
Max-CSP competition 2008:

toulbar2 solver description

M. Sanchez1, S. Bouveret3, S. de Givry1, F. Heras2, P. Jégou4, J. Larrosa2, S. Ndiaye4,

E. Rollon2, T. Schiex1, C. Terrioux4, G. Verfaillie3, and M. Zytnicki1

1 INRA, Toulouse, France
2 Dep. LSI, UPC, Barcelona, Spain

3 ONERA, Toulouse, France
4 LSIS, Marseilles, France

Abstract. This document presents the key techniques used in toulbar2 solver

submitted to the Max-CSP competition 2008. toulbar2 solves Weighted Con-

straint Satisfaction Problems (WCSPs), a generalisation of Max-CSP. Two com-

plete solving methods that have been used for the competition are presented in

this paper: Depth-First Branch and Bound (DFBB) and a new algorithm, Russian

Doll Search with tree decomposition (RDS-BTD), which exploits the problem

structure.

DFBB is commonly used to solve constraint optimization problems such as WC-

SPs. The worst-case time complexity of this algorithm can be improved by ex-

ploiting the constraint graph structure, identifying independent subproblems and

caching their optima. However, the exploitation of the structure is done a poste-

riori: each time a new subproblem occurs, it has to be solved before its optimum

can be used. RDS-BTD solves a relaxation of every subproblem before solving

the whole problem, in the spirit of the Russian Doll Search algorithm. This relax-

ation allows to exploit subproblem lower bounds in a more proactive way.

1 Weighted Constraint Satisfaction Problem

A Weighted CSP (WCSP) is a quadruplet (X ,D,W,m). X and D are sets of n variables

and finite domains, as in a standard CSP. The domain of variable i is denoted Di. The

maximum domain size is d. For a set of variables S ⊂ X , we note ℓ(S) the set of tuples

over S. W is a set of cost functions. Each cost function (or soft constraint) wS in W

is defined on a set of variables S called its scope and assumed to be different for each

cost function. A cost function wS assigns costs to assignments of the variables in S i.e.

wS : ℓ(S)→ [0,m]. The set of possible costs is [0,m] and m ∈ {1, . . . ,+∞} represents

an intolerable cost. Costs are combined by the bounded addition ⊕, such as a⊕ b =
min{m,a+b} and compared using ≥. The operation ⊖ subtracts a cost b from a larger

cost a where a⊖b = (a−b) if a 6= m and m otherwise.

For unary/binary cost functions, we use simplified notations: a unary (resp. binary)

cost function on variable(s) i (resp. i and j) is denoted wi (resp. wi j). If they do not exist,

we add to W a unary cost function wi for every variable i, and a nullary cost function,

noted w∅ (a constant cost payed by any assignment). All these additional cost functions

have initial cost 0, leaving the semantics of the problem unchanged.

64 Sanchez em et al.

The cost of a complete assignment t ∈ ℓ(X) in a problem P =(X ,D,W,m) is ValP(t)=
L

wS∈W wS(t[S]) where t[S] denotes the usual projection of a tuple on the set of variables

S. The problem of minimizing ValP(t) is an optimization problem with an associated

NP-complete decision problem.

Enforcing a given local consistency property on a problem P consists in trans-

forming P = (X ,D,W,m) in a problem P′ = (X ,D,W ′,m) which is equivalent to P

(ValP = ValP′) and which satisfies the considered local consistency property. This en-

forcing may increase w∅ and provide an improved lower bound on the optimal cost.

Enforcing is achieved using Equivalence Preserving Transformations (EPTs) moving

costs between different scopes [12, 8, 4, 6, 1, 3, 2].

A classical complete solving method is Depth-First Branch and Bound (DFBB).

We give its pseudo-code in Algorithm 1. It enforces at each search node a given local

consistency property Lc (line 1). The pruning condition is applied if the resulting w∅ ≥
m (line 2). m is updated to the cost of the last solution found (line 3). The initial call

is DFBB(P, X , /0). It assumes an already local consistent problem P and returns its

optimum. P/A denotes the subproblem P under assignment A. The operator . is used to

get an element of P. Function pop(S) returns an element of S and remove it from S.

