
CooperativeSearch and NogoodRecording

Cyril Terrioux
LSIS - EquipeINCA (LIM)

39, rueJoliot-Curie
F-13453MarseilleCedex 13(France)

e-mail: terrioux@lim.univ-mrs.fr

Abstract

Within the framework of constraint satisfaction
problem, we proposea new schemeof coopera-
tive parallel search. The cooperationis realized
by exchangingnogoods(instantiationswhich can’t
beextendedto a solution). We associatea process
with eachsolverandweintroduceamanagerof no-
goods,in orderto regulateexchangesof nogoods.
Eachsolver runsthe algorithmForward-Checking
with NogoodRecording. We add to algorithm a
phaseof interpretation,which limits the size of
the searchtreeaccordingto the receivednogoods.
Solversdiffer from eachotherin orderingvariables
and/orvaluesby usingdifferentheuristics.Thein-
terestof our approachis shown experimentally. In
particular, we obtainlinearor superlinearspeed-up
for consistentproblems,like for inconsistentones,
up to abouttensolvers.

1 Intr oduction
In constraintsatisfactionproblems,oneof maintasksconsists
in determiningwhetherthereexistsasolution,i.e. aninstanti-
ationof all variableswhich satisfiesall constraints.This task
is a NP-completeproblem. In orderto speedup the resolu-
tion of problems,parallelsearchesareused. A basiconeis
independentparallel search whichconsistsin runningseveral
solvers(eachoneusinga differentheuristic)insteadof a sin-
gle solver. Theaim is thatat leastoneof thesolversgetsan
heuristicsuitablefor theproblemwhich we solve. Testedon
thegraphcoloringproblem([HoggandWilliams,1994]), this
approachhasbetterresultsthana classicalresolutionwith a
singlesolver, but thegainsseemlimited. HoggandWilliams
recommendthentheuseof a cooperativeparallelsearch.
A cooperativeparallel search is basedon the sameideasas
theindependentsearchwith in additionanexchangeof infor-
mationsbetweensolvers,in orderto guidesolversto a solu-
tion, andthen,to speedup the resolution. Experimentalre-
sultson cryptarithmeticproblems([Clearwateret al., 1991;
Hogg and Huberman,1993]) and on graph coloring prob-
lem([HoggandHuberman,1993;HoggandWilliams,1993])
show asignificantgainin timewith respectto anindependent
search.In bothcases,theexchangedinformationscorrespond
to partialconsistentinstantiations.

In [MartinezandVerfaillie, 1996], acooperationbasedonex-
changingnogoods(i.e. instantiationswhichcan’t beextended
to asolution)is proposed.Exchangednogoodspermitsolvers
to prunetheir own searchtree. So, one can expect to find
morequickly a solution. Solversrun thealgorithmForward
Checkingwith NogoodRecording(notedFC-NR[Schiex and
Verfaillie, 1993]). The realizedimplementationgathersall
solvers in a singleprocesswhich simulatesthe parallelism.
It is turnedto a monoprocessorsystem. Experimentations
on randomCSPsshow that cooperative searchis betterthan
independentone. However, the weakgain with report to a
singlesolvergivesa doubtaboutefficiency of asuchsearch.

Fromthe ideaof MartinezandVerfaillie, we definea new
schemeof cooperationwith exchangeof nogoods,turnedto
systemswith oneor severalprocessors.We associatea pro-
cesswith eachsolver. Eachsolver runsFC-NR. In orderto
avoid problemsraisedby thecostof communications,we in-
troducea managerof nogoodswhoserole is to regulateex-
changeof nogoods. In addition to sendingand receiptof
messages,we adda phaseof interpretationto FC-NR,in or-
der to limit the sizeof the searchtreeaccordingto received
nogoods.
Our secondmain aim is to answeran openquestion([Mar-
tinezandVerfaillie, 1996]) aboutefficiency of a cooperative
parallelsearchwith exchangeof nogoods.We show experi-
mentallytheinterestof ourapproach.

