
the 301 possible choices. Secondly, we have noted that solving some clusters
(not necessarily the root cluster) and their corresponding subproblems is more
expensive for some choice of the root cluster than for another. This is explained
by the choice of the root cluster which induces some particular ordering on
the clusters and the variables. In particular, since for a cluster Ei, BTD only
considers the variables of Ei\(Ei ∩ Ep(i)), it does not handle the same variable
set for Ei depending on the chosen root cluster. Unfortunately, it seems to
be utopian to propose a choice for the root cluster based only on features of
the instance to solve because this choice is too strongly related to the solving



efficiency. In [27], an approach has been proposed to choose a variable ordering
with more freedom but its efficiency still depends on the choice of the root
cluster. So, an alternative to limit the impact of the choice of the cluster is
required. In Section 5, we propose a possible one consisting in exploiting restart
techniques.

4 A New Parameter for Graph Decomposition
of CSPs

4.1 Bag-Connected Tree-Decomposition

The facts presented above lead us naturally to consider only tree-decompositions
for which all the clusters are connected. This concept has been recently in-
troduced in the context of Graph Theory [36]. It has been studied for some
of its combinatorial properties. However, the algorithmic issues related to its
computation have not been studied yet, neither in terms of complexity, nor to
propose algorithms to find them. Müller provides a central theorem indicating
an upper bound of Bag-Connected Tree-Width5 as a function of the tree-width.
We present now the notion of Bag-Connected Tree-Decomposition, which cor-
responds to tree-decomposition for which each cluster Ei is connected (i.e. the
subgraph G[Ei] of G induced by Ei is a connected graph).

Definition 3 Given a graph G = (X,C), a Bag-Connected Tree-Decompo-
sition of G is a tree-decomposition (E, T ) of G such that for all Ei ∈ E,
the subgraph G[Ei] is a connected graph. The width of a Bag-Connected Tree-
Decomposition (E, T ) is equal to maxi∈I |Ei| − 1. The Bag-Connected Tree-
Width wc is the minimal width over all the bag-connected tree-decompositions
of G.

Given a graph G = (X,C) of tree-width w, necessarily w ≤ wc. The central
theorem of [36] provides an upper bound of the Bag-Connected Tree-Width as
a function of the tree-width and k which is the maximum length of its geodesic
cycles6. More precisely, we have wc ≤ w +

(
w+1

2

)
.(k.w − 1) (k = 1 if G has

no cycle). This bound has been improved in [22]. Nevertheless, note that
wc = dn2 e for graphs defined by cycles of length n and without chord. But if G
is a triangulated graph, w = wc.

Furthermore, the fact that w ≤ wc, independently of the complexity of
achieving a Bag-Connected Tree-Decomposition, indicates that the decomposi-
tion methods based on it, necessarily appear below Tree-Decomposition methods
in the constraint tractability hierarchy introduced in [20]. But this remark has
no real interest here because our contribution mainly concerns practical effi-
ciency of such methods. Nevertheless, the difference between w and wc can
naturally have consequences on the efficiency of solving in practice. Indeed, if
we consider the example of the cycle of length n given in Section 3 (a geodesic

5Note that we use the term of Bag-Connected Tree-Width rather than one of Connected
Tree-Width exploited in [36] because the term of Connected Tree-Width has been introduced
before in [15] but corresponds to a quite different concept.

6A cycle is said geodesic if for any pair of vertices x and y belonging to the cycle, the
distance between x and y in the graph is equal to the length of the shortest path between x
and y in the cycle.



cycle), optimal decompositions give w = 2 and wc = dn2 e. But, in such a case,
even if the bag-connected tree-width is arbitrarily greater than the tree-width,
applying BTD based on MAC is always as effective since as soon as the first vari-
able is assigned, BTD detects the inconsistency or directly finds a solution, due
to the arc-consistency propagation which will be realized along the connected
paths in the clusters.

The natural question now is related to the computation of optimal Bag-
Connected Tree-Decompositions, that is Bag-Connected Tree-Decompositions
of width wc. We show that this problem, as for Tree-Decompositions, is NP-
hard.

Theorem 1 Computing an optimal Bag-Connected Tree-Decomposition is NP-
hard.

Proof: We propose a polynomial reduction from the problem of computing an
optimal tree-decomposition to this one. Consider a graph G = (X,C) of tree-
width w, the associated tree-decomposition of G being (E, T ). Now, consider
the graph G′ obtained by adding to G an universal vertex x, that is a vertex
which is connected to all the vertices in G. Note that from (E, T ), we can obtain
a tree-decomposition for G′ by adding in each cluster Ei ∈ E the vertex x. It is
a bag-connected tree-decomposition since each cluster is necessarily connected
(by paths containing x) and its width is w + 1. To show that this addition
defines a reduction, it is sufficient to show that w is the tree-width of G iff the
bag-connected tree-width wc of G′ is w + 1.

(⇒) We know that at most, the width of the considered tree-decomposition
of G′ is w+ 1 since this tree-decomposition is connected and its width is w+ 1.
Thus, wc ≤ w + 1. Assume that wc ≤ w. So, there is a bag-connected tree-
decomposition of G′ of width at most w. Using this tree-decomposition of
G′, we can define the same tree, but deleting the vertex x, to obtain a tree-
decomposition of G of width w − 1, which contradicts the hypothesis.

(⇐) With the same kind of argument as before, we know that the tree-width
w of G is at most wc − 1. And by construction, it cannot be strictly less than
wc − 1. So, it is exactly wc − 1.
Moreover, achieving G′ is possible in linear time. 2

We have seen that for solving CSPs, it is not necessary to find an opti-
mal tree-decomposition. Also, we now propose an algorithm which computes
a bag-connected tree-decomposition in polynomial time, of course without any
guarantee about its optimality. The algorithm Bag-Connected-TD described
below finds a bag-connected tree-decomposition of a given graph G = (X,C).

4.2 Computing a Bag-Connected Tree-Decomposition

The first step of Algorithm 2 finds a first cluster, denoted E0, which is a subset
of vertices which are connected. X ′ is the set of already treated vertices. It is
initialized to E0. This first step can be done easily, using an heuristic. This
heuristic may rely on any criteria as soon as it produces a connected cluster.
Then, let X1, X2, . . . Xk be the connected components of the subgraph G[X\E0]
induced by the deletion of the vertices of E0 in G. Each one of these sets is
inserted in a queue F . For each element Xi removed from the queue F , let
Vi ⊆ X be the set of vertices in X ′ which are adjacent to at least one vertex in



e

h

g

f

X

X' = E

X

X
V

1
1

0 d

3

2

c

b

a

Figure 6: First pass in the loop for Bag-Connected-TD.

Xi. Note that Vi (which can be connected or not) is a separator of the graph
G since the deletion of Vi in G makes G disconnected (Xi being disconnected
from the rest of G). A new cluster Ei is then initialized by this set Vi. So,
we consider the subgraph of G induced by Vi and Xi, that is G[Vi ∪ Xi]. We
choose a first vertex x ∈ Xi that is connected to at least one vertex of Ei (so
one vertex of Vi). This vertex is added to Ei. If G[Ei] is connected, we stop the
process because we are sure that Ei will be a new connected cluster. Otherwise,
we continue, taking another vertex of Xi.

Figure 6 shows the computation of E1, the second cluster (after E0), at the
first pass in the loop. After the addition of vertices a, b and c, the subgraph
G[V1 ∪ {a, b, c}] is not connected. If the next reached vertex is d, it is added
to E1, and thus, E1 = V1 ∪ {a, b, c, d} is a new connected cluster, breaking the
search in G[V1 ∪X1].

When this process is finished, we add the vertices of Ei to X ′ and we compute
Xi1 , . . . Xiki

the connected components of the subgraph G[Xi\Ei]. Each one
is then inserted in the queue F . In the example of Figure 6, two connected
components will be computed, {e} and {f, g, h}. This process continues while
the queue is not empty. In the example, in the right part of the graph, the
algorithm will compute 3 connected clusters: {d, e}, {b, c, d, f} and {f, g, h}.

Note that line 10 is only useful when the set Vi computed at line 7 is a
previously built cluster. In such a case, the cluster Vi can be removed. Indeed,
as Vi ( Ei, Vi becomes useless in the tree-decomposition.

We now establish the validity of the algorithm and we evaluate its time
complexity.

Theorem 2 The algorithm Bag-Connected-TD computes the clusters of a bag-
connected tree-decomposition of a graph G.

Proof: We need only to prove lines 5-13 of the algorithm. We first prove
the termination of the algorithm. At each pass through the loop, at least one
vertex will be added to the set X ′ and this vertex will not appear later in a new
element of the queue because they are defined by the connected components of
G[Xi\Ei], a subgraph that contains strictly fewer vertices than was contained
in Xi. So, after a finite number of steps, the set Xi\Ei will be an empty set,
and therefore no new addition in F will be possible.