DFBB worst-case time complexity is O(dn) and it uses linear space. In the next

section, we briefly present how DFBB can be extended to exploit the problem structure.

2 Depth-First Branch and Bound with tree decomposition

Assuming connected problems, a tree decomposition of a WCSP is defined by a tree

(C,T). The set of nodes of the tree is C = {C1, . . . ,Ck}where each Ce is a set of variables

(Ce ⊂ X) called a cluster. T is a set of edges connecting clusters and forming a tree (a

connected acyclic graph). The set of clusters C must cover all the variables (
S

Ce∈C Ce =
X) and all the cost functions (∀wS ∈W,∃Ce ∈C s.t. S⊂Ce). Furthermore, if a variable i

appears in two clusters Ce and Cg, i must also appear in all the clusters C f on the unique

path from Ce to Cg in T .

For a given WCSP, we consider a rooted tree decomposition (C,T) with an arbitrary

root C1. We denote by Father(Ce) (resp. Sons(Ce)) the parent (resp. set of sons) of Ce

in T . The separator of Ce is the set Se = Ce∩Father(Ce). The set of proper variables of

Ce is Ve = Ce \Se.

The essential property of tree decompositions is that assigning Se separates the ini-

tial problem in two subproblems which can then be solved independently. The first

subproblem, denoted Pe, is defined by the variables of Ce and all its descendant clusters

in T and by all the cost functions involving at least one proper variable of these clus-

ters. The remaining cost functions, together with the variables they involve, define the

remaining subproblem.

Example 1. Consider the MaxCSP problem depicted in Figure 1. It has eleven variables

with two values (a,b) in their domains. Binary cost functions of difference (wi j(a,a) =
wi j(b,b) = 1,wi j(a,b) = wi j(b,a) = 0) are represented by edges connecting the corre-

sponding variables. In this problem, the optimal cost is 5 and it is attained with e.g. the

assignment (a,b,b,a,b,b,a,b,b,a,b) in lexicographic order. A C1-rooted tree decom-

position with clusters C1 = {1,2,3,4},C2 = {4,5,6},C3 = {5,6,7},C4 = {4,8,9,10},

Max-CSP competition 2008: toulbar2 solver description 65

C1

4

5

67

8

9 10

11

C4C2

C5C3

C1

C2

C3

C4

C5

1

32

Fig. 1. The constraint graph of Example 1 and its associated tree decomposition.

and C5 = {4,9,10,11}, is given on the right hand-side in Figure 1. For instance, C1

has sons {C2,C4}, the separator of C3 with its father C2 is S3 = {5,6}, and the set of

proper variables of C3 is V3 = {7}. The subproblem P3 has variables {5,6,7} and cost

functions {w5,7,w6,7,w7} (w7 initially empty). P1 corresponds to the whole problem.

Depth-First Branch and Bound with Tree Decomposition (BTD) [7, 5] exploits this

property by restricting the variable ordering. Imagine all the variables of a cluster Ce are

assigned before any of the remaining variables in its son clusters and consider a current

assignment A. Then, for any cluster C f ∈ Sons(Ce), and for the current assignment A f

of the separator S f , the subproblem Pf under assignment A f (denoted Pf /A f) can be

solved independently from the rest of the problem. If memory allows, the optimal cost

of Pf /A f may be recorded which means it will never be solved again for the same

assignment of S f .

In [5], we show how to exploit a better initial upper bound for solving Pf . However

this has the side-effect that the optimum of Pf may be not computed but only a lower

bound. The lower bound and the fact it is optimal can be recorded in LBPf /A f
and

OptPf /A f
respectively, initially set to 0 and false.

As in DFBB, BTD enforces local consistency during search. However, local con-

sistency may move costs between clusters, thereby invalidating previously recorded

information. We store these cost moves in a specific backtrackable data structure ∆W

as defined in [5]. During the search, we can obtain the total cost that has been moved

66 Sanchez em et al.

out of the subproblem Pf /A f by summing up all the ∆W
f

i (a) for all values (i,a) in the

separator assignment A f and correct any recorded information: LB′
Pf /A f

= LBPf /A f
⊖

L

i∈S f
∆W

f
i (A f [i]).

