
On the Efficiency of Backtracking Algorithms
for Binary Constraint Satisfaction Problems∗

Achref El Mouelhi and Philippe Jégou and Cyril Terrioux
LSIS - UMR CNRS 6168
Aix-Marseille Université

Avenue Escadrille Normandie-Niemen
13397 Marseille Cedex 20 (France)

{achref.elmouelhi, philippe.jegou, cyril.terrioux}@lsis.org

Bruno Zanuttini
GREYC, Université de Caen Basse-Normandie, CNRS UMR 6072, ENSICAEN

Campus II, Boulevard du Maréchal Juin
14032 Caen Cedex (France)
bruno.zanuttini@unicaen.fr

Abstract

The question of tractable classes of constraint satisfaction
problems (CSPs) has been studied for a long time, and is now
a very active research domain. However, studies of tractable
classes are typically very theoretical. They usually introduce
classes of instances together with polynomial time algorithms
for recognizing and solving them, and the algorithms can be
used only for the new class.
In this paper, we address the issue of tractable classes of CSPs
from a different perspective. We investigate the complexity of
classical, generic algorithms for solving CSPs (such as For-
ward Checking). We introduce a new parameter for measur-
ing their complexity and derive new complexity bounds. By
relating the complexity of CSP algorithms to graph-theoretic
parameters, our analysis allows us to point at new tractable
classes, which can be solved directly by the usual CSP algo-
rithms in polynomial time, and without the need to recognize
the classes in advance.

Introduction
Constraint Satisfaction Problems (CSPs, (Rossi, van Beek,
and Walsh 2006)) constitute an important formalism of Arti-
ficial Intelligence (AI) for expressing and efficiently solving
a wide range of practical problems. A constraint network (or
CSP, abusing words) consists of a set of variables X , each
of which must be assigned a value in its associated (finite)
domain D, so that these assignments together satisfy a finite
set C of constraints.

In general, deciding whether a given CSP has a solution
is an NP-complete problem. Hence classical approaches
to this problem (and more generally for computing a solu-
tion if there is one) are based on backtracking algorithms,
whose worst-case time complexity is at best of the order
O(min(n, e).dn) with n the number of variables, e the num-
ber of constraints and d the size of the largest domain. To in-

∗This work was supported by the French National Research
Agency under grant TUPLES (ANR-2010-BLAN-0210).

crease efficiency, such algorithms also rely on filtering tech-
niques during search (among other techniques, such as vari-
able ordering heuristics). With the help of such techniques,
despite their theoretical time complexity, algorithms such as
Forward Checking (Haralick and Elliot 1980) (denoted FC),
RFL (for Real Full Look-ahead (Nadel 1988)) or MAC (for
“Maintaining Arc Consistency”, (Sabin and Freuder 1994))
turn out to be very efficient in practice on a wide range of
practical problems.

In a somewhat orthogonal direction, other works have
addressed the effectiveness of solving CSPs by defining
tractable classes. A tractable class is a class of CSPs which
can be recognized, and then solved, using polynomial time
algorithms. Different kinds of tractable classes have been
introduced. Some of them are based on the structure of
the constraint network, for instance tree-structured networks
(Freuder 1982) or more generally, networks of bounded
width (Gottlob, Leone, and Scarcello 2000)). Others are
based on restrictions of the constraint language. For exam-
ple, Zero-One-All (ZOA) constraints restrict the compati-
bility relations to have a certain form (Cooper, Cohen, and
Jeavons 1994). More recently, hybrid classes (so called be-
cause they do not belong to the previous ones) have been
proposed, such as the class of instances having the Bro-
ken Triangle Property (BTP, (Cooper, Jeavons, and Salamon
2010)).

Unfortunately, most tractable classes rarely occur in prac-
tice, which diminishes their interest. In contrast, as evoked
above algorithms such as FC, RFL or MAC, whose theo-
retical complexity is exponential, are the basis of practical
systems for constraint solving, and their concrete results are
often impressive in terms of computational time.