Algorithm 2: Bag-Connected-TD

Input: A graph G = (X,C)
Output: A set of clusters E0, . . . Eq of a bag-connected tree-decomposition of G

1 Choose a first connected cluster E0 in G

2 X′ ← E0

3 Let X1, . . . Xk be the connected components of G[X\E0]
4 F ← {X1, . . . Xk}
5 while F 6= ∅ do /* find a new cluster Ei */
6 Remove Xi from F

7 Let Vi ⊆ X′ be the neighborhood of Xi in G
8 Ei ← Vi

9 Search in G[Vi ∪Xi] starting from Vi ∪ {x} with x ∈ Xi. Each time a new vertex x is
found, it is added to Ei. The process stops once the subgraph G[Ei] is connected

10 if Vi belongs to the set of clusters already found then Delete the cluster Vi (because
Vi ( Ei)

11 X′ ← X′ ∪ Ei

12 Let Xi1
, Xi2

, . . . Xiki
be the connected components of G[Xi\Ei]

13 F ← F ∪ {Xi1 , Xi2 , . . . Xiki
}

We now show that the set of clusters E0, E1, . . . Eq induces a bag-connected
tree-decomposition. By construction each new cluster is connected. So, we have
only to prove that they induce a tree-decomposition. We prove this by induction
on the added clusters, showing that all these added clusters will induce a tree-
decomposition of the graph G(X ′).

Initially, the first cluster E0 induces a tree-decomposition of the graph
G[E0] = G[X ′].

For the induction, our hypothesis is that the set of already added clusters
E0, E1, . . . Ei−1 induces a tree-decomposition of the graph G[E0∪E1∪· · ·∪Ei−1].
Consider now the addition of Ei. We show that by construction, E0, E1, . . . Ei−1

and Ei induces a tree-decomposition of the graph G[X ′] by showing that the
three conditions (i), (ii) and (iii) of the definition of tree-decompositions are
satisfied.

(i) Each new vertex added in X ′ belongs to Ei

(ii) Each new edge in G[X ′] is inside the cluster Ei.

(iii) We can consider two different cases for a vertex x ∈ Ei, knowing that for
other vertices, the property is already satisfied by the induction hypothesis:

(a) x ∈ Ei\Vi: in this case, x does not appear in another cluster than Ei

and then, the property holds.

(b) x ∈ Vi: in this case, by the induction hypothesis, the property was
already verified.

Finally, it is easy to see that if line 10 is applied, we obtain a tree-decomposition
of the graph G[X ′]. 2

Theorem 3 The time complexity of the algorithm Bag-Connected-TD is O(n(n+
e)).

Proof: Lines 1-4 are feasible in linear time, that is O(n + m), since the cost
of computing the connected components of G[X\E0] is bounded by O(n+m).
Nevertheless, we can note that line 1 can be done by a more expensive heuristic



to get a more relevant first cluster, but at most in O(n(n + m)) in order not
to exceed the time complexity of the most expensive step of the algorithm. We
analyze now the cost of the loop (line 5). Firstly, note that there are less than n
insertions in the queue F . Now, we analyze the cost of each treatment associated
to the addition of a new cluster, and we give for each one, its global complexity.

• Line 6: obtaining the first element Xi of F is bounded by O(n), thus
globally O(n2).

• Line 7: obtaining the neighborhood Vi ⊆ X ′ of Xi in G is bounded by
O(n+m), thus globally by O(n(n+m)).

• Line 8: this step is feasible in O(n), thus globally O(n2).

• Line 9: the cost of the search in G[Vi ∪ Xi] starting with vertices of Vi
and x ∈ Xi is bounded by O(n + m). Since the while loop runs at most
n times, the global cost of the search in these subgraphs is bounded by
O(n(n+m)). Moreover, for each new added vertex x, the connectivity of
G[Ei] is tested with an additional cost bounded by O(n+m). Note since
such a vertex is added at most one time, globally, the cost of this test is
bounded by O(n(n + m)). So, the cost of line 9 is globally bounded by
O(n(n+m)).

• Line 10: using an efficient data structure, this step can be realized in O(n),
thus globally O(n2).

• Line 11: the union is feasible in O(n), thus globally O(n2) since there are
at most n iterations.

• Line 12: the cost of finding the connected components of G[Xi\Ei] is
bounded by O(n+m). So, globally, the cost of this step is O(n(n+m)).

• Line 13: the insertion of a set Xij in F is feasible in O(n), thus globally
O(n2) since there are less than n insertions in F .

Finally, the time complexity of the algorithm Bag-Connected-TD is O(n(n+m)).
2

From a practical viewpoint, it can be assumed that the choice of the first
cluster E0 can be crucial for the quality of the decomposition which is being
computed. Similarly, the choice of vertex x, selected in line 9 may be of con-
siderable importance. For these two choices, heuristics can of course be used.
This is discussed in Section 6. However, a particular choice of these heuristics
makes it possible, without any change of the complexity, to compute optimal
tree-decompositions for the case of triangulated graphs. Assume that the first
cluster E0 is a maximal clique. This can be done efficiently using a greedy
approach. Now, for the choice of the vertex x in line 9, we consider the vertex
which has the maximum number of neighbors in the set Vi. As in a triangulated
graph, all the clusters of an optimal tree-decomposition are cliques, necessar-
ily, Vi being a clique, x will be connected to all the vertices of Vi and thus,
Ei will be a clique. Progressively, each maximal clique will be found and the
tree-decomposition will be optimal. Line 10 will be used for the case of maximal
cliques including more than one vertex x of a new connected component. In any



case, the practical interest of this type of decomposition is based on both the
efficiency of its computation, but also on the significance which it may have for
solving CSPs. This is discussed in Section 6.

5 Exploiting Restarts within BTD

In this section, we explain how BTD can safely exploit restarts.
It is well known that any method exploiting restart techniques must as much

as possible avoid exploring the same part of the search space several times and
that randomization and learning are two possible ways to reach this aim [33].
Regarding the learning, BTD already exploits structural (no)goods. However,
depending on when the restart occurs, we have no warranty that a structural
(no)good has been recorded yet. Hence, another form of learning is required to
ensure a good practical efficiency. Here, we consider the reduced nld-nogoods
[34].

The use of learning in BTD may endanger its correctness as soon as we add
to the initial problem a constraint whose scope is not included in a cluster. So
recording reduced nld-nogoods in a global constraint involving all the variables
like proposed in [34] is impossible. However, by exploiting the features of a
compatible variable ordering, Property 2 shows that this global constraint can
be safely decomposed in a global constraint per cluster Ei.

Proposition 2 Let Σ = 〈δ1, . . . , δk〉 be the sequence of decisions taking along
the branch of the search tree when solving a CSP P by exploiting a tree-decompo-
sition (E, T ) and a compatible variable ordering. Let Σ[Ei] be the subsequence
built by considering only the decisions of Σ involving the variables of Ei. For any
prefix subsequence Σ′Ei

= 〈δi1 , . . . , δi`〉 of Σ[Ei] s.t. δi` is a negative decision,
and every variable in Ei ∩ Ep(i) appears in a decision in Pos(Σ′Ei

), the set
Pos(Σ′Ei

) ∪ {¬δi`} is a reduced nld-nogood of P .

Proof: Let PEi
be the subproblem induced by the variables of Desc(Ei) and

∆Ei
the set of the decisions of Pos(ΣEi

) related to the variables of Ei ∩ Ep(i).
As Ei∩Ep(i) is a separator of the constraint graph, PEi|∆Ei

is independent from
the remaining part of the problem P . Let us consider Σ[Ei] the maximal subse-
quence of Σ which only contains decisions involving variables of Ei. According
to Proposition 1 applied to Σ[Ei] and PEi|∆Ei

, Pos(Σ′Ei
)∪{¬δi`} is necessarily

a reduced nld-nogood. 2

It ensues that we can bound the size of produced nogoods and compare them
with those produced by Proposition 1:

Corollary 1 Given a tree-decomposition of width w+, the size of reduced nld-
nogood produced by proposition 2 is at most w+ + 1.

Corollary 2 Under the same assumptions as Proposition 2, for any reduced
nld-nogood ∆ produced by Proposition 1, there is at least one reduced nld-nogood
∆′ produced by Proposition 2 s.t. ∆′ ⊆ ∆.

Proof: Let Σ′ = 〈δ1, . . . , δ`〉 be a subsequence of Σ s.t. δ` is a negative decision.
From Proposition 1, it follows that ∆ = Pos(Σ′)∪{¬δ`} is a reduced nld-nogood.
Now let us consider a cluster Ei s.t. the variable x` related to δ` belongs to Ei



and Ei ∩ Ep(i) ⊆ Pos(Σ′). There exists necessarily such a cluster by construc-
tion of Σ. Then, from Proposition 2, it follows that ∆′ = Pos(Σ′[Ei]) ∪ {¬δ`}
is a reduced nld-nogood. As Pos(Σ′[Ei]) ⊆ Pos(Σ′), we have ∆′ ⊆ ∆. 2

BTD already exploits a particular form of learning by recording structural
(no)goods. Any structural (no)good of a cluster Ei w.r.t. to a child cluster
Ej is by definition oriented from Ei to Ej . This orientation is directly induced
by the choice of the root cluster. When a restart occurs, BTD may choose a
different cluster as root cluster. If so, we have to consider structural (no)goods
with different orientations. Proposition 3 states how these structural (no)goods
can be safely exploited when BTD uses the restart technique.

