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Abstract—The problem of counting solutions in CSP, called
#CSP, is an extremely difficult problem that has many applica-
tions in Artificial Intelligence. This problem can be addressed by
exact methods, but more classically it is solved by approximate
methods. Here, we focus primarily on the exact counting. We
show how it is possible to improve the methods based on
structural decomposition by offering to enhance the search for a
new solution which is a critical step for counting, particularly for
such methods. Moreover, if the resources in time or in space are
insufficient, we show that our approach is still able to provide a
lower bound of the result. Experiments on CSP benchmarks show
the practical advantage of our approach w.r.t. the best methods
of the literature.

Index Terms—#CSP; constraint networks; decomposition

I. INTRODUCTION

Counting models in propositional logic (called #SAT) and
counting solutions for constraint satisfaction problems (called
#CSP) are challenging problems. They have numerous appli-
cations in AI, e.g. in approximate reasoning [1], in diagnosis
[2], in belief revision [3], in probabilistic inference [4]–[7], in
planning [8], [9], for guiding search in CSPs [10], and in other
domains outside computer science as in statistical physics [11]
or in chemistry for protein structure prediction [12].

However, these problems are extremely difficult from a
theoretical point of view in terms of complexity because
they are known as #P-complete [13]. Moreover we can claim
that they are really hard considering Toda’s theorem which
shows that PH ⊆ P#P [14]. On a practical level, their
resolution is also very difficult. So, these problems have been
studied for a long time and are the subject of numerous
studies over last years. On the one hand, theoretical studies
have been realized, trying to analyze these problems from
the viewpoint of theoretical complexity by exhibiting tractable
classes [15] or by analyzing their theoretical hardness by the
means of dichotomy theorems [16]. On the other hand, from
a practical perspective, solving methods have been proposed.
Nevertheless, given the theoretical (and practical) hardness
of these problems, most works try to solve the problem by
approximating the solution, that is to say, by offering bounds
of the number of solutions (or models). Indeed, it is often
difficult or impossible to solve these problems accurately i.e.
to obtain the exact number of solutions. So, most works have
been achieved by sampling the search space [17]–[21]. All
these methods except that in [17] provide a lower bound of the
number of solutions with a high-confidence interval obtained
by randomly assigning variables until solutions are found.

A possible drawback of these approaches is that they might
find no solution within a given time limit due to inconsistent
partial assignments. For large and complex problems, this
results in zero lower bounds or it requires time-consuming
parameter (e.g. sample size) tuning in order to avoid this
problem. Another approach involves reducing the search space
by adding streamlining XOR constraints [22], [23]. However,
the resulting problem is not necessarily easier to solve.

In contrast, by exploiting certain properties of instances, it
is possible to provide exact methods that can be efficient w.r.t.
theory and practice. We think especially about methods that
exploit some features of the instances for which polynomial
time algorithms may exist. This is the case for example when
the constraint network representing the problem has tree-width
bounded by a constant. Notably, in this paper, we are interested
in search methods that exploit the problem structure, providing
time and space complexity bounds like the d-DNNF compiler
[24] and AND/OR graph search [21], [25]. In the same spirit,
Favier et al. [26] have proposed to adapt Backtracking with
Tree-Decomposition (BTD) [27] to #CSP. This method which
is one of the most efficient structural decomposition methods
for solving CSPs was initially proposed for solving structured
instances. Their modifications to BTD, called #BTD, are
similar to what has been done in the AND/OR context [21],
[25], except that BTD relies on a tree-decomposition instead of
a pseudo-tree. This naturally enables BTD to exploit dynamic
variable orderings inside clusters whereas AND/OR search
uses a static ordering. Even by exploiting such methods, it
often remains difficult or impossible to solve these problems
accurately. Nevertheless, it seems that the performances of
such approaches can significantly be improved.

So, in this paper, we propose to improve the performances
of the approach introduced in [26] and which is based on BTD
[27], Here, the main objective is to offer better performance
for the exact resolution. However, improving exact methods
can also be useful to design better approximate methods.

Since the algorithm #BTD is based on tree-decomposition
of constraints networks, it proceeds by solving independent
parts of the network. More precisely, it explores systematically
these independent parts of the search space to enumerate
all their local solutions. This approach allows to define an
algorithm whose implementation is relatively simple, and
which ensures complexity bounds that are induced by the
considered tree-decomposition. So, for constraint networks
of bounded tree-width, it ensures to get a polynomial time



algorithm. Unfortunately, from a practical viewpoint, such an
approach can be really costly. Indeed, there is no guarantee that
every local solution participates to at least a global solution
(i.e. to a consistent assignment on all the variables of X). Thus,
when a local solution cannot be consistently extended to the
whole problem, the exhaustive search achieved by #BTD can
cause a significant loss of time.

So, in this paper, we propose to improve the approach intro-
duced in [26] offering a new version of #BTD called #EBTD,
which is better suited to counting. When a new local solution is
found, rather than looking for all its local extensions, #EBTD
will look if in the whole problem, there is at least one global
solution which is compatible with it. The idea may seem quite
simple, but it requires significant changes in the algorithm
#BTD. We describe this new algorithm and provide an analysis
of its time and space complexities which demonstrates that the
complexity bounds are preserved w.r.t. #BTD. To assess the
practical advantages of #EBTD, we perform experiments on a
large set of benchmarks. Compared to #BTD, this algorithm
turns to be more efficient. But what is most interesting are the
performances obtained when compared with methods of the
state of the art. Indeed, our improvement induced a significant
gain, both in terms of solved instances, but also in terms
of computation time. Moreover, in the case of instances that
cannot be completely solved by lack of time or memory, we
show that #EBTD can often provide non-zero lower bounds
of the number of solutions while, in such cases, #BTD and
the other solvers we consider produce none.