The plan is as follows. In section2, we give basicno-
tions aboutCSPs,nogoodsandFC-NR. Then, in section3,
wepresentourschemeby describingthemanagerof nogoods
andthephaseof interpretation.Finally, afterprovidingexper-
imentalresultsin section4, weconcludein section5.

2 Definitions

2.1 Definitions about CSPs
A constraint satisfaction problem (CSP) is defined by a
quadruplet

�����������	��
��
.
�

is a set 
���� ��������� ����� of � vari-
ables. Eachvariable ��� takes its valuesin the domain

� �
from

�
. Variablesaresubjectto constraintsfrom

�
. Each

constraint� involvesa set
����� 
�� � �!��������� � �#" � of variables.

A relation

 �

(from



) is associatedwith eachconstraint� such that

 �

representsthe set of allowed $ -upletsover�%� �'&)(�(�(*&+�%�#"
.

A CSPis calledbinary if eachconstraintinvolvestwo vari-



ables. Let � � and �-, be two variables,we note � � , the cor-
responding. constraint.Afterwards,we consideronly binary
CSPs.However, our ideascanbeextendedto n-aryCSPs.
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, inconsistentotherwise. We
use indifferently the term assignmentinsteadof instantia-
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2.2 Nogoods:definitions and properties
In thispart,wegivethemaindefinitionsandpropertiesabout
nogoodsandFC-NR([Schiex andVerfaillie, 1993]).
A nogoodcorrespondsto an assignmentwhich can’t be ex-
tendedto a solution. More formally ([Schiex andVerfaillie,
1993]), givenaninstantiation

I
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For instance,every inconsistentassignmentcorrespondsto a
nogood.Theconversedoesn’t hold.

To calculatejustificationsof nogoods,we usethe notion
of ”value-killer” (introducedin [Schiex andVerfaillie, 1993])
andwe extendit in orderto exploit it in our scheme.Given
an assignment

I � , the CSP
E � I � � inducedby
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If a uniquesolver is used,g �oa
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definitionpresentedin [Schiex andVerfaillie, 1993]).
Assumethataninconsistency is detectedbecauseadomain� � becomesempty. Thereasonsof failure(i.e. justifications)

correspondto theunionof value-killersof
� � . Thefollowing

theoremformalizesthecreationof nogoodsfrom dead-ends.

Theorem1 Let
I

beanassignmentand ��� beanunassigned
variable. Let p bethesetof value-killersof

� � . If it doesn’t
remainanyvaluein

� � � I �
, then

� I ? �fq A � p �
is a nogood.

The two next theoremsmake it possibleto createnew no-
goodsfrom existing nogoods.Thefirst theorembuilds a new
nogoodfrom a singleexistingnogood.

Theorem2 (projection [Schiexand Verfaillie, 1993])
If

� I � c �
is a nogood,then

� I ? �%d A � c �
is a nogood.

In other words, we keep from instantiationthe variables
which are involved in the inconsistency. Thus,we produce
a new nogoodwhosearity is limited to its strict minimum.
Theorem3, we build anew nogoodfrom a setof nogoods:

Theorem3 Let
I

be an instantiation, ��� be an unassigned
variable. Let p be thesetof value-killers of

� � . Let
I , be

the extensionof
I

by assigningthe value
5 , to � � (
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A nogoodcanbeusedeitherto backjumpor to adda new
constraintor to tightenanexistingconstraint.In bothcases,it
follows from theuseof nogoodsapruningof thesearchtree.

FC-NR explores the searchtree like Forward Checking,
During the search,it takes advantageof dead-endsto cre-
ateandrecordnogoods.Thesenogoodsarethenusedasde-
scribedabove to prunethe searchtree. The main drawback
of FC-NR is that the numberof nogoodsis potentially ex-
ponential.So,we limit thenumberof nogoodsby recording
nogoodswhosearity is at most2 (i.e. unaryor binary no-
goods),accordingto thepropositionof Schiex andVerfaillie
([Schiex andVerfaillie, 1993]). Nevertheless,the ideaswe
presentcanbeeasilyextendedto n-arynogoods.