In this paper, we take a step towards bridging this gap, and
address the question of explaining the observed efficiency
of algorithms such as FC or RFL. We do so by reevaluat-
ing their time complexity using a new parameter, namely
the number of maximal cliques in the micro-structure of the

instance (Jégou 1993). Writing ω#(µ(P)) for the number
of maximal cliques in the micro-structure of CSP a P , we
show that the complexity of an algorithm such as FC is in
O(n2d · ω#(µ(P))). This provides a new perspective on
the study of the efficiency of backtracking-like algorithms,
by linking it to a well-known graph-theoretic parameter. In
particular, reusing known results from graph theory, we re-
visit some tractable classes of CSPs. The salient feature of
these classes is that they are solved in polynomial time by
general-purpose, widely used algorithms, without the need
for the algorithms to recognize the class. In this respect, our
study is very close in spirit to the study by Rauzy about sat-
isfiability problems and the behaviour of DPLL on known
tractable instances (Rauzy 1995). Also related to our work
is the study by (Chen and Dalmau 2004), who characterize
the class of instances which are solved in polynomial-time
by a variant of arc-consistency; nevertheless, contrary to our
case, the variant in question is not a generic algorithm, since
it is incomplete for the class of all CSPs.

The paper is organized as follows. We first introduce no-
tation and recall the definitions and basic properties of the
micro-structure. Then we present our complexity analysis
of algorithms such as BT and FC. We then point at new
tractable classes issued from graph theory, which can be ex-
ploited in the field of CSPs. Finally, we give a discussion
and perspective for future work.

Preliminaries
We start with some definitions and notation for CSP, then
we briefly review a graphical representation of binary CSPs,
called micro-structure.

Constraint Satisfaction Problems are built from variables
x1, x2 . . . each associated with a finite domain D(xi).

Definition 1 (constraint) A binary constraint c is a cou-
ple (S(c), R(c)), where the scope S(c) of c is a couple of
variables (xi, xj) and the relation R(c) of c is a subset of
D(xi)×D(xj).

Intuitively, the relation of c lists the allowed couples of
values for the variables in the scope of c.

Definition 2 (CSP) A finite binary constraint sat-
isfaction problem (CSP) is a triple (X,D,C)
where X = {x1, . . . , xn} is a set of variables,
D = (D(x1), . . . , D(xn)) is a list of finite domains
of values (D(xi) is the one of xi ∈ X), and C is a set of
binary constraints over the variables and domains in X,D.

We assume that there is at most one constraint per pair of
variables {xi, xj}, and we write cij (i < j) for this con-
straint. This is without loss of generality since two con-
straints over the same pair of variables can be merged into
one by taking the intersection of their relations.

Definition 3 (assignment, solution) Given a CSP
(X,D,C), an assignment of values to Y ⊆ X is a
set of pairs {(xi, vi) | xi ∈ Y } with vi ∈ D(xi) for all
i. An assignment to Y ⊆ X is said to be consistent if
all constraints cij ∈ C with scope S(c) = (xi, xj) ⊆ Y
are satisfied, i.e., (vi, vj) is in the relation R(cij). Such a

consistent assignment is also called a partial solution of the
CSP. A solution is a consistent assignment to X .

When no confusion can arise, we denote an assignment
{(x1, v1), . . . , (xk, vk)} by the tuple (v1, . . . , vk). We also
write n for the number of variables in a CSP, d for the car-
dinality of the largest domain, and e for the number of con-
straints.

Given a CSP, the basic question is to decide whether it
admits a solution. This problem is well known to be NP-
complete. In order to study CSPs and try to circumvent this
difficulty, various points of view can be adopted. One of
them is the micro-structure of an instance, that is, its com-
patibility graph as we define now. Intuitively, vertices code
for values of the CSP, while edges represent the compatibil-
ity of pairs of values.

Definition 4 (micro-structure) Given a CSP P =
(X,D,C), the micro-structure of P is the undirected graph
µ(P) = (V,E) with:

• V = {(xi, vi) : xi ∈ X, vi ∈ D(xi)},
• E = { {(xi, vi), (xj , vj)} | i 6= j, cij /∈ C or cij ∈
C, (vi, vj) ∈ R(cij)}
In words, the micro-structure of a CSP P contains an edge

for all pairs of vertices, except for vertices coming from the
same domain and for vertices corresponding to pairs which
are forbidden by some constraint. It can easily be seen that
the micro-structure of a CSP is an n-partite graph, since
there is no edge connecting vertices issued from the same
domain.

In this paper, we will study the complexity of CSP al-
gorithms through cliques in the micro-structure. We now
briefly review cliques as related to CSPs.

