
A new Evaluation of Forward Checking and its Consequences
on Efficiency of Tools for Decomposition of CSPs

Philippe Jégou Samba Ndojh Ndiaye
Cyril Terrioux

LSIS - UMR CNRS 6168
Université Paul Cézanne (Aix-Marseille 3)

Avenue Escadrille Normandie-Niemen
13397 Marseille Cedex 20 (France)

{philippe.jegou, samba-ndojh.ndiaye, cyril.terrioux}@univ-cezanne.fr

Abstract

In this paper, a new evaluation of the complexity of For-
ward Checking for solving non-binary CSPs with finite do-
mains is proposed. Unlike what is done usually, it does not
consider the size of domains, but the size of the relations
associated to the constraints. It may lead sometimes to de-
fine better complexity bounds. By using this first result, we
show that the tractability hierarchy proposed in [6] which
compares different methods based on a decomposition of
constraint networks can be seen from a new viewpoint.

1 Introduction

It is well known that the CSP formalism and its gener-
alizations to Valued CSPs offer interesting frameworks to
express and solve various problems in numerous fields. A
CSP can be considered as the problem of checking if a fi-
nite set X of variables can be assigned in their domains of
values given by D, while satisfying simultaneously a set C
of constraints. Such an assignment is a solution of the CSP.
Then the problem is generally to find one solution. Unfor-
tunately, checking the existence of a solution of a CSP is
NP-complete. So, for solving CSPs, different classes of al-
gorithms have been proposed, which combine backtracking
and filtering. From a practical viewpoint, these algorithms
can be frequently efficient. Precisely, it is the case when
an adapted level for filtering is considered to help back-
tracking. Generally, this trade-off uses arc-consistency to
filter the domain of unassigned variables during the search.
The good level of filtering is generally situated between FC
(Forward Checking) [7], which is the most restricted form
of arc-consistency (one pass and limited form of filtering
with arc-consistency) and MAC [13] which maintains arc-

consistency on the whole resulting problem. While these al-
gorithms can be really efficient from a practical viewpoint,
their time complexity is O(S.mn) where S is the size of the
considered CSP, n the number of variables and m the max-
imum size of domains of variables. This evaluation is then
clearly driven by the size of domains.

Different approaches have been proposed to improve
these bounds, for example by exploiting structural proper-
ties that exist frequently in real life problems. The interest
for the exploitation of structural properties was observed in
numerous domains as in CSP [4], in constraint optimiza-
tion (VCSPs) [14, 2], in SAT, in relational databases, or in
Bayesian or probabilistic networks. Formally, complexity
results based on topological features of problems have been
proposed. Generally, they rely on the properties of a tree-
decomposition [12] or a hypertree-decomposition [6] of the
constraint network which formalizes the structure and con-
sequently allows to express topological properties.

Given a tree-decomposition of width w, the time com-
plexity of