Proposition 3 A structural good of Ei w.r.t. Ej can only be used if the choice
of the current root cluster induces that Ej is a child cluster of Ei. A structural
nogood of Ei w.r.t. Ej can be used whatever the choice of the root cluster.

Proof: Let us consider a good ∆ of Ei w.r.t. Ej produced for a root cluster
Er. By definition of structural goods, the subproblem PEj |∆ has a solution and
its definition only depends on ∆ and the fact that Ej is a child cluster of Ei.
So, for any choice of the root cluster s.t. Ej is a child cluster of Ei, ∆ will be a
structural good of Ei w.r.t. Ej and can be used to prune safely redundant part
of the search. Now, if, due to the choice of the root cluster, Ej is the parent
cluster of Ei, a good ∆ of Ei w.r.t. Ej gives no information about the existence
of a solution on the subproblem rooted in Ei and so cannot be safely used.
Indeed, as counter-example, it suffices to consider a decomposition with three
clusters Ei, Ej and Ek s.t. the cluster Ek has no solution and Ei is the parent
cluster of Ej and Ek. Assume that we first consider Ei as the root cluster and
by so doing we produce a good ∆ of Ei w.r.t. Ej . Then, if we choose Ej as the
root cluster, exploiting ∆ leads to conclude that ∆ can be consistently extended
on Ei ∪ Ek, what is impossible by definition of Ek.

Regarding structural nogoods, any structural nogood ∆ of Ei w.r.t. Ej is a
nogood and so any decision sequence Σ s.t. ∆ ⊆ Pos(Σ) cannot be extended to
a solution, independently from the choice of the root cluster. Hence, structural
nogoods can be used regardless the choice of the root cluster. 2

It follows that unlike the nogoods, for the goods, the orientation is required.
So, it could be better to call them oriented structural goods.

Algorithm 4 describes the algorithm BTD-MAC+RST which exploits restart
techniques jointly with recording reduced nld-nogoods and structural (no)goods.
Exploiting the restart techniques can be seen as choosing a root cluster (line
3) and running a new instance of BTD-MAC+NG (line 4) at each restart until
the problem is solved by proving there is a solution or none. Algorithm 3
presents the algorithm BTD-MAC+NG. Like BTD-MAC, given a current cluster
Ei and the current decision sequence Σ, BTD-MAC+NG explores the cluster
Ei (lines 16-29) by assigning the variables of VEi

(with VEi
the set of unassigned

variables of Ei). When Ei is consistently assigned, it manages the children of Ei

and so uses and records structural (no)goods (lines 1-14). The used structural
(no)goods may have been recorded during the current call to BTD-MAC or
during a previous one. Indeed, if the first call of BTD-MAC+NG is achieved
with empty sets G and N of structural goods and nogoods, G and N are not
reset at each restart. Note that their uses (lines 7-8) are performed according to
Proposition 3. Then, unlike BTD-MAC, BTD-MAC+NG may stop its search



Algorithm 3: BTD-MAC+NG (InOut: P = (X,D,C): CSP; In: Σ: sequence
of decisions, Ei: Cluster, VEi : set of variables; InOut: G: set of goods, N : set
of nogoods)

1 if VEi
= ∅ then

2 result← true
3 S ← Sons(Ei)
4 while result = true and S 6= ∅ do
5 Choose a cluster Ej ∈ S
6 S ← S\{Ej}
7 if Pos(Σ)[Ei ∩ Ej ] is a nogood in N then result← false
8 else if Pos(Σ)[Ei ∩ Ej ] is not a good of Ei w.r.t. Ej in G then
9 result← BTD-MAC+NG(P ,Σ,Ej ,Ej\(Ei ∩ Ej),G,N)

10 if result = true then
11 Record Pos(Σ)[Ei ∩ Ej ] as good of Ei w.r.t. Ej in G

12 else if result = false then
13 Record Pos(Σ)[Ei ∩ Ej ] as nogood of Ei w.r.t. Ej in N

14 return result

15 else
16 Choose a variable x ∈ VEi

17 Choose a value v ∈ dx

18 dx ← dx\{v}
19 if AC (P ,Σ ∪ 〈x = v〉) then
20 result← BTD-MAC+NG(P , Σ ∪ 〈x = v〉, Ei, VEi

\{x}, G, N)

21 else result← false
22 if result = false then
23 if must restart then
24 Record nld-nogoods w.r.t. the decision sequence (Σ ∪ 〈x 6= v〉)[Ei]
25 result← unknown

26 else
27 if AC (P ,Σ ∪ 〈x 6= v〉) then
28 result← BTD-MAC+NG(P ,Σ ∪ 〈x 6= v〉,Ei,VEi

,G,N)

29 return result

Algorithm 4: BTD-MAC+RST (In: P = (X,D,C): CSP)

1 G← ∅; N ← ∅
2 repeat
3 Choose a cluster Er as root cluster
4 result ← BTD-MAC+NG (P ,∅,Er,Er,G,N)

5 until result 6= unknown
6 return result

as soon as a restart condition is reached (line 23). If so, it records reduced
nld-nogoods w.r.t. the decision sequence Σ restricted to the decisions involving
variables of Ei (line 24) according to Proposition 2. We consider that a global
constraint is associated to each cluster Ei to handle the nld-nogoods recorded
w.r.t. Ei and that their use is performed via a specific propagator when the
arc-consistency is enforced (lines 19 and 27) like in [34]. The restart condition
may involve some global parameters (e.g. the number of backtracks achieved
since the begin of the current call to BTD-MAC+NG), some local ones (e.g.
the number of backtracks performed in the current cluster or the number of
recorded structural (no)goods) or a combination of these two approaches.

BTD-MAC+NG(P ,Σ,Ei,VEi
,G,N) returns true if it succeeds in extending

consistently Σ on Desc(Ei)\(Ei\VEi), false if it proves that Σ cannot be con-
sistently extended on Desc(Ei)\(Ei\VEi) or unknown if a restart occurs. BTD-
MAC+RST(P ) returns true if P has at least a solution, false otherwise.



Theorem 4 BTD-MAC+RST is sound, complete and terminates.

Proof: BTD-MAC+NG differs from BTD-MAC by exploiting restart tech-
niques, recording reduced nld-nogoods and starting its search with sets G and N
which are not necessarily empty. When a restart occurs, the search is stopped
and reduced nld-nogoods are safely recorded from Proposition 2. Regarding
structural (no)goods, N and G only contain valid structural (no)goods and their
uses (lines 7-8) are safe according to Proposition 3. So, as BTD-MAC is sound
and terminates and as these properties are not endangered by the differences
between BTD-MAC and BTD-MAC+NG, it is the same for BTD-MAC+NG.
Then, as BTD-MAC is complete, BTD-MAC+NG is complete under the condi-
tion that no restart occurs. Moreover, restarts stop the search without changing
the fact that if a solution exists in the part of the search space visited by BTD-
MAC+NG, BTD-MAC+NG would find it. As BTD-MAC+RST only performs
several calls to BTD-MAC+NG, it is sound. For the completeness, if the call to
BTD-MAC+NG is not stopped by a restart (what is necessarily the case of the
last call to BTD-MAC+NG if BTD-MAC+RST terminates), the completeness
of BTD-MAC+NG implies one of BTD-MAC+RST. Furthermore, recording re-
duced nld-nogoods at each restart prevents from exploring a part of the search
space already explored by a previous call to BTD-MAC+NG. It ensues that,
over successive calls to BTD-MAC+NG, one has to explore a more and more
reduced part of the search space. Hence, the termination and completeness of
BTD-MAC+RST are ensured by the unlimited nogood recording achieved by
the different calls to BTD-MAC+NG and by the termination and completeness
of BTD-MAC+NG. 2

While the use of tree-decompositions of different classes does not change the
expression of the complexity of a method such as BTD, we see now that the use
of restarts has a significant impact on the complexity analysis. In particular,
we must take into account both the number R of restarts and the number N of
recorded reduced nld-nogoods.

Theorem 5 BTD-MAC+RST has a time complexity in O(n.(w+)2.d)+R.((w+.

N + n.s2.m. log(d)).dw
++2) and a space complexity in O(n.s.ds + w+.(d + N))

with w+ the width of the considered tree-decomposition, s the size of the largest
intersection Ei ∩ Ej.