Moreover, we keep the nullary cost function local to each cluster: w∅ =
L

Ce∈C we
∅

.

For pruning the search, BTD uses the maximum between local consistency and

recorded lower bounds as soon as their separator is completely assigned by the current

assignment A. We denote by lb(Pe/A) this lower bound:

lb(Pe/A) = we
∅
⊕

M

C f∈Sons(Ce)

max(lb(Pf /A),LB′Pf /A f
) (1)

Example 2. In the problem of Example 1, variables {1,2,3,4} of C1 are assigned first,

e.g. using a dynamic variable ordering min domain / max degree inside each cluster.

Let assume A = {(4,a),(1,a),(2,b),(3,b)} be the current assignment5. Enforcing

EDAC local consistency [6] on P1/A produces w1
∅

= 2,w2
∅

= w4
∅

= 1,w3
∅

= w5
∅

= 0,

resulting in lb(P1/A) =
L

Ce∈C we
∅

= 4 (no lower bound recorded yet).

Then, subproblems P2/{(4,a)} and P4/{(4,a)} are solved independently, resulting

in LBP2/{(4,a)} = 1, LBP4/{(4,a)} = 2, OptP2/{(4,a)} = OptP4/{(4,a)} = true (no initial upper

bound) which are recorded. A first complete assignment of cost w1
∅
⊕ LBP2/{(4,a)}⊕

LBP4/{(4,a)} = 5 (all ∆W costs are zero in this case) is found.

In Algorithm 1, we present the pseudo-code of the BTD algorithm combining tree

decomposition and a given level of local consistency Lc. This algorithm uses our initial

enhanced upper bound (line 4), value removal based on local cuts [5] and lower bound

recording (lines 6 and 7). The initial call is BTD(P1, V1, /0, 0), with P1 = P, an already

local consistent problem, returning its optimum.

The lower bound lb(Pe/A) of Equation 1 does not take into account a possible

recorded lower bound LBPe/Ae
, which may exist if OptPe/Ae

=false and the same sub-

problem is solved again. We therefore ensure a monotonically increasing lower bound

during the search by passing the best lower bound found recursively (line 5 and 9),

resulting in a stronger pruning condition (line 8).

BTD time complexity is O(mdw+1) with w = maxCe∈C |Ce|−1, the maximum clus-

ter size minus one, called the tree-width of the tree decomposition. Its memory com-

plexity is bounded by O(ds) with s = maxCe∈C |Se|, the maximum separator size [5].

3 Russian Doll Search with tree decomposition

The original Russian Doll Search (RDS) algorithm [13] consists in solving n nested

subproblems of an initial problem P with n variables. Given a fixed variable order, it

starts by solving the subproblem with only the last variable. Next, it adds the preceding

variable in the order and solves this subproblem with two variables, and repeats this

process until the complete problem is solved. Each subproblem is solved by a DFBB

5 Variable 4 has been selected first as it has the highest degree in C1.

Max-CSP competition 2008: toulbar2 solver description 67

Algorithm 1: DFBB, BTD, and RDS-BTD algorithms.

Function DFBB(P, V , A) : [0,+∞]
if (V = /0) then

return P.w∅ /* A new solution is found for P */ ;

else
i :=pop(V) /* Choose an unassigned variable of P */ ;

d := P.Di ;

/* Enumerate every value in the domain of i */ ;

while (d 6= /0 and P.w∅ < P.m) do
a :=pop(d) /* Choose a value */ ;

P′ :=Lc(P/A∪{(i,a)}) /* Enforce local consistency on P/A∪{(i,a)} */ ;1

if (P′.w∅ < P.m) then2

P.m :=DFBB(P′, V , A∪{(i,a)}) ;3

return P.m ;

Function BTD(Pe, V , A, blb) : [0,+∞]
if (V = /0) then

S := Sons(Ce) ;

