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Abstract. This paper deals with methods exploiting tree-decomposition
approaches for solving weighted constraint networks. We consider here
the practical efficiency of these approaches by defining five classes of vari-
able orders more and more dynamic which preserve the time complexity
bound. For that, we define extensions of this theoretical time complex-
ity bound to increase the dynamic aspect of these orders. We define a
constant k allowing us to extend the classical bound from O(exp(w +1))
firstly to O(exp(w + k)), and finally to O(exp(2(w + k))), where w de-
notes the "tree-width” of a Weighted CSP. Finally, we assess the defined
theoretical extension of the time complexity bound from a practical view-
point.

1 Introduction

The CSP formalism (Constraint Satisfaction Problem) offers a powerful frame-
work for representing and solving efficiently many problems. Modeling a problem
as a CSP consists in defining a set X of variables x1, zo, .. . x,,, which must be as-
signed in their respective finite domain, by satisfying a set C' of constraints which
express restrictions between the different possible assignments. A solution is an
assignment of every variable which satisfies all the constraints. Determining if
a solution exists is a NP-complete problem. This framework has been extended
in order to capture notions like preference or possibility or, when there is no
solution, to produce an assignment minimizing a given criterion on constraint
satisfaction. Hence, recently, many extensions of the CSP framework have been
proposed (e.g. [1-3]).

In this paper, we focus our study on Weighted CSPs (WCSPs) which is a well
known framework for soft constraints. In this extension of CSPs, a weight (or a
cost) is associated with each tuple of each constraint. So, each assignment has a
cost defined by the sum of the costs of all the tuples included in the considered
assignment. Solving a WCSP instance requires to find an assignment whose cost
is minimum. This task is NP-hard. Many algorithms have been defined in the
past years for solving this problem. On the one hand, the usual complete method
for solving WCSPs is based on branch and bound search, which, in order to be



efficient, must use both filtering techniques and heuristics for choosing the next
variable or value. This approach, often efficient in practice, has an exponential
theoretical time complexity in O(exp(n)) for an instance having n variables. On
the other hand, some other methods are based on the dynamic programming
approach [4-9]. Some of them exploit the problem structure like [5,6,10,9].
Exploiting the structure often allows to improve the solving methods and, in
particular, to provide better theoretical time complexity bounds. Several bounds
exist like the induced width [11] or the tree-height [12,13]. Yet, the best known
complexity bounds are given by the ”tree-width” of a CSP (often denoted w).
This parameter is related to some topological properties of the constraint graph
which represents the interactions between variables via the constraints. It leads
to a time complexity in O(exp(w+1)). Different methods have been proposed to
reach this bound like Tree-Clustering [14] (see [15] for a survey and a theoretical
comparison of these methods). They rely on the notion of tree-decomposition
of the constraint graph. They aim to cluster variables such that the cluster
arrangement is a tree. Depending on the instances, we can expect a significant
gain w.r.t. enumerative approaches. Most of works based on this approach only
present theoretical results. Few practical results have been provided (e.g. [16,
17]). So, we study these approaches by concentrating us on the BTD method (for
Backtracking with Tree-Decomposition [18]) which seems to be one of the most
effective method proposed until now within the framework of these structural
methods.

The problem of finding the best decomposition (w.r.t. the tree-width) has
been firstly studied in the literature from a theoretical point of view. More
recently, some studies (e.g. [19]) have been realized in the field of CSP, integrating
as quality parameter for a decomposition, its efficiency for solving the considered
CSP. Yet, these studies do not consider the questions related to an efficient use
of the considered decompositions. This paper deals with this question. Given a
tree-decomposition, we study the problem of finding good orders on variables for
exploiting this decomposition in a branch and bound search like one achieved by
BTD. Similar works have been already performed for SAT or CSP (e.g. [20, 21]).
As presented in [22,17], the order on the variables is static and compatible with
a depth first traversal of the associated cluster tree. Since enumerative methods
highlight the efficiency of dynamic variable orders, we give conditions which allow
to exploit in a more dynamic way the tree-decomposition and guarantee the time
complexity bound. We propose five classes of orders respecting these conditions,
two of them giving more freedom to order variables dynamically. Consequently,
their time complexity possess larger bounds: O(exp(w+k)) and O(exp(2(w+k))),
where k is a constant to parameterize. Based on the properties of these classes,
we exploit several heuristics which aim to compute a good order on clusters and
more generally on variables. They rely on topological and semantic properties
of the WCSP instance. Heuristics based on the expected number of solutions
enhance significantly the performances of BTD. Meanwhile, those based on the
cluster size or on the dynamic variable ordering heuristic provide often similar
improvements and may outperform the first ones on real-world instances. Finally,



we report here experiments to assess the interest of the extensions based on the
time complexity bound.

