
Structural Consistency: A New Filtering
Approach for Constraint Networks

Philippe Jégou and Cyril Terrioux

LSIS - UMR CNRS 6168
Université Paul Cézanne (Aix-Marseille 3)

Avenue Escadrille Normandie-Niemen
13397 Marseille Cedex 20 (France)

{philippe.jegou, cyril.terrioux}@univ-cezanne.fr

Abstract. In this paper, we introduce a new partial consistency for
constraint networks which is called Structural Consistency of level w
and is denoted w-SC consistency. This consistency is based on a new
approach. While conventional consistencies generally rely on local prop-
erties extended to the entire network, this new partial consistency con-
siders global consistency on subproblems. These subproblems are defined
by partial constraint graphs whose tree-width is bounded by a constant
w. We introduce a filtering algorithm which achieves w-SC consistency.
We also analyze w-SC filtering w.r.t. other classical local consistencies to
show that this consistency is generally incomparable. Finally, we present
experimental results to assess the usefulness of this approach. We show
that w-SC is a significantly more powerful level of filtering and more
effective w.r.t. the runtime than SAC. We also show that w-SC is a com-
plementary approach to AC or SAC. So we can offer a combination of
filterings, whose power is greater than w-SC or SAC.

1 Introduction

It is well known that the CSP formalism (Constraint Satisfaction Problems [1]) is
important in the field of AI to express and then to efficiently solve a large class of
problems. A CSP, also called constraint network, consists in a set of variables X
which must be assigned a value from their associated finite domains given by D,
and a solution must satisfy a finite set C of constraints. Classical approaches to
find solutions are based on backtracking algorithms whose time complexity cost
is O(e.a.dn) where n is the number of variables, e is the number of constraints,
a denotes a bound on constraint arity, and d is the maximum size of domains,
assuming that the cost of a constraint check is O(a). To efficiently solve CSP,
algorithms use generally filtering techniques, before search as preprocessing or
during search. The quality of this basic tool is generally crucial for the efficiency
of the search.

The effect of filtering techniques consists generally in removing values from
domains. These values can be safely deleted because they cannot appear in
solutions (they are not consistent). So, filterings are based on the notion of con-
sistency. Because removing all inconsistent values is generally unrealistic from
a practical viewpoint (it is an NP-hard problem), filterings are based on local

consistencies which are relaxed consistency properties. So, a value can satisfy a
local consistency, even if it does not appear in any solution. Nevertheless other
values can contradict partial consistency and then be removed without modi-
fying the satisfiability of a CSP. Partial consistencies [2] are generally defined
by local consistencies which are extended to the whole constraint network. For
example, to satisfy arc-consistency (AC), the most popular local consistency, a
value needs to possess at least one compatible value (called a support) in the
domain of its neighbouring variables. Otherwise, this value is removed from its
domain (filtered) and this deletion can produce other deletions in the domains
of its neighbouring variables. By using a mechanism called constraint propaga-
tion, the first deletion can finally be extended to the whole network. So, partial
consistencies are generally local properties which must be verified on the whole
network. From a practical viewpoint, the interest of a partial consistency is
related to its filtering power and to the cost for enforcing it (time and space
complexities).

In this paper, we introduce a new kind of consistency which must satisfy two
criteria, particularly, on hard instances:
– practical efficiency,
– filtering power.

For that, this new consistency will be:
– parametrized, to control the complexity of the filtering,
– adjusted to the structure of the constraint network, by exploiting its sub-

structures,
– adjusted to the tightness of the constraints in selecting the tightest con-

straints.
This new consistency is called w-SC because it is a parametrized Consistency
(w is the parameter) based on Structural properties of the network. It is de-
fined on a relaxation of the considered CSP (a subproblem) which is a partial
constraint network whose tree-width is bounded by a constant w [3]. We choose
this kind of subproblems because they can be solved in polynomial time (in w).
Furthermore, thanks to recent progress on decomposition methods, they can be
managed really efficiently from a practical viewpoint [4]. Moreover, while classi-
cal partial consistencies consider constraints independently from their tightness,
here we can select subsets of constraints focusing particularly on tight constraints
in selecting the considered subgraph. More precisely, given a sub-network cor-
responding to a partial graph of bounded tree-width, we will say that a value
satisfies w-SC consistency if it appears at least in one solution of the considered
subproblem. It is based on the same kind of idea as known inverse consistencies
but it is formally different. So, this new consistency allows us to define a new
kind of filtering which is finally different from filterings generally used in CSPs
[5]. Notably, we will show that w-SC is incomparable with existing efficient par-
tial consistencies such as AC or SAC [6]. Particularly, experiments show that
the behavior of w-SC consistency is different from the behavior of these consis-
tencies, being more efficient for hard instances, while being less efficient on easy
(unconstrained instances). Moreover, we have observed that the values deleted
by w-SC are generally not deleted by AC or SAC, and the reverse is true. Hence,
w-SC can be considered as a local consistency which is a complementary consis-
tency of already known consistencies. So we propose a combination of filterings

based on SAC and w-SC whose power is significantly greater than w-SC or SAC.
We also show that w-SC is a significantly more powerful level of filtering and
more effective w.r.t. the runtime than SAC.

This paper is organized as follows. The next section recalls classical notions on
partial consistencies and their related filterings. Then, in section 3, we introduce
w-SC consistency and its associated filtering. Section 4 presents a theoretical
analysis of relations between w-SC consistency and other consistencies, while
section 5 provides an empirical analysis of this filtering. Finally, the last section
is devoted to a discussion about future works.

2 Preliminaries

A finite constraint satisfaction problem or finite constraint network (X,D,C) is
defined as a set of variables X = {x1, . . . xn}, a set of domains D = {D(x1), . . .
D(xn)} (the domain D(xi) contains the possible values for the variable xi), and a
set C of constraints among variables. A constraint ci ∈ C is defined by its scope,
denoted SC(ci) and by an associated relation RC(ci). The scope is an ordered
subset of variables, that is SC(ci) = (xi1 , xi2 , . . . xiai

) where ai is called the arity
of the constraint ci. The relation RC(ci) ⊆ D(xi1)×D(xi2) . . .×D(xiai

) defines
the allowed combinations of values for the variables in SC(ci). Here, we denote
by SC the set of scopes of the constraints, that is SC = {Sc1, Sc2 . . . Sce} where
e = |C| is the number of constraints. A solution of (X,D,C) is an assignment
of each variable which satisfies all the constraints. Without loss of generality, we
assume that each variable is involved in at least one constraint. If every constraint
of a CSP is binary (i.e. involves exactly two variables), then the structure of this
binary network (called a binary CSP) can be represented by the graph (X,SC)
called the constraint graph.

In this paper, we assume that the relations are not empty. Moreover, without
loss of generality, we will assume that the constraint network is connected and
normalized (two different constraints do not involve the same variables) and for
lack of space, we will consider here only binary networks. So, for a constraint ck
such SC(ck) = (xi, xj), ck will be denoted cij . Generally, CSPs are solved using
backtracking algorithms which can be really efficient if they efficiently exploit
filterings before or during search to avoid redundant search. These filterings are
formally based on the notion of local consistency.

The most popular and oldest local consistency is called arc-consistency (AC).
Given a CSP P = (X,D,C), a value vi ∈ D(xi) is arc-consistent with cij ∈ C
iff there exists a valid value vj ∈ D(xj) s.t. (vi, vj) ∈ RC(cij). Then, vj ∈ D(xj)
is a support of vi for the constraint cij . A domain D(xi) is arc-consistent on
cij iff ∀vi ∈ D(xi), the value vi is arc-consistent, and the CSP P = (X,D,C)
is arc-consistent iff ∀D(xi) ∈ D, the domain D(xi) is arc-consistent with all
cij ∈ C. A filtering of domains based on AC consists in removing the values
which do not satisfy arc-consistency. When a value vi is removed, a mechanism
called constraint propagation can be run to remove values which were supported
only by vi (no other value of D(xi) is compatible with them), and this process
can be extended to other values. For binary networks, AC-2001 [7] is one of
the most efficient algorithm for enforcing arc-consistency. Its time complexity is

O(e.d2). It is really efficient in practice and then it can also be used during search.
Nevertheless, the filtering power of AC can be really limited because of the local
definition of the consistency. So, more powerful consistencies performing more
powerful filterings have been defined. [8] has introduced k-consistency which
considers subsets of k variables. For k-consistency, a new constraint (its arity is
k − 1) is added to the network when a consistent assignment on k − 1 variables
cannot be extended to a kth variable. If the network is i-consistent, for 2 ≤
i ≤ k, the CSP is said strong k-consistent. The greater the value of k is, the
more powerful the filtering is. Unfortunately, the time and space complexity is
O(nk.dk) [9] and then this kind of filtering has important drawbacks. Because of
the time and space complexity, these filterings are generally unusable even for
small values of k (k = 3 is frequently unrealistic for practical cases). Moreover,
the filtering will add new constraints in the network, their arity being k− 1 and
then the necessary space can be prohibitive, even for small values of k. To avoid
these problems, mainly the second one related to added constraints, other local
consistencies have been introduced. For example, [5] have proposed the k-inverse
consistency. The associated filtering removes values which cannot be extended
to any k − 1 additional variables to form a consistent assignment. This filtering
is more powerful than AC and it avoids the problem related to space complexity
but for time complexity, the problem remains the same since it is O(nk.dk).
So, they have suggested to limit k-inverse consistency to small values of k. In
[5], another kind of inverse consistency has been introduced which is defined in
the same spirit and which is called NIC for neighborhood-inverse consistency.
Here, the filtering of a domain is induced by the compatibility of values of the
associated variable w.r.t. the subproblem defined by its neighborhood in the
network. So, the complexity is related to the maximum degree ∆ of a variable in
the constraint network, and then the time complexity of the proposed algorithm
is O(∆2.(n+e.d).d∆+1). Another way to define local consistencies is based on the
subproblem induced by an assignment xi = vi. For example, a CSP is Singleton
arc-consistency (denoted SAC) [6] if for all domains and then all their values
vi ∈ D(xi), the subproblem induced by the assignment xi = vi has arc-consistent
sub-domains. The time complexity is O(e.n.d3) [10].

To conclude this overview, we must recall that from a practical viewpoint,
the local consistencies generally considered as the most usable in practice are
AC or SAC which seem to obtain the best compromise between the time cost
(and its practical efficiency) and its filtering power.

3 Structural Consistency

3.1 w-SC Consistency

Structural consistency is based on the notion of partial graph whose tree-width
is bounded by a constant w. The tree-width is based on the notion of tree-
decomposition which has been formally introduced in [3]. It has been exploited
in the field of CSP to define tractable classes [11] and to propose efficient methods
for solving constraint networks which possess good topological properties [12, 4].

Our objective here is then different from these works since we will use it to
define local consistencies. For that, we introduce the notion of w-PST which

2

3

4

5

86

7

9

10

1

5

97

6

97

8

6

97

8

10

4

2

3

5 3

2

1

3

5

6

4

5

9

6

4

(a)

3

2

1 3

5

6

5

3

4

5

6

7

4

9

8

6

7

8

10

7

2

3

5

2

3

4

5

86

7

9

10

1

(b)

Fig. 1. (a) A graph of tree-width 3 and the corresponding tree-decomposition. (b) A
2-PST of the graph given in (a), and one tree-decomposition.

corresponds to partial spanning tree-decomposition of tree-width w. Before, we
recall the classical notion of tree-decomposition:

Definition 1 A tree-decomposition of a graph G = (X,E) is a pair (N,T) where
T = (I, F) is a tree with nodes I and edges F and N = {Ni : i ∈ I} is a family
of subsets of X, s.t. each subset (called cluster) Ni is a node of T and verifies:

(i) ∪i∈INi = X,
(ii) for each edge {x, y} ∈ E, there exists i ∈ I with {x, y} ⊆ Ni, and

(iii) for all i, j, k ∈ I, if k is in a path from i to j in T , then Ni ∩Nj ⊆ Nk.

The width w of a tree-decomposition (N,T) is equal to maxi∈I |Ni| − 1. The
tree-width w∗ of G is the minimal width over all the tree-decompositions of G.

Now, we define partial graphs with particular tree-width.

Definition 2 Given a graph G = (V,E), a partial graph of G is a subgraph
G′ = (V,E′) where E′ ⊆ E. A partial spanning tree-decomposition of tree-width
w for G, denoted w-PST, is a partial graph of G whose tree-width is w.

The graph given in figure 1(a) is a 3-PST because its tree-width is 3 (an
optimal tree-decomposition is given in this figure). In figure 1(b), we have the
partial graph induced by the deletion of edges {2, 4} and {9, 10} in the graph
given in figure 1(a). It is a 2-PST because its tree-width is 2 as indicated by the
optimal tree-decomposition given in this figure.

Now, we introduce the notion of subproblem of a given CSP induced by the
assignment of a variable.

Definition 3 Given a CSP P = (X,D,C), a variable xi ∈ X and a value
vi ∈ D(xi), the subproblem of P induced by the assignment xi = vi is P |xi=vi

=
(X,D′, C ′) where D′(xi) = {vi} and for all j 6= i,D′(xj) = D(xj) and C ′ =
C except for the relations associated to the constraints including xi which are
restricted to the tuples where the value vi appears.

We introduce now the notion of relaxed problem of a given CSP which is
defined by a subset of constraints.

Definition 4 Given a CSP P = (X,D,C) and W ⊆ SC , the relaxed problem of
P induced by W is P (W) = (X,D,C ′) where W = SC′ .

For w-SC, the relaxed problem is defined by a subset of constraints forming
a partial spanning tree-decomposition of tree-width w.

Definition 5 Given a CSP P = (X,D,C) and a w-PST G = (X,W) of
(X,SC):

– The value vi ∈ D(xi) is w-SC-consistent w.r.t. G iff P (W)|xi=vi
has a so-

lution.
– The domain D(xi) is w-SC-consistent w.r.t. G iff ∀vi ∈ D(xi), the value vi

is w-SC-consistent w.r.t. G.
– The CSP P = (X,D,C) is w-SC-consistent w.r.t. G iff ∀D(xi) ∈ D, D(xi)

is w-SC-consistent w.r.t. G.

Note that for a given CSP and a given value w, there is different possible
consistencies, since one consistency is defined with respect to one particular w-
PST. Moreover, this definition of consistency is related to values of domains but
it can be easily generalized to partial assignments of subsets of variables. For
lack of space and to simplify our presentation, we limit here w-SC-consistency
to values.

As we can see, the w-SC-consistency is an inverse consistency. It may there-
fore be related to works as those of [5]. One can also consider the Relational
(i,m)-consistency [13] where i would be equal to 1 since we filter domains. How-
ever, compared with [13], the parameter m plays here a significantly different
role since it is related to the number of constraints. For the w-SC-consistency,
it is not their number that matters, but the tree-width of the network that con-
nects them, which allows here to ensure complexity bounds well adapted for an
efficient filtering as we will see in next section.

3.2 Filtering

As classically for consistencies, the filtering associated to w-SC consistency con-
sists in deleting values which do not satisfy it.

Definition 6 Given a CSP P = (X,D,C) and a w-PST G = (X,W) of
(X,SC), the filtered CSP using w-SC-consistency is w-SC(P,W) = (X,D′, C ′)
where:

– D′ = {D′(x1), . . . D′(xn)} where ∀D′(xi) ∈ D′,
D′(xi) = {vi ∈ D(xi): vi is w-SC-consistent w.r.t. G}.

– SC′ = SC .
– ∀c′ij ∈ C ′, RC′(c′ij) = RC(cij) ∩D′(xi)×D′(xj).

Note that given a CSP and a w-PST (X,W) of (X,SC), w-SC(P,W) is
unique. Moreover, to ensure that w-SC consistency defines a valid filtering, we
must also ensure that no filtered value can appear in solutions of the given CSP.
It is necessarily the case since removed values cannot appear in solutions of a
relaxed CSP. Now, we present the algorithm called Comp-w-SC which achieves
w-SC filtering. Contrary to classical filtering algorithms as those enforcing AC,
this consistency does not need propagation after deletions. Indeed, while classical
algorithms remove values and propagate these deletions, here once a value vi is
validated finding a solution, it will not be deleted after, and thus vi is definitively
validated. It is because vi appears in a solution of the relaxed CSP, and because
the other values that appear in this solution (which can be considered as supports
for the value vi) are also validated by the same reason. Thus, since these values
are also validated, it will not be necessary to check their w-SC consistency.

In Comp-w-SC, the function Solution(P (W)|xi=vi
, Sol) is called to check

consistency. If vi appears in a solution Sol = (v1, v2, . . . vi, . . . vn) of P (W), the
function returns true and Sol is the other result of this call. Otherwise, it returns
false. In Comp-w-SC, D′ corresponds to the set of domains containing values
which have already been validated and then memorized during the filtering. So,
if a value vi already appears in D′(xi) it is because this value already appears
in a solution and then it will not be necessary to check it after for its w-SC
consistency. Note that at the end of Comp-w-SC, for all variable xi, we have
D(xi) = D′(xi).

Algorithm 1: Comp-w-SC(In: (X,W): Graph;InOut: P = (X,D,C):
CSP)

for xi ∈ X do
D′(xi)← ∅;

end
for xi ∈ X do

for vi ∈ D(xi) do
if vi 6∈ D′(xi) then

if Solution(P (W)|xi=vi
, Sol) then

for vj ∈ Sol do
D′(xj)← D′(xj) ∪ {vj}

end
else

D(xi)← D(xi)− {vi}
end

end
end

end

Property 1 The time complexity of Comp-k-SC is O(n2.w.dw+2) while its space
complexity is O(n.w.dw).

Proof: The function Solution(P (W)|xi=vi) is called at most n.d times and the
cost of one call to this function is bounded by n.w.dw+1. Indeed, it can be
implemented using algorithms based on tree-decomposition of CSPs such as TC
[12] or BTD [4].

Moreover, we know that the space complexity of decomposition methods as
BTD is related to the size of the separators between cliques [4]. Here, the max-
imum size of separators in the w-PST is w and their number is at most n − 1.
So, the space complexity is bounded by O(n.w.dw). �

Note that the algorithm Comp-w-SC is really similar to the algorithm 1
proposed in [14]. Nevertheless, in this paper, the motivations of the authors to
realize a filtering is related to the number of solutions which is too important
and then they want to obtain a minimal network w.r.t. the domains of values.
Moreover, they suppose that their problem is easy to solve and then, they do
not indicate this cost to evaluate their algorithm. Here, we propose to bound
the time complexity of this algorithm by a polynomial related to the value of w.

4 Relations with other consistencies

To evaluate the power of the w-SC filtering, we provide here an analysis in
the same spirit as in [6] which presents the comparison between numerous par-
tial consistencies. Here, we consider AC, SAC, strong-PC, and more generally
strong-k-consistency and k-inverse consistency. The comparison is based on for-
mal relations between consistencies; we recall them. We say that a consistency
CO1 is stronger than a consistency CO2 (denoted CO2 ≤ CO1) if in any CSP
instance P in which CO1 holds, CO2 holds too. So, any algorithm achieving CO1

deletes at least the values removed by CO2. We say that a consistency CO1 is
strictly stronger than a consistency CO2 (denoted CO2 < CO1) if CO2 ≤ CO1

and there is at least one CSP instance P in which CO2 holds and CO1 does not.
Note that these relations are transitive. Finally, we say that CO1 and CO2 are
incomparable if neither relation between them hold.

Note that for a given CSP, and a given value w, the number of possible
filterings is potentially related to the number of possible w-PSTs. Nevertheless,
we can easily find instances of CSPs such that next properties hold.

Theorem 1 1-SC < AC and for w > 1, w-SC and AC are incomparable.

Proof: It is clear that connected 1-PST are exactly trees. So, since in a tree, a
value appears in a solution iff it verifies AC, 1-SC cannot filter more values than
the arc-consistency, which considers the whole problem, does. Thus, we have
1-SC ≤ AC. Moreover, since other values of a network can be deleted by AC,
exploiting constraints that does not appear in the considered 1-PST, we have
also 1-SC < AC.

Now, if we consider w-SC and AC for w > 1, they are incomparable. Indeed,
it is sufficient to see that if a value in the domain of a variable is removed because
it has no support for a constraint which does not appear in a w-PST, then this
value can be conserved by w-SC filtering. Conversely, a value can be removed
by w-SC filtering but not by AC. �

Theorem 2 For w > 1, w-SC and SAC are incomparable.

Proof: Since 1-SC < AC and since AC < SAC, by transitivity of <, we have
1-SC < SAC. Now, since SAC considers all the constraints which appear in the
network, necessarily, the filtering can delete values that will not be deleted by
2-SC. Conversely, if we consider the example (c) given in page 216 of [6] which
is a 2-PST satisfying SAC, we can easily see that 2-SC will remove the value
deleted by strong-PC while this value is not deleted by SAC. Thus, 2-SC and
SAC are incomparable. �

Before comparing stronger consistencies, we define relations between different
levels of w-SC consistency. For relations between w-SC with different values
of w, we assume that we consider CSPs which possess partial spanning tree-
decompositions with different widths such that w-PST ⊆ (w+ 1)-PST (edges of
the considered w-PST satisfy this condition). Otherwise we have no guarantee
about the comparison between w-SC and (w + 1)-SC.

Theorem 3 If w-PST ⊆ (w + 1)-PST, then w-SC < (w + 1)-SC.

Proof: If w-PST ⊆ (w+1)-PST, the values removed by w-SC consistency consid-
ering the w-PST are necessary removed considering the (w+ 1)-PST. Moreover,
since there is constraints in the (w + 1)-PST that do not appear in the w-PST,
additional values will be removed by (w + 1)-SC consistency in considering the
(w + 1)-PST. Thus, we have w-SC < (w + 1)-SC. �

More generally, applying the same principle as for the theorem 1, we have
the next property that can be considered as its generalization:

Theorem 4 k-SC < strong-(k+1)-consistency and for k > 2, k-SC and strong-
k-consistency are incomparable.

Proof: Firstly, we show that k-SC < strong-(k+ 1)-consistency. It is easy to see
that the width [15] of a w-PST is exactly w. Consequently, applying the results
proposed in [15] which links the width of a constraint network to the level of
strong-consistency that it verifies, necessarily, every value that appears in a
domain satisfying strong-(k+1)-consistency belongs to a solution of this k-PST.
Thus, it will not be deleted by k-SC consistency. Moreover, since other values of
the network can be deleted by strong-(k+ 1)-consistency, exploiting constraints
that do not appear in the considered w-PST (with w = k), it is easy to see that
strong-(k+1)-consistency can delete more values than k-SC consistency filtering
does, and consequently, we have k-SC < strong-(k + 1)-consistency.

To show that for k > 2, k-SC and strong-k-consistency are incomparable, it
is then sufficient to show that some values can be deleted by k-SC, while they
are not filtered by strong-k-consistency. Consider the CSP corresponding to the
k-coloring problem on the complete graph on k + 1 vertices. This network is a
k-PST but it does not admit a solution. Thus, achieving of k-SC consistency on
this network will delete all values. Now, if we consider strong-k-consistency, no
value will be deleted. Consequently, for k > 2, k-SC and strong-k-consistency
are incomparable. �

So, we have the next trivial corollary:

1−SCSAC AC

2−SC3−SC

k = w > 3

NIC

w−SC

strong−PC

strong−3−consistency

strong−k−consistency

Fig. 2. Relations between consistencies

Corollary 1 2-SC < strong-PC.

Finally, note that we can replace strong-k-consistency by k-inverse-consistency
[5]. It is also easy to establish that NIC and k-SC (for k > 2) are incomparable.

In figure 2, relations between consistencies are summarized. Arrows repre-
sents the relation > while dotted lines indicates that two consistencies are in-
comparable.

5 Experiments

5.1 Experimental protocol

The quality of the filtering performed by w-SC mainly depends on the considered
w-PST. The computation of the w-PST is achieved thanks to a heuristic method
related to the notion of k-tree [16]. We exploit k-trees here because they are the
graphs which, for a given tree-width, have the maximum number of edges, and
thus can potentially contain the maximum number of constraints. A graph G is
a k-tree if G has k vertices and is a complete graph (it is a trivial k-tree) or there
is a vertex x of degree k whose neighborhood induces a complete graph and the
graph obtained by removing x and all edges incident to it from G is a k-tree.
Then, k-trees can be built starting with a complete graph of k vertices, and each
time a vertex x is added, connecting it to vertices of a k-clique in the previous
graph. In our case, we choose at each step the vertex x which has the smallest
value

∏
cij
tij where cij is a constraint spanned by the clique formed by x and

the vertices of the considered k-clique in the previous graph and tij is the ratio
of the number of forbidden tuples over the number of possibles tuples. Likewise
the initial clique is chosen in a similar way. By so doing, we aim to compute tight
subproblems and so obtain a more powerful filtering. We also implement another
method which computes first a k-tree as previously described and then tries
heuristically to add as many constraints (among the constraints which do not
belong to the k-tree yet) as possible such that the tree-width remains bounded
by w. The remaining constraints are processed in the decreasing tightness order.
In the following results, w-SC1 (respectively w-SC2) denotes the application of
our algorithm with a w-PST computed thanks to the first method (resp. thanks
to the second one). In both cases, we exploit a k-tree with k = w and the
subproblem related to the considered w-PST is solved thanks to BTD [4].

Regarding AC and SAC, we have implemented AC2001 [7] and a naive version
of SAC. All the algorithms are written in C. Note that we have also compared
our results with a clever implementation of SAC (namely SAC3 [17] provided in
the Java solver Abscon). Regarding the runtime, our implementation performs

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 0 50 100 150 200 250 300 350 400

ru
n

ti
m

e
 (

m
s
)

t

AC2001
SAC

3-SC1
4-SC1
5-SC1
6-SC1

 0

 10

 20

 30

 40

 50

 0 50 100 150 200 250 300 350 400

#
 i
n

c
o

n
s
is

te
n

t
in

s
ta

n
c
e

s

t

AC2001

SAC

3-SC1

4-SC1

5-SC1

6-SC1

(a) (b)

Fig. 3. Results obtained for random instances of classes (200,20,5970,t): (a) runtime
in ms and (b) number of detected inconsistent instances.

sometimes worse than SAC3 but the results of the comparison with w-SC remain
the same. Of course, both versions of SAC have the same filtering power. So, in
order to make easier the implementation of the combination of SAC and w-SC
(see subsection 5.3), we only consider our naive implementation in the provided
results.

These algorithms are compared on random instances produced by the random
generator written by D. Frost, C. Bessière, R. Dechter and J.-C. Régin. Note
that we do not use here structured random instances because, even if w-SC
takes benefit from the underlying structure of the CSP, it aims to be run on
general CSP instances as most of filtering algorithms. This generator takes 4
parameters n, d, e and T . It builds a CSP of class (n, d, e, t) with n variables
which have domains of size d and e binary constraints (0 ≤ e ≤ n(n−1)

2) in which
t tuples are forbidden (0 ≤ t ≤ d2). The presented results are the averages of the
results obtained on 50 instances (with a connected constraint graph) per class.
The experimentations are performed on a linux-based PC with an Intel Pentium
IV 3.2 GHz and 1 GB of memory.

5.2 AC/SAC vs w-SC

We have tested many classes of instances by varying the number of variables, the
size of domains (up to 40 values), the constraint graph density and the tightness.
However, by lack of space, we only provide the results obtained by varying t for
200 variables, 20 values per domain and 5,970 constraints (density of 30%) in
figure 3 and the results on some representative classes in table 1 (we observed
similar results with higher or lesser densities). Note that we do not provide the
results of w-SC2 in figure 3 because the results are very close to ones of w-
SC1 (w-SC2 only detects the inconsistency of a few additional instances while
it spends a slightly greater time).

Table 1. Runtime (in ms), number of instances detected as inconsistent and mean
number of removed values. All the considered instances have no solution.

Classes AC SAC 6-SC1 6-SC2
(n,d,e,t) time #inc #rv time #inc #rv time #inc #rv time #inc #rv

(100,20,495,275) 1.8 0 9.24 198 50 104.68 70 20 486.82 441 48 79.20
(100,20,990,220) 2.4 0 0.22 11987 11 92.04 105 21 566.08 240 48 79.32
(100,20,1485,190) 3.4 0 0 4207 0 0.40 286 31 494.40 187 49 38.30
(100,40,495,1230) 4.6 0 0.92 3239 50 345.06 270 21 621.94 5709 48 106.76
(100,40,990,1030) 5.8 0 0 13229 0 0.08 515 30 809.34 4954 48 176.42
(100,40,1485,899) 8.2 0 0 11166 0 0 1622 32 902.14 1854 48 181.18
(200,10,1990,49) 2.6 0 20.96 88 50 38.28 128 22 350.62 72 48 56.36
(200,10,3980,35) 5.8 0 0.92 10503 49 261.74 248 0 34.86 637 0 249.56
(200,10,5970,30) 7.8 0 0.24 11335 0 11 423 0 54.62 708 2 241.34
(200,20,995,290) 4.6 0 57.58 224 50 65.52 190 26 670.32 7464 49 78.42
(200,20,1990,245) 6 0 3.36 3716 50 256.62 192 32 592.96 1109 50 20
(200,20,3980,195) 12.4 0 0.04 34871 0 1.82 573 25 808.46 592 49 70.48
(200,20,5970,165) 17 0 0 23307 0 0.04 2242 10 1179.88 1600 43 280.3

Before comparing our algorithm with AC or SAC, we raise the question of
the choice of a good value for w. In figure 3, if we consider the number of
instances which are detected as inconsistent, we can note that this number for
w-SC increases as the value of w increases. Such a result is foreseeable since
for larger values of w, w-SC takes into account more constraints and is able
to perform a more powerful filtering. The same result generally holds for the
runtime which increases with w. According to our observations, the value 6 for
w seems to correspond to the best trade-off between the runtime and the power
of the filtering. On the one hand, by exploiting 6-PSTs, 6-SC1 (or 6-SC2) takes
into account enough constraints in order to enforce an efficient filtering. On the
other hand, with larger values of w, the number of removed values and so the
number of detected inconsistent instances are not significantly improved while
the runtime and the space requirement may increase significantly w.r.t. w = 6.

Then, if we compare w-SC1 and w-SC2, we can observe in table 1 that
generally w-SC2 detects more instances as inconsistent than w-SC1. Again, such
a result was foreseeable, since w-SC2 takes into account more constraints than
w-SC1. For the same reason, w-SC2 often spends more time for achieving SC

Now, if we compare the w-SC filtering with AC or SAC w.r.t the number of
instances which are detected as inconsistent, we can note, in figure 3, that 3-SC
detects more inconsistencies than AC while SAC may perform better or worse
than w-SC depending on the value of w. Nevertheless, we can observe that 6-SC
often detects more instances as inconsistent than SAC. On the 650 instances
considered in table 1, we observe that, SAC performs often better than 6-SC1
(310 instances are detected as inconsistent by SAC against 270 by 6-SC1) but
worse than 6-SC2 (310 against 530).

Regarding the runtime, according to figure 3(a), AC is generally faster than
w-SC, except when the instances are obviously inconsistent. In such a case, w-
SC often succeeds in detecting the inconsistency by removing all the values of
the first considered variable while AC needs many deletions. Compared with
SAC, w-SC spends more time than SAC only on instances which are not tight

Table 2. Mean number of values deleted by the different algorithms and mean number
of values which are both removed by AC and 6-SC1 or SAC and 6-SC1. All the con-
sidered instances have no solution but have been found consistent by both AC, SAC
and 6-SC1.

Class (n, d, e, t) AC SAC 6-SC1 AC ∩ 6-SC1 SAC ∩ 6-SC1
(100,40,990,970) 0 0 186.49 0 0
(100,40,1485,860) 0 0 786.52 0 0
(200,10,1990,40) 2.38 15.9 0.86 0.48 0.78
(200,10,3980,30) 0.14 0.58 0.04 0.04 0.04
(200,10,5970,30) 0.24 11 54.62 0.02 0.76
(200,20,1990,230) 0.74 33.4 138.1 0.16 5.24
(200,20,14925,150) 0 0.08 1154.92 0 0.06

enough (for t < 50 in figure 3(a)) and so obviously consistent, because many
calls to BTD are required. In contrast, when the tightness is closer to the consis-
tent/inconsistent threshold or above, w-SC performs faster than SAC. Indeed,
w-SC removes less values than SAC in order to detect the inconsistency. The
main reason is that, by construction, it checks (and possibly removes) each value
of a variable before considering a new variable while in AC or SAC, the values
of a given variable are generally deleted at different (and non-consecutive) mo-
ments (due to the propagation mechanism). Finally, we have observed that the
behavior of w-SC with respect to AC or SAC is improved when the density of
the constraint graph increases. So, w-SC succeeds in outperforming significantly
SAC for time efficiency and AC and SAC for detection of inconsistencies in the
consistent/inconsistent threshold area.

5.3 Complementarity and combinations of AC/SAC and w-SC

If we compare the values which are deleted by the different algorithms on con-
sistent instances, we can note that a value deleted by w-SC is not necessarily
removed by AC or SAC and conversely. Table 2 illustrates perfectly this phe-
nomenon. Such a report highlights the difference which exists between our new
filtering and classical ones like AC or SAC and leads us to study the comple-
mentarity of w-SC with AC or SAC. With this aim in view, we combine here
w-SC with AC or SAC. More precisely, from two filtering algorithms X and Y,
we derive a new filtering algorithm denoted X+Y which consists in applying X
and then, if the instance is not detected as inconsistent yet, Y. Table 3 provides
the results obtained by AC+6-SC, SAC+6-SC, 6-SC+AC and 6-SC+SAC.

We can note that AC+6-SC slightly improves the detection of inconsistent in-
stances w.r.t 6-SC (e.g. 275 instances are detected as inconsistent by AC+6-SC1
against 270 for 6-SC1) while 6-SC+AC performs really better with 450 instances
found inconsistent by 6-SC1+AC (respectively 567 by 6-SC2+AC against 530
for 6-SC2). Both algorithms have better results than AC which do not succeed
in detecting the inconsistency of any instance. Likewise, SAC+6-SC improves
both the behaviour of SAC and 6-SC (457 and 587 instances respectively for
SAC+6-SC1 and SAC+6-SC2 against 310 for SAC). For these three algorithms,
the runtime does not exceed the cumulative runtime of AC and 6-SC or SAC

Table 3. Runtime (in ms) and number of instances detected as inconsistent for the
combined algorithms.

Classes AC+6-SC1 SAC+6-SC1 6-SC1+AC 6-SC1+SAC AC+6-SC2 SAC+6-SC2 6-SC2+AC 6-SC2+SAC
(n,d,e,t) time #inc time #inc time #inc time #inc time #inc time #inc time #inc time #inc

(100,20,495,275) 70 20 197 50 71 41 86 50 381 48 198 50 386 50 430 50
(100,20,990,220) 104 21 12020 28 100 40 1387 49 238 48 12035 48 240 50 223 50
(100,20,1485,190) 272 31 4487 32 288 47 525 48 203 49 4385 49 202 50 185 50
(100,40,495,1230) 248 21 3249 50 268 30 608 50 5724 48 3240 50 4950 49 5754 50
(100,40,990,1030) 526 30 13835 30 579 41 1729 48 4982 48 18407 48 5546 50 5590 50
(100,40,1485,899) 1629 32 12822 32 1631 44 2466 48 1858 48 13015 48 1826 50 2024 50
(200,10,1990,49) 125 25 89 50 133 45 136 50 67 50 91 50 73 50 73 50
(200,10,3980,35) 261 0 10715 49 260 0 6946 49 654 0 10536 49 638 10 2701 50
(200,10,5970,30) 424 0 15939 0 424 1 15744 18 711 2 16060 3 728 12 5906 42
(200,20,995,290) 175 28 225 50 199 45 191 50 5215 50 223 50 7933 50 7965 50
(200,20,1990,245) 186 32 3774 50 181 45 352 50 1086 50 3614 50 1114 50 1133 50
(200,20,3980,195) 578 25 35291 26 539 42 3130 49 627 49 35352 49 593 50 549 50
(200,20,5970,165) 2253 10 25526 10 2235 29 15216 39 1696 43 24923 43 1592 46 5056 48

and 6-SC. The more interesting results are provided by 6-SC+SAC. On the one
hand, 6-SC1+SAC and 6-SC2+SAC detect respectively 598 and 640 instances
as inconsistent (i.e. 92% and 98% of the considered instances against 48% for
SAC, 42% for 6-SC1 and 82% for 6-SC2). On the other hand, its runtime is
often significantly better than the cumulative runtime of SAC and 6-SC or than
the runtime of SAC. These results clearly show that the filtering performed by
AC/SAC and SC are not only significantly different but also complementary.

6 Discussion and conclusion

We have proposed a new parameterized partial consistency which allows to ex-
ploit the underlying properties of a constraint network, both at the structural
level but also at the level of the tightness of constraints. This new partial consis-
tency is different in its approach to those proposed previously. This can be seen
in the theoretical comparisons we have provided, but also in the experiments
since its filtering capabilities are different from those of conventional methods:
this is not the same values that are removed, and time efficiency is not located
in the same areas as other filterings. It is therefore a potentially complementary
approach to existing ones. In experimental results, we show that w-SC offers a
significantly more powerful level of filtering and more effective w.r.t the runtime
than SAC. We also show that w-SC is a complementary approach to AC or SAC.
So we can offer a combination of filterings, whose power is greater than w-SC or
SAC.

This leads naturally to study hybrid consistencies combining w-SC with other
consistencies such as AC or SAC, to provide filtering both more robust and more
powerful. Among the potential extensions of this work, w-SC could be extended
to n-ary constraints, which does not seem to be technically difficult. We could
also extend w-SC in extending filterings to partial assignments, for example by
offering the concept of k-w-SC consistency which would produce new constraints

whose arity is k. Moreover, even if 6-SC is faster and performs a more powerful
filtering than SAC, it would also be necessary to better identify the good values
of w. A natural track would be to assess the density of the w-PST for a given
value of w. Another important way could be to use w-SC during the search.
We should study both conventional methods based on backtracking, but also to
improve the decomposition methods. Finally, a comprehensive study should be
conducted based on the general framework proposed in [18] by studying different
kinds of subproblems, not only related to partial spanning tree-decompositions.
Nevertheless, this study could be of a limited interest. Indeed, this framework
allows to define a generic algorithm which is based on a classic propagation
architecture. Given a deleted value, this value will be propagated to delete other
values. Conversely, achieving w-SC is not based on deletions propagation but
runs using validations of value. This difference makes the use of the framework
of [18] of a limited interest here for filtering

References

1. F. Rossi, P. van Beek, and T. Walsh. Handbook of Constraint Programming. Else-
vier, 2006.

2. C. Bessiere. Constraint Propagation, chapter 3, pages 29–83. Handbook of Con-
straint Programming, F. Rossi, P. van Beek, T. Walsh, Elsevier, 2006.

3. N. Robertson and P.D. Seymour. Graph minors II: Algorithmic aspects of
treewidth. Algorithms, 7:309–322, 1986.

4. P. Jégou and C. Terrioux. Hybrid backtracking bounded by tree-decomposition of
constraint networks. Artificial Intelligence, 146:43–75, 2003.

5. E. Freuder and C.D. Elfe. Neighborhood inverse consistency preprocessing. In
Proceedings of AAAI, pages 202–208, Portland, OR, USA, 1996.

6. R. Debruyne and C. Bessière. Domain Filtering Consistencies. JAIR, 14:205–230,
2001.

7. C. Bessière, JC. Régin, R.H.C. Yap, and Y. Zhang. An optimal coarse-grained arc
consistency algorithm. Artificial Intelligence, 165(2):165–185, 2005.

8. E. Freuder. Synthesizing constraint expressions. CACM, 21(11):958–966, 1978.
9. M.C Cooper. An optimal k-consistency algorithm. Artificial Intelligence, 41(1):89–

95, 1989.
10. C. Bessière and R. Debruyne. Optimal and suboptimal singleton arc consistency

algorithms. In Proceedings of IJCAI, pages 54–59, 2005.
11. G. Gottlob, N. Leone, and F. Scarcello. A Comparison of Structural CSP Decom-

position Methods. Artificial Intelligence, 124:343–282, 2000.
12. R. Dechter. Constraint processing. Morgan Kaufmann Publishers, 2003.
13. R. Dechter and P. van Beek. Local and Global Relational Consistency. Journal of

theoretical Computer Science, 1996.
14. K. M. Bayer, M. Michalowski, B. Y. Choueiry, and C. A. Knoblock. Reformulating

CSPs for Scalability with Application to Geospatial Reasoning. In Proc. of CP,
pages 164–179, 2007.

15. E. Freuder. A Sufficient Condition for Backtrack-Free Search. JACM, 29 (1):24–32,
1982.

16. Beineke and Pippert. Properties and characterizations of k-trees. Mathematika,
18:141–151, 1971.

17. C. Bessière, S. Cardon, R. Debruyne, and C. Lecoutre. Efficient Algorithms for
Singleton Arc Consistency. Constraints, 2010. To appear.

18. G. Verfaillie, D. Martinez, and C. Bessière. A Generic Customizable Framework
for Inverse Local Consistency. In Proceedings of AAAI, pages 169–174, 1999.