3 Description of our multiple solver
Ourmultiplesolverconsistsof y sequentialsolverswhichrun
independentlyFC-NR on the sameCSP. Eachsolver differs
from anotheronein orderingvariablesand/orvalueswith dif-
ferentheuristics.Thus,eachonehasa differentsearchtree.
The cooperationconsistsin exchangingnogoods. A solver
canusenogoodsproducedby othersolversin orderto prune
apartof its searchtree,whichshouldspeeduptheresolution.

During the search,solvers producenogoodswhich are
communicatedto other solvers. Therefore,when a solver
findsanogood,it mustsendy{z P

messagesto inform its part-
ners. Although the numberof nogoodsis bounded,the cost
of communicationscanbecomevery important,prohibitive
even. So, we add a processcalled ”managerof nogoods”,
whoserole is to inform solversof theexistenceof nogoods.
Accordingly, when a solver finds a nogood,it informs the
manager, which communicatesat oncethis new information
to apartof othersolvers.In thisway, asolversendsonly one
messageandgetsbackmorequickly to the resolutionof the
problem.
Thenext paragraphis devotedto theroleandthecontribution
of managerin ourscheme.

3.1 The managerof nogoods
Roleof the manager
The manager’s taskis to updatethe baseof nogoodsandto
communicatenew nogoodsto solvers. Updatethe baseof



nogoodsconsistsin addingconstraintsto initial problemor
in tightening| theexistingconstraints.To aunary(respectively
binary)nogoodcorrespondsaunary(resp.binary)constraint.
Eachnogoodcommunicatedto manageris addedto thebase.

In orderto limit thecostof communications,themanager
mustinform only solversfor which nogoodsmaybe useful.
A nogoodis saidusefulfor a solver if it allows this solver to
limit thesizeof its searchtree.
The next theoremcharacterizesthe usefulnessof a nogood
accordingto its arity andthecurrentinstantiation.

Theorem4 (characterization of the usefulness)
(a) a unarynogoodis alwaysuseful,

(b) a binary nogood
� 
!��� B~} � � , B~� � � c �

is usefulif, in
thecurrentinstantiation,��� and � , areassignedrespec-
tively to } and � ,

(c) a binary nogood
� 
!� ��B~} � �-, B~� � � c �

is usefulif, in
the current instantiation, � � (resp. �-, ) is assignedto }
(resp. � ), �-, (resp. � � ) isn’t assignedand � (resp. } )
isn’t removedyet.

Proof: see[Terrioux,2001].

From this theorem,we explicite what solvers receive some
nogoods(accordingto their usefulness):

(a) every unarynogoodis communicatedto all solvers(ex-
ceptthesolverwhichfindsit),

(b) binarynogood
� 
!� ��B�} � �-, B�� � � c �

is communicated
to eachsolver (exceptthe solver which finds it) whose
instantiationcontains��� B�} or � , B�� .

In case(b), wecan’t certify thatthenogoodis useful,because
thesolver mayhave backtrackedbetweenthesendingof the
nogoodby themanagerandits receiptby thesolver.
With aview to limit thecostof communications,only thein-
stantiation

I
of nogood

� I � c �
is conveyed. Communicate

thejustificationisn’t necessarybecausethis nogoodis added
to the problemin the form of a constraint� . Thanksto re-
ceivedinformation,solverscanforbid

I
with justification � .