This paper is organized as follows. Section 2 provides basic notions about
WCSPs and methods based on tree-decompositions. Then, in section 3, we de-
fine several classes of variable orders which preserve the classical bounds for
time complexity. Section 4 introduces two extensions giving new time complex-
ity bounds. Section 5 presents the different heuristics we use for guiding the
exploration of the cluster tree and variables. Then, in section 6 is devoted to
experimental results to assess the practical interest of our propositions. Finally,
in section 7, we conclude and outline some future works.

2 Preliminaries

A constraint satisfaction problem (CSP) is defined by a tuple (X, D,C). X is
a set {x1,...,x,} of n variables. Each variable z; takes its values in the finite
domain d,, from D. The variables are subject to the constraints from C. Given
an instance (X, D,C), the CSP problem consists in determining if there is a
solution (i.e. an assignment of each variable which satisfies each constraint).
This problem is NP-complete. In this paper, we focus our study on an extension
of CSPs, namely Weighted CSPs (WCSPs). In this extension of CSPs, a weight
(or a cost) is associated with each tuple of each constraint. The cost of a tuple
allowed by a constraint is 0, while a forbidden one has a cost greater than O.
Then, each assignment has a cost defined by the sum of the costs of all the tuples
included in the considered assignment. Solving a WCSP instance requires to
find an assignment whose cost is minimum. This task is NP-hard. In this paper,
without loss of generality, we only consider binary constraints (i.e. constraints
which involve two variables). So, the structure of a WCSP can be represented
by the graph (X, C), called the constraint graph. The vertices of this graph are
the variables of X and an edge joins two vertices if the corresponding variables
share a constraint.

Methods providing interesting theoretical time complexity bound often rely
on the structure of its constraint graph, and in particular the notion of tree-
decomposition of graphs [23]. Let G = (X, C) be a graph, a tree-decomposition
of G is a pair (E,T) where T = (I, F) is a tree with nodes I and edges F' and
E = {E; : i € I} afamily of subsets of X, such that each subset (called cluster)
E; is associated to a node of T and verifies:

(i) VierE; = X,
(ii) for each edge {z,y} € C, there exists i € I with {x,y} C E;,
(iii) for all 4,4,k € I, if k is in a path from i to j in 7', then E, N E; C Ej,.

The width of a tree-decomposition (E,T) is equal to maz;cr|E;| — 1. The
tree-width w of G is the minimal width over all the tree-decompositions of G.

Assume that we have a tree-decompositions of minimal width (w). The refer-
ence structural method, Tree-Clustering [14], has a time complexity in O(exp(w+
1)) while its space complexity can be reduced to O(n.s.d®) with s the size of the



largest minimal separators of the graph [24]. Note that Tree-Clustering does not
provide interesting results in practical cases. So, an alternative approach, also
based on tree-decomposition of graphs was proposed in [22]. This method is
called BTD (for Backtracking with Tree-Decomposition) and seems to provide
empirical results among the best ones obtained by structural methods.