/* Solve all cluster sons whose optima are unknown */ ;

while (S 6= /0 and lb(Pe/A) < Pe.m) do
C f :=pop(S) /* Choose a cluster son */ ;

if (not(OptPf /A f
)) then

Pf .m := Pe.m⊖ lb(Pe/A)⊕ lb(Pf /A f) ;4

res :=BTD(Pf , V f , A, lb(Pf /A f)) ;5

LBPf /A f
:= res⊕

L

i∈S f
∆W

f
i (A[i]) ;6

OptPf /A f
:= (res < Pf .m) ;7

return lb(Pe/A) /* A new solution is found for Pe */ ;

else
i :=pop(V) /* Choose an unassigned variable in Ce */ ;

d := Pe.Di ;

/* Enumerate every value in the domain of i */ ;

while (d 6= /0 and max(blb, lb(Pe/A)) < Pe.m) do
a :=pop(d) /* Choose a value */ ;

P′e :=Lc(Pe/A∪{(i,a)}) /* Enforce local consistency on Pe/A∪{(i,a)} */ ;

if (max(blb, lb(P′e/A∪{(i,a)})) < Pe.m) then8

Pe.m :=BTD(P′e, V , A∪{(i,a)}, max(blb, lb(P′e/A∪{(i,a)}))) ;9

return Pe.m ;

Function RDS-BTD(P, PRDS
e) : [0,+∞]

foreach C f ∈ Sons(Ce) do

RDS-BTD(P, PRDS
f) ;

PRDS
e .m := P.m⊖ lb(P/ /0)⊕ lb(PRDS

e / /0) ;10

LBPRDS
e

:=BTD(PRDS
e , Ve, {(i,EAC(i))|i ∈ Se}, lb(PRDS

e / /0)) ;11

Set to false all recorded OptPf /A such that C f is a descendant of Ce, S f ∩Se 6= /0, A ∈ ℓ(S f) ;12

return LBPRDS
e

;

68 Sanchez em et al.

algorithm with a static variable ordering heuristic following the nested subproblem de-

composition order. The lower bound combines the optimum of the previously solved

subproblems with the lower bound produced by enforcing soft local consistency.

RDS-BTD, recently proposed in [10], applies the RDS principle to a tree decompo-

sition. The main difference with RDS is that the set of subproblems to solve is defined

by a rooted tree decomposition (C,T).
We define PRDS

e as the subproblem defined by the proper variables of Ce and all its

descendant clusters in T and by all the cost functions involving only proper variables of

these clusters. PRDS
e has no cost function involving a variable in Se, the separator with

its father, and thus its optimum is a lower bound of Pe for any assignment of Se.

RDS-BTD solves |C| subproblems ordered by a depth-first traversal of T , starting

from the leaves to the root PRDS
1 = P1.

Each subproblem PRDS
e is solved by BTD instead of DFBB. This allows to exploit

decomposition and caching done by BTD. Because caching is only performed on com-

pletely assigned separators, and considering all possible assignments of Se would be

too costly in memory and time, we assign Se before solving PRDS
e . This is needed since

otherwise, caching on Pf , a descendant of Ce, with S f ∩Se 6= /0, would use a partially as-

signed A f . To assign Se, we use the fully supported value of each domain6 (maintained

by EDAC [6]) as temporary values used for caching purposes only.

The advantage of using BTD is that recorded lower bounds can be reused during

the next iterations of RDS-BTD. However, the optimum found by BTD for a given

subproblem Pf when solving PRDS
e is no more valid in PRDS

Father(e)
due to possible cost

functions between variables in CFather(e) and in Pf . At each iteration of RDS-BTD,

after PRDS
e is solved, we reset all OptPf /A f

such that S f ∩Se 6= /0 (line 12).