Contrib ution of the manager
In this part,we show thecontribution of the managerof no-
goodsto our schemewith respectto a versionwithout man-
ager. The comparisonis basedon the total numberof mes-
sageswhichareexchangedduringall search.
Let g be the total numberof nogoodswhich areexchanged
by all solvers.Wecount � unarynogoodsand � binaryones.
Notethat,amongtheseg nogoods,doublesmayexist. In ef-
fect, two solverscanfind independentlya samenogood.
In a schemewithout manager, eachsolver communicatesthe
nogoodsit finds to y�z P

othersolvers. So, � � y�z P!�
mes-

sagesare sentfor unary nogoodsand � � y�z P!�
for binary

ones.But, in a schemewith manager, nogoodsarefirst sent
to managerby solvers. During all search,solversconvey to
manager� messagesfor unary nogoodsand � for binary
ones.Then,themanagersendsonly � unarynogoodsto ynz P
solvers.These� nogoodscorrespondto � nogoodsminusthe
doubles.Likewise, for binarynogoods,doublesaren’t com-
municated.Furthermore,for the remainingbinary nogoods,
the managerrestrictsthe numberof recipients.Let � be the

numberof messagessentby managerfor binarynogoods.In
our scheme,we exchange�b�:� � y�z P��

messagesfor unary
nogoodsand �8� � messagesfor binaryones.

In theworstcase,theschemewith managerproducesuptog additionalmessagesin comparisonwith theschemewith-
outmanager. But, in general,� and � arelittle enoughsothat
theschemewith managerproducesfewermessages.

3.2 Phaseof interpretation
Themethodwhich wearegoingto describeis appliedwhen-
ever a nogoodis received. Solverscheckwhethera message
is receivedafterdevelopinga nodeandbeforefiltering.
In the phaseof interpretation,solvers analyzereceived no-
goodsin orderto limit the sizeof their searchtreeby stop-
ping branchwhich can’t leadto solutionor by enforcingad-
ditional filtering. For unarynogoods,this phasecorresponds
to apermanentdeletionof avalueandto apossiblebackjump.
Method1 detailsthephasefor suchnogoods.

Method 1 (phaseof interpretation for unary nogoods)
Let

I
bethecurrent instantiation.Let

� 
�� ��B�} � � c �
bethe

receivednogood.
We delete} from

� � .
(a) If ��� is assignedto thevalue } , thenwebackjumpto ��� .

If
� � is empty, werecord thenogood

� I ? �%q A � p �
, withp thesetof value-killersof

� � .
(b) If ��� is assignedto � ( � `� } ), wedonothing.

(c) If � � isn’t assigned,wecheck whether
� � is empty.

If
� � is empty, werecord thenogood

� I ? � qnA � p �
, withp thesetof value-killersof

� � .
Theorem5 Themethod1 is correct.

Proof: see[Terrioux,2001].

For binarynogoods,thephasecorrespondsto enforceanad-
ditional filtering andto a possiblebackjump. Method2 de-
scribestheactionsdoneduringthisphasefor binarynogoods.

Method 2 (phaseof interpretation for binary nogoods)
Let

I
bethecurrentinstantiationand

� 
!� ��B�} � �-, B�� � � c �
bethereceivednogood.

(a) If ��� and � , are assignedin
I

to } and � respectively,
thenwebackjumpto thedeepestvariableamong��� and�O, . If �-, (resp. � � ) is thisvariable, wedeletebyfiltering� (resp. } ) from

� , (resp.
� � ).

(b) If � � (resp. �O, ) is assignedto } (resp. � ) and �-, (resp.� � ) isn’t be assigned,we deleteby filtering � (resp. } )
from

� , (resp.
� � ).

If
� , (resp.

� � ) becomesempty, we record the nogood� I ? � qnA � p �
with p thesetof value-killersof

� , (resp.
� � ).

Theorem6 Themethod2 is correct.

Proof: see[Terrioux,2001].

Unlike the phaseof interpretationfor unarynogoods,here,
thedeletionisn’t permanent.
Whereasthephaseof interpretationis correct,its additionto
FC-NRmay, in somecases,compromisea basicpropertyof
FC-NR.Thenext paragraphis devotedto this problem.