The BTD method proceeds by an enumerative search guided by a static
pre-established partial order induced by a tree-decomposition of the constraint
network. So, the first step of BTD consists in computing a tree-decomposition
of the constraint graph. The computed tree-decomposition induces a partial
variable ordering which allows BTD to exploit some structural properties of
the graph and so to prune some parts of the search tree. In fact, variables
are assigned according to a depth-first traversal of the rooted tree. In other
words, we first assign the variables of the root cluster E7, then we assign the
variables of Es, then Ej3’s ones, and so on. For example, (x1,x2,...,214) or
(x2, 21, x4, X3, Tg, T5, T7, Tg, T8, L13, L10, L12, L11, L14) are possible variable order-
ings for the problem whose constraint graph is presented in figure 1. Further-
more, the tree-decomposition and the variable ordering allow BTD to divide
the problem P into many subproblems. Given two clusters E; and E; (with E;
a E;’s son), the subproblem rooted in E; depends on the current assignment
A on the separator E; N Ej;. It is denoted Py g, g, Its variable set is equal
to Desc(E;) where Desc(E;) denotes the set of variables belonging to a clus-
ter E; or to any descendant Ej of E; in the cluster tree rooted in Ej;. The
domain of each variable which belongs to F; N E; is restricted to its value in
A. Regarding the constraint set, it contains the constraints which involve at
least one variable which exclusively appears in E; or in a descendant of FEj.
For instance, let us consider the WCSP whose constraint graph and a possible
tree-decomposition are provided in figure 1. Given an assignment A on E5 N Es,
the variable set of P4 g, /g, is Desc(Es) = {xs5, x6, T7, 78,79}, and its constraint
set is {cs7, ¢59, Co7, Coo, C78, €9} (With ¢;; the constraint involving the variables
z; and z;). Note that the constraint css does not belong to its constraint set
because x5 and xg appear both in Fs. Remark that the definition of subproblems
defines a partition of the constraint set. Such a partition ensures that BTD takes
into account each constraint only once and so that it safely computes the cost
of any assignment. Finally, the tree-decomposition notion permits to define the
valued structural good notion. A structural valued good of E; with respect to E;
(with E; a E;’s son) is a pair (A,v) with A an assignment on E; N E; and v the
optimal cost of the subproblem Py g, /k; -

To satisfy the bounds of complexity, the variable ordering exploited in BTD
is related to the cluster ordering. Formally, consider (F,T) a tree-decomposition
of the CSP where T = (I, F) is a tree. We suppose that the elements of E = {F; :
i € I't are indexed w.r.t. the notion of compatible numeration. A numeration on
E compatible with a prefix numeration of T' = (I, F') with E; the root is called
compatible numeration. An order <x of variables of X such that Vz € E;,
Vy € Ej, with i < j, x <x y is a compatible enumeration order. The numeration
on the clusters gives a partial order on the variables since the variables in F;



(a)

Fig.1. (a) A graph and (b) a possible tree-decomposition.

are assigned before those in Ej; if ¢ < j, except variables in the descent of a
good, namely those located in the subproblem rooted on the cluster containing
the good. In fact, using goods allows not to explore twice subproblems if their
optimal cost is known. If we use a good (A, v) to avoid visiting again a subtree,
we know that the variables in it can be optimally assigned with a cost v. So BTD
does not assign them effectively, but they are considered done. They are named
assignable variables thanks to a good. Of course, if we are interested by providing
an optimal assignment, an additional work must be performed to assign these
variables at the end of the search [17]. Thus the variables in E; are assigned if
the variables in F; are either already assigned or assignable thanks to a good.
To complete this order, we have to choose variable ordering heuristics inside a
cluster. Finally, a compatible enumeration order on the variables is given by a
compatible numeration on clusters and a variable order in each cluster.

In [17], the results were presented without heuristics for the choice of the
clusters and thus the choice of the variables, except on the level of the order
used inside the cluster which corresponded to a traditional dynamic order. Ob-
viously, the variable ordering have a great impact on the efficiency of enumerative
methods. Thus, we study here how the benefits of variable orderings can be fully
exploited in BTD. Nevertheless, to guarantee the time complexity bounds, it is
necessary to respect some conditions. So, in the next section, we define classes
of orders guaranteeing complexity bounds.

3 Dynamic orders in O(exp(w + 1))

The first version of BTD was defined with a compatible static variable ordering.
We prove here that it is possible to consider more dynamic orders without loos-
ing the complexity bounds. The defined classes contain orders more and more
dynamic. These orders are in fact provided by the cluster order and the variable
ordering inside each cluster.



Definition 1 Let (X, D,C) be a WCSP and (E,T) a tree-decomposition of the
graph (X, C), we define:

— Class 1. Enumerative static order. It is a static order of assignment of
variables which is compatible.