Proof: BTD-MAC without nld-nogoods has a time complexity in O(n.s2.m.

log(d).dw
++2). According to Propositions 4 and 5 of [34], storing and manag-

ing nld-nogoods of size at most n can be achieved respectively in O(n2.d) and
O(n.N). As, according to Corollary 1, the size of nld-nogoods is at most w+ +1,
this two operations can be achieved respectively in O((w+)2.d) and O(w+.N).
BTD-MAC+RST makes at mostR calls to BTD-MAC. So we obtain a time com-
plexity for BTD-MAC+RST inO(R.((n.s2.m. log(d)+w+.N).dw

++2+n.(w+)2.d)).
By exploiting the data structure proposed in [34], the worst case space com-

plexity for storing reduced nld-nogoods is O(w+.(d + N)) since according to
Corollary 1, BTD-MAC+RST records N nogoods of size at most w+ + 1. Re-
garding the storage of structural (no)goods, BTD-MAC+RST has the same
space complexity as BTD, namely O(n.s.ds). So, its whole space complexity is
O(n.s.ds + w+.(d+N)). 2



If BTD-MAC+RST exploits a geometric restart policy [46] based on the
number of allowed backtracks (i.e. a restart occurs as soon as the number of
performed backtracks exceeds the number of allowed backtracks which is initially
set to n0 and increased by a factor r at each restart), we can bound the number
of restarts:

Proposition 4 Given a geometric policy based on the number of backtracks
with an initial number n0 of allowed backtracks and a ratio r, the number of

restarts R is bounded by
⌈

log(n)+(w++1). log(d)−log(n0)
log(r)

⌉
.

Proof: In the worst case, the number of backtracks is bounded by n.dw
++1

since we have at most n clusters and the number of backtracks for a cluster is
at most O(dw

++1). At ith restart, the number of allowed backtracks is n0.r
i.

In the worst case, BTD-MAC+RST terminates as soon as n0.r
i ≥ n.dw++1, i.e.

as soon as i ≥ log(n)+(w++1). log(d)−log(n0)
log(r) . 2

Of course, BTD-MAC+RST can exploit other restart policies like, for ex-
ample, Luby policy [35].

6 Experiments

In this section, we perform extensive experiments in order to assess the practical
interest of bag-connected tree-decompositions and restarts w.r.t. the solving
efficiency of BTD. First, we describe our experimental protocol in subsection
6.1. Then, in subsection 6.2, we assess the benefits from bag-connected tree-
decompositions w.r.t. Min-Fill. Subsection 6.3 deals with the practical interest
of restarts in BTD. Finally, in subsection 6.4, we consider the combination of
bag-connected tree-decompositions and restarts.

6.1 Experimental Protocol

Nowadays, most of the solvers relying on enumerative methods maintain some
level of consistency (which often correspond to arc-consistency) and/or ex-
ploit restart techniques. Hence, the algorithm MAC (for Maintaining Arc-
Consistency [42]) and its version with restarts and nld-nogood recording, namely
MAC+RST+NG [34], can be considered as reference enumerative methods. In
our experiments, MAC+RST+NG relies on a geometric restart policy with a
ratio 1.1 and an initial number of backtracks of 100. Note that these values lead
to the best results for MAC+RST+NG for the set of benchmarks instances we
consider.

Regarding BTD, the solving in each cluster is based on MAC. BTD-MAC
and BTD-MAC+RST exploit tree-decompositions produced by Min-Fill or bag-
connected tree-decompositions computed thanks to the Bag-Connected-TD al-
gorithm. As stated in Section 4, the behavior of Bag-Connected-TD relies on
two choices, namely the choice of the first cluster (line 1) and the choice of the
next vertex to add to the cluster Ei (line 9). Both can be achieved thanks to
heuristics. Note that the heuristics described below allow us to preserve the time
complexity of Bag-Connected-TD, namely O(n(n+m)). In our experiments, the
choice of the first cluster in Bag-Connected-TD consists in computing greedily



a maximal clique of the constraint network. More precisely, the heuristic be-
gins by choosing the vertex having the highest degree in the constraint network.
Given a set of already chosen neighbors N , it selects the vertex having the high-
est degree in the neighborhood of N . Note that we have tried several greedy
methods for computing the first maximal clique, but the observed trends are
similar to ones obtained with the presented method. Regarding the choice of
the next vertex, we have considered several heuristics. These heuristics have
the same goal, namely to build connected clusters as soon as possible (i.e. with
the smallest size of clusters), but each one tries to reach this goal in a different
way. We only present here the best four ones:

• NV1 : the next vertex is a vertex in the neighborhood of previously chosen
vertices,

• NV2 : the vertices are processed in the decreasing degree order,

• NV3 : the vertices are processed according to the order they are visited
by a breadth-first traversal of the graph from the vertices of Vi,

• NV4 : we choose as next vertex the vertex which has the maximum number
of neighbors in the set Vi.

Once the tree-decomposition computed, we have to select a root cluster.
We have tried several heuristics for this choice. Like for the variable ordering
heuristics, these heuristics aim to follow the first-fail principle. We present here
the best ones:

• RW: we choose the cluster maximizing the sum of weights of constraints
whose scope intersects the cluster (the weights are those used by the vari-
able ordering heuristic dom/wdeg [5]).

• RA: we choose alternatively:

(i) the cluster containing the next variable according to dom/wdeg ap-
plied on all the variables and maximizing sum of weights of con-
straints whose scope intersects the cluster, or

(ii) a cluster according to the decreasing ratio number of constraints over
size of the cluster minus one.

In the following, the presented results for BTD-MAC are obtained by exploiting
RW for the choice of the root cluster. It turns out that this choice leads to
obtain better results than ones obtained with the heuristics presented in [25]
or [30]. BTD-MAC+RST with RW uses either a geometric policy with a ratio
1.1 (we denote RWG this combination) or a Luby policy (we denoted RWL this
combination). In both cases, the number of allowed backtracks is initially set
to 50. For RA, we apply a geometric policy with a ratio 1.1 and initially 75
allowed backtracks when the root cluster is chosen according to the rule (i). For
the rule (ii), we use a constant number of allowed backtracks set to 75.

Note that, for efficiency reasons, in BTD-MAC and BTD-MAC+RST, we
record the structural nogoods of each cluster in the corresponding global con-
straint used for recording its nld-nogoods. All the solving methods exploit the
algorithm AC-2001 [4] for enforcing the arc-consistency and the variable order-
ing heuristic dom/wdeg [5].



All the algorithms we exploit here are implemented in C++ in our own li-
brary. The experiments were performed on blade servers running Linux Ubuntu
14.04 each with two Intel Xeon processors E5-2609 2.4 GHz and with 32 GB of
memory7. Our set of benchmarks instances consists of 1,859 instances from the
CSP 2008 competition. When selecting the instances, we have discarded notably
the instances which are detected as inconsistent by the AC preprocessing, the
instances which have a trivial tree-decomposition with a single cluster (e.g. the
binary instances having a complete constraint graph) and the instances having
global constraints (because the corresponding global constraints are not taken
into account yet by our CSP library). Note that, when an instance has non-
binary constraints, we exploit the 2-section (or primal graph) of its constraint
hypergraph to compute (bag-connected) tree-decompositions. Every solving is
performed within a time-out of 900 seconds (except for Table 4). The solving
runtime includes the decomposition runtime, if any.

6.2 Exploitation of Bag-Connected Tree-Decompositions

In this subsection, we mainly compare the solving efficiency and the structural
parameters for BTD-MAC using tree-decompositions produced by Min-Fill with
ones for BTD-MAC exploiting bag-connected tree-decompositions computed
thanks to the Bag-Connected-TD algorithm. In order to assess only the ben-
efits from the bag-connected tree-decompositions, we do not consider restarts
here. Restarts will be used jointly with bag-connected tree-decompositions in
subsection 6.4.

6.2.1 Instances for which Min-Fill produces some disconnected clus-
ters

In this subsection, we compare the bag-connected tree-decompositions with dis-
connected ones from the viewpoint of the solving efficiency. Min-Fill produces
a tree-decomposition with at least one disconnected cluster for 1,668 instances
among the 1,859 instances we consider (i.e. about 90% of the considered in-
stances). Among these instances, we can notably find instances from families
rlfap, fapp, modifiedRenault, graphColoring, bqwh or travellingSalesman.
Figure 7 presents the cumulative number of instances solved by BTD-MAC for
each considered tree-decomposition for these 1,668 instances.

First, we can observe that, by using any bag-connected tree-decomposition,
BTD-MAC solves more instances than by using the disconnected tree-decompo-
sitions produced by Min-Fill. The best number of solved instances is reached
thanks to the tree-decomposition based on the heuristic NV1 and NV2. These
decomposition allow us to solve respectively 1,210 and 1,220 instances against
1,167 instances for BTD-MAC with Min-Fill. Figure 8 clearly shows that BTD-
MAC with NV1 outperforms BTD-MAC with Min-Fill for most instances.
Then we can remark that BTD-MAC based on NV3 and NV4 is also better
than BTD-MAC with Min-Fill with respectively 1,198 and 1,180. Moreover,
for any decomposition, most instances are solved in less than 60 s.

These results can allow us to provide new explanations about the observa-
tions made in [24]. In [24], it was observed that limiting the size of separators
often leads to achieve a more efficient solving. In order to do so, when a cluster

7Note that this hardware configuration is very different from one used in [29, 30].