3.3 Maintening FC-consistency
We remindfirst a basicpropertyof FC-NR(from FC):

Property 1 Every instantiation built by FC-NR is FC-
consistent.

After a backtrackto thevariable��� , FC-NR(like FC) can-
celsthe filtering which follows the assignmentof � � . So, it
restoreseachdomainin its previousstate. In particular, if a
domainis wipedout afterfiltering, it isn’t emptyafterrestor-
ing. It ensuesthepreserveof theproperty1.
With theadditionof communicationsandof thephaseof in-
terpretation,this propertymay be compromised.For exam-
ple, we considerthe searchtreeexploredby a solver which
cooperateswith otherones.Let

�M�n� 
 } � � � � �>� � . Thissolver
assignesfirst } to � � , then � to � J . EnforceFC-consistency
after assigning� J removes } from

� �
. The filtering which

follows the assignmentof �!� to ��� deletes� and � from
���

.
Thesolverassignes

�
to � �

, andthen,it visits thecorrespond-
ing subtree.Assumethat this subtreecontainsonly failures
andthat the solver receivesunarynogoodswhich forbid as-
signingvalues � and � to � �

. So the solver backtracksand
recordsa unarynogoodwhich forbids

�
for � �

. It backtracks
again(to � � ) andassignes� J to � � , which raisesa problem,
namely

� �
is empty(dueto permanentremovalsof � , � and�

from
���

by unarynogoods).So, the currentinstantiation
isn’t FC-consistentandtheproperty1 doesn’t hold.
Thenext theoremcharacterizestheproblem:

Theorem7
Let

I , � 
���� B 5 � ��������� � , l�� B 5 , l�� � � , B�� � bea FC-
consistentinstantiation.We considertheexploration by FC-
NRof subtreerootedin �O, B�� . Let g�� bethesetof values
of ��� which remainforbiddenby nogoodsat the endof the
explorationsuch that thesenogoodsarerecordedor received
during this explorationandnoneof themdoesn’t involve �-, .
If all valuesof

� � � I , � are removedduring the exploration,
novalueis restoredin

� � � I , l�� � aftercancellingthefiltering
followingtheassignmentof � to � , if andonly if

� � � I , l�� � 0g�� .

Proof: see[Terrioux,2001].
It ensuesthat, in somecases,the union of receiptsandcre-
ationsof nogoodswith the filtering inducesthe existenceof
emptydomains,andthusproperty1 doesn’t hold.

A solutionconsistsin checkingwhetheradomainis wiped
out aftercancellingthe lastfiltering and,if thereexistssuch
domain,in backtrackinguntil thedomainisn’t empty. It isn’t
necessaryto checktheemptinessof every domain,thanksto
the following lemmawhich determinespotentialorigins of
this problem.

Lemma 1 Onlyrecordingor receiptof a nogoodmayinduce
thelossof property1.

Proof: see[Terrioux,2001].
This lemmaenablesto checkonly theemptinessof domains
which becomeemptyafter recordingor receiving a nogood.
If emptinessis inducedby receiving a nogood,we intro-
ducean additionalphaseof backjump. This phasefollows
every detectionof empty domainafter receiving a nogood
andmakesit possibleto keepon with thesearchfrom a FC-
consistentinstantiation.

Method 3 (backjump’ sphase)
If

� � is emptydueto a receivednogood,webackjump:
- until

� � isn’t emptyor until thecurrentinstantiationis
empty, if thenogoodis unary,

- until
� � isn’t empty, if thenogoodis binary.

Notethatwebacktrackto emptyinstantiationonly for incon-
sistentproblems.
Theorem8 Themethod3 is correct.
Proof: see[Terrioux,2001].

If emptinessis inducedby recordinga nogood,a solution
consistsin recordingonly nogoodswhich don’t wipe out a
domain.However, we communicateall nogoodsto manager.
This solutionis easyto implement,but it doesn’t takeadvan-
tageof all foundnogoods.