— Class 2. Static cluster order and dynamic variable order. The cluster
order is a compatible order (thus static). Yet, inside each cluster, the variable
order is dynamic. Let Y be an assignment, if x; € E; is the last assigned
variable inY, thenVE; € E, j <1i,Vx; € Ej, x; € Y. So, a variable z; € E;
is assigned if and only if all the variables in clusters Ej, j < i, are already
assigned or assignable thanks to goods. So one can observe that it is possible
to have assignable variables thanks to goods in the assignment Y, which are
not effectively assigned.

— Class 3. Dynamic cluster order and dynamic variable order. LetY
be an assignment, x; € Ej, if x; € Y, then VE; € E, i # j such that Ej is
on the path from the root cluster Ey to E;, Vx; € Ej, x; € Y. So, a variable
x; € E; is assigned if and only if all the variables in clusters on the path
from the root cluster Fq to E; are assigned first.

— Class ++. Enumerative dynamic order. The variable ordering is com-
pletely dynamic. Consequently, the assignment order is not necessarily an
enumerative compatible order. There is no restriction due to cluster tree.

The defined classes form a hierarchy since we have: Class 1 C Class 2 C
Class 8 C Class ++. In [17], the experiments use Class 2 orders. Formally, only
the orders of the Class 1 are compatible. Nevertheless, for an unique assignment,
one can find an order in the Class I that coincides with the order of the Class 3.
This property gives to the Class 8 (thus Class 2) orders the ability of recording
goods and using them to prune branches in the same way Class I orders do.
The Class ++ gives a complete freedom. Yet, it does not guarantee the time
complexity bounds because sometimes it is impossible to record goods. Indeed
an order of Class ++ may lead to assign some variables of a cluster E; (with
E; ason of a cluster E;) without having assigned the variables of the separator
E; N E;. By so doing, we cannot safely compute the optimal solution of the
subproblem rooted in F; and so it is impossible to record a good on E; N Ej.
Hence, a subproblem may be solved several times and thus the time complexity
bound is not guaranteed anymore. Meanwhile, the Class 3 orders guarantee this
bound.

Theorem 1 Let the enumerative order be in the Class 3, the time complexity
of BTD is O(exp(w + 1)).

Proof We consider a cluster E; in the cluster tree, and we must prove that any
assignment on F; is computed only once. Let E; be the cluster parent of F; and
suppose that for a current assignment the last assigned variables are in E;. Since
the order is in the Class 3, the variables of the clusters on the path from the
root to E; are already assigned and those in the subtree rooted on E; not yet.
An assignment A on E; N E; is computed when the variables in E; are assigned



before those in the subproblem rooted in E;. Solving this subproblem leads to
the computation of its optimal cost v. Then, (A, v) is recorded as a good. Let
A’ be the assignment on E;. The next assignment of variables in E; leading to
A on E; N E; will not be pursued on the subproblem rooted on E;. A’ is not
computed twice, only the variables in F; N E; are assigned again. So the time
complexity is O(exp(w + 1)). O

The properties of the Class 3 offer more possibilities in the variable ordering. So
it is possible to choose any cluster to visit next since the variables on the path
from the root cluster to that cluster are already assigned. And in each cluster,
the variable ordering is totally free. In the next section, we propose two natural
extensions of the complexity bound.

4 Bounded extensions of dynamic orders

We propose two extensions based on the ability given to the heuristics to choose
the next variables to assign not only in one cluster, but also among k variables
in a path rooted on the cluster that verifies some properties. So, we define two
new classes of orders extending Class 3. First, we propose a generalization of the
tree-decomposition definition.

Definition 2 Let G = (X,C) be a graph and k a non nil positive integer, the
set of directed k-covering tree-decompositions of a tree-decomposition (E,T) of
G with Ey its root cluster, is defined by the set of tree-decompositions (E',T") of
G that verify:

— By C B}, Ef the root cluster of (E',T")
—-VE/€FE,E/ CE,UE,U...UE;,, with E;, ... E;, a path in T
— |El| <wt +k, where w™ = mazg,cp|E;|

Now, we give a definition of the Class 4.