This paper is organized as follows. In Section II, we intro-
duce notations and recall tree-decomposition and the principles
of #BTD. Section III describes #EBTD. Experimental results
are given in Section IV. Then we conclude in Section V.

II. PRELIMINARIES

A. Constraint Networks and #CSP

An instance of a finite Constraint Satisfaction Problem
(CSP) is given by a triple (X,D,C), with X = {x1, . . . , xn} a
set of n variables, D = (dx1 , . . . , dxn) a set of finite domains,
and C = {c1, . . . , ce} a set of e constraints. Each constraint
ci is a pair (S(ci), R(ci)), where S(ci) = {xi1 , . . . , xik} ⊆ X
defines the scope of ci, and R(ci) ⊆ dxi1

× · · · × dxik

is its compatibility relation. The arity of ci is |S(ci)|. If
the arity of each constraint is two, the instance is a binary
CSP. The structure of a constraint network (other name of a
CSP) is given by a hypergraph (a graph for a binary CSP),
called the constraint (hyper)graph, whose vertices correspond
to variables while edges correspond to the scopes of the
constraints. To simplify notations, we denote the hypergraph
(X, {S(c1), . . . S(ce)}) by (X,C). Without loss of generality,
we assume that considered networks are connected. An assign-
ment on a subset of X is called consistent if all the constraints
are satisfied. Checking whether a CSP has a solution (a
consistent assignment of X) is well known to be NP-complete.
So, many works have been done to improve the solving in
practice, even if the complexity of these approaches remains
exponential, at least in O(n.dn) where d is the maximum size
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Fig. 1. A constraint graph (a) and one of its optimal tree-decompositions (b).

of domains. The problem of counting solutions for constraint
satisfaction problem is called #CSP. This problem which is
a generalization of #SAT is known to be #P-complete [13].
A simple way to solve it, consists in running algorithms as
MAC [28] or RFL [29], but using an adaptation to enumerate
all solutions. So, such algorithms run in O(n.dn).

B. Counting with Tree-Decomposition

To circumvent the theoretical intractabilities of CSP and
#CSP, other approaches than the basic enumeration algorithms
(with exponential time) have been proposed. Some of them
rely on a structural tractable class based on the notion of tree-
decomposition of graphs [30] (a tree of clusters of vertices):

Definition 1: A tree-decomposition of a graph G = (X,C)
is a pair (E, T ) with T = (I, F ) a tree (I the set of nodes
and F the set of edges of T ) and E = {Ei : i ∈ I} a family
of subsets of X , such that each subset (called cluster) Ei is
a node of T and satisfies: (i) ∪i∈IEi = X , (ii) for each edge
{x, y} ∈ C, there exists i ∈ I with {x, y} ⊆ Ei, and (iii)
for all i, j, k ∈ I , if k is in a path from i to j in T , then
Ei ∩ Ej ⊆ Ek. The width of a tree-decomposition (E, T ) is
equal to maxi∈I |Ei|−1. The tree-width w of G is the minimal
width over all the tree-decompositions of G.

Note that this notion can also be considered when the
network is a hypergraph using its 2-section1.

For example, Figure 1(b) presents a tree-decomposition
of the graph in Figure 1(a). We get the clusters E0 =
{x1, x3, x4}, E1 = {x2, x3}, E2 = {x3, x4, x5, x6}, E3 =
{x5, x6, x7}, E4 = {x5, x6, x8}, E5 = {x4, x9, x10} and
E6 = {x10, x11}. The cluster E2 has the maximum size of
4. So the width of this decomposition is 3. Moreover, it is an
optimal decomposition. So the tree-width w of this graph is
3. Given a root cluster Er, we denote Desc(Ej) the set of
vertices (variables) belonging to the union of the descendants
Ek of Ej in the tree rooted in Ej , Ej included. Let us consider
that E0 is the root cluster Er. We then have Desc(E0) = X
and Desc(E2) = {x3, x4, x5, x6, x7, x8}.

The primary advantage of solving methods exploiting tree-
decompositions is related to their theoretical complexity, dw+1

where w is the tree-width of the constraint network. Thus,
these methods for solving CSP or #CSP instances can be
efficient on large instances of small tree-width as it is the

1The 2-section of a hypergraph (X,C) is the graph (X,C′) where C′ =
{{x, y}|∃c ∈ C, {x, y} ⊆ c} [31].



case for example for well known optimization problems of
radio frequency allocations [32]. However, as computing the
tree-width is an NP-hard task [33], the complexity of de-
composition methods for solving CSPs is generally related
to an approximation w+ of w rather than the tree-width w
itself. More precisely, the time complexity of such meth-
ods is O(n.w+.log(d).dw

++1) for a space complexity in
O(n.dw

++1), where w+ + 1 is the size of the largest cluster
(w + 1 ≤ w+ + 1 ≤ n). This first approach called Tree-
Clustering [34] has been improved to obtain a space com-
plexity in O(n.s.ds) [27], [35] with s the size of the largest
intersection (separator) between two clusters (s ≤ w+).

Now, we explain how the algorithm #BTD solves #CSP
instances from a tree-decomposition of their constraint hy-
pergraph. Using a tree-decomposition allows to exploit the
structural properties of the constraint hypergraph. To do so,
the considered tree-decomposition induces an order on the
exploitation of the clusters. The order is said to be compatible
if it can be produced by a depth-first traversal of T from
the root cluster Er. Given such a cluster ordering <, #BTD
achieves a backtrack search by using a compatible variable
ordering � s.t ∀x ∈ Ei,∀y ∈ Ej , with Ei < Ej , x � y. In
other words, the cluster ordering induces a partial ordering on
the variables since the variables in Ei are assigned before those
in Ej if Ei < Ej . For the example of Figure 1, the cluster
ordering Er = E0 < E1 < E2 < E3 < E4 < E5 < E6

is compatible for E and x1 � x3 � x4 � x2 � x5 �
x6 � x7 � x8 � x9 � x10 � x11 is compatible for X .
The essential property of tree decomposition is that assigning
Ei ∩ Ej (Ej is a child cluster of Ei) separates the initial
problem into two subproblems, which can then be solved
independently. The first subproblem rooted in Ej is defined
by the variables in Desc(Ej) and by all the constraints
involving at least one variable in Desc(Ej) \ Ei. In the
following, the subproblem rooted on Ej and induced by a
consistent assignment A on Ei ∩ Ej and some variables of
Desc(Ej) is denoted PA,Ei/Ej

. In PA,Ei/Ej
, all the variables

assigned in A have a domain reduced to their assigned value
in A while the other variables in Desc(Ej) have their initial
domain as domain. The second subproblem is formed by the
remaining variables, together with the constraints involving
them. #BTD can exploit this property by using any compatible
variable ordering. So the variables of any cluster Ei will
be assigned before the variables that remain in its children.
In this case, for any cluster Ej ∈ Children(Ei) (where
Children(Ei) denotes the set of children of the cluster Ei),
once Ei ∩Ej is assigned, the subproblem PA,Ei/Ej

rooted in
Ej and conditioned by the current assignment A of Ei ∩ Ej

can be solved independently of the rest of the problem. The
exact number of solutions #solEj

of this subproblem may
then be recorded, as a structural #good (A,#solEj

). By this
way, it will never be computed again for the same assignment
of Ei∩Ej . This is why algorithms such as BTD or #BTD (and
also AND / OR graph search) are able to keep the complexity
exponential in the size of the largest cluster only.

Algorithm 1: #BTD (P , (E, T ), A, Ei, VEi , G)
Input: A CSP P = (X,D,C), a tree-decomposition (E, T ), the current

assignment A, the current cluster Ei, the set VEi
of unassigned variables

in Ei

Input/output: the set G of recorded #goods
Result: The number of solutions of PA[Ei\VEi

],Ep(i)/Ei

1 if VEi
= ∅ then

2 SEi
← Children(Ei)

3 #sol← 1
4 while SEi

6= ∅ and #sol 6= 0 do
5 Choose a cluster Ej ∈ SEi
6 SEi

← SEi
\{Ej}

7 if (A[Ej ∩ Ej ],#solEj
) is a #good in G then

8 #sol← #sol×#solEj

9 else
10 #solEj

← #BTD(A,Ej , VEi
\(Ei ∩ Ej),G)

11 Record (A[Ei ∩Ej ],#solEj
) as #good of Ei w.r.t. Ej in G

12 #sol← #sol×#solEj

13 return #sol
14 else
15 Choose x ∈ VEi
16 d← dx

17 #solx ← 0
18 while d 6= ∅ do
19 Choose v ∈ d
20 d← d− {v}
21 if A ∪ {x← v} satisfies all constraints of C then
22 #solx ← #solx+#BTD(A ∪ {x← v}, Ei, VEi

\{x},G)

23 return #solx

#BTD is described in Algorithm 1. Given an assignment A
and a cluster Ei, #BTD looks for the number of extensions
B of A on Desc(Ei) such that A[Ei\VEi

] = B[Ei\VEi
].

VEi
denotes the set of unassigned variables of Ei while

A[Y ] represents the restriction of the assignment A to the
variables of Y . The first call is to #BTD(∅, Er, Er) and it
returns the number of solutions of the whole problem. Inside
a cluster Ei, #BTD proceeds classically by assigning a value
to a variable and by backtracking if any constraint is violated
(lines 15-22). When every variable in Ei is consistently
assigned (line 1), #BTD computes the number of solutions
of the subproblem induced by the first child of Ei, if there
is one (lines 2-12). More generally, let us consider Ej , a
child of Ei. Given a current assignment A on Ei, #BTD
checks whether the assignment A[Ei ∩ Ej ] corresponds to
a #good. If so, #BTD multiplies the recorded number of
solutions with the number of solutions of Ei with A as its
assignment. Otherwise, it extends A on Desc(Ej) in order to
compute its number of consistent extensions #solEj . Then,
it records the #good (A[Ei ∩ Ej ],#solEj

). #BTD computes
after the number of solutions of the subproblem induced by
the next child of Ei. Finally, when each child of Ei has been
examined, #BTD tries to modify the current assignment of
Ei. The number of solutions of Ei is the sum of solution
counts for every consistent assignment of Ei. The time (resp.
space) complexity of #BTD for #CSP is the same as for CSP:
O(n.w+.log(d).dw

++1) (resp. O(n.s.ds)) [26].
In [26], the experiments have shown that in practice, and

particularly for problems with large tree-width, #BTD runs
frequently out of time and memory. Contrary to [26] which
mainly used #BTD as a subroutine for an approximate method,



we propose to improve directly this approach for exact count-
ing. Indeed, we can see that given a partial assignment A, a
call to #BTD, such as in #solEj ← #BTD(A, Ej , VEj\(Ei ∩
Ej)) (line 10), solves entirely the current subproblem, even if
the partial assignment A cannot be extended to a solution on
the whole problem. So, a first possible way to improve #BTD
consists in avoiding such useless searches. In the next section,
we exploit this idea in order to define a more sophisticated
algorithm called #EBTD.

III. IMPROVING EXACT COUNTING WITH
TREE-DECOMPOSITION

As #BTD, #EBTD (for Enhanced Backtracking with Tree-
Decomposition) is based on the notion of tree-decomposition
of graphs. #EBTD also achieves a backtrack search by using a
compatible variable ordering. The first difference with #BTD
is related to the concept of goods which is expanded:

Definition 2 (Exact and partial structural goods): Let
(E, T ) be a tree-decomposition, Ei and Ej two clusters
from E where Ej is a child of Ei and A a consistent
assignment on Ei ∩ Ej . An exact structural good is a triplet
(A,=,#solEj ) where #solEj is the number of solutions of
PA,Ei/Ej

. A partial structural good is a triplet (A,≥,#solEj
)

where #solEj
is a lower bound on the number of solutions

of PA,Ei/Ej
.

Note that the exact structural goods (A,=,#solEj
) are identi-

cal to the structural #good(A,#solEj
) defined for #BTD [26].

Moreover, we also exploit the notion of structural nogood:
Definition 3 (structural nogood [27]): Let (E, T ) be a tree-

decomposition and Ei and Ej be two clusters from E where
Ej is a child of Ei. A structural nogood of Ei w.r.t. Ej is a
consistent assignment A on the variables of Ei∩Ej such that
PA,Ei/Ej

has no solution.
#EBTD is described in Algorithm 2. Given a CSP P =

(X,D,C) and a tree-decomposition of (X,C), the call
#EBTD (P , (E, T ), A, Ei, VEi , S, G, N ) aims to compute
the number of solutions of the subproblem PA[Ei\VEi

],Ep(i)/Ei

where A is the current assignment, Ei is the current cluster,
Ep(i) its parent cluster and VEi

the set of unassigned variables
of Ei. G and N represent respectively the set of structural
goods and nogoods which have been recorded during the
search. The algorithm exploits also a stack S which con-
tains the next clusters to be explored. #EBTD returns a pair
(#sol, Ebt). Ebt represents the cluster to which #EBTD has
to backtrack and allows to backjump to the relevant cluster
when a nogood is found. Concerning the number of solutions
#sol, there are three possible cases:
• If #sol > 0 and Ebt = Ei, then #sol is the exact number

of solutions of the subproblem PA[Ei\VEi
],Ep(i)/Ei

.
• If #sol > 0 and Ebt 6= Ei, then #sol is a lower bound

of the number of solutions of PA[Ei\VEi
],Ep(i)/Ei

.
• If #sol = 0 then PA[Ei\VEi

],Ep(i)/Ei
has no solution.

The resulting S can be defined as the set of clusters Ej such
that Ep(j) is assigned and A[Ep(j) ∩Ej ] does not correspond
to a partial or exact good of Ep(j) w.r.t. Ej . We can note, that,
it is necessarily empty in the first case.

The initial call is #EBTD (P, (E, T ),A, Er, Er, S,G,N )
where S, G and N are empty. Like #BTD, #EBTD, starts
its backtrack search by assigning consistently the variables
of the root cluster Er before exploring a child cluster. When
exploring a new cluster Ei, since the variables in the parent
cluster Ep(i) (and so in the separator Ei ∩Ep(i)

2) are already
assigned, it only has to assign the variables which appear in
Ei\(Ei ∩ Ep(i)). In order to solve each cluster (lines 46-
57), #EBTD (and #BTD) can exploit any solving algorithm
which does not alter the structure. For sake of simplicity,
the version presented in Algorithm 2 relies on Chronological
Backtracking (BT). However, for the experiments provided in
the next section, we will consider a more powerful algorithm,
namely RFL (for Real Full Look-ahead [29]). Thus, #EBTD
first chooses the next variable x to assign among the variables
in VEi

(line 46). Then, it selects a value v from dx according to
the value heuristic (lines 51-52) and assigns it to the variable x.
If the new assignment is consistent w.r.t. the initial constraints
of C and the structural nogoods of N (line 53), the search goes
on by choosing a new variable and making a new assignment.
Otherwise, #EBTD tries to assign a new possible value to
the variable x. When all the possible values have been tried,
#EBTD backtracks.

When #EBTD (like #BTD) has consistently assigned all
the variables of the current cluster Ei, it then aims to count
the number of solutions of each subproblem rooted in each
child cluster Ej . More precisely, for a child Ej , it aims to
count the number of solutions of PA[Ei∩Ej ],Ei/Ej

. When this
number #solEj

is computed, #EBTD records the exact good
(A[Ei ∩ Ej ],=,#solEj

) (line 23). Similarly, #BTD records
the corresponding #good (A[Ei ∩Ej ],#solEj ) (line 11). The
main difference between #EBTD and #BTD resides in the
exploration of the children. #BTD computes the exact number
of solutions of each subproblem PA[Ei∩Ej ],Ei/Ej

related to
each child cluster Ej by considering successively the children.
Thus, for the tree-decomposition of Figure 1(b), after assigning
consistently the cluster E0, #BTD computes the number of
solutions of PA[E0∩E1],E0/E1

, then one of PA[E0∩E2],E0/E2

and finally one of PA[E0∩E5],E0/E5
. The disadvantage of such

an approach is that all the solutions of PA[E0∩E1],E0/E1
are

computed before even knowing if there is at least one solution
for PA[E0∩E2],E0/E2

and more generally a global solution.
In fact, in the worst case, #BTD may compute the number
of solutions of PA[E0∩E1],E0/E1

and PA[E0∩E2],E0/E2
before

establishing that PA[E0∩E5],E0/E5
has no solution. In this

case, counting the number of solutions for the subproblem
PA[Ei∩Ej ],Ei/Ej

related to a previous child cluster Ej is
useless unless the recorded #good (A[Ei ∩ Ej ],#solEj ) is
used later. In order to solve this issue, #EBTD proposes to
explore the children in a different way. More precisely, it aims
to guarantee that it counts exactly the number of solutions of
the subproblem rooted on a child cluster Ej only if there is
a global solution for the problem so that the recorded good
(A[Ei∩Ej ],=,#solEj ) is necessarily used at least once. For

2We assume that Ei ∩ Ep(i) = ∅ if Ei is the root cluster.



instance, if we consider again the tree-decomposition of Figure
1(b), after assigning consistently the cluster E0, #EBTD tries
to assign, by order, the clusters E1, E2, E3, E4, E5 and E6.
Once the global solution is found, it computes then #solE5

,
#solE2

and finally #solE1
. In contrast, if after assigning

consistently Desc(E1) and Desc(E2), Desc(E5) cannot be
consistently assigned, A[E0 ∩E5] is recorded as a nogood of
E0 w.r.t. E5 while A[E0 ∩ E2] and A[E0 ∩ E1] are recorded
as partial goods (resp. (A[E0 ∩ E1],≥,1) of E0 w.r.t. E1 and
(A[E0∩E2],≥,1) of E0 w.r.t. E2). These structural (no)goods
can be used later to avoid exploring a redundant part of the
search tree. The principle is applied recursively. Indeed, when
counting #solE2

, once the assignment on E2 is changed
#EBTD tries again to assign E3 then E4 (if needed since
recorded goods may be used). Hence, the presence of a global
solution is guaranteed before computing #solE4

and #solE3
.

Lines 46-57 of Algorithm 2 explore the cluster Ei as
#BT does. The condition x /∈ Ebt (line 58) suspends the
enumeration of the solutions of Ei when a nogood of Ep(`)

w.r.t. E` is recorded where E` is a cluster explored after Ei. In
this case, Ebt = Ep(`) and the search backtracks to the cluster
Ep(`). When all the variables of Ei have been consistently
assigned (line 1), #EBTD considers each child of Ei (lines 2-
16). If A[Ei ∩Ej ] corresponds to an exact good (line 10), the
good is exploited and the search jumps to the next child cluster.
#EBTD uses two locals stacks Sunknown and Sgood≥ . It adds
to S and Sunknown each child Ej of Ei for which A[Ei∩Ej ]
does not correspond to a good of Ei w.r.t. Ej . In the contrary,
when A[Ei∩Ej ] corresponds to a partial good of Ei w.r.t. Ej ,
Ej is added to the Sgood≥ . Sgood≥ is the set of children Ej of
Ei for which A[Ei ∩Ej ] corresponds to a partial good of Ei

w.r.t. Ej with a lower bound of the number of solutions of the
subproblem PA[Ei∩Ej ],Ei/Ej

. For each cluster of Sgood≥ , the
exact number of solutions of PA,Ei/Ej

is computed later (lines
38-43) if the current assignment A can be extended to a global
solution. Also for each cluster of Sunknown, at line 36, the
exact number of solutions of PA[Ei∩Ej ],Ei/Ej

is guaranteed
to be computed (lines 17-37) and thus can be exploited. If
the stack S is not empty (line 17), we keep on the search on
the cluster Ej at the top of S (line 20). If #EBTD succeeds
in extending A on the subproblem rooted in Ej , it records
A[Ep(j) ∩ Ej ] as a good. If A can be extended to a global
solution (Ebt = Ej), the number associated to this good is
the number of solutions of PA[Ei∩Ej ],Ep(j)/Ej

and we have
an exact good. Otherwise, it corresponds to a lower bound
and we have a partial good. On the contrary, if A cannot be
extended on the subproblem rooted in Ej , A[Ep(j) ∩ Ej ] is
recorded as a nogood. Note that lines 27 and 33 allow to
remove from the stack S the children of the cluster Ebt (if
any) provided that a nogood of Ebt w.r.t. one of its children
has been recorded.

Theorem 1: #EBTD is sound, complete and terminates.

Proof: Let G=(Ei) be the set of assignments
corresponding to exact goods of Ep(i) w.r.t. Ei

in G. Let us consider V AR(VEi
, S,A, G) =

Algorithm 2: #EBTD (P , (E, T ), A, Ei, VEi , S, G, N )
Input: A CSP P = (X,D,C), a tree-decomposition (E, T ), the current

assignment A, the current cluster Ei, the set VEi
of unassigned variables

in Ei

Input/output: S a stack of clusters, the set G of recorded goods, the set N of
recorded nogoods

Result: (The number of solutions found for PA[Ei\VEi
],Ep(i)/Ei

, the cluster
in which we have to backtrack)

1 if VEi
= ∅ then

2 #sol← 1
3 SEi

← Children(Ei)
4 Sgood≥ ← ∅
5 Sunknown ← ∅
6 while SEi

6= ∅ do
7 Choose a cluster Ej ∈ SEi
8 SEi

← SEi
\{Ej}

9 switch A[Ei ∩ Ej ] do
10 case good (A[Ei ∩ Ej ],=,#solEj

) of Ei w.r.t. Ej in G

11 #sol← #sol ∗#solEj

12 case good (A[Ei ∩ Ej ],≥,#solEj
) of Ei w.r.t. Ej in G

13 Sgood≥ ← Sgood≥ ∪ {Ej}

14 otherwise
15 Sunknown ← Sunknown ∪ {Ej}
16 S ← S ∪ {Ej}

17 if S 6= ∅ then
18 Ej ← Top(S)
19 S ← S\{Ej}
20 (#solEj

, Ebt)← #EBTD(P ,(E, T ),A,Ej ,Ej\(Ep(j) ∩ Ej),
S,G,N )

21 if #solEj
> 0 then

22 if Ebt = Ej then
23 Record (A[Ep(j) ∩ Ej ],=,#solEj

) as good of Ep(j)

w.r.t. Ej in G
24 else
25 Record (A[Ep(j) ∩ Ej ],≥,#solEj

) as good of Ep(j)

w.r.t. Ej in G
26 if Ei = Ebt then
27 S ← S\Children(Ei)
28 return (0, Ei)
29 else return (#sol, Ebt)

30 else
31 Record A[Ep(j) ∩ Ej ] as nogood of Ep(j) w.r.t. Ej in N
32 if Ei = Ep(j) then
33 S ← S\Children(Ei)
34 return (0, Ei)
35 else return (#sol, Ep(j))

36 foreach Ej ∈ Sunknown do
37 #sol← #sol ∗#solEj

38 while Sgood≥ 6= ∅ do
39 Choose a cluster Ej ∈ Sgood≥
40 Sgood≥ ← Sgood≥\{Ej}
41 (#solEj

, EFail)← #EBTD(P ,(E, T ),A,Ej ,Ej\(Ei ∩ Ej),
S,G,N )

42 Record (A[Ei ∩ Ej ],=,#solEj
) as good of Ei w.r.t. Ej in G

43 #sol← #sol ∗#solEj

44 return (#sol, Ei)
45 else
46 Choose x ∈ VEi
47 d← dx

48 #solx ← 0
49 Ebt ← Ei

50 repeat
51 Choose v ∈ d
52 d← d− {v}
53 if A ∪ {x← v} satisfies all constraints of C ∪N then
54 (#solxv, Ebt)← #EBTD(P ,(E, T ),A ∪ {x← v},Ei,

VEi
\{x},S,G,N )

55 #solx ← #solx + #solxv

56 until d = ∅ or x /∈ Ebt

57 return (#solx,Ebt)



VEi
∪ (

⋃
Ej∈Children(Ei)|A[Ej∩Ei]/∈G=(Ej)

Desc(Ej)\(Ej ∩

Ei))∪(
⋃

Ek∈S Desc(Ek)\(Ek∩Ep(k))). V AR(VEi
, S,A, G)

corresponds to the set of variables which must be explored
by #EBTD to determine if a global solution containing
A exists and to count the exact number of solution of
PA[Ei\VEi

],Ep(i)/Ei
.

In order to prove the theorem, we prove by induction
on V AR(VEi , S,A, G) the property P(V AR(VEi , S,A, G))
defined as: ”#EBTD(A, Ei, VEi , S,G,N ) returns a pair
(#sol, Ebt) where #sol is the exact number of solutions of
PA[Ei\VEi

],Ep(i)/Ei
if Ei = Ebt, a lower bound otherwise”.

For lack of space, we will simply highlight the main ideas
of the proof. When there is no ambiguity, V AR(VEi

, S,A, G)
is denoted V AR.

• Basis: Consider P(∅). If V AR = ∅ then VEi
= ∅ and

S = ∅. Also, for each child Ej of Ei, A[Ej ∩ Ei] ∈
G=(Ej). Thus, by considering each child Ej of Ei

(lines 10-11), #EBTD updates successively the number of
solutions #sol. Since for each child Ej of Ei A[Ej∩Ei]
is an exact good, Sgood≥ , Sunknown and S remain empty.
Hence, #EBTD returns (#sol, Ei) where #sol is the
exact number of solutions of PA[Ei],Ep(i)/Ei

. If Ei is
a leaf cluster, #EBTD returns (1, Ei) since the only
possible extension of A is A. So the property holds.

• Inductive step: Consider now P(V AR) with V AR 6= ∅.
Assume that ∀V AR′ ⊂ V AR, P(V AR′) holds.
If VEi

6= ∅: the loop (lines 50-56) explores the cluster
Ei as #BT does. The only difference is that the loop
is suspended when Ebt 6= Ei which is helpful when a
nogood is found later during the search. If Ebt = Ei, the
loop is equivalent to the loop of #BT and #solx is the
number of solutions of PA[Ei\VEi

],Ep(i)/Ei
for the values

v already assigned to x. When #EBTD attempts to assign
v to x, if A∪{x← v} is inconsistent, there is no possible
extension and #solx and Ebt are unchanged. In contrast,
if A∪{x← v} is consistent, we call #EBTD (line 54) on
VEi
\{x}. So, from the hypothesis of induction, we know

that P(V AR\{x}) holds. If Ebt = Ei then #solxv is the
exact number of solutions and #solx is updated. So, the
statement is valid. When Ebt 6= Ei, #solxv is a lower
bound on the number of solutions and #solx is updated.
Since x is assigned for the first time in Ei then x /∈ Ebt

and the loop is suspended returning a lower bound on
PA[Ei\VEi

],Ep(i)/Ei
. Thus, the property holds.

If VEi
= ∅: Since V AR 6= ∅, for each child Ej of Ei,

A[Ej ∩ Ei] may be a good or an unknown assignment.
Also, S can be empty or not. Lines 6-16 consider each
child Ej and update, if needed, #sol, Sgood≥ , Sunknown

and S. Lines 17-35 permit to launch the exploration of
the clusters of S in order to determine if a global solution
containing A exists. At line 36, a global solution is
already found and for each child Ej ∈ Sunknown, #solEj

has been computed and #sol is updated (line 37). If
Sgood≥ 6= ∅, each cluster Ej ∈ Sgood≥ is explored (line
41). If V AR(VEj

, S,A, G) ⊂ V AR(VEi
, S,A, G), by

the induction hypothesis, P(V AR(VEj
, S,A, G)) holds.

Otherwise, V AR(VEj
, S,A, G) = V AR(VEi

, S,A, G).
But we know that for the next call, VEj

6= ∅.
As shown above (case VEi

6= ∅), the property
P(V AR(VEj , S,A, G)) holds. By definition of a partial
good, PA[Ei\VEj

],Ei/Ej
has at least one solution. Since

S is empty (a global solution is found), the recursive
call of #EBTD returns necessarily the exact number of
solutions of PA[Ej\VEj

],Ei/Ej
= PA[Ei\(Ei∩Ej)],Ei/Ej

.
After all the children Ej are considered, #sol is up-
dated and #EBTD returns (#sol, Ei). Hence, the prop-
erty holds. If at line 17, S 6= ∅, a global solu-
tion containing A is not found yet. For the call of
#EBTD at line 20, we can show, like previously for the
call of line 41, that P(V AR(VEj

, S,A, G)) holds. So
P(V AR(VEi

, S,A, G)) holds. 2

Finally, we give its time and space complexities which are
comparable to ones of #BTD.

Theorem 2: #EBTD has a time complexity in O(n.(re +
ns).dw

++1) and a space complexity in O(n.s.ds) with r =
maxc∈C |S(c)|.
Proof: The maximum number of constraints involved in each
consistency check is e and the cost of a constraint check is
O(r). Likewise, if we assume that the nogoods of a cluster
Ei w.r.t. to one of its children Ej are stored as a constraint
whose scope is Ei ∩ Ej , there are at most n-1 separators
(since the number of clusters is bounded by n) and checking
the existence of a nogood can be done in O(s). Hence the
consistency check of line 53 is achieved in O(re+ ns).

In the worst case, #EBTD explores all the clusters of the
decomposition and tries all possible values of each variable of
the cluster. Since w+ is the width of the tree-decomposition,
the maximum size of a cluster is w++1. Hence, the number of
assignments of a cluster is bounded by dw

++1. A recorded ex-
act good ensures that the corresponding cluster is not explored
more than once with the same assignment on the variables
of its separator. If a partial good is recorded, the cluster is,
at most, visited twice with the same assignment so that the
second time the cluster is fully explored and the partial good is
replaced by an exact good. Moreover, assuming that the goods
are stored on each separator like nogoods, storing a good or
checking its existence can be done in O(s). Consequently,
#EBTD has a time complexity in O(n.(re+ ns).dw

++1).
Concerning the space complexity, #EBTD records exact

and partial goods and nogoods. These recordings are done
w.r.t. a separator Ei ∩Ej where Ej is a child of Ei. Provided
that s is the maximum size of the separators, the size of a
no(good) is bounded by s. For each separator, there are at
most ds possible assignments. So, as the number of separators
is bounded by n, the space complexity is in O(n.s.ds). 2

Note that, when #EBTD explores, for the second time, a
given subproblem in order to compute an exact good, we can
avoid restarting from scratch. Indeed, if we assume that we
use a lexicographical value ordering, it suffices to record the
partial solution related to the partial good conjointly with this



partial good. By so doing, if #EBTD needs to explore again the
corresponding subproblem, it can safely restart from the partial
solution. Such an issue does not change the time complexity
while the space complexity is now in O(n.w+.ds). However,
from a practical viewpoint, the gains may be significant.

IV. EXPERIMENTS

In this section, we assess the practical interest of our
approach. We consider here a version of #EBTD based on
RFL [29] and we implement it in C++ in our own library. We
exploit the Min-Fill heuristic [36] in order to compute tree-
decompositions. The arc-consistency is enforced by AC3rm

for the preprocessing and AC8rm for the solving [37]. The
next variable to assign is chosen thanks to the heuristic
dom/wdeg [38] while the root cluster is a cluster maximizing
the number of constraints whose scope intersects the cluster.
The experiments are performed on blade servers running Linux
Ubuntu 14.04 each with two Intel Xeon processors E5-2609
v2 2.5 GHz and 32 GB of memory. For each instance, the
solving is performed within a timeout of 20 minutes and with
at most 16 GB of memory.

Initially, we consider a first benchmark set B1 containing
2,298 consistent CSP instances from the CSP 2008 competi-
tion3. Regarding the instances selection, we have excluded the
instances having a trivial tree-decomposition (e.g. instances
having a complete constraint graph) and the instances having
global constraints (because global constraints are not taken
into account yet by our CSP library). Among these 2,298
instances, #EBTD succeeds in counting exactly the number
of solutions for 1,277 instances. For the other instances, it
runs out of memory or reaches the timeout. However, it is
still able to provide a non-zero lower bound of the number of
solutions for 883 instances. At the end, for about 94% of the
considered instances, #EBTD computes either the number of
solutions or a non-zero lower bound.

Now we compare our approach with solvers from the state
of the art. For #CSP solvers, we consider the implementation
of #BTD provided in Toulbar2 [26]. Regarding #SAT solvers,
we take into account Cachet [39], c2d [24], relsat [40] and
sharpSAT [41]. In both cases, we have to encode the con-
sidered instances into a format supported by these solvers.
For #BTD, we encode the CSP instances into the WCSP
format while for #SAT solvers, we exploit the direct encoding
from CSP to SAT [42]. These two encodings require that the
constraints are flattened. Such an operation may need a large
amount of time and memory for the instances having predicate
constraints. So, in our comparisons, we exploit the benchmark
set B2 built from B1 by considering only the 1,199 instances
having no predicate constraint. For B2, #EBTD succeeds in
counting exactly the number of solutions for 1,006 instances
against 976 for #BTD. Unfortunately, when comparing with
#SAT solvers, we have to consider a benchmark subset B3

from B2 containing 1,059 instances because for 140 instances,
the direct encoding from CSP to SAT is too time and space

3See http://www.cril.univ-artois.fr/CPAI08.

expensive. For B3, #EBTD solves the largest number of
instances (namely 908 instances) and is followed by sharpSAT
(899 instances) and #BTD (877 instances). Cachet and relsat
are less efficient (resp. with 608 and 618 instances) while c2d
only solves 382 instances. Hence, in the following, we focus
our comparison on #EBTD, #BTD and sharpSAT.

In Figure 2, we compare the runtime of #EBTD with one of
#BTD (a) and sharpSAT (b) for the 840 instances of B3 solved
by the three solvers. Note that for #BTD and sharpSAT, the
runtime does not include the encoding time. Clearly, #EBTD
performs faster than #BTD for most of the instances. More-
over, the cumulative runtime of #EBTD for all these instances
is 54,590 s while #BTD requires 98,373 s. The comparison
between #EBTD and sharpSAT turns to be more balanced.
Indeed, #EBTD is more efficient than sharpSAT for 63% of
the instances (against 82% w.r.t. #BTD). However, globally,
sharpSAT performs slower than #EBTD with a cumulative
runtime of 93,284 s.

Finally, note that except #EBTD, none of the considered
solvers provides a lower bound when the solving runs out of
time or memory.

V. CONCLUSION

In this paper, we have proposed a new algorithm, called
#EBTD, which is dedicated to solving the exact counting prob-
lem for CSPs, i.e. #CSP. This algorithm is based on constraint
network decompositions and improves the previous algorithm
introduced in [26]. #EBTD ensures non trivial complexity
bounds for time and space which are related to structural
properties of the considered constraint network. While it is
based on a quite simple idea, its implementation requires a
significant modification of the basic algorithm of [26]. For
example, it requires the definition of the concept of partial
structural goods whose use allows to avoid to explore large
parts of the search space. Such an approach, of course, does
not allow to improve the theoretical complexity, but it leads to
a considerable improvement in computation time. Indeed, the
experiments we conducted show that this new approach solves
more instances on different classes of benchmarks. Above all,
the solving is generally faster than the approaches of the state
of the art, like for example sharpSAT.

Several extensions of this work are possible. Among them,
in the spirit of [43], it would be useful to study decompositions
more suited to the counting problem. Indeed, according to
the nature of the problem addressed (decision, optimization or
counting), it is possible that some classes of decompositions
are better suited for solving #CSP.

Moreover, for instances of large tree-width, for which exact
counting is too hard, we should study how the use of #EBTD
may provide better approximations. Finally, as many applica-
tions of the counting problem coming from AI are naturally
expressed in propositional logic, it would be interesting to
adapt #EBTD to Boolean instance, in order to improve directly
its practical efficiency rather than using translation of instances
from logic to CSPs.
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Fig. 2. Runtime comparisons for #EBTD and #BTD (a) or sharpSAT (b) on the 840 instances of B3 solved by the three solvers.
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