Definition 5 (clique) A complete graph is a simple graph in
which every pair of distinct vertices is connected by an edge.
A k-clique in an undirected graph is a subset of k vertices
inducing a complete subgraph (all the vertices are pairwise
adjacent). A maximal clique is a clique which is not a proper
subset of another clique.

Throughout the paper, we write ω#(G) for the number of
maximal cliques in a graph G, and hence, ω#(µ(P)) for the
number of maximal cliques in the micro-structure of a CSP
P .

In a micro-structure, the vertices of a clique cor-
respond to compatible values which are by con-
struction issued from different domains. Hence, a
clique {(x1, v1), (x2, v2), . . . (xi, vi)} in a micro-
structure µ(P) corresponds to a consistent assignment
((x1, v1), (x2, v2), . . . (xi, vi)) = (v1, v2, . . . vi) for P .
This correspondence can be extended to assignments of all
the variables.

Proposition 1 Given a CSP P = (X,D,C) and its micro-
structure µ(P), an assignment (v1, ..., vn) toX is a solution
of P if and only if {(x1, v1), ..., (xn, vn)} is an n-clique of
µ(P).

It can be seen that the transformation of a CSP P to its
micro-structure µ(P) can be realized in polynomial time. A

polynomial reduction directly follows, from the problem of
deciding whether a given CSP (over n variables) has a solu-
tion, to the problem of deciding whether a given undirected
graph has a clique containing a given number (n) of vertices.
While obviously this “clique problem” is also NP-complete,
this transformation offers some interests. In particular, it of-
fers a new viewpoint for the study of CSPs, by providing a
link to graph-theoretic notions.

This viewpoint has first been exploited by (Jégou 1993),
who proposed a new technique for decomposing CSPs. Pre-
cisely, (Jégou 1993) introduced a new kind of tractable
classes, which is based on known tractable classes for the
clique problem (chordal graphs (Golumbic 1980)). Later, a
similar study has been performed, introducing the notion of
hybrid tractable classes (Cohen 2003). This work has also
been extended by (Salamon and Jeavons 2008), who pro-
posed a new hybrid tractable class which generalizes chordal
graphs based on perfect graphs (Golumbic 1980). Using
this kind of approaches, new tractable classes of CSPs have
been proposed, which are defined by forbidden structures
in the micro-structure (Cooper, Jeavons, and Salamon 2008;
2010).

Nevertheless, as it is generally the case for tractable
classes in NP-complete problems, the definition of new
tractable classes relies on the design of specific algorithms
for recognizing and solving them. What we consider here
is another approach, which starts from the algorithms clas-
sically used for solving CSPs.

Time Complexity of Backtracking Algorithms
We first briefly review the algorithms of interest here,
namely, backtracking (BT), forward checking (FC), and
Real Full Look-ahead (RFL), and recall their “classical”
complexity analysis. Then we reanalyze their complexity
in terms of ω#(µ(P)).

Backtracking
The basic algorithm for deciding whether a given CSP has
a solution (and computing one in the affirmative) is called
Backtracking (BT) or Chronological Backtracking. It is
given by a recursive enumeration procedure, which starts
with an empty assignment and in the general case, tries to
extend a partial solution (v1, v2, . . . , vi) by one more vari-
able, to a partial solution (v1, v2, . . . , vi, vi+1).

More precisely, at every stage the algorithm chooses a
new variable xi+1 and tries to assign values of D(xi+1) to
xi+1. The only check performed while doing so is that the
resulting assignment (v1, v2, . . . , vi, vi+1) is consistent. In
the affirmative, BT continues with this new partial solution
to a new unassigned variable (called a future variable). Oth-
erwise (if (v1, v2, . . . , vi, vi+1) is not consistent), BT tries
another value from D(xi+1). If there is no such unexplored
value, BT is in a dead-end, and then it uninstantiates xi (it
performs a backtrack).

It is easily seen that the search performed by BT corre-
sponds to a depth-first traversal of a semantic tree called the
search tree, whose root is an empty tuple, while the nodes at
the ith level are i-tuples which represent the assignments of

the variables along the corresponding path in the tree. Nodes
in this tree which correspond to partial solutions are called
consistent nodes, while nodes which correspond to explor-
ing a value vi+1 but finding out that (v1, v2, . . . , vi, vi+1) is
not consistent, are called inconsistent nodes.