Definition 3 Let (X,D,C) be a WCSP, (E,T) a tree-decomposition of the
graph (X,C) and k a non nil positive integer. A variable order is in the Class
4, if this order is in the Class 3 for some directed k-covering tree-decomposition
of (E',T") such that E;, C El.

This definition enforces the order of one assignment to be in the Class 3. So
we derive a natural theorem:

Theorem 2 Let the enumerative order be in the Class 4 with constant k, the
time complexity of BTD is O(exp(w™ + k)).

Proof This proof is similar to one given for Class 3 since we can consider that
BTD runs on a tree-decomposition (E’,T") of width w™* + k. O

A second extension is possible in exploiting during the search, a dynamic
computing of the tree-decomposition. Then, the time complexity bound changes
because sometimes it would be impossible to record goods.



Definition 4 Let (X,D,C) be a WCSP, (E,T) a tree-decomposition of the
graph (X,C) and k a non nil positive integer. A variable order is in the Class
5, if for any assignment, its order is in the Class 3 for some directed k-covering
tree-decomposition of (E,T).

Theorem 3 Let the enumerative order be in the Class 5, the time complexity
of BTD is O(exp(2(w™ +k))).

Proof Let (X,D,C) be a WCSP, (E,T) a tree-decomposition of the graph
(X,C) and FEj its root cluster. We have to prove that any assignment on a
set V of 2(w™ + k) variables on a path of the tree T is computed only once.
Let A be an assignment containing V. The variable order of this assignment is
in Class 8 for a directed k-covering tree-decomposition (E’,T") of (E,T) with
E; the root cluster. The size of the clusters in (E’,T”) are bound by w™ + k,
so the set V' is recovered by at least two clusters. Let £ ...[E] be a path
on (E',T") covering V. The solving of the subproblem rooted on E; with the
assignment 4 leads to the recording of goods on the separators of these clusters.
Actually, we record goods on the separators of the clusters of (F,T') covered by
EZ’.1 El’r because they are minimal in order to split the problem into several
connected components. And they are included into the separators of clusters in
each k-covering tree-decomposition of (£,T). We suppose that E; is not the
root cluster of (E',T"). If » = 2 then the size of Ej and Ej, is 2(w* + k),
what leads to the recording of a good on the separator of El’»1 and its parent
and another on the separator of E; and Ej . If r > 2, we record at least 2
goods on the separators of the clusters E; ... E; . Let B be an assignment that
contains the variables ordered before the variables in V' in the Class & order.
When we try to extend B on V with the same values in A, one of the good will
be computed first. Thus before all the variables in V' are assigned, the search
is stopped thanks to this good. So A is computed only once. Now, if Elf1 is the
root cluster of (E’,T'), then V contains F;. So, at least one good is recorded
between F; and Ej . If r > 2, then the assignment A will not be computed
again because V contains at least 2 goods. If r = 2, only one good is recorded.
Nevertheless, for each other directed k-covering tree-decompositions of (E,T),
(E",T"), a Class 5 order assigns the variables in F; before at least w™ + k other
variables in V. In fact, the variables in E; are also in the root cluster of (E”,T")
and are assigned first w.r.t the Class & order. As soon as the variables in F; are
assigned, the recorded good allows to stop the search in the rest of V' since the
optimal cost of the corresponding subproblem is already known. We prove that
any assignment on V' is computed only once. O

Note that the new defined classes are included in the hierarchy presented in
section 3: Class i C Class j, if i < j and for 1 < i < j <5, with also Class § C
Class ++.

To define the value of k, we have several approaches to choose variables to
group. A good one consists in trying to reduce the value of the parameter s and,
by this way, to enhance the space complexity bound. Then, we can observe that
grouping clusters with large separators permits to achieve a significant reduction
of s.



5 Heuristics

In this section we define several heuristics with the aim in view to improve in
significant way the performances of BTD w.r.t. runtime.

