
An Algorithmic Framework for Decomposing Constraint Networks

Philippe Jégou Hanan Kanso Cyril Terrioux
Aix-Marseille Université, CNRS

ENSAM, Université de Toulon, LSIS UMR 7296
13397 Marseille Cedex 20 (France)

{philippe.jegou, hanan.kanso, cyril.terrioux}@lsis.org

Abstract—Depending on the nature of CSP instances to
consider, the decomposition methods offer an approach often
efficient for the solving, the counting of solutions or the
optimization. So, the community has focused a large part
of its efforts on the design of algorithms aiming to find the
best decompositions, i.e. ones which minimize the width of
the decomposition, the fundamental parameter in terms of
theoretical complexity. In this frame, the heuristic Min-Fill
constitutes the reference method.

In this paper, we introduce an algorithmic framework
for network decomposition aiming to improve Min-Fill. It
computes tree-decompositions based on a traversal of the graph
using properties related to separators and their associated
connected components. Its time complexity is lower than the
one of Min-Fill. Moreover, it permits the implementation of
several heuristics which can guide the decomposition over
several criteria like the size of the clusters, the size of the
separators, the connectivity of the clusters, which are par-
ticularly relevant to improve the efficiency of the solving by
decomposition methods. Experiments assess this new approach
and demonstrate its practical advantages for decomposing and
solving constraint networks.

Keywords-CSPs; constraint networks; decomposition;

I. INTRODUCTION

An instance of a finite Constraint Satisfaction Prob-
lem (CSP) is given by a triple (X,D,C), with X =
{x1, . . . , xn} a set of n variables, D = (Dx1

, . . . , Dxn
) a set

of finite domains, and C = {c1, . . . , ce} a set of constraints.
Each constraint ci is a pair (S(ci), R(ci)), where S(ci) =
{xi1 , . . . , xik} ⊆ X defines the scope of ci, and R(ci) ⊆
Dxi1

×· · ·×Dxik
is its compatibility relation. The arity of ci

is |S(ci)|. If the arity of each constraint is two, the instance is
a binary CSP. The structure of a constraint network (other
name of a CSP) is given by a hypergraph (a graph for a
binary CSP), called the constraint (hyper)graph, whose ver-
tices correspond to variables while edges correspond to the
scopes of the constraints. To simplify notations, we denote
the hypergraph (X, {S(c1), . . . S(ce)}) by (X,C). Without
loss of generality, we assume that considered networks are
connected. An assignment on a subset of X is called con-
sistent if all the constraints are satisfied. Checking whether
a CSP has a solution (a consistent assignment of X) is well
known to be NP-complete. So, many works have been done
to improve the solving in practice, even if the complexity of
these approaches remains exponential, at least in O(n.dn)

where d is the maximum size of domains. To circumvent
this theoretical intractability, other approaches have been
proposed. Some of them rely on a structural tractable class
based on the notion of tree-decomposition of graphs [1]
(a tree of clusters of vertices). Their primary advantage is
related to their theoretical complexity, dw+1 where w is the
tree-width of the constraint network (this notion can also be
considered when the network is a hypergraph using its 2-
section [2]). Thus, these methods can be efficient on large
instances of small tree-width as it is the case for example
for well known optimization problems of radio frequency
allocations [3]. Moreover, tree-decompositions can be used
to address more difficult problems as counting problems
or knowledge compilation. Unfortunately, computing an
optimal decomposition is an NP-hard problem [4] and thus
in practice, the time complexity is generally dw

++1 where
w+ ≥ w is an approximation of w. So, computing efficiently
a decomposition of small width is today a very challenging
issue with numerous practical applications. Thereby, the
design of decomposition algorithms tools is an important
field of research for solving CSPs, as well as in many other
domains (e.g. in AI with the Probabilistic Reasoning, in
Operational Research, etc.). Thus, in practice, the decompo-
sitions are generally computed by heuristic approaches for
which Min-Fill [5] is to date the best compromise between
the computation time and the quality of the decomposition.
We may even see that the efficient computation tools for
hypertree-decomposition [6] (a generalization of the tree-
decomposition) are based on Min-Fill [7]. However, Min-
Fill has some drawbacks. First, it proceeds by triangu-
lation, that is by adding edges. This can make it time-
expensive, and thus ineffective in the case of large graphs.
Moreover, Min-Fill does not explicitly take into account
the topological properties of the graph, and thus sometimes
leads to the achievement of bad tree-width approximations.
Another major drawback is related to the fact that the
clusters of the tree-decompositions computed by Min-Fill are
frequently disconnected. As pointed in [8], this phenomenon
can significantly slow down the search. A last significant
drawback is related to the maximum size s of the separators
(intersections between clusters of the tree-decomposition).
Indeed, its value is frequently close to the value of w+

and since the space complexity of decomposition methods is
related to ds, this can be really problematic for the efficiency
of the search.

In order to avoid these drawbacks, we hereby introduce an
algorithmic framework, i.e. a generic algorithm called H-TD-
WT (for Heuristic Tree-Decomposition Without Triangula-
tion), which can implement several heuristics whose quality
of decompositions is generally better than the one of Min-
Fill. H-TD-WT operates without triangulation. It performs
the computation of a set of clusters based on a traversal
of the graph using properties related to separators and
their associated connected components. Its time complexity
is related to the heuristic which is implemented, but this
complexity is generally lower than the one of Min-Fill.
The most interesting advantage of the framework is that,
considering a suitable heuristic, it can avoid the associated
drawbacks of Min-Fill. For example, if we want to minimize
the width of the achieved decompositions, we can use a
special heuristic which will generally find a better width
than the one achieved by Min-Fill.

Section 2 recalls notions about tree-decompositions and
their computation. Section 3 introduces the algorithmic
framework H-TD-WT while Section 4 presents experiments
that assess the relevance of our approach.

II. TREE-DECOMPOSITIONS OF CONSTRAINT
NETWORKS

Decomposition methods for solving CSPs (or more diffi-
cult problems) like, for instance, Tree-Clustering [9], Mini-
Buckets and Bucket Elimination [10], BTD [11] are based
on the notion of tree-decomposition of graphs [1].

Definition 1: A tree-decomposition of a graph G =
(X,C) is a pair (E, T) with T = (I, F) a tree (I the set of
nodes and F the set of edges of T) and E = {Ei : i ∈ I} a
family of subsets of X , such that each subset (called cluster)
Ei is a node of T and satisfies: (i) ∪i∈IEi = X , (ii) for each
edge {x, y} ∈ C, there exists i ∈ I with {x, y} ⊆ Ei, and
(iii) for all i, j, k ∈ I , if k is in a path from i to j in T , then
Ei ∩ Ej ⊆ Ek. The width of a tree-decomposition (E, T)
is equal to maxi∈I |Ei| − 1. The tree-width w of G is the
minimal width over all the tree-decompositions of G.

Figure 1(b) presents a tree whose nodes correspond to the
maximal cliques of the graph depicted in Figure 1(a). It is a
possible tree-decomposition of this graph. So, we get E1 =
{x1, x2, x3}, E2 = {x2, x3, x4, x5}, E3 = {x4, x5, x6}, and
E4 = {x3, x7, x8}. As the maximum size of clusters is 4,
the tree-width of this graph is 3.

The complexity of decomposition methods for solving
CSPs is based on the tree-width w of the constraint net-
work, but more generally, on an approximation w+ of w.
More precisely, the time complexity of Tree-Clustering is
O(n.w+.log(d).dw

++1) and O(n.dw
++1) for space, where

w++1 is the size of the largest cluster (w+1 ≤ w++1 ≤ n).
This first approach has been improved to obtain a space com-
plexity in O(n.s.ds) [11], [12], [13] where s is the size of the

x2

x4

x6

x7

x5 x8

x1

x3

x3x7x8

x4x5x6

x2 x5x4x3

x1 x3x2

E3

2

1

4E

E

E

(a) (b)
Figure 1. A constraint graph for 8 variables (a) and an optimal tree-
decomposition (b).

largest intersection (separator) between two clusters (s ≤
w+). Making these structural methods effective requires the
minimization of the values of w+ and s in the computation
of the tree-decomposition. This is even more crucial when
considering, beyond the decision problems, optimization
problems or counting problems. Unfortunately, computing
an optimal tree-decomposition (i.e. with width equal to
w) is NP-hard [4]. So, numerous works have addressed
this issue. The methods for computing tree-decompositions
often use algorithmic approaches based on the notion of
triangulated graphs (see [14] for an introduction to this
class of graphs), knowing that for these graphs, computing
an optimal tree-decomposition is linear. We can distinguish
different kinds of approaches. First, there are the exact
methods [15] and the approximation methods with warranty
[16]. But to date, they have not shown a practical advantage
due to their large runtime. In fact, obtaining an optimum
width seems unattainable in practice, except for very small
graphs (a few dozen vertices at most [17]). Moreover, they
only achieve a small improvement in the value of w+ w.r.t.
heuristic approaches. So, heuristic methods are the most
used in practice even though they do not offer warranty in
terms of optimality. These methods are generally based on
heuristic triangulations. Their time complexity is polyno-
mial (between O(n + e) and O(n3)), they are very simple
to implement, and their practical advantage seems quite
justified. Indeed, these heuristics seem to get quite close to
the optimum triangulations [18]. The most known is Min-Fill
[5] which often computes optimal decompositions in a much
shorter time than the exact approaches [19]. So, in practice,
Min-Fill is the reference approach since several decades.
Min-Fill establishes a numbering and thus an ordering of
the vertices of a graph G from 1 to n. In order to get a
perfect elimination ordering, adding edges is required. The
resulting graph G′ is a triangulated graph. In this ordering,
the neighbors of a given vertex which appear later in the
ordering form a clique. At each step, Min-Fill chooses
among the unnumbered vertices the vertex which leads to
add the minimum number of edges in order to complete the
subgraph induced by its unnumbered neighbors. The process
continues until all the vertices of G are numbered. Once the
graph is triangulated, it is very easy to compute all maximal
cliques, and then to build a tree-decomposition since these

cliques form the set of clusters. Its time complexity is
O(n(n+e′)) with e′ the number of edges in the triangulated
graph G′. Although Min-Fill turns to be the most expensive
heuristic of the state of the art w.r.t. the time complexity,
in practice, its runtime is much better than the one of exact
methods. Moreover, the decompositions based on Min-Fill
are often quite close to the optimum. Nevertheless, Min-Fill
has several drawbacks that can lead to decompositions of
very poor quality in some cases, either with respect to the
value of w or for the solving step:
• The addition of edges caused by the principle of

triangulation generates a significant additional cost in
practice. For example, if we consider a Grid Graph with
k× k vertices, the number of added edges by Min-Fill
is in Ω(k2) while the width is bounded by Θ(k).

• Min-Fill does not take into account explicitly the topo-
logical properties of the considered graph. For example,
let us consider a graph with one cut vertex (an articu-
lation point). If this vertex is chosen first by Min-Fill,
while there are at least two biconnected components in
the graph, these components will be directly connected
after the triangulation. Nonetheless, if this topological
feature is considered, these pointless connections will
be avoided. This phenomenon is due to the fact that
Min-Fill only considers (local) numerical parameters
and does not consider explicitly the topological features
of graphs.

• The obtained decomposition may contain disconnected
clusters. As pointed out in [8], this phenomenon, occurs
very often with Min-Fill. Moreover the existence of
disconnected clusters can make the solving inefficient.
So, in [8], it is shown that using decompositions
with connected clusters generally leads to a significant
improvement of the solving.

• The value of s is not controlled and can often be
close to the value of w+. Indeed, let us consider
the first (w.r.t. the ordering found by Min-Fill) vertex
xi of a cluster denoted Ei whose size is w+ + 1
in the decomposition. Assume that xi+1 is the first
neighbor of xi after xi in the ordering and that it
has one further neighbor xk which is not connected
to xi. In this case, xi+1 is the second vertex of Ei

and the first vertex of a cluster Ei+1 whose size is
also w+ + 1. Indeed, since xi+1 ∈ Ei, the neighbors
of xi+1 which are later in the ordering are exactly
(Ei\{xi, xi+1})∪{xk}. So, Ei+1 = (Ei\{xi})∪{xk}
and thus |Ei+1| = |Ei| − 1 + 1 = w+ + 1. As a
consequence, the size of the separator between Ei+1

and Ei is |Ei+1 ∩ Ei| = w+. We can see that this
phenomenon occurs very frequently using Min-Fill.
Moreover as recalled above, a too high value of s can
significantly slow down the search.

So, in the next section, we introduce a new algorithmic
framework to avoid these disadvantages.

III. DECOMPOSE THANKS TO THE TOPOLOGY

A. Decomposition without triangulation

We propose an algorithm called H-TD-WT for Heuristic
Tree-Decomposition Without Triangulation, which computes
a tree-decomposition of a graph G = (X,C), in polynomial
time. Like Min-Fill, no warranty about its optimality is
given. In the contrary, unlike Min-Fill, H-TD-WT is not
based on triangulation and takes into account the topology
of the graph. The goal is threefold: (1) to achieve better
computation time, (2) to avoid some drawbacks of Min-
Fill while exploiting some topological properties, and (3)
to allow parameterization of the decomposition taking into
account several criteria, some of them being related to w+

and/or s. H-TD-WT can be considered as a generalization
of the algorithm Bag-Connected-TD (denoted BC-TD) [8]
which also computes tree-decompositions without triangula-
tion. Indeed, we will see later that BC-TD can be considered
as a special heuristic for H-TD-WT. The first step of H-TD-
WT (line 1 in Algorithm 1) computes a first cluster, denoted
E0, thanks to a heuristic technique. X ′ which denotes the
set of already considered vertices is initialized to E0 (line 2).
We denote X1, X2, . . . Xk the connected components of the
subgraph G[X\E0] induced by the deletion in G of vertices
of E0

1. Each one of these sets Xi is inserted in a queue F
(line 4). For each element Xi deleted from F (line 6), Vi

denotes the set of vertices of X ′ which are adjacent to at
least one vertex of Xi (line 7). One can note that Vi is a
separator in the graph G since removing Vi from G makes
G disconnected (Xi being disconnected from the rest of G).
We then consider the subgraph of G induced by Vi and Xi,
that is G[Vi ∪Xi].

The next step (line 8) can be parameterized. It looks for
a subset of vertices X ′′i ⊆ Xi such that X ′′i ∪ Vi will be a
new cluster Ei of the decomposition. This can be ensured
if there is at least one vertex v of Vi s.t. all its neighbors
in Xi appear in X ′′i . More precisely, if N(v,Xi) = {x ∈
Xi : {v, x} ∈ C}, we must ensure that ∃v,N(v,Xi) ⊆ X ′′i .
We then define a new cluster Ei = X ′′i ∪ Vi (line 10). This
process is repeated until the queue is empty.

Consider the example given in Figure 2. We first show
the computation of E1, the second cluster (after E0) during
the first pass through the loop. Assume that we consider
a particular parameterization denoted H1 -TD-WT where
we select X ′′i by trying to minimize the size of the next
cluster as follows. Among the vertices of V1 = {v, w, x},
we consider the vertex which has a minimum of neigh-
bors in X1. This vertex is v since we have N(v,X1) =
{a} and for the other vertices, this set is N(w,X1) =
N(x,X1) = {b, c}. By this way, X ′′i = {a} and we
have N(v,Xi) ⊆ X ′′i . So the cluster E1 is V1 ∪ {a} =
{v, w, x, a}. Then, we get one new connected component:

1For any Y ⊆ X , the subgraph G[Y] of G = (X,C) induced by Y is
the graph (Y,CY) where CY = {{x, y} ∈ C|x, y ∈ Y }.

e

h

g

f

k

j

i

v

x
w l

mX

X' = E

X

X
V 1

1

0

d

3

2

c

b

a

Figure 2. View of H1-TD-WT

X11 = {b, c, d, e, f, g, h, i, j, k, l,m}, which is then added to
the queue F . When X11 is removed from the queue, we have
Vi = V2 = {a,w, x}. So, a new cluster E2 is then computed.
We have two possibilities: V2 ∪ {b, c} = {a,w, x, b, c} or
V2 ∪ {d, e} = {a,w, x, d, e} because N(a,X11) = {d, e},
N(w,X11) = {b, c} and N(x,X11) = {b, c}. Assume that
we choose E2 = {a,w, x, b, c}. So, we get one new con-
nected component X21 = {d, e, f, g, h, i, j, k, l,m} which
is added to F . When X21 is removed from the queue, we
have Vi = V3 = {a, b, c}. So, as N(a,X21) = {d, e},
N(b,X21) = {f} and N(c,X21) = {e, f}, the vertex which
has a minimum of neighbors in X21 is b. So, the cluster E3

is V3∪{f} = {a, b, c, f} and X31 = {d, e, g, h, i, j, k, l,m}
is added to F . When X31 is removed from F , we have
Vi = V4 = {a, c, f}. So, a new cluster E4 is computed. We
have one possibility: V4 ∪ {e} = {a, c, e, f} = E4. So, we
get two new connected components X41 = {d, g, j, k,m}
and X42 = {h, i, l} which are added to F . And the process
continues independently on each connected component.

Thus, one can note that the algorithm explicitly uses
the topology of the graph through separators and related
connected components. Each element in F is processed as
described above until the queue is empty.

In [8], the algorithm BC-TD is illustrated by a very close
example, but it is easy to see that this algorithm performs
differently than H1 -TD-WT. This can be seen on the example
of Figure 2 since BC-TD and H1 -TD-WT do not find the
same tree-decompositions.

Theorem 1: H-TD-WT computes the clusters of a tree-
decomposition.

Proof: It is sufficient to prove the correctness of lines 5 to
12 of the algorithm. First of all, we prove that the algorithm
ends. For each iteration of the loop, at least one vertex of
Xi is added to the set of treated vertices X ′. This is due to
the addition of the neighborhood N(v,Xi) of at least one
considered vertex v of the separator to X ′ (line 10). We
guarantee that the newly added vertices of X ′′i in X ′ will
not be included later in any element of the queue F . In fact,
these elements are defined as the connected components of

Algorithm 1: H-TD-WT

Input: A graph G = (X,C)
Output: A set of clusters E0, . . . Em of a tree-decomposition of G

1 Choose a first cluster E0 in G
2 X′ ← E0

3 Let X1, . . . Xk be the connected components of G[X\E0]
4 F ← {X1, . . . Xk}
5 while F 6= ∅ do /* find new cluster Ei */
6 Delete Xi from F
7 Let Vi ⊆ X′ be the neighborhood of Xi in G
8 Find a subset X′′i ⊆ Xi such that there is at least one vertex v ∈ Vi

such that N(v,Xi) ⊆ X′′i
9 Ei ← X′′i ∪ Vi

10 X′ ← X′ ∪X′′i
11 Let Xi1

, Xi2
, . . . Xiki

be the connected components of G[Xi\Ei]

12 F ← F ∪ {Xi1
, Xi2

, . . . Xiki
}

G[Xi\Ei], a subgraph which contains strictly less vertices
than Xi. Hence, after a finite number of iterations, the set
Xi\Ei will be empty and no new element will be added to
F .

We now show that the set of clusters E0, E1, . . . Em in-
duces a tree-decomposition of G. We prove that by induction
on the set of added clusters, which will especially induce a
tree-decomposition of the graph G[X ′]. Firstly, it is clear that
the first cluster E0 induces a tree-decomposition of the graph
G[E0] = G[X ′]. The inductive assumption says that the
set of clusters already computed E0, E1, . . . Ei−1 induces a
tree-decomposition of the graph G[E0 ∪ E1 ∪ . . . ∪ Ei−1].
We consider now the newly computed cluster Ei. We
show by construction that E0, E1, . . . Ei−1 and Ei induce
a tree-decomposition of G[X ′] by verifying that, the three
conditions (i), (ii) et (iii) that define a tree-decomposition
are satisfied.

(i) Every new added vertex to X ′ belongs to Ei.
(ii) Every new added edge of G[X ′] is included in the

cluster Ei.
(iii) We can consider two different cases for a vertex x ∈

Ei. For vertices not belonging to Ei, the property is
a consequence of the inductive assumption. If x ∈ Vi,
the property is also a consequence of the inductive
assumption. If x ∈ Ei\Vi = X ′′i , x cannot appear in
any other cluster than Ei. Thus the property is verified.

So, it is easy to verify that we get the set of clusters of a
tree-decomposition of G[X ′]. This result is extended to G
because at the end of processing, X ′ = X . 2

From a practical point of view, we can assume that the
choice of the first cluster E0 can be crucial for the quality
of the decomposition that is being calculated. Likewise, the
choice of the vertex v selected (line 8) can be very important
in practice when several vertices are eligible. Heuristics can
be used. We propose one in Section 4. In the following,
we present several heuristics that correspond to different
possible parameterizations of the algorithm H-TD-WT. We
will also see that the time complexity of this algorithm is

related to these heuristics.

B. Heuristics

Here we propose several heuristics. Their objective is
either to minimize the width (H1 -TD-WT), or to make the
decomposition more suited to the solving (H2 -TD-WT, H3 -
TD-WT or H4 -TD-WT).
(1) H1 -TD-WT. As indicated above, this heuristic tries to

minimize locally the size of the next cluster. So, we
consider the smallest subset of vertices X ′′i to add to Vi

to get the next cluster Ei. This is possible by looking
for a vertex v of Vi which has a minimum of neighbors
in Xi. Given this vertex, we find immediately the set
X ′′i = N(v,Xi) and thus Ei = X ′′i ∪ Vi.

(2) H2 -TD-WT. This heuristic finds the next cluster Ei

which must be connected. For more details, see the
algorithm BC-TD which has been introduced in [8].
We show the computation of E1 with the example
given in Figure 2. First, we have V1 = {v, w, x} and
X1 = {a, b, c, d, e, f, g, h, i, j, k, l,m}. A possibility is
to take E1 = {v, w, x, a, c, e} which is a connected
subgraph such that N(v,X1) = {a} ⊆ X ′′i = {a, c, e}.

(3) H3 -TD-WT. This heuristic constructs the next cluster Ei

thanks to the topological properties of the graph. It aims
to identify many independent parts of the graph and to
separate them. To do so, it adds vertices to the next
cluster Ei thanks to a breadth-first search starting from
the vertices of Vi. Hence, the neighbors of Vi in Xi con-
stitute the first level of Xi, the neighbors of neighbors of
Vi in Xi constitute the second level of Xi, and so on. At
the level l = 1, Ei1 = N∗(Vi, Xi) where N∗(V,X) =
V ∪ (∪v∈V N(v,X)). At level l, Eil = N∗(Eil−1

, Xi).
If we consider the example of Figure 2, E11 =
N∗(V1, X1) = {v, w, x, a, b, c}, E12 = N∗(E11 , X1) =
{v, w, x, a, b, c, d, e, f} and for the third level, E13 =
N∗(E12 , X1) = {v, w, x, a, b, c, d, e, f, g, h, i} (there
are 5 levels). The heuristic keeps on adding vertices
while progressing through levels until Xi is sepa-
rated in many connected components that is to say
at l = L where G[Xi\EiL] contains more than one
connected component or until G[Xi\EiL] is empty.
In the example, the breadth-first search is stopped
at level 2 because G[X1\E12] contains two con-
nected components, {g, j, k,m} and {h, i, l}. So, E1 =
{v, w, x, a, b, c, d, e, f}.

(4) H4 -TD-WT. This heuristic aims to limit the size of the
separators of the decomposition. To do so, it considers
a parameter S which represents the maximum allowed
size for a separator. This heuristic adds new vertices
to the next cluster Ei similarly to H3 -TD-WT. Never-
theless, the heuristic stops progressing through levels at
l = L when G[Xi\EiL] does not contain any connected
component with separator’s size greater than S.
With the example given in Figure 2, assuming that

the maximum size of the separators is two. We find
E1 = {v, w, x, a, b, c, d, e, f} because {d, e} and {e, f}
are the separators respectively for X11 = {g, j, k,m}
and X12 = {h, i, l}.

Theorem 2: The time complexity is O(n(n+ e)) for H1 -
TD-WT, H2 -TD-WT, H3 -TD-WT and H4 -TD-WT.

Proof: Lines 1-4 can be done in linear time, that is to
say in O(n + e). This is due to the cost of computing the
connected components of G[X\E0] bounded by O(n + e).
Nevertheless, we note that line 1 can be achieved by a more
expensive heuristic in order to obtain a more relevant first
cluster. However, the heuristic’s cost should be bounded by
the global complexity so that the latter is not modified.
Regarding line 5, we note that there are necessarily less than
n insertions in the queue F . This is guaranteed because in
each pass through the loop, we add new vertices to X ′ and
delete them from the set of untreated vertices.

We analyze now the cost of each operation related to the
newly added cluster. The given cost is the global cost of the
operation.

• Line 6: we obtain the first element Xi of F in O(n),
that is to say O(n2) globally.

• Line 7: we obtain the neighborhood Vi ⊆ X ′ of Xi in
G in O(n + e), that is to say O(n(n + e)) globally.

• Line 8: this step’s cost depends on the chosen heuristic.
– In H1 -TD-WT, this step is done in O(n), that is to

say O(n2) globally.
– In H2 -TD-WT, this step is done in O(n + e), that

is to say O(n(n + e)) globally. In fact, the search
for the subset X ′′i so that Vi ∪X ′′i is connected, is
guaranteed to be bounded by O(n(n+e)) globally.
More precisely, the connectivity test of G[Ei],
which is bounded by O(n + e), is done only once
for each added vertex.

– In H3 -TD-WT, the search of vertices of level l,
namely the neighbors of vertices of level l − 1 in
Xi\Eil−1

, is done in O(n + e). The cost of com-
puting the connected components of G[Xi\Eil−1

]
is bounded by O(n + e). Counting the number of
connected components and testing it are done in
O(n). Hence, this step is done in O(n+ e). Since,
in the worst case, each vertex is in a different level,
this step is done at most n times that is to say a
cost of O(n(n + e)) globally.

– In H4 -TD-WT, similarly to H3 -TD-WT, the search
of vertices of level l is bounded by O(n + e).
The computation of the connected components
of G[Xi\Eil−1

] and their associated separators is
bounded by O(n+e). Thus, the global cost of this
step is bounded by O(n(n + e)).

• Lines 9 and 10: each of these steps is done in O(n),
that is to say O(n2) globally.

• Line 11: the cost of computing the connected compo-

nents of G[Xi\Ei] is bounded by O(n + e). Thus the
global cost of this step is O(n(n + e)).

• Line 12: the insertion of Xij in F is done in O(n), that
is to say O(n2) globally knowing that the number of
insertions is bounded by n.

Finally, the time complexity of the algorithm is O(n(n+e))
for all the proposed heuristics H1 -TD-WT, H2 -TD-WT,
H3 -TD-WT and H4 -TD-WT. Nonetheless, the complexity
of the algorithm depends on the complexity of the used
heuristic and thus a more costly heuristic increases the
complexity of algorithm. 2

IV. EXPERIMENTS

In this section, we assess the practical interest of the
tree-decompositions produced by Min-Fill and by H-TD-
WT. First, we are interested in minimizing the width and
so the comparison involves Min-Fill and H1 -TD-WT. Then,
we consider as criterion the efficiency of the solving and
so we compare Min-Fill with H2 -TD-WT, H3 -TD-WT and
H4 -TD-WT.

For the choice of the first cluster E0 in H-TD-WT, many
heuristics can be used. Here, we compute greedily a clique,
as large as possible, of G. The heuristic begins by choosing
the vertex having the highest degree in the graph G. Given
a set of already chosen neighbors N , it selects the vertex
having the highest degree in the neighborhood of N .

All the algorithms are implemented in C++ in our own
library. The experiments were performed on blade servers
running Linux Ubuntu 14.04 each with two Intel Xeon
processors E5-2609 2.4GHz and with 32 GB of memory.
We consider 1,859 CSP instances from the CSP 2008
competition2. Note that, when an instance has non-binary
constraints, we exploit the 2-section of its constraint hyper-
graph to compute tree decompositions.

A. Minimizing the width

As we try to minimize the width of the decompositions,
we use the first heuristic, that is H1 -TD-WT. Table I provides
the widths of the decompositions obtained for a selection
of representative instances of the various observed trends.
H1 -TD-WT computes decompositions having a width less
than or equal to those of Min-Fill for 1,031 of the 1,859
instances. For 772 of these instances, H1 -TD-WT improves
the width obtained by Min-Fill. This improvement can be
very significant as it is the case, for example, with the
instance bqwh-18-141-37_ext with a width of 54 for
H1 -TD-WT against 73 for Min-Fill.

Regarding the runtime, H1 -TD-WT is faster than Min-
Fill. In fact, in 86% (respectively 98%) of the instances, the
decomposition of H1 -TD-WT is computed in less than one
second (respectively one minute) against 85% (respectively

2See http://www.cril.univ-artois.fr/CPAI08 for details.

Table I
NUMBER OF VERTICES AND EDGES, WIDTH OF DECOMPOSITIONS

PRODUCED BY Min-Fill AND H1 -TD-WT. FOR EACH INSTANCE, THE
BEST WIDTH IS IN BOLD.

Instances n e
Min-Fill H1 -TD-WT

time w+ time w+

composed-25-10-20-5 ext 105 620 0.01 24 0.01 28
graph14-f28 916 4 638 0.45 239 0.48 229
par-8-2 700 2 800 0.04 47 0.06 41
par-16-4-c 648 3 723 0.05 43 0.08 83
radar-10-20-4.5-0.95-98 906 10 211 0.20 112 0.60 121
s4-4-3-6 624 9 152 0.43 192 0.27 177
tsp-25-3 ext 76 400 0.01 25 0.01 25
bf-0432-007 2 080 7 473 0.79 145 6.47 141
ii-8e2 1 740 10 785 1.70 179 11.04 163
js-taillard-20-15-95-2 300 3 130 0.06 117 0.04 109
4-insertions-4-5 475 1 795 0.07 94 0.14 81
fapp04-0300-1 300 1 799 0.07 134 0.03 123
bqwh-18-141-37 ext 141 883 0.01 73 0.01 54
graph4 400 2 244 0.05 100 0.05 109
ssa-0432-003 870 2 022 0.12 34 0.46 65
games120-7 120 638 0.01 39 0.01 43

96%) for Min-Fill. These results are not surprising regarding
the complexity of the algorithms.

B. Solving CSPs

In this subsection, we compare the described tree-
decompositions from the viewpoint of the solving efficiency.
We compare especially Min-Fill to H2 -TD-WT, H3 -TD-WT
and to H4 -TD-WT. Regarding H1 -TD-WT, even if the results
show a significant improvement for the approximation of the
tree-width, its impact on solving efficiency is quite limited.
This first heuristic seems clearly more suited to handle
more difficult problems such as optimization, counting or
compilation where the quality of the approximation of w is
clearly more crucial than for decision. Hence, we will focus
in the following on the other heuristics.

Regarding the solving, as the reference enumerative
method, we take into account the algorithm MAC (for
Maintaining Arc-Consistency [20]) with restarts and nogood
recording like in [21]. For the solving with the help of
the tree-decomposition, we consider BTD (for Backtracking
with Tree-Decomposition [11]) integrating restart techniques
and nogood recording [22]. Both algorithms rely on AC-
2001 and exploits the variable ordering heuristic dom/wdeg
[23]. They use a geometric restart policy with a ratio 1.1 and
an initial number of backtracks of 100 for MAC and 50 for
BTD. BTD chooses as root cluster the cluster maximizing
the sum of weights of constraints whose scope intersects the
cluster (the weights are those of dom/wdeg) like in [22]. The
solvings are performed with a time-out of 900 seconds.

The heuristic H2 -TD-WT has been introduced in [8]
with several variants depending on the choice of the next
vertex. Here, we choose as next vertex the vertex which
has the maximum number of neighbors in the set Vi (what
corresponds to the heuristic NV4 in [8]). The results show
that bag-connected tree-decompositions computed by this
heuristic allow an increase in the number of solved instances.
In fact, only 10% of the tree-decompositions (of the 1,859

used instances) computed by Min-Fill are bag-connected. As
we have already seen in [8], the presence of disconnected
clusters has a negative impact on the efficiency of the
solving. Thus, the construction of connected clusters helps
in increasing the number of solved instances. In particular,
we see that 1,429 instances are solved by Min-Fill while
1,453 instances are solved if the tree-decomposition is bag-
connected. The heuristic H3 -TD-WT shows also its prac-
tical efficiency. More precisely, 1,479 instances of 1,859
instances are solved with this heuristic. The results prove that
computing tree-decompositions by exploiting the topological
properties allows better efficiency in the solving. Finally,
the heuristic H4 -TD-WT focuses on limiting the size of the
produced separators. We observe a significant increase of
the number of solved instances for the values chosen for the
separator. 1,511 instances are solved when the parameter S
is set to 15. Obviously the chosen value of S has an impact
on the quality of the decomposition and thereby on the
efficiency of the solving. Nevertheless, choosing a relevant
value for S is beyond the scope of this work. Note that these
results are consistent with ones of [24], which advocates the
limitation the size of separators in order to achieve a more
efficient solving.

In order to fairly compare the quality of tree-
decompositions w.r.t. the solving efficiency, we apply the
merging strategy of [24] on tree-decompositions achieved
by Min-Fill, H2 -TD-WT and H3 -TD-WT. We limit the size
of separators to 15. Thus, any cluster of the decomposition
whose separator has a size greater than 15 is merged with
this parent. This process is repeated until all the separators
have at most a size of 15. As we see in figure 3(a), all
the methods solve more instances, but the trend remains
the same as before. More precisely, Min-Fill solves 1,478
instances while H2 -TD-WT solves 1,497 instances. Also,
H3 -TD-WT is improved with a total of 1,499 solved in-
stances higher than both previously mentioned heuristics.
Finally, H4 -TD-WT outperforms again the other heuristics
with 1,511 solved instances. Note that the increase of the
number of solved instances comes with an improvement of
the runtime. In particular, the cumulative runtime achieved
for Min-Fill, H2 -TD-WT, H3 -TD-WT and H4 -TD-WT is,
respectively, 45,082 s, 40,058 s, 33,905 s and 31,263 s.
We also compare these heuristics with MAC and the virtual
Best Solver (VBS) which corresponds to the best runtime
among the runtime of MAC and BTD with the different
decompositions. We can observe that MAC is outperformed
by BTD with any Hi -TD-WT decomposition with 1,491
solved instances. Nonetheless, as expected, MAC performs
better than Min-Fill on this bench. In order to highlight
the efficiency of solving of these heuristics on instances
having nice topological properties, we select the instances
s.t. n

w+ ≥ 5 among the 1,859 instances. We particularly
see in figure 3(b) that Min-Fill performs better on these
292 instances thanks to its good approximation of the tree-

 0.01

 0.1

 1

 10

 100

 0.01 0.1 1 10 100

H
4

-T
D

-W
T

Min-Fill

Figure 4. The comparison between state of the art heuristic Min-Fill and
the proposed heuristic H4 -TD-WT

width. Hence, Min-Fill solves more instances than H2 -TD-
WT, H3 -TD-WT and MAC which solves the lowest number
of instances. However, we can also see that H4 -TD-WT still
performs better than Min-Fill. More precisely, H4 -TD-WT
solves 265 instances within 7,467 s whereas Min-Fill solves
260 instances in 10,717 s.

Since Min-Fill is the reference method of decomposition
in the literature, the comparison between Min-Fill and H4 -
TD-WT seems quite interesting. That is why we compare
both methods performance on the initial benchmark in
figure 4. It is clear that H4 -TD-WT dominates Min-Fill in
most solving. Moreover, H4 -TD-WT constructs the tree-
decomposition by one pass while the comparable tree-
decomposition computed by Min-Fill needs another pass to
have an appropriate separator’s size.

Finally, the results of H4 -TD-WT seem very promising
regarding the results achieved by the VBS. In fact, we
can see that the VBS solves only 14 additional instances.
Moreover, H4 -TD-WT seems also competitive on runtime.

V. CONCLUSION

In this paper, we introduced an algorithmic framework for
network decomposition aiming to improve Min-Fill. It com-
putes tree-decompositions based on a traversal of the graph
using properties related to separators and their associated
connected components. This algorithmic framework permits
the implementation of different heuristics. This allows to
take into account and thus to avoid some disadvantages
of Min-Fill such as a very large size of the clusters or
of the separators, or the non-connectivity of the clusters.
Experimental evaluations allowed us to show that one of
the implemented heuristics has improved the quality of
decompositions w.r.t. the width, on a majority of instances,
often significantly. In addition, in this case, the computation
times are also improved. Regarding the solving of CSPs, we
have shown that one of the implemented heuristics improves
the efficiency of the search in practice.

For future investigations, there is a wide field of work
to explore, in particular because of all the parameters to

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 700 800 900 1000 1100 1200 1300 1400 1500

ti
m

e
 (

s)

solved instances

MAC
Min-Fill

H2-TD-WT
H3-TD-WT
H4-TD-WT

VBS

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 100 120 140 160 180 200 220 240 260

ti
m

e
 (

s)

solved instances

MAC
Min-Fill

H2-TD-WT
H3-TD-WT
H4-TD-WT

VBS

(a) (b)
Figure 3. The cumulative number of solved instances for each considered tree-decomposition for the 1,859 instances (a), only for instances having a
tree-decomposition of width w+ s.t. n

w+ ≥ 5 (b).

be taken into account in the elaboration of the heuristics,
particularly to build the first cluster. Furthermore, the new
algorithmic framework for decomposition proposed here
must be now evaluated w.r.t. to the improvement of solving
more difficult questions than of basic decision problem
for CSPs. In fact, the most promising issue is related to
significantly harder problems such as counting, optimization
or knowledge compilation where minimizing the width or
the size of the separators is a crucial issue.

REFERENCES

[1] N. Robertson and P.D. Seymour. Graph minors II: Algorith-
mic aspects of treewidth. Algorithms, 7:309–322, 1986.

[2] C. Berge. Graphs and Hypergraphs. Elsevier, 1973.

[3] C. Cabon, S. de Givry, L. Lobjois, T. Schiex, and J. P.
Warners. Radio Link Frequency Assignment. Constraints,
4:79–89, 1999.

[4] S. Arnborg, D. Corneil, and A. Proskuroswki. Complexity of
finding embeddings in a k-tree. SIAM Journal of Disc. Math.,
8:277–284, 1987.

[5] D. J. Rose. A graph theoretic study of the numerical solution
of sparse positive denite systems of linear equations. In
Graph Theory and Computing, pages 183–217. Academic
Press, 1972.

[6] G. Gottlob, N. Leone, and F. Scarcello. A Comparison of
Structural CSP Decomposition Methods. Artificial Intelli-
gence, 124:243–282, 2000.

[7] A. Dermaku, T. Ganzow, G. Gottlob, B. J. McMahan, N. Mus-
liu, and M. Samer. Heuristic methods for hypertree decom-
position. In MICAI, pages 1–11, 2008.

[8] P. Jégou and C. Terrioux. Tree-decompositions with con-
nected clusters for solving constraint networks. In CP, pages
407–423, 2014.

[9] R. Dechter and J. Pearl. Tree-Clustering for Constraint
Networks. Artificial Intelligence, 38:353–366, 1989.

[10] R. Dechter. Bucket Elimination: A Unifying Framework for
Reasoning. Artificial Intelligence, 113(1-2):41–85, 1999.

[11] P. Jégou and C. Terrioux. Hybrid backtracking bounded by
tree-decomposition of constraint networks. Artificial Intelli-
gence, 146:43–75, 2003.

[12] R. Dechter and Y. El Fattah. Topological Parameters for
Time-Space Tradeoff. Artificial Intelligence, 125:93–118,
2001.

[13] R. Dechter. Constraint processing. Morgan Kaufmann
Publishers, 2003.

[14] M. Golumbic. Algorithmic Graph Theory and Perfect Graphs.
Academic Press, New York, 1980.

[15] V. Gogate and R. Dechter. A complete anytime algorithm for
treewidth. In UAI, pages 201–208, 2004.

[16] E. Amir. Efficient approximation for triangulation of mini-
mum treewidth. In UAI, pages 7–15, 2001.

[17] J. Berg and M. Järvisalo. Sat-based approaches to treewidth
computation: An evaluation. In ICTAI, pages 328–335, 2014.

[18] U. Kjaerulff. Triangulation of graphs - algorithms giving
small total state space. Technical report, Judex R.R. Aalborg,
Denmark, 1990.

[19] S. Subbarayan. An empirical comparison of csp decomposi-
tion methods. In CP Doctoral Program, 2007.

[20] D. Sabin and E. Freuder. Contradicting Conventional Wisdom
in Constraint Satisfaction. In ECAI, pages 125–129, 1994.

[21] Christophe Lecoutre, Lakhdar Sais, Sébastien Tabary, and
Vincent Vidal. Recording and minimizing nogoods from
restarts. JSAT, 1(3-4):147–167, 2007.

[22] Philippe Jégou and Cyril Terrioux. Combining restarts,
nogoods and decompositions for solving csps. In ECAI, pages
465–470, 2014.

[23] F. Boussemart, F. Hemery, C. Lecoutre, and L. Sais. Boosting
systematic search by weighting constraints. In ECAI, pages
146–150, 2004.

[24] P. Jégou, S. N. Ndiaye, and C. Terrioux. Computing and ex-
ploiting tree-decompositions for solving constraint networks.
In CP, pages 777–781, 2005.