During search, RDS-BTD exploits the maximum between local consistency, recorded,

and RDS lower bounds. Let LBPRDS
e

denote the optimum of PRDS
e found by one iteration

of RDS-BTD. Because costs can be moved between clusters, this information has to

be corrected in order to be valid in the next iterations of RDS-BTD. For that, we use

the maximum of ∆W on each current domain of the (possibly unassigned) separator

variables. The lower bound corresponding to the current assignment A is then:

lb(Pe/A) = we
∅
⊕

M

C f∈Sons(Ce)

max(lb(Pf /A),LB′Pf /A f
,LBPRDS

f
⊖

M

i∈S f

max
a∈Di

∆W
f

i (a)) (2)

Example 3. Applied on the problem of Example 1, RDS-BTD solves five subproblems

(PRDS
3 ,PRDS

2 ,PRDS
5 ,PRDS

4 ,P1) successively. For instance, PRDS
3 has variable {7} and cost

function {w7}. Before solving PRDS
3 , RDS-BTD assigns variables {5,6} of the separator

S3 to their fully supported value ({(5,a),(6,a)} in this example). In solving PRDS
2 , it

can record e.g. the optimum of P3/{(5,a),(6,a)}, equal to zero (recall that w5,6 does

not belong to P3), that can be reused when solving P1. In solving PRDS
4 , it can record

e.g. the optimum of P5/{(4,a),(9,a),(10,a)}, also equal to zero. However, due to the

fact that variable 4 belongs to S5 ∩ S4 and PRDS
4 does not contain w4,11, this recorded

information is only a lower bound for subsequent iterations of RDS-BTD. So, we set

6 Fully supported value a∈Di such that wi(a) = 0 and ∀wS ∈W with i∈ S,∃t ∈ ℓ(S) with t[i] = a

such that wS(t) = 0.

Max-CSP competition 2008: toulbar2 solver description 69

OptP5/{(4,a),(9,a),(10,a)}= false before solving P1. The resulting optima are: LBPRDS
3

=

LBPRDS
5

= 0,LBPRDS
2

= LBPRDS
4

= 1 and LBPRDS
1

= 5, the optimum of P1.

In this simple example, for A = {(4,a),(1,a),(2,b),(3,b)}, lb(P1/A) using Equa-

tion 1 or 2 is the same because EDAC propagation provides lower bounds equal to

RDS lower bounds. In the contrary, for A = /0, lb(P1/ /0) = LBPRDS
2
⊕LBPRDS

4
= 2 using

Equation 2 and lb(P1/ /0) = 0 using Equation 1 (assuming EDAC local consistency in

preprocessing and no initial upper bound).

We present the pseudo-code of the RDS-BTD algorithm in Algorithm 1. RDS-BTD

call BTD to solve each subproblem PRDS
e (line 11), using Equation 2 instead of Equation

1 to compute lower bounds. An initial upper bound for PRDS
e is deduced from the global

problem upper bound and the already computed RDS lower bounds (line 10). It initially

assigns variables in Se to their fully supported value (given by EAC function at line 11)

as discussed above. The initial call is RDS-BTD(P, PRDS
1). It assumes an already local

consistent problem PRDS
1 = P and returns its optimum.

Notice that as soon as a solution of PRDS
e is found having the same optimal cost

as lb(PRDS
e / /0) =

L

C f∈Sons(Ce)
LBPRDS

f
, then the search ends thanks to the initial lower

lound given at line 11.

The time and space complexity of RDS-BTD is the same as BTD.

4 Implementation details

We implemented DFBB and RDS-BTD in an open-source C++ solver named toulbar27.

DFBB uses default parameter values of toulbar2.

Dynamic variable ordering (min domain / max degree, breaking ties with maximum

unary cost) is used inside clusters (RDS-BTD) and by DFBB. EDAC local consistency

is enforced on binary [6] and ternary [11] cost functions during search. Larger arity cost

functions are delayed from propagation until they become ternary or less.

We use the Maximum Cardinality Search heuristic to build a tree decomposition

and choose the largest cluster as the root. In order to relax the restriction imposed by

RDS-BTD on the dynamic variable ordering heuristic, we propose to merge clusters

with their parent if their separator is too large. Starting from the leaves of a given tree

decomposition, we merge a cluster with its parent if the separator size is strictly greater

than r = 4 (parameter B2r4 in toulbar2).