Algorithm 1: BT(P = (X,D,C): CSP; t =
(v1, v2, . . . vi): tuple)

1 if t = (v1, v2, . . . vi) is a partial solution then
2 if (i = n) then
3 Exit /* t = (v1, v2, . . . vi) is a solution*/
4 else
5 Choose a variable xi+1 to assign
6 for vi+1 ∈ D(xi+1) do
7 t′ ← (v1, v2, . . . vi, vi+1)

8 BT(P ,t′)

The pseudo-code for BT is shown on Figure 1. As for
its (worst-case) time complexity, checking whether t′ =
(v1, v2, . . . vi, vi+1) is a partial solution consists in check-
ing that the value vi+1 assigned to xi+1 satisfies the con-
straints cj(i+1) ∈ C for all 1 ≤ j ≤ i, that is, checking
if (vj , vi+1) ∈ R(cji+1). So the corresponding number
of constraint checks is at most i, which is bounded by n.
Moreover, the number of nodes in the search tree is at most
Σ0≤i≤nd

i = dn+1−1
d−1 , hence it is inO(dn). So, the complex-

ity of BT can be bounded by the number of nodes multiplied
by the cost at each node, that is, O(ndn) (we assume n ≤ e
for simplicity).

Forward Checking
BT can be considered as a generic algorithm, which is not
really efficient in practice. In contrast, efficient algorithms
generally used in practice are based on processes which
achieve some level of filtering at each node, that is, which
prune values in the domains of future variables. Note that
such algorithms typically also use mechanisms for constraint
learning and for non-chronological backtracking, but we do
not consider them here.

Filtering is usually based on arc-consistency. One of the
most popular approaches is called Forward Checking, which
is based on arc-consistency without propagation. While af-
ter an assignment, BT checks consistency of the current tu-
ple, FC filters the domains of future variables as soon as it
assigns a value to the current variable. In that manner, incon-
sistencies are detected earlier, in fact as soon as such filtering
leaves the domain of some future variable empty.

More precisely, assume that a value vi+1 has just been
assigned to xi+1. Then for all future variables xj for which
there is a constraint cj(i+1) ∈ C, all values in D(xj) with
(vj , vi+1) /∈ R(cj(i+1)) (i.e., not consistent with the current
partial solution) are removed from D(xj). Hence from this
point on, all values in D(xj) are consistent with the current
partial solution.

The pseudo-code of FC is shown on Figure 2. In essence,
the main difference between BT and algorithms which use

Algorithm 2: FC(P = (X,D,C): CSP; t =
(v1, v2, . . . vi): tuple)

1 if (i = n− 1) then
2 Exit /* t = (v1, v2, . . . vi) can be extended to a solution*/
3 else
4 Choose a variable xi+1 to assign
5 for vi+1 ∈ D(xi+1) do
6 t′ ← (v1, v2, . . . vi, vi+1)

7 Consistent← True
8 for xj ∈ X such that i + 1 < j ≤ n and cji+1 ∈ C do
9 D′(xj)← {vj ∈ D(xj) : (vj , vi+1) ∈ RC(cji+1)}

10 if (D′(xj) = ∅) then
11 Consistent← False
12 Exit-from-loop-for

13 if (Consistent) then
14 P ′ ← (X, D′, C)

15 FC(P ′, t′)

filtering techniques, such as FC, is that less nodes are ex-
plored in the search tree (inconsistencies are detected ear-
lier), but more work is required at each node. In particular,
observe that so as to verify that the CSP has a solution (if it
indeed has one), it is not necessary to assign the last variable
xn. Indeed, if its domain is not empty after assigning all
variables but xn and filtering, by construction the remain-
ing values are all consistent with the current partial solution
(v1, v2, . . . vn−1) and hence, there is at least one solution.
Hence the number of nodes in the search tree associated to
FC is at most Σ0≤i≤n−1d

i = dn−1
d−1 , hence it is in O(dn−1).

As for the time complexity at each node, each value of the
domain of each future variable needs to be checked. The
time for doing so is inO(nd) since the current variable xi+1

has at most n − 1 neighboring future variables, for each of
which at most d values must be checked. So, the complexity
of FC can be bounded by O(nd · dn−1) = O(ndn), just like
for BT.