4 Experimental results
4.1 Experimental protocol
Wework onrandominstancesproducedby randomgenerator
written by D. Frost,C. Bessìere,R. DechterandJ.-C.Régin.
This generatortakes4 parametersg ,

�
,
�

and � . It builds
aCSPof class

� g �������	� � �
with g variableswhichhavedo-

mainsof size
�

and
�

binaryconstraints( � Q=��Q��'��� lm� �J )
in which � tuplesareforbidden( � Q � Q:� J ).

Experimentalresultswe give afterwardsconcernclasses�\� � �G���-��P!���O� � �
with � which variesbetween433 and447.

Consideredclassesare near to the satisfiability’s threshold
which correspondsto � � �¡�£¢

. However, for FC-NR, the
difficulty’s shapeis observed for � �¤�4��¥

. Every problem
we considerhasa connectedgraphof constraints.

Given resultsare the averagesof resultsobtainedon 100
problemsperclass.Eachproblemis solved15 timesin order
to reducetheimpactof non-determinismof solversonresults.
Resultsof a problemare then the averagesof resultsof 15
resolutions. For a given resolution,the resultswe consider
areonesof thesolverwhichsolvestheproblemfirst.

ExperimentationsarerealizedonaLinux-basedPCwith an
Intel PentiumIII 550MHz processorand256Mb of memory.

4.2 Heuristics
In orderto guaranteedistinctsearchtrees,eachsolver orders
variablesand/orvalueswith differentheuristics.As thereex-
ist few efficient heuristics,from an efficient heuristic ¦ for
choosingvariables,we produceseveral different ordersby
choosingdifferentlythefirst variableandthenapplying ¦ .
We usetheheuristic

�4§�¨�©t�¡ª�«
([BessìereandRégin,1996]),

for which thenext variableto assignis onewhich minimizes
the ratio ¬ ­s® ¬¬ ¯ ® ¬ (where

� � is the currentdomainof � � and ° �
is thesetof variableswhich areconnectedto � � by a binary
constraint). This heuristic is consideredbetter, in general,
thanotherclassicalheuristics.That’swhy we chooseit.
In our implementation,only the size of domainsvariesfor
eachinstantiation. The degree X ° � X is updatedwhena new
constraintis addedthanksto a nogood.
As regardsthe choiceof next value to assign,we consider
valuesin appearanceorderor in reverseorder. In following
results(unlessotherwisespecified),half solversusethe ap-
pearanceorderto orderdomains,otherhalf reverseorder.



±
# consistent ²
Problems 2 4 6 8 10 12 14 16

433 76 151.632 145.088 135.303 128.465 110.872 98.330 92.450 86.654
434 70 133.537 143.058 135.602 136.825 128.594 123.678 112.790 97.157
435 66 144.337 145.998 131.788 134.207 121.954 122.111 110.581 106.031
436 62 157.517 138.239 135.508 119.489 110.208 101.167 96.752 91.180
437 61 114.282 138.451 135.791 126.069 120.020 108.559 102.327 90.007
438 37 139.957 153.035 149.573 135.236 133.701 119.713 106.998 96.255
439 39 129.954 127.950 113.481 120.610 107.390 96.568 88.068 79.107
440 31 124.797 127.585 114.503 109.981 100.412 93.810 90.037 82.020
441 25 134.811 133.188 131.791 122.755 113.251 102.487 93.784 87.489
442 13 105.809 136.557 123.936 118.738 105.576 96.864 85.484 75.888
443 10 146.562 131.673 120.268 113.724 100.108 90.449 82.566 75.646
444 8 135.528 137.906 126.939 118.453 107.629 97.878 88.722 77.433
445 3 139.624 122.885 116.870 107.777 99.315 89.736 81.375 73.706
446 2 125.955 127.126 117.049 108.319 98.783 89.387 79.130 73.316
447 3 144.414 132.838 116.935 106.912 94.329 84.449 74.738 65.866

Table1: Efficiency (in %) for consistentandinconsistentproblemsfor classes
�³� � �����O��P��t�O� � �

.