Recorded (and if available RDS) lower bounds are exploited by local consistency

enforcing as soon as their separator variables are fully assigned. If the recorded lower

bound is optimal (OptPe/Ae
=true) or strictly greater than the one produced by lo-

cal consistency, i.e. max(LB′
Pe/Ae

,LBPRDS
e
⊖

L

i∈Se
∆W e

i (A[i]) >
L

Pf⊆Pe
w

f
∅

, then the

corresponding subproblem (Pe/Ae) is deconnected from local consistency enforcing

and the positive difference in lower bounds is added to its parent cluster lower bound

(w
Father(Ce)
∅

), allowing possible new value removals by node consistency enforcing on

the remaining problem.

7 Version 0.7 available at http://mulcyber.toulouse.inra.fr/gf/project/toulbar2

70 Sanchez em et al.

All the solving methods exploit a binary branching scheme depending on the do-

main size d of the branching variable. If d > 10 then it splits the ordered domain into

two parts (by taking the middle value), else the variable is assigned to its EDAC fully

supported value or this value is removed from the domain. In both cases, it selects the

branch which contains the fully supported value first, except for RDS-BTD where it

selects the branch which contains the value corresponding to the last solution(s) found

first if available.

At each search node, before branching, DFBB and RDS-BTD eliminate all variables

(except variables occuring in a separator for RDS-BTD) with a degree less than or equal

to two, possibly creating new binary cost functions on the fly. They apply successively

EDAC propagation (which may assign some variables and reduce current degrees) and

2-degree variable elimination until there is no more elimination nor propagation.

The dynamic variable ordering heuristic is modified by a conflict back-jumping

heuristic as suggested in [9]. It branches on the same variable again if the first branch

in the binary branching scheme was directly pruned by propagation.

No initial upper bound is provided.

Acknowledgments toulbar2 solver has been partly funded by the French Agence

Nationale de la Recherche (STALDECOPT project).

References

1. M. Cooper. High-order consistency in valued constraint satisfaction. Constraints, 10(3):283–

305, 2005.
2. M. Cooper, S. de Givry, M. Sanchez, T. Schiex, and M. Zytnicki. Virtual arc consistency for

weighted csp. In Proc. of AAAI-08, Chicago, IL, 2008.
3. M. Cooper, S. de Givry, and T. Schiex. Optimal soft arc consistency. In Proc. of IJCAI-07,

pages 68–73, Hyderabad, India, 2007.
4. M. Cooper and T. Schiex. Arc consistency for soft constraints. Artificial Intelligence,

154:199–227, 2004.
5. S. de Givry, T. Schiex, and G. Verfaillie. Exploiting Tree Decomposition and Soft Local

Consistency in Weighted CSP. In Proc. of AAAI-06, Boston, MA, 2006.
6. S. de Givry, M. Zytnicki, F. Heras, and J. Larrosa. Existential arc consistency: Getting closer

to full arc consistency in weighted CSPs. In Proc. of IJCAI-05, pages 84–89, Edinburgh,

Scotland, 2005.
7. P. Jégou and C. Terrioux. Decomposition and good recording. In Proc. of ECAI-2004, pages

196–200, Valencia, Spain, 2004.
8. J. Larrosa and T. Schiex. Solving Weighted CSP by Maintaining Arc-consistency. Artificial

Intelligence, 159(1-2):1–26, 2004.
9. C. Lecoutre, L. Sais, S. Tabary, and V. Vidal. Last conflict based reasoning. In Proc. of

ECAI-2006, pages 133–137, Trento, Italy, 2006.
10. M. Sanchez, D. Allouche, S. de Givry, and T. Schiex. Russian doll search with tree decom-

position. In Workshop on Preferences and Soft Constraints, Sydney,Australia, 2008.
11. M. Sanchez, S. de Givry, and T. Schiex. Mendelian error detection in complex pedigrees

using weighted constraint satisfaction techniques. Constraints, 13(1):130–154, 2008.
12. T. Schiex. Arc consistency for soft constraints. In Proc. of CP-2000, pages 411–424, Singa-

pore, 2000.
13. G. Verfaillie, M. Lemaı̂tre, and T. Schiex. Russian Doll Search for Solving Constraint Opti-

mization Problems. In Proc. of AAAI-96, pages 181–187, Portland, OR, 1996.