Real Full Look-Ahead
While from a practical viewpoint, applying other kinds of
domain filtering can be relevant, as for example full arc-
consistency (algorithm Real Full Look-ahead (Nadel 1988)),
such techniques do not yield better worst-case time com-
plexity bounds. For instance, RFL is the same algorithm as
FC, except for domain filtering. In RFL, the for loop of FC
(Line 8), which modifies the domain D(xj) of each future
variable, is replaced by an arc-consistency filtering on the
CSP induced by the current assignment and the set of fu-
ture variables. The time cost for each node is then bounded
by the complexity time of AC algorithms (see chapter 3 in
(Rossi, van Beek, and Walsh 2006)), that is O(ed2). Thus,
the complexity of RFL is O(ed2dn−1) = O(edn+1).

A Note on Dynamic Variable-Ordering Heuristics
We wish to note here that as presented above, BT, FC, and
RFL may use a dynamic variable ordering, that is, which
variable (xi+1) to explore next can typically be decided on

each recursive call. However, we do not consider the pos-
sibility that after value vi+1 is found out to be a dead end,
the algorithms may change xi+1 to another current variable
even if there remains values to explore for it. Indeed, in this
paper we stick to the case where the current variable can be
changed only when all its values have been explored.

Analysis Based on the Micro-Structure
We now come to the heart of our contribution, namely, a
complexity analysis of classical algorithms in terms of pa-
rameters related to the micro-structure. In the following, we
say that a node of the search tree is a maximally deep con-
sistent node if it has no consistent child node. Clearly, a
maximally deep consistent node corresponds to a solution
or to a consistent assignment which cannot be consistently
extended on the next variable.

Proposition 2 Given a CSP P = (X,D,C), there is an
injective mapping from the maximally deep consistent nodes
explored by BT in the search tree onto the maximal cliques
in µ(P).

Proof: Let (v1, v2, . . . , vi) be a maximally deep consistent
node explored by BT. By definition of BT, (v1, v2, . . . , vi)
is a consistent partial assignment, hence for all 1 ≤ j, k ≤
i, either there is no constraint with scope (xj , xk) in C,
or (vj , vk) is allowed by the relation R(cij). In both
cases there is an edge in µ(P) by definition of µ(P),
hence {(x1, v1), . . . , (xi, vi)} forms a clique in µ(P) and
hence, is included in some maximal clique of µ(P). Write
Cl(v1, v2, . . . , vi) for an arbitrary such maximal clique.

We now show that Cl forms an injective mapping. By
construction of BT, if (v1, v2, . . . , vi) and (v′1, v

′
2, . . . , v

′
i′)

are two maximally deep nodes explored, then they must
differ on the value of at least one variable. Precisely, they
must differ at least at the point where the corresponding
paths split in the search tree, corresponding to some variable
xj assigned to some value on one path, and to some other
value on the other one1. Since there are no edges in µ(P)
connecting two values of the same variable, there cannot
be a maximal clique containing both (v1, v2, . . . , vi) and
(v′1, v

′
2, . . . , v

′
i′), hence Cl is an injective mapping. 2

Using this property, we can easily bound the number of
nodes in a search tree induced by a backtracking search,
and its time complexity, in terms of the micro-structure. As
is common, we assume that a constraint check (deciding
(vi, vj) ∈ R(cij)) requires constant time.

Proposition 3 The number of nodes NBT (P) in the search
tree developed by BT for solving a given CSP P =
(X,D,C), satisfies NBT (P) ≤ nd · ω#(µ(P)). Its time
complexity is in O(n2d · ω#(µ(P))).

Proof: First consider the number of consistent nodes. Be-
cause any node in the search tree is at depth at most n and the
path from the root to a consistent node contains only consis-
tent nodes, as a direct corollary of Proposition 2 we obtain

1We use at this point the assumption that the algorithms explore
all the values of a variable before reordering the future variables.

that the search tree contains at most n · ω#(µ(P)) consis-
tent nodes. Now by definition of BT, a consistent node can
have at most d children (one per candidate value for the next
variable), and inconsistent nodes have none. It follows that
the search tree contains at most nd ·ω#(µ(P)) nodes of any
kind.

The time complexity follows directly, since each node
corresponds to extending the current partial assignment
to one more variable (xi+1), which involves at most one
constraint check per other variable (check cj(i+1) for each
xj already assigned).2

It can be seen that in the statement of Proposition 3 and
in the forthcoming ones, the number of maximal cliques
ω#(µ(P)) could be replaced by the number of maximal
cliques of size at most n − 1. This is because as soon as
a path is explored which is contained in an n-clique, that
is, in a solution, no backtracking will occur further that this
path. Importantly, this means that our study may show a
class of CSPs to be solved in polynomial time by BT even if
some CSPs have an exponential number of solutions (hence
of maximal cliques of size n). Anyway, we do not pursue
this idea in the rest of this paper.