4.3 Results
Efficiency
In this paragraph,we assessthe speed-upandthe efficiency
of our method.Let � � be therun-timeof a singlesolver for
the resolutionof a serieof problemsand ��´ be the run-time
for y solverswhicharerun in parallel.We definespeed-upas
theratio µ

�
µ�¶ andefficiency astheratio µ

�
´ µ�¶ . Thespeed-upis

calledlinearwith reportto thenumbery of solversif it equals
to y , superlinearif it is greaterthany , sublinearotherwise.
Table 1 presentsefficiency (in %) obtained for classes�\� � �G���-��P!���O� � �

with � which variesbetween433 and447.
In table1, up to 10 solvers,we obtain linear or superlinear
speed-upfor all classes(except3 classes).Above10 solvers,
someclasseshave linear or superlinearspeed-up,but most
classeshave sublinearspeed-up.We notealsoa decreaseof
efficiency with theincreaseof numberof solvers.

Accordingto consistency of problems,we observe a bet-
ter speed-upfor consistentproblems(which remainslinear
or superlinear). We note the samedecreaseof efficiency
with the numberof solvers. But, efficiency for inconsistent
problemsis lessimportant,whereasit is greaterthan 1 up
to 10 solvers. It follows the appearanceof sublinearspeed-
up above 10 solvers. This lack of efficiency for inconsistent
problemsinfersadecreaseof efficiency for overallproblems.

Explanations of obtained results
First, we take an interestin explainingobservedgains. Pos-
sibleorignsaremultiple ordersof variablesandcooperation.
Wedefineanindependentversionof ourscheme(i.e. without
exchangeof nogoods).We comparethetwo versionsby cal-
culatingtheratio of therun-timefor theindependentversion
overonefor cooperativeversion.Figure1 presentsresultsob-
tainedfor theclass(50,25,123,439)with anumberof solvers
between2 and8. Weobservesimilar resultsfor otherclasses.
We note first that cooperative versionis always betterthan
independentone. Then, we observe that the ratio is near
1 for consistentproblems(solid line). That meansthat the
good quality of results,for theseproblems,resultsmostly
from multipleordersof variables.However, theratio remains
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Figure1: Ratioindependentsearch/ cooperativesearch.

greaterthan1. So, exchangeof nogoodsparticipatesin ob-
tainedgainstoo.
Finally, for inconsistentproblems(dashedline), ratio is more
importantthanfor consistentones.It increaseswith thenum-
berof solvers.In otherwords,obtainedresultsfor theseprob-
lems aremostly due to cooperationand the contribution of
cooperationincreaseswith thenumberof solvers.
For inconsistentproblems,we mustunderlinethe predomi-
nantrole of valuesheuristics.For eachsolver ¸ (exceptone
if the numberof solversis odd), thereexists a solver which
usesthesamevariablesheuristicas ¸ andthevaluesheuristic
which is reversewith reportto oneof ¸ . Without exchanging
nogoods,thesetwo solversvisit similarsearchtrees.With ex-
changingnogoods,eachoneexploresonly apartof its search
treethanksto receivednogoods.It’s thesamefor consistent
problems,but this effect is lessimportantbecausethesearch
stopsassoonasasolutionis found.

Wefocusthenonpossiblereasonsof efficiency’sdecrease.
With a schemelike our, an usualreasonof efficiency’s lack
is the importanceof cost of communications.Our method
doesn’t make exception. But, in our case,thereis another
reasonwhich explainsthedecreaseof performances.
Wecomparemultiplesolvers ¹�º and ¹ Zº . Bothhave8 solvers.
For orderingvalues,half solversof ¹mº usetheappearanceor-