 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 700  800  900  1000  1100  1200

ti
m

e
 (

s)

# solved instances

Min-Fill
NV1
NV2
NV3
NV4

Figure 7: The cumulative number of instances solved by BTD-MAC for each
considered tree-decomposition for instances for which Min-Fill produces some
disconnected clusters.

has a separator with its parent cluster whose size exceeds the limit, this cluster
is merged with its parent cluster. Such a limitation allows to reduce the space
requirements while offering more freedom to the variable ordering heuristic. In
[24, 25], the resulting improvement of the solving efficiency is mainly attributed
to these two parameters. However, the existence of disconnected clusters offers
a new and complementary insight. Indeed, by limiting the size of separators, for
each instance, the number of disconnected clusters decreases necessarily and so
it is the same for the probability that the phenomenon described in subsection
3.1 occurs. In practice, in the best case, depending on the chosen limit, Min-Fill
may produce a bag-connected tree-decomposition after merging while, initially,
it produces a tree-decomposition with some disconnected clusters. For example,
if we set the limit to 15 (which offers a good time-space tradeoff), this is the
case for 243 instances among the 1,668 instances we consider here.

Figure 9 presents the cumulative number of instances solved by BTD-MAC
for each considered tree-decomposition for the 1,425 instances for which Min-Fill
produces a tree-decomposition with some disconnected clusters when the size
of the separators is limited to 15. Again, BTD-MAC with any bag-connected
tree-decomposition solves more instances than by using the disconnected tree-
decompositions produced by Min-Fill. Indeed, BTD-MAC with Min-Fill solves
1,094 instances against 1,140, 1,133, 1,124 or 1,134 for NV1, NV2, NV3 or NV4
respectively.

Now, in order to fairly compare the runtimes, we only consider the instances
which are solved by BTD-MAC for all the considered tree-decompositions, in-
cluding Min-Fill. The runtime for solving these 1,057 instances by using the
decompositions based on Min-Fill is 26,876 s while by using the connected de-
compositions based on NV1 or NV2, it requires only 20,265 s or 19,776 s (i.e.



 0.01

 0.1

 1

 10

 100

 0.01  0.1  1  10  100

N
V

1

Min-Fill

Figure 8: Runtime of BTD-MAC with Min-Fill vs the runtime of BTD-MAC
with NV1 for instances for which Min-Fill produces some disconnected clusters.

BTD-MAC with NV1 or NV2 is at least 25% faster). BTD-MAC based on
NV4 is a little slower (with 23,108 s) but faster than BTD-MAC with Min-Fill.
BTD-MAC based on NV3 is the slowest (with 38,105 s).

Finally, if we focus on the 764 instances having a suitable structure (i.e.
instances having a ratio n/w+ greater than 2), again, we observe similar trends,
namely that BTD-MAC with bag-connected tree-decomposition performs better
than BTD-MAC with Min-Fill. For instance, BTD-MAC solves between 651
(for NV3 ) and 666 instances (for NV1 ) against 648 for Min-Fill. If we only
consider the 616 instances solved by BTD-MAC for all the considered tree-
decompositions, the cumulative runtime of BTD-MAC using NV1, NV2 or NV4
are relatively close to each other (respectively 12,659 s, 12,502 s and 12,966
s) while BTD-MAC using Min-Fill (resp. NV3 ) requires in 13,641 s (resp.
18,988 s).

In conclusion, these experimentations have clearly shown that the efficiency
of BTD-MAC can be improved by the exploitation of bag-connected tree-decom-
position.

6.2.2 Instances for which Min-Fill produces a bag-connected tree-
decomposition

This subsection deals with the behavior of BTD when solving instances for which
Min-Fill produces a bag-connected tree-decomposition. Of course, for such
instances, Min-Fill and our Bag-Connected-TD algorithm do not necessarily
produce the same tree-decompositions.

As shown in Figure 10, BTD-MAC using bag-connected tree-decompositions
solves a few additional instances w.r.t. BTD-MAC with Min-Fill. Indeed,
BTD-MAC with NV1, NV2 or NV3 solves 157 instances while BTD-MAC with



 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 500  600  700  800  900  1000  1100  1200

ti
m

e
 (

s)

# solved instances

Min-Fill
NV1
NV2
NV3
NV4

Figure 9: The cumulative number of instances solved by BTD-MAC for each
considered tree-decomposition for instances for which Min-Fill produces some
disconnected clusters when the size of separators are limited to 15.

NV4 or Min-Fill solves respectively 153 and 150. However, if we limit the size
of the separators to 15 (see Figure 11), BTD-MAC using Min-Fill succeeds
in solving more instances (namely 303 instances) than BTD-MAC using NV1,
NV2, NV3 (295 instances) and NV4 (299 instances). If we focus our study on
the 290 instances which are solved by BTD-MAC for all the considered tree-
decompositions, including Min-Fill, BTD-MAC using NV1 or NV2 obtains the
best cumulative runtime (respectively in 4,704 s and 4,759 s) while BTD-MAC
using NV4 or Min-Fill are slower (respectively 5,979 s and 6,217 s).

6.2.3 Comparisons of the structural parameters

Table 1 presents the value of the structural parameters for some instances. Not
surprisingly, Min-Fill produces tree-decompositions with smaller widths and
larger numbers of clusters than ones produced by Bag-Connected-TD. How-
ever, if in some cases, the width obtained by Bag-Connected-TD is significantly
larger than one provided by Min-Fill (e.g. the width produced by NV3 for
instance squares-23-23), in other cases, it remains relatively close (even some-
times equal) to one obtained by Min-Fill. This notably occurs for instance
renault-mod-33 ext but also for instances for which Min-Fill produces a bag-
connected tree-decomposition (see part (b) of Table 1). We also observe that the
quality of the width obtained thanks to Bag-Connected-TD may significantly
vary depending on the considered instances. If NV1 often presents the best
width among ones computed by Bag-Connected-TD algorithm, it is sometimes
outperformed by NV3 or NV4 (e.g. for instance mps-red-qnet1).

Regarding the parameter s, the observed trends are similar to ones for the
width.



 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 100  110  120  130  140  150  160

ti
m

e
 (

s)

# solved instances

Min-Fill
NV1
NV2
NV3
NV4

Figure 10: The cumulative number of solved instances for each considered
tree-decomposition for the 191 instances for which Min-Fill produces a bag-
connected tree-decomposition.

6.3 Exploitation of Restarts

In this subsection, we are interested in the practical interest of the exploitation
of restarts for BTD. In order to only assess the interest of restarts, we only
consider here Min-Fill in order to compute the tree-decompositions used by
BTD. Furthermore, we limit the size of the separators to 15.

Figure 12 presents the cumulative number of solved instances for each consid-
ered solving methods. First, we can note that BTD-MAC+RST with the com-
binations RWL, RWG or RA clearly outperforms BTD-MAC with respectively
1,467, 1,478 and 1,481 solved instances against 1,397. BTD-MAC+RST with
RWG and RA globally lead to a similar behavior. Then we can observe MAC+
RST+NG solves more instances (with 1,491 instances) than BTD-MAC+RST.
However, in practice, some instances solved by BTD-MAC+RST are not solved
by MAC+RST+NG and conversely. We also observe that MAC+RST+NG
performs sometimes better, sometimes worse than BTD-MAC+RST. This is
explained by the fact that most of the 1,859 instances we consider are far from
having a suitable structure. In contrast, when the structure has interesting fea-
tures, BTD-MAC+RST outperforms MAC+RST. Moreover, the more suitable
the structure is, the more BTD-MAC+RST outperforms MAC+RST+NG. This
phenomenon is illustrated by Figures 13 and 14 which consider instances having
a more and more suitable structure (namely a ratio n

w+ at least 2 and 5 respec-
tively). Finally, we can note that MAC performs worse than BTD-MAC+RST.

In order to better analyze the behavior of the different algorithms, we now
consider the results obtained for some families of instances. Table 2 provides the
number of solved instances and the cumulative runtime for each considered algo-
rithm. First, we can note that, for some kinds of instances, like graphColoring,



 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 100  150  200  250  300

ti
m

e
 (

s)

# solved instances

Min-Fill
NV1
NV2
NV3
NV4

Figure 11: The cumulative number of solved instances for each considered
tree-decomposition for the 434 instances for which Min-Fill produces a bag-
connected tree-decomposition when the size of separators are limited to 15.

the use of restart techniques does not allow to improve significantly the efficiency
of BTD-MAC+RST w.r.t. to MAC+RST+NG or BTD-MAC. On the other
hand, for the other considered families, we can observe that BTD-MAC+RST
provides interesting results. These good results are sometimes due only to the
tree-decomposition (e.g. for the families dubois or haystacks) since they are
close to ones of BTD-MAC. Likewise, in some cases, they mainly result from
the use of restart techniques (e.g. for the families jobshop or geom) and they
are then close to ones obtained by MAC+RST+NG. Finally, in other cases,
BTD-MAC+RST derives fully benefit of both the tree-decomposition and the
restart techniques (e.g. for the families superjobshop or rlfapScens11). In
such a case, it often outperforms the three other algorithms.

Then, if we consider the runtime for instances which are solved by all the
algorithms (see Table 3), we can note that BTD-MAC+RST with RA, RWL
or RWG clearly outperforms the three other algorithms. For example, BTD-
MAC+RST with RWG succeeds in solving the 168 instances in 1,919 s while
MAC+RST+NG requires 3,605 s.

Now, let us consider the instances of the rlfapScens11 family, which con-
tains the more difficult RLFAP instances [6]. We can remark that BTD-MAC
solves only the three easiest instances. This is explained by bad choices for the
root cluster. It turns out that, for all the instances of this family, most choices
for the root cluster lead to spend a lot of time to solve some subproblems.
So, restart techniques are here very helpful. Table 4 compares the runtime of
MAC+RST+NG and BTD-MAC+RST for these instances without any time-
out. Clearly, the ratio of the runtime of MAC+RST+NG over one of BTD-
MAC+RST increases with the hardness of the instances. At the end, for the
hardest instances, BTD-MAC+RST is 30% faster than MAC+RST+NG.



Table 1: Value of the structural parameters for some instances for which Min-
Fill produces some disconnected clusters (a), for which Min-Fill produces a
bag-connected tree-decomposition (b).

Instances n m
Min-Fill NV1 NV2 NV3 NV4
w+ s w+

c s w+
c s w+

c s w+
c s

(a)

2-insertions-4-3 149 541 38 34 66 54 95 14 101 66 58 57
ewddr2-10-by-5-9 50 265 16 15 22 17 21 20 26 23 45 37
renault-mod-33 ext 111 133 11 11 12 11 14 11 17 15 16 13

scen7 400 2,865 33 29 90 48 319 9 116 94 81 34
squares-23-23 1,058 1,268 45 4 45 5 45 5 235 88 45 26
fapp06-0500-1 500 3,478 221 210 286 284 286 284 314 314 313 248

js-taillard-15-100-4 225 1785 86 70 114 102 121 97 129 102 210 197

(b)

mps-red-qnet1 5,380 621 970 773 1,272 1,265 1,272 1,265 978 954 998 974
anna-9 138 493 12 12 14 14 14 14 16 15 14 13

haystacks-10 100 459 9 1 9 1 9 1 9 1 9 1
renault-mod-8 ext 111 126 11 11 11 11 12 11 13 12 11 11
qwh-15-106-9 ext 225 2324 99 99 102 102 102 102 103 103 173 168

More generally, we have observed that BTD-MAC+RST is generally more
efficient on inconsistent structured instances than MAC+RST+NG. For exam-
ple, if we consider the instances with a ratio n

w+ at least 5, BTD-MAC+RST
with RW or RA requires respectively 1,419 s and 1,482 s to solve the 87 incon-
sistent instances which are solved by all the algorithms, while MAC+RST+NG
needs 2,912 s. Such a phenomenon is partially explained by the use of the
tree-decomposition. Indeed, if BTD-MAC+RST explores an inconsistent clus-
ter at the beginning of the search, it may quickly prove the inconsistency of the
problem.

Finally, as explained in Section 3, the negative impact due to the existence
of disconnected clusters is partially related to the choice of the root cluster.
As BTD-MAC+RST may choose a new root cluster at each restart, it is quite
natural to wonder how BTD-MAC+RST behaves when the considered tree-
decompositions have some disconnected clusters. To do so, we now take into
account the 1,425 instances for which Min-Fill produces a tree-decomposition
with some disconnected clusters when the size of the separators is limited to
15. We can note that the exploitation of restarts may limit the negative impact
due to the existence of disconnected clusters. Indeed, BTD-MAC+RST with
Min-Fill and RWL, RA or RWG succeeds in solving more instances than BTD-
MAC with Min-Fill or any NVi. For example, BTD-MAC+RST with RWL,
RA or RWG solves respectively 1,149, 1,167 and 1,157 against 1,140 instances
for BTD-MAC with NV1 which obtains the best results on these instances in
the previous subsection.

In conclusion, clearly the exploitation of restarts allows us to improve the
efficiency of BTD, with very significant gains for some kinds of instances. More-
over, it also limits the negative impact due to the existence of disconnected
clusters by choosing possibly a new root cluster at each restart.



T
ab

le
2:

T
h

e
n
u

m
b

er
of

so
lv

ed
in

st
an

ce
s

an
d

th
e

cu
m

u
la

ti
ve

ru
n
ti

m
e

in
s

fo
r

ea
ch

co
n

si
d

er
ed

a
lg

o
ri

th
m

.
T

h
e

tr
ee

-d
ec

o
m

p
o
si

ti
o
n

s
a
re

co
m

p
u

te
d

th
an

k
s

to
M

in
-F

il
l.

T
h

e
si

ze
of

se
p

ar
at

o
rs

a
re

li
m

it
ed

to
1
5
.

F
am

il
y

#
in

st
.

M
A

C
B

T
D

-M
A

C
M

A
C

+
R

S
T

+
N

G
B

T
D

-M
A

C
+

R
S

T
w

it
h

R
A

R
W

L
R

W
G

#
so

lv
.

ti
m

e
#

so
lv

.
ti

m
e

#
so

lv
.

ti
m

e
#

so
lv

.
ti

m
e

#
so

lv
.

ti
m

e
#

so
lv

.
ti

m
e

d
u
b
o
i
s

13
4

1,
0
6
7
.7

9
1
3

1
.6

0
4

1
,0

85
.4

1
1
3

1
.6

3
1
3

1
.6

1
1
3

1
.6

1
g
e
o
m

85
85

4
0
6
.0

9
8
5

7
0
0
.1

4
8
5

4
71

.6
7

8
5

4
1
4
.4

9
8
5

4
2
2
.1

5
8
5

4
6
2
.7

4
g
r
a
p
h
C
o
l
o
r
i
n
g

19
6

11
1

3,
7
7
8
.1

5
1
1
3

3
,9

9
7
.6

5
1
1
2

2
,9

74
.6

1
1
1
7

3
,6

8
7
.2

3
1
1
8

4
,8

9
9
.3

0
1
1
9

4
,2

3
8
.5

2
h
a
y
s
t
a
c
k

9
2

4
.7

1
8

1
3
3
.3

9
2

3
.5

1
8

1
4
0
.1

1
8

2
4
3
.1

2
8

1
3
6
.6

7
j
o
b
s
h
o
p

46
37

3
9
0
.0

5
3
5

2
8
2
.1

4
4
6

1
1
.4

1
4
6

1
0
.5

5
4
6

1
4
.8

3
4
6

1
2
.3

1
r
e
n
a
u
l
t

50
50

1
9
.1

5
5
0

6
6
.1

4
5
0

1
9
.6

0
5
0

2
7
.7

6
5
0

2
4
.5

9
5
0

2
4
.6

6
p
r
e
t

8
4

2
5
3
.5

7
8

1
.0

6
4

4
89

.5
6

8
1
.0

7
8

1
.0

7
8

1
.0

7
r
l
f
a
p
S
c
e
n
s
1
1

12
8

7
1
1
.2

8
3

7
.5

5
1
0

8
14

.1
5

1
0

5
6
5
.9

3
1
0

5
9
6
.8

4
1
0

5
5
7
.4

8
S
u
p
e
r
-
j
o
b
s
h
o
p

46
19

1,
0
1
6
.3

2
2
2

1
,5

8
7
.1

0
3
3

1
,4

75
.3

6
2
8

1
1
5
.8

0
3
2

4
0
1
.9

4
3
4

1
,0

5
1
.0

2
t
r
a
v
e
l
l
i
n
g
S
a
l
e
s
m
a
n
-
2
0

15
15

1
4
0
.9

5
1
5

1
6
5
.6

0
1
5

1
63

.2
0

1
5

1
7
9
.5

0
1
5

1
7
8
.4

8
1
5

2
3
7
.2

1
T

ot
al

48
0

33
5

7,
7
8
8
.0

7
3
5
2

6
,9

4
2
.3

7
3
6
1

7
,5

08
.4

8
3
8
0

5
,1

4
4
.0

8
3
8
5

6
,7

8
3
.9

3
3
8
8

6
,7

2
3
.2

9



Table 3: The cumulative runtime in s for each considered algorithm for instances
solved by all the algorithms. The tree-decompositions are computed thanks to
Min-Fill. The size of separators are limited to 15.

Family #inst. MAC BTD-MAC MAC+RST+NG
BTD-MAC+RST with

RA RWL RWG
dubois 4 1,067.79 0.30 1,085.41 0.30 0.30 0.30

graphColoring 106 3,089.07 3,047.03 2,006.23 2,364.89 2,159.91 1,894.05
haystack 2 4.71 0.03 3.51 0.03 0.03 0.03
jobshop 33 251.32 281.77 4.74 6.07 6.20 6.25

pret 4 253.57 0.28 489.56 0.28 0.28 0.28
rlfapScens11 3 2.91 7.55 2.43 7.43 7.39 7.39

Super-jobshop 16 762.04 486.78 13.46 11.46 11.49 11.44
Total 168 5,431.42 3,823.74 3,605.33 2,390.46 2,185.59 1,919.74

Table 4: Runtime in s (without timeout) for the instances of family
rlfapScens11 for BTD-MAC+RST with RWG. The tree-decompositions are
computed thanks to Min-Fill. The size of separators are limited to 15.