We now turn to forward checking. Clearly enough, Propo-
sition 2 also holds for FC, and again we can derive the size
of the search tree and time complexity of FC in terms of the
micro-structure.

Proposition 4 The number of nodes NFC(P) in the search
tree developed by FC for solving a given CSP P =
(X,D,C), satisfiesNFC(P) ≤ n·ω#(µ(P)). Its time com-
plexity if in O(n2d · ω#(µ(P))).

Proof: As in the proof of Proposition 3, it follows from
Proposition 2 that the search tree contains at most n ·
ω#(µ(P)) consistent nodes. Since by definition of FC, all
nodes are consistent, we get that this is also the size of the
search tree.

The time complexity follows from the fact that when the
current partial solution is extended to one more variable,
the domains of at most n future variables must be filtered,
each one in time O(d) since checking one value amounts to
a constraint check with the newly assigned value. 2

Finally, since FC and RFL differ only in the filtering
process at each node, which is an arc consistency process
(O(ed2)) at each node for RFL, we get the following.

Proposition 5 The time complexity of RFL for solving a
CSP P = (X,D,C) is in O(ned2 · ω#(µ(P))).

It is important to observe that the relative size of the
search trees of BT and FC are the same with the classical
analysis and with the expressions which we have derived.
Namely, in the worst case, the search tree of BT is d times
larger than that of FC on the same instance. Because this
is true despite the fact that the bounds are derived in a dif-
ferent manner, this suggests that our bounds are tight (as
worst-case bounds).

A Few Tractable Classes for Backtracking
The number of cliques in a graph can grow exponentially
with the size of the graph (Wood 2007), and so can the num-
ber ω#(G) of maximal cliques in a graph G (Moon and
Moser 1965). However, for some classes of graphs, the num-
ber of maximal cliques can be bounded by a polynomial in
the size of the graph. If the micro-structure µ(P) of a (fam-
ily of) CSP P belongs to one of these classes, then our anal-
ysis in the previous section allows to conclude that P can
be solved in polynomial time by classical backtracking al-
gorithms. In this section, we study several such classes of
graphs in terms of their relevance to constraint satisfaction
problems.

Triangle-Free, Bipartite, and Planar Graphs
Recall that a k-cycle in a graph G = (V,E) is a se-
quence (v1, v2, . . . vk+1) of vertices satisfying ∀i, 1 ≤ i ≤
k, {vi, vi+1} ∈ E, ∀i, j, 1 ≤ i < j ≤ k, vi 6= vj , and
v1 = vk+1.

Definition 6 (triangle-free) A triangle-free graph is an
undirected graph with no 3-cycle.

It is easily seen that the number of maximal cliques in
a triangle-free graph is exactly its number of edges E. In-
deed, each edge is a clique, and no greater clique exists by
definition. Hence by our analysis, if a class of CSPs has a
triangle-free micro-structure, algorithms BT, FC, and RFL
correctly solve them in polynomial time. Note however that
this is quite a degenerate case, since except for instances
over at most two variables, instances with a triangle-free
micro-structure are inconsistent.

Another degenerate but illustrative case is the following.

Definition 7 (bipartite) A graph is bipartite if and only if it
does not contain an odd cycle.

Again, a bipartite graph cannot contain any clique of more
than two variables, and hence no partial assignment to more
than three variables will ever be considered by BT (hence it
obviously runs in time O(d3)).

We now turn to a more interesting class, which also essen-
tially contains inconsistent CSPs, but for which our analysis
gives a better time complexity than the classical one.

Definition 8 (planar) A planar graph is a graph which can
be drawn in such a way that no two edges cross each other.

(Wood 2007) proved that the number of cliques in a pla-
nar graph is at most 8(|V | − 2). Since the micro-structure
µ(P) of a CSP P contains at most nd vertices, it follows
that if µ(P) is planar, then its number of maximal cliques
ω#(µ(P)) is at most 8(nd − 2). Using our results in the
previous section (Propositions 3–5), we immediately get the
following.

Theorem 1 Let Pl denote the class of all CSPs whose
micro-structure is planar. Then instances in Pl are solved
in time

• O(n2d · ω#(µ(P))) = O(n3d2) by BT or FC,
• O(ned2 · ω#(µ(P))) = O(n2ed3) by RFL.