der, other half the reverseorder. All solvers of ¹ Zº usethe
appearance» order. We realisethat ¹�º hasa betterefficiency
than ¹ Zº . The numberof messagesfor ¹ Zº is greaterthanfor¹ º . But, aboveall, it’s thesamefor thenumberof nodes.So¹ Zº exploresmoreimportanttrees. ¹�º and ¹ Zº differ in used
heuristicsfor orderingvaluesandvariables. The heuristics
we usefor orderingvariablesareneareachother. Usingtwo
differentordersof valuesaddsdiversity to resolution.Thus,¹�º is morevariousthan ¹9Zº . This differenceof diversityper-
mits to explain thegapof efficiency between¹�º and ¹ Zº .
Thelack of diversityis themainreason(with theincreaseof
numberof communications)of theefficiency’sdecrease.

Number of messagesand real contribution of manager
In orderto measuretherealcontributionof manager, wecom-
parethecostsof communicationsin a schemewith manager
andonewithout manager. In presentedresults,we consider
thatthecostof amessageis independentof presenceor notof
themanager, andthatthecommunicationof a binarynogood
is twice asexpensive asoneof a unarynogood(becausea
binarynogoodconsistsof two pairsvariable-value,againsta
singlepair for aunarynogood).Figure2 presentstheratioof
costof communicationsfor a schemewithout managerover
onefor a schemewith manager. Consideredproblems(con-
sistentandinconsistent)belongto class(50,25,123,439). For
information,weobservesimilar resultsfor otherclasses.

0

2

4

6

8

10

12

2 4 6 8 10 12 14 16

R
at

io·

P

Total
Unary Nogoods
Binary Nogoods

Figure2: Ratiobetweenschemeswith andwithoutmanager.

First,wenoteanincreaseof manager’scontributionwith y .
Thus,wecanhopethatthenumberof solversaboveof which
thecostof communicationspenalizesefficiency is greaterin
a schemewith managerthanonewithoutmanager.

Moreprecisely, we notethatcommunicationsof unaryno-
goodsis moreexpensivein theschemewith manager, wheny
is lessimportant.This resultwasforeseeable.Indeed,in case
of unarynogoods,themanagerremovesonly doubles.As the
probabilitythattwo solversfind simultaneouslythesameno-
goodsis all smallersincetherearefew solvers. We explain
thusthat the schemewith managerbecomesbetterthanone
withoutmanagerwhenthenumberof solversincreases.
Regardingthe cost of communicationsfor binary nogoods,
the schemewith manageris significantly cheaperand this
economyincreaseswith y . Thisresultis explainedby thefact
thatbinarynogoodsare,in general,usefulfor few solvers.
On overall communications,theschemewith manageris the
best,dueessentiallyto thenumberof binarynogoodswhich

is significantlygreaterthanoneof unarynogoods(with a fac-
tor between30 and100).

In conclusion,the managerdoesits job by limiting the
numberof exchangedmessages.It avoids solversa lack of
time due to managementof messages(in particular, receipt
of uselessnogoods).

5 Conclusionsand futur e works
In this paper, from anideaof MartinezandVerfaillie, we de-
fineanew schemeof cooperativeparallelsearchby exchang-
ing nogoodsandwe assessexperimentallyits efficiency. We
observe thenlinear or superlinearspeed-upup to 10 solvers
for inconsistentproblemsandup to 16 solversfor consistent
ones.So,exchangeof nogoodsis anefficient form of coop-
eration.We notea decreaseof efficiency with thenumberof
solvers,dueto theincreasingnumberof communicationsand
to a lackof diversityof solvers.

A first extensionof thiswork consistsin findingseveralef-
ficient anddiverseheuristicsin order to improve efficiency
as well as increasethe numberof solvers. Then, we can
extendour schemeby applyingany algorithmwhich main-
tainssomelevel of consistency, by usingdifferentalgorithms
(which would permit to combinecompletesearchmethods
andincompleteoneslike in [HoggandWilliams, 1993] and
to improve the diversity of solvers),or by generalizingit to
anotherform of cooperationwith exchangeof informations.
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