Instance MAC+RST+NG BTD-MAC+RST RWG
scen11-f1 4,244.08 3,000.41
scen11-f2 1,697.12 1,202.21
scen11-f3 563.47 371.83
scen11-f4 182.15 124.96
scen11-f5 47.17 31.20
scen11-f6 9.74 8.62
scen11-f7 6.54 6.67
scen11-f8 1.42 3.50
scen11-f9 1.25 3.32
scen11-f10 0.87 2.48
scen11-f11 0.78 2.45
scen11-f12 0.77 2.46



 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000  1100  1200  1300  1400  1500

ti
m

e
 (

s)

# solved instances

MAC
MAC+RST+NG

BTD-MAC
BTD-MAC+RST RWL

BTD-MAC+RST RA
BTD-MAC+RST RWG

Figure 12: The cumulative number of solved instances for different solving meth-
ods. The tree-decompositions are computed by Min-Fill. The size of separators
are limited to 15.

6.4 Exploitation of both Restarts and Bag-Connected Tree-
Decomposition

In this subsection, we assess the complementarity of restarts and bag-connected
tree-decompositions. In practice we have considered a lot of combinations of
restart policy and bag-connected tree-decompositions. However, for sake of
simplicity, we only present here the results for three of them, knowing that
similar trends are observed for the others. Figure 15 provides the cumulative
number of solved instances for each considered solving method.

First, we note that the three combinations (namely NV1 and RWG, NV4
and RWG and NV4 and RWL) lead to obtain close results. Indeed, BTD-
MAC+RST with these combinations solves respectively 1,495, 1,497 and 1,499
instances. Then, these results improve ones obtained for BTD-MAC+RST with
Min-Fill and RWG, RWL or RA which allows BTD-MAC+RST to solve re-
spectively 1,478, 1,467 and 1,481 instances. Moreover, BTD-MAC+RST with
these combinations also solves more instances than MAC+RST+NG (1,491 in-
stances). Note that we have observed similar improvements if we focus our
study on the instances for which Min-Fill produces a tree-decomposition with
some disconnected clusters or on the instances having a suitable structure. Fi-
nally, we compare the runtime of BTD-MAC+RST with Min-Fill and RA with
one of BTD-MAC+RST with NV4 and RWL (see Figure 16). Clearly, for most
instances, BTD-MAC+RST with NV4 and RWL performs faster than BTD-
MAC+RST with Min-Fill and RA.



 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 400  500  600  700  800  900

ti
m

e
 (

s)

# solved instances

MAC
MAC+RST+NG

BTD-MAC
BTD-MAC+RST RWL

BTD-MAC+RST RA
BTD-MAC+RST RWG

Figure 13: The cumulative number of solved instances for different methods.
The tree-decompositions are computed by Min-Fill. The size of separators are
limited to 15. Each considered instances has a ratio n

w+ at least 2.

6.5 Summary

We have raised two issues (namely the existence of disconnected clusters and
the choice of the root cluster) which may influence significantly the efficiency
when solving CSPs by a decomposition method like BTD. In this section, we
have shown the practical interest of the responses we have proposed to these
two issues.

First, regarding the existence of disconnected clusters, our experimentations
have clearly shown its negative impact on the solving efficiency and that the
efficiency of BTD-MAC can be improved by the exploitation of bag-connected
tree-decompositions. Indeed, when Min-Fill produces tree-decompositions with
some disconnected clusters, BTD-MAC with Min-Fill solves less instances than
BTD-MAC exploiting bag-connected tree-decomposition. However, when Min-
Fill produces bag-connected tree-decompositions, BTD-MAC with Min-Fill and
BTD-MAC with bag-connected tree-decompositions obtain similar results even
if they do not use the same tree-decompositions. These results can also allow
us to provide new explanations about the observations made in [24].

Then, regarding the choice of the root cluster, the exploitation of restart
techniques inside BTD-MAC+RST turns to be an interesting alternative. No-
tably, it leads to solve more instances than BTD-MAC. Moreover, it may limit
the negative impact due to the existence of disconnected clusters.

Finally, the joint use of bag-connected tree-decompositions and restart tech-
niques allows us to improve even more the solving efficiency. For instance,
BTD-MAC+RST solves more instances than any considered algorithm includ-
ing BTD-MAC, MAC and MAC+RST+NG. Furthermore, it often performs
faster, especially when the instances have a suitable structure.



 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 0  50  100  150  200  250  300

ti
m

e
 (

s)

# solved instances

MAC
MAC+RST+NG

BTD-MAC
BTD-MAC+RST RWL

BTD-MAC+RST RA
BTD-MAC+RST RWG

Figure 14: The cumulative number of solved instances for different methods.
The tree-decompositions are computed by Min-Fill. The size of separators are
limited to 15. Each considered instances has a ratio n

w+ at least 5.

7 Conclusion

In this paper, we discussed two important issues that arise when solving CSPs
with decomposition methods and which have a crucial role for the efficiency the
these approaches. The first one concerns the choice of decompositions (tree of
clusters) that will be considered. The second question concerns the choice of
the cluster that will be used as root cluster during search.

If the first point has been much studied, most of the works done for a
long time concerns the minimization of the width of the considered decomposi-
tions. We initially identified a phenomenon that occurs particularly when the
used decompositions correspond to good approximations of the optimal tree-
decomposition (i.e. the decompositions of minimal width). In such cases, a
majority of the decompositions have clusters possessing several connected com-
ponents. This phenomenon which has apparently never been observed before
is both very frequent and, above all, can cause considerable damage to the ef-
ficiency of the search. So, in this paper, we have introduced the concept of
bag-connected tree-decomposition (all their clusters are connected) in the field
of constraint network decomposition. This concept was proposed recently in
the area of combinatorics. After we have shown the interest of this new class of
decompositions and proposed a first polynomial time algorithm which computes
bag-connected tree-decompositions, we have experimentally demonstrated the
relevance of this approach since it allows to significantly improve the solving of
CSPs using decomposition methods. Indeed, by using such decompositions, we
show experimentally that decomposition methods like BTD succeed in solving
many more instances than by using classical decompositions.

To address the problem of choosing the root cluster, we propose here to apply



 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000  1100  1200  1300  1400  1500

ti
m

e
 (

s)

# solved instances

MAC+RST+NG
BTD-MAC+RST Min-Fill RA 

BTD-MAC+RST NV1 RWG
BTD-MAC+RST NV4 RWG
BTD-MAC+RST NV4 RWL

Figure 15: The cumulative number of solved instances for different methods.
The tree-decompositions are computed by Min-Fill, NV1 or NV4. The size of
separators are limited to 15.

the principle of restarts in decomposition-based methods. To this end, first, we
have described how usual nogoods can be incorporated into a decomposition-
based method while preserving the structure induced by a given decomposition.
Next we have introduced the concept of oriented structural good. Indeed, while
the structural nogoods can be used directly, using an approach based on restarts,
the goods must verify certain properties on the order of exploration of a tree-
decomposition. Our experimentations show clearly the practical advantage of
exploiting restarts in the context of decomposition-based methods. Finally,
we present experiments demonstrating that the jointly use of bag-connected
tree-decompositions and restarts allows to improve significantly the efficiency of
decomposition methods.

The extension of this work concerns at least two main directions. The first
one is on further study of the concept of restart. In particular, it is well known
that this kind of techniques, for example in the case of SAT solvers, was the
subject of numerous studies for a long time to provide better policies of restarts,
but also for the management of recorded nogoods. Results from these previous
works will not be necessarily usable here because it will be probably necessary to
take into account the specificity of decompositions. On the one hand, “classic”
nogoods are handled, but above all, structural goods and structural nogoods
induce probably specific policies. This difference must be taken into account
in the development of more effective policies which may, moreover, be consid-
ered locally or globally in a given decomposition. Moreover, the study of this
approach to a meta-level needs to be addressed. For instance, the issue of the
choice of a tree-decomposition, and then, of its modification during search needs
to be addressed to enable the management of “dynamic” decompositions.

The second extension of this work is related to the study of bag-connected



 0.01

 0.1

 1

 10

 100

 0.01  0.1  1  10  100

B
T
D

-M
A

C
+

R
S

T
 N

V
4

 R
W

L

BTD-MAC+RST Min-Fill RA

the exploitation of restarts may limit the negative impact due to the existence
of disconnected clusters.

Figure 16: Runtime of BTD-MAC+RST with Min-Fill and RA vs runtime of
BTD-MAC+RST with NV4 and RWL. The size of separators are limited to 15.

tree-decompositions and restarts in the more general field of Graphical Mod-
els in AI. This concerns the study of these notions for other classes of meth-
ods as Hypertree-Decomposition [20], And/Or Search [9, 10], Bucket Elimi-
nation [7], etc. This approach is particularly justified by the fact that, even
if some of these approaches are based on other parameters (e.g. Hypertree-
Decomposition), their efficient implementations use generally algorithms coming
from Tree-Decompositions (e.g. Min-Fill for Hypertree-Decomposition [12]).
Another promising study is related to the field of optimization and counting
problems. We know that approaches as BTD has already been successfully used
in these two areas [44, 14]. However, this extension is not trivial. For exam-
ple, the use of valued structural goods in the case of optimization requests a
comprehensive study to enable its implementation while using restarts.

Acknowledgements

This work was supported by the French National Research Agency under grant
TUPLES (ANR-2010-BLAN-0210).