Recall that a planar graph cannot contain as a minor, a 5-
clique or the graphK3,3 (i.e. a complete bipartite graph with
three vertices connected to three other vertices). It follows
in particular that any CSP in Pl over at least five variables
is inconsistent. Hence again this class is a little degenerate,
however a classical analysis states that, e.g., BT solves these
instances in time O(d5). In case d is large, this is looser that
O(n3d2).

CSG Graphs
We finally turn to the class of CSG graphs, which has been
introduced by (Chmeiss and Jégou 1997) and which gener-
alizes the class of chordal graphs. Given a graph (V,E) and
an ordering v1, . . . , v|V | of its vertices, we write N+(vi) for
the forward neighborhood of vi, that is, N+(vi) = {vj ∈
V |{vi, vj} ∈ E, i < j}. For V ′ ⊆ V , we write G(V ′) for
the graph induced by E on V ′, namely, G(V ′) = (V ′, E′)
where E′ = {{x, y} | x, y ∈ V ′ and {x, y} ∈ E}.
Definition 9 (CSG graphs) The class of graphs CSGk is
defined recursively as follows.
• CSG0 is the class of complete graphs.
• Given k > 0, CSGk is the class of graphs G = (V,E)

such that there exists an ordering σ = (v1, ..., v|V |) of V
satisfying that for i = 1, . . . , |V |, the graph G(N+(vi))
is a CSGk−1 graph.

The class of CSG graphs generalizes the class of complete
graphs (CSG0 graphs) and the class of chordal graphs (CSG1

graphs). Like chordal graphs, CSG graphs have nice prop-
erties. For instance, they can be recognized in polynomial
time. Moreover, Chmeiss and Jégou have proved that CSGk

graphs have at most |V |k maximal cliques, and they have
proposed an algorithm running in time O(|V |2(k−1)(|V | +
|E|)) for finding all of them.

These two algorithms qualify the class of all CSPs which
have a CSGk micro-structure as a tractable class for any
fixed k. We are however able to show that even a generic al-
gorithm such as BT, FC, or RFL runs in polynomial time on
such CSPs, without even the need to recognize membership
in this class, nor to compute the micro-structure. Again, the
result follows from the number of maximal cliques together
with Propositions 3–5.

Theorem 2 Given any integer k, the class of all CSPs which
have a CSGk micro-structure is solved in time
• O(n2d · ω#(µ(P))) = O(nk+2dk+1) by BT and FC,
• O(ned2 · ω#(µ(P))) = O(nk+1edk+2) by RFL.

Observe that even the time complexities are better than
those of the dedicated algorithm. The latter computes the
micro-structure and enumerates all maximal cliques until ex-
haustion, or an n-clique is found. So it has a time complex-
ity in O((nd)2(k−1)(nd + n2d2)) = O((nd)2k). Neverthe-
less, we can note that this algorithm is defined for general
CSGk graphs while micro-structures of CSP are very partic-
ular graphs.

While the classes of planar and of CSG graphs are not
comparable, CSG graphs are generally speaking less restric-
tive than planar graphs. For instance, it is possible to have

CSG graphs with n-cliques for any value of n, contrary to
the case of planar graphs. In particular, there are consistent
CSPs with a CSGk micro-structure. It is the case for CSG0

which are consistent CSPs with monovalent domains (one
value per domain). Moreover, CSPs which have a CSG1

micro-structure can be consistent or not and it is easy to
build a CSP with several solutions, which corresponds to
a collection of cliques of size n. However, this set of classes
of CSPs still has to be studied in detail for assessing its prac-
tical interest.

Discussion and Perspectives

We have investigated the time complexity of classical,
generic algorithms for solving CSPs under a new perspec-
tive. Our analysis expresses the complexity in terms of
the number of cliques in the micro-structure of the CSP to
be solved. Our analysis reveals that essentially, backtrack-
ing and forward checking visit each maximal clique in the
micro-structure at most once.

From this analysis we derived tractable classes of CSPs,
which can be solved by classical algorithms in polynomial
time, without the need to recognize that the instance at hand
is in the class. Though the results obtained so far in this
manner are of limited practical interest, they shed a new light
on the analysis of CSPs.

The first perspective of this work is to investigate more
classes of graphs with polynomially many maximal cliques.
Of particular interest here is the study by (Rosgen and Stew-
art 2007), who precisely characterize these classes of graphs
in terms of intersection graphs.

Another important perspective is to relate our analysis to
tractable classes obtained in different manners. It should be
rather clear that our classes are orthogonal to classes based
on structure. For instance, there is no reason why a tree-
structured CSP would not have an exponential number of
cliques. More generally, classes based on structure typically
require dedicated algorithms, and generic backtracking al-
gorithms are polynomial on them only if they proceed, e.g.,
along a specific variable ordering. As concerns classes de-
fined by a constraint language, it may be the case that some
can be captured by our analysis, just as is the case for the
satisfiability problem (Rauzy 1995). Finally, hybrid classes
are much closer in spirit, and it is a short-term perspective
to investigate in depth the link between such classes and our
analysis.

Finally, an important perspective is to extend our study
to n-ary constraint satisfaction problems. For this we plan
in particular to investigate the standard reductions from the
n-ary to the binary case.

Acknowledgments

Philippe Jégou would like to thank Maria Chudnowsky for
their fruitful discussion, about graphs theory, perfect graphs
and links with classes of graphs related to the clique prob-
lem, and the links with the microstructure of CSPs.

References
Chen, H., and Dalmau, V. 2004. (smart) look-ahead arc con-
sistency and the pursuit of csp tractability. In Wallace, M.,
ed., CP, volume 3258 of Lecture Notes in Computer Science,
182–196. Springer.
Chmeiss, A., and Jégou, P. 1997. A generalization of chordal
graphs and the maximum clique problem. Information Pro-
cessing Letters 62:111–120.
Cohen, D. A. 2003. A New Classs of Binary CSPs for which
Arc-Constistency Is a Decision Procedure. In Proceedings
of CP 2003, 807–811.
Cooper, M.; Cohen, D.; and Jeavons, P. 1994. Characteris-
ing Tractable Constraints. Artificial Intelligence 65(2):347–
361.
Cooper, M.; Jeavons, P.; and Salamon, A. 2008. Hybrid
tractable CSPs which generalize tree structure. In Proceed-
ings of ECAI 2008, 530–534.
Cooper, M.; Jeavons, P.; and Salamon, A. 2010. General-
izing constraint satisfaction on trees: hybrid tractability and
variable elimination. Artificial Intelligence 174:570–584.
Freuder, E. 1982. A Sufficient Condition for Backtrack-Free
Search. JACM 29 (1):24–32.
Golumbic, M. 1980. Algorithmic Graph Theory and Perfect
Graphs. Academic Press, New York.
Gottlob, G.; Leone, N.; and Scarcello, F. 2000. A Compar-
ison of Structural CSP Decomposition Methods. Artificial
Intelligence 124:343–282.
Haralick, R., and Elliot, G. 1980. Increasing tree search
efficiency for constraint satisfaction problems. Artificial In-
telligence 14:263–313.
Jégou, P. 1993. Decomposition of Domains Based on the
Micro-Structure of Finite Constraint Satisfaction Problems.
In Proceedings of AAAI 93, 731–736.
Moon, J. W., and Moser, L. 1965. On cliques in graphs.
Israel Journal of Mathematics 3:23–28.
Nadel, B. 1988. Tree Search and Arc Consistency in
Constraint-Satisfaction Algorithms. In Search in Artificial
Intelligence. Springer-Verlag. 287–342.
Rauzy, A. 1995. Polynomial restrictions of SAT: What can
be done with an efficient implementation of the Davis and
Putnam’s procedure. In Montanari, U., and Rossi, F., eds.,
Proc. International Conference on Principles of Constraint
Programming (CP 1995), 515–532. Springer Verlag.
Rosgen, B., and Stewart, L. 2007. Complexity results on
graphs with few cliques. Discrete Mathematics and Theo-
retical Computer Science 9:127–136.
Rossi, F.; van Beek, P.; and Walsh, T. 2006. Handbook of
Constraint Programming. Elsevier.
Sabin, D., and Freuder, E. 1994. Contradicting Conventional
Wisdom in Constraint Satisfaction. In Proc. of ECAI, 125–
129.
Salamon, A., and Jeavons, P. 2008. Perfect Constraints Are
Tractable. In Proceedings of CP, 524–528.
Wood, D. R. 2007. On the maximum number of cliques in
a graph. Graphs and Combinatorics 23:337–352.