5.1 Cluster orders

We propose here several heuristics computing the order the clusters are visited
for the Classes 1, 2 and 3. They are static for the Class 1 and dynamic for the
Classes 2 and 3. They consist in choosing the first visited cluster (called the
root cluster) and ordering the sons of each cluster. Precisely, we assign first the
variables in the root cluster and recursively we assign the variables in the trees
rooted on its son clusters according to the son order, considering the sons as
the roots of the subproblems. Nevertheless, all these orders are used under the
hypothesis the early use of goods does not enforce another order. Indeed this
early use of goods improves a lot the method, by detecting earlier failures. In
fact as soon as all the variables in the separator between the current cluster and
one of its sons are assigned, we check whether this assignment is a good. If so,
we do not explore the subtree rooted on this son cluster.

Static orders A static order is defined before the search begins. We propose
criteria for the choice of the root cluster.

— minezp: this heuristic is based on the expected number of partial solutions of
clusters [25] and on their size. Exploiting the expected number of solutions
may appear surprising in the WCSP framework. However, some subproblems
may have solutions while the whole problem has none. If so, it could be
interesting to begin the search with the subproblems having no solution
since they have a positive cost, what may result in increasing quickly the
lower bound. The heuristic chooses as root cluster one which minimizes the
ratio between the expected number of solutions and the size of the cluster.
It allows to start the exploration with a large cluster having few solutions
or no solution.

— size: we have here a local criteria: we choose the cluster of maximum size as
root, cluster

— bary: it is a global criterion based on the location of the cluster in the tree.
For this criterion, we use the notion of distance, noted dist(z,y), between two
vertices x and y of a graph G, which is defined by the length of a shortest
path between z and y. A barycentre of G is a vertex x s.t. £ minimizes
Yyexdist(z,y). The bary heuristic chooses a barycentre cluster as a root
cluster.

Likewise, we propose heuristics for ordering cluster sons.

— minexp,: this heuristic is similar to minexp and orders the son clusters ac-
cording to the increasing value of their ratio.

— minseps: we order the son clusters according to the increasing size of their
separator with their parent.



Dynamic orders A dynamic order is defined during the search. But, the choice
of the root cluster is done at the beginning of the search. So one can only use
static heuristics to choose the root. We also propose a new heuristic: nv. The
dynamic variable ordering heuristics improve very significantly the runtime of
enumerative methods. To derive benefit of this property, we choose a dynamic
variable ordering heuristic and the root cluster is one containing the first variable
w.r.t. the chosen variable order. The dynamic aspect of the cluster orders is in
the son cluster ordering.

— MinexrPsdyn: the next cluster to visit minimizes the ratio between the current
expected number of solutions and the size of the cluster. The current ex-
pected number of solutions of a cluster is modified by filtering the domains
of unassigned variables. So we compute this number for unordered clusters
as soon as their parent is fully instantiated. So the choice of the next cluster
is more precise.

— NUsgyn: this heuristic is similar to nv. We visit first the son cluster where
appears the next variable in the variable order among the variables of the
unvisited son clusters.

5.2 Variable orders

We define here static and dynamic variable orders according to which the vari-
ables inside a cluster are assigned.
Static orders A static order is defined before the search begins.

— mdd: the variables are ordered according to the increasing value of the ratio
domain/degree. This heuristic gives good results compared to other static
ones.

Dynamic orders A dynamic order is defined during the search.

— mddgyn: the next variable to assign minimizes the ratio domain/degree. The
current ratio of a variable is modified by the domain filtering. So we compute
again this number each time the domain is filtered. This heuristic gives very
good results.

5.3 Heuristics for grouping variables in the Class 4

Grouping variables allows more freedom for dynamic variable ordering heuristics
which may improve significantly the enumerative methods runtime. Furthermore,
it is necessary to find a good value of the parameter k£ besides which BTD does
not profit sufficiently of the problem structure and therefore its time complexity
increases a lot. We propose several criteria for grouping variables which can be
seen as a preliminary step before computing an order of the Class 4.

— sep: this heuristic has one parameter which is the maximum size of separa-
tors. We merge clusters < parent, son > if their separator size exceeds the
value of the parameter.



— pu: this heuristic has one parameter which is the minimum number of proper
variables in a cluster. A proper variable of a cluster is a variable of a cluster
which does not belong to the parent cluster. We merge a cluster with its
parent if its number of proper variables is under the parameter.

All the heuristics we have defined, try to satisfy the first-fail principle, doing
first the most constrained choices.