The authors would like to thank Ioan Todinca for their fruitful discussion
about this work.

References

[1] Arnborg, S., Corneil, D., Proskuroswki, A.: Complexity of finding embed-
dings in a k-tree. SIAM Journal of Discrete Mathematics 8, 277–284 (1987)



[2] Berge, C.: Graphs and Hypergraphs. Elsevier (1973)

[3] Bessière, C., Meseguer, P., Freuder, E.C., Larrosa, J.: On forward checking
for non-binary constraint satisfaction. Artificial Intelligence 141, 205–224
(2002)

[4] Bessière, C., Régin, J.C.: Refining the Basic Constraint Propagation Algo-
rithm. In: Proceedings of IJCAI, pp. 309–315 (2001)

[5] Boussemart, F., Hemery, F., Lecoutre, C., Sais, L.: Boosting systematic
search by weighting constraints. In: Proceedings of ECAI, pp. 146–150
(2004)

[6] Cabon, C., de Givry, S., Lobjois, L., Schiex, T., Warners, J.P.: Radio Link
Frequency Assignment. Constraints 4, 79–89 (1999)

[7] Dechter, R.: Constraint processing. Morgan Kaufmann Publishers (2003)

[8] Dechter, R., Fattah, Y.E.: Topological Parameters for Time-Space Trade-
off. Artificial Intelligence 125, 93–118 (2001)

[9] Dechter, R., Mateescu, R.: The Impact of AND/OR Search Spaces on
Constraint Satisfaction and Counting. In: Proceedings of the 10th Interna-
tional Conference on Principles and Practice of Constraint Programming
(CP), pp. 731–736 (2004)

[10] Dechter, R., Mateescu, R.: AND/OR search spaces for graphical models.
Artificial Intelligence 171, 73–106 (2007)

[11] Dechter, R., Pearl, J.: Tree-Clustering for Constraint Networks. Artificial
Intelligence 38, 353–366 (1989)

[12] Dermaku, A., Ganzow, T., Gottlob, G., McMahan, B.J., Musliu, N., Samer,
M.: Heuristic methods for hypertree decomposition. In: Proceedings of
MICAI, pp. 1–11 (2008)

[13] Diestel, R., Müller, M.: Connected tree-width. arXiv 1211.7353v2 (2014)

[14] Favier, A., de Givry, S., Jégou, P.: Exploiting problem structure for solu-
tion counting. In: Proceedings of CP, pp. 335–343 (2009)

[15] Fraigniaud, P., Nisse, N.: Connected treewidth and connected graph
searching. In: Proceedings of LATIN, pp. 479–490 (2006)

[16] Freuder, E.: A Sufficient Condition for Backtrack-Free Search. Journal of
the ACM 29 (1), 24–32 (1982)

[17] Gavril, F.: Algorithms for minimum coloring, maximum clique, minimum
covering by cliques, and maximum independent set of a chordal graph.
SIAM Journal on Computing 1 (2), 180–187 (1972)

[18] Golumbic, M.: Algorithmic Graph Theory and Perfect Graphs. Academic
Press, New York (1980)



[19] Gomes, C.P., Selman, B., Crato, N., Kautz, H.A.: Heavy-Tailed Phenom-
ena in Satisfiability and Constraint Satisfaction Problems. Journal of Au-
tomated Reasoning 24(1/2), 67–100 (2000)

[20] Gottlob, G., Leone, N., Scarcello, F.: A Comparison of Structural CSP
Decomposition Methods. Artificial Intelligence 124, 243–282 (2000)

[21] Gyssens, M., Jeavons, P., Cohen, D.: Decomposing constraint satisfaction
problems using database techniques. Artificial Intelligence 66, 57–89 (1994)

[22] Hamann, M., Weißauer, D.: Bounding connected tree-width. arXiv
1503.01592 (2015)

[23] Harvey, W.D.: Nonsystematic backtracking search. Ph.D. thesis, Stanford
University (1995)

[24] Jégou, P., Ndiaye, S.N., Terrioux, C.: Computing and exploiting tree-
decompositions for solving constraint networks. In: Proceedings of CP,
pp. 777–781 (2005)

[25] Jégou, P., Ndiaye, S.N., Terrioux, C.: An extension of complexity bounds
and dynamic heuristics for tree-decompositions of CSP. In: Proceedings of
CP, pp. 741–745 (2006)

[26] Jégou, P., Ndiaye, S.N., Terrioux, C.: ‘Dynamic Heuristics for Backtrack
Search on Tree-Decomposition of CSPs. In: Proceedings of IJCAI, pp.
112–117 (2007)

[27] Jégou, P., Ndiaye, S.N., Terrioux, C.: Dynamic Management of Heuristics
for Solving Structured CSPs. In: Proceedings of CP, pp. 364–378 (2007)

[28] Jégou, P., Terrioux, C.: Hybrid backtracking bounded by tree-
decomposition of constraint networks. Artificial Intelligence 146, 43–75
(2003)

[29] Jégou, P., Terrioux, C.: Combining restarts, nogoods and decompositions
for solving csps. In: Proceedings of ECAI, pp. 465–470 (2014)

[30] Jégou, P., Terrioux, C.: Tree-decompositions with connected clusters for
solving constraint networks. In: Proceedings of CP, pp. 407–423 (2014)

[31] Karakashian, S., Woodward, R., Choueiry, B.Y.: Improving the Perfor-
mance of Consistency Algorithms by Localizing and Bolstering Propagation
in a Tree Decomposition. In: Proceedings of AAAI, pp. 466–473 (2013)

[32] Kjaerulff, U.: Triangulation of Graphs - Algorithms Giving Small Total
State Space. Tech. rep., Judex R.R. Aalborg., Denmark (1990)

[33] Lecoutre, C.: Constraint Networks - Techniques and Algorithms.
ISTE/Wiley (2009)

[34] Lecoutre, C., Säıs, L., Tabary, S., Vidal, V.: Recording and Minimizing
Nogoods from Restarts. JSAT 1(3-4), 147–167 (2007)

[35] Luby, M., Sinclair, A., Zuckerman, D.: Optimal speedup of Las Vegas
algorithms. Information Processing Letters 47(4), 173–180 (1993)



[36] Müller, M.: Connected tree-width. arXiv 1211.7353 (2012)

[37] Nadel, B.: Tree Search and Arc Consistency in Constraint-Satisfaction
Algorithms, pp. 287–342. In Search in Artificial Intelligence. Springer-
Verlag (1988)

[38] Petke, J.: On the bridge between Constraint Satisfaction and Boolean Sat-
isfiability. Ph.D. thesis, University of Oxford (2012)

[39] Robertson, N., Seymour, P.: Graph minors II: Algorithmic aspects of
treewidth. Algorithms 7, 309–322 (1986)

[40] Rose, D.J.: A graph theoretic study of the numerical solution of sparse pos-
itive denite systems of linear equations. In: Graph Theory and Computing,
pp. 183–217. R.C. Read (ed.), Academic Press, New York (1973)

[41] Rossi, F., van Beek, P., Walsh, T.: Handbook of Constraint Programming.
Elsevier (2006)

[42] Sabin, D., Freuder, E.: Contradicting Conventional Wisdom in Constraint
Satisfaction. In: Proceedings of ECAI, pp. 125–129 (1994)

[43] Sabin, D., Freuder, E.: Understanding and Improving the MAC Algorithm.
In: Proceedings of CP, pp. 167–181 (1997)

[44] Sanchez, M., Bouveret, S., de Givry, S., Heras, F., Jégou, P., Larrosa, J.,
Ndiaye, S.N., Rollon, E., Schiex, T., Terrioux, C., Verfaillie, G., Zytnicki,
M.: Max-CSP competition 2008: toulbar2 solver description. In: Proceed-
ings of the 3rd CSP Solver Competition, CP workshop, pp. 63–70 (2008)

[45] Tarjan, R., Yannakakis, M.: Simple linear-time algorithms to test chordal-
ity of graphs, test acyclicity of hypergraphs, and selectively reduce acyclic
hypergraphs. SIAM Journal on Computing 13 (3), 566–579 (1984)

[46] Walsh, T.: Search in a small world. In: Proceedings of IJCAI, pp. 1172–
1177 (1999)


	Introduction
	Background
	Solving CSPs by Backtracking Methods
	Solving CSPs using Graph Decomposition
	Backtracking on Tree-Decomposition: The BTD Method

	What Impacts the Efficiency of Decomposition Methods?
	Tree-Decompositions with Disconnected Clusters
	The Importance of the Choice of the Root

	A New Parameter for Graph Decomposition of CSPs
	Bag-Connected Tree-Decomposition
	Computing a Bag-Connected Tree-Decomposition

	Exploiting Restarts within BTD
	Experiments
	Experimental Protocol
	Exploitation of Bag-Connected Tree-Decompositions
	Instances for which Min-Fill produces some disconnected clusters
	Instances for which Min-Fill produces a bag-connected tree-decomposition
	Comparisons of the structural parameters

	Exploitation of Restarts
	Exploitation of both Restarts and Bag-Connected Tree-Decomposition
	Summary

	Conclusion