6 Experimental study

Applying a structural method on an instance generally assumes that this instance
presents some particular topological features. So, our study is performed on
instances having a structure which can be exploited by structural methods. In
practice, we assess here the proposed strategies on particular random WCSPs
and real-world instances in order to point up the best ones w.r.t. the WCSP
solving. Regarding the random instances, we exploit partial structured instances.
A random structured instance of a class (n,d,w,t, s, n.) is built according to
the model described in [18]. This structured instance consists of n variables
having d values in their domain. Its constraint graph is a clique tree with n,.
cliques whose size is at most w and whose separator size does not exceed s. Each
constraint forbids ¢ tuples. For each forbidden tuple, a weight between 1 and 10
is associated randomly. Then, for building a partial structured instance of a class
(n,d,w,t,s,n¢,p), we remove randomly p% edges from a structured instance of a
class (n,d,w,t, s,n.). Secondly, we experiment the proposed heuristics on some
real-world instances, namely radio-link frequency assignment problems from the
FullRLFAP archive (for more details, see [26]).

All these experimentations are performed on a Linux-based PC with a Pen-
tium IV 3.2GHz and 1GB of memory. For each considered random partial struc-
tured instance class, the presented results are the average on instances solved
over 30. In the following tables, the letter M means that at least one instance
cannot be solved because it requires more than 1GB of memory.

In [19], a study was performed on triangulation algorithms to find out the
best way to compute a good tree-decomposition w.r.t. CSP solving. As MCS
[27] obtains the best results and is very easy to implement, we use it to compute
tree-decompositions in this study.

In the following, the results for Class 5 are not presented since we cannot
get good results. Table 1 shows the runtime of BTD based on FC with several
heuristics of Classes 1, 2 and 3 on random partial structured instances. Clearly,
we observe that the choice of the root cluster seems more important than the son
ordering. Indeed, the obtained results appear to be similar as soon as we choose
the root cluster with the same heuristic. Moreover, the main difference between
the heuristics are observed for different choices of root cluster. The son cluster
ordering has a limited effect because the considered instances have a few son
clusters reducing the possible choices and so their impact. We can expect a more
important improvement for instances with more son clusters. The heuristics size
and minexp often provide interesting results but sometimes make bad choices.



Table 1. Runtime (in s) on random partial structured CSPs with mdd for class 1 and
mddqy, for classes 2 and 3.

Class 1 Class 2 Class 3
Instance size bary| minexp size minexp| Size nv
MINSEPs | MINSEDs | MINETPs | MINSEPs | MINETP sdyn | MWsdyn | MWsdyn
(75,10,15,30,5,8,10) M| 22.31 M M M M M
(75,10,15,30,5,8,20) 3.27 4.77 6.13 3.34 6.24| 2.88 M
(75,10,15,33,3,8,10) 8.30 6.16 7.90 8.67 7.87| 8.82| 5.36
(75,10,15,34,3,8,20) 2.75 2.29 3.42 2.82 3.52| 2.84| 2.14
(75,10,10,40,3,10,10) 11.81 1.33 3.02] 11.89 4.73| 11.87| 1.43
(75,10,10,42,3,10,20) 1.02 0.67 0.76 1.02 0.83] 1.03| 0.79
(75,15,10,102,3,10,10) 11.76 3.74 12.10| 12.07 12.09| 11.70| 4.93
(100,5,15,13,5,10,10) M M M M M M M

Table 2. Runtime (in s) on random partial structured CSPs with mddgy, for class 4
orders and sep heuristic (the separator size is bounded to 5).

Class 4
Instance minexp size minexp| size nv
MINETPs | MINSEPs | MINETPsdyn | NWVsdyn | MVsdyn
(75,10,15,30,5,8,10) 9.42| 18.99 8.69| 18.30| 16.77
(75,10,15,30,5,8,20) 1.65 1.67 1.56| 1.53| 2.32
(75,10,15,33,3,8,10) 5.22 4.31 5.26| 4.18| 3.24
(75,10,15,34,3,8,20) 1.50 1.61 1.48| 1.58| 1.40
(75,10,10,40,3,10,10) 0.58 0.81 0.58| 0.85| 0.52
(75,10,10,42,3,10,20) 0.41 0.42 0.51] 0.41] 0.38
(75,15,10,102,3,10,10) 5.50 4.73 5.41| 4.63| 3.13
(100,5,15,13,5,10,10) 9.40 9.05 9.60| 9.10| 11.71

The heuristic nv leads to promising results except for one instance class which
cannot be solved due to the required amount of memory. The heuristic bary
seems the more robust heuristic: it obtains good results and succeeds in solving
the instances of class (75, 10, 15, 30, 5, 8, 10) while BTD with any other heuristics
requires a too large amount of memory space. This memory problem can be
solved by exploiting a Class 4 order with the sep heuristic for grouping variables.
Table 2 gives the runtime of BTD for this class with a separator size bounded
to 5. When we analyze the value of the parameter k, we observe that in general,
its value is limited (between 1 to 3). The results of Class 4 orders improve
significantly ones obtained for the Classes 2 and 3. Like previously, the results
are mostly influenced by the choice of the root cluster. The best results are
obtained by minezp + minexp, and minexp + minerpsqyy. For most of instance
classes, the other heuristics obtain similar results. Unfortunately, for some other
classes, the bad choices they make for the root cluster significantly increase the
runtime.

Finally, in table 3, we assess the behaviour of the proposed heuristics on some
real-world instances. Surprisingly, the considered Class 1 order obtains the best



Table 3. Runtime (in s) on some instances from the FullRLFAP archive with mdd for
class 1 and mddgy, for classes 2 and 3.

Class 1 Class 2 Class 3
Instance size bary| minexp size minexp| size nv

MINSEPs | MINSEPs | MINETPs | MINSEPs | MINECTPsdyn | MWsdyn | MVsdyn
SUBy 9.48 5.71 9.65 9.57 9.62] 9.64| 9.52
SUB; 448 511 516 515 516/ 518 520
SUB: 520 703 705 701 702 700 702
SUBs3 5,575 -l 6,596| 6,553 6,640| 6,595| 6,570
SUB4 8,146 -l 9,677 9,693 9,780| 9,672| 9,694

results. This result can be explained by the weak size of the considered instances
(between 16 and 22 variables). It ensures that the cost of computing dynamically
the variable ordering or the son ordering is not compensated. The same reason
explains the close results obtained for Classes 2 and 3 orders. Whereas it obtains
the more promising results on random instance, the heuristic bary requires more
than 8 hours for solving the SUB3 and SUB,.

7 Discussion and Conclusion

In this article, we have studied the WCSP solving methods based on tree-
decompositions in order to improve their practical interest. This study was done
both theoretically and empirically. The analysis of the variable orders allows us
to define more dynamic heuristics without loosing the time complexity bounds.
So, we have defined classes of variable orders which allow a more and more dy-
namic ordering of variables and preserve the theoretical time complexity bound.
This bound has been extended to enforce the dynamic aspect of orders that
has an important impact on the efficiency of enumerative methods. Even though
these new bounds are theoretically less interesting that the initial, it allows us to
define more efficient heuristics which improve significantly the runtime of BTD.
This study, which could not be achieved previously, takes now an importance
for solving hard instances with suitable structural properties.

We have compared the classes of variable orders with relevant heuristics w.r.t.
CSP solving. This comparison points up the promising results obtained by Class
4 orders. These orders give more freedom to the variable ordering heuristic while
their time complexity is O(exp(w + k)) where k is a constant to parameterize.
Note that for the most dynamic class (the Class 5), we get a time complexity
in O(exp(2(w + k))). It seems that this bound should be too large to expect a
significant practical improvement.

The experimental study presented in this paper is a preliminary step. We only
assess the interest of some heuristics. Other variable heuristics must be studied
(e.g. the jeroslow-like heuristic [28]). Likewise, for the choice of a root cluster or
the son cluster ordering, we must propose heuristics well-adapted to the WCSP
problem. For instance, the heuristic based on the expected number of solution



must be extended by taking into account the weights associated to each tuple.
Then, for Class 4, we aim to improve the criteria used to compute the value
of k and to define more general ones by exploiting better the problem features.
Finally, these experiments must be performed by exploiting BTD jointly with
local consistency techniques [29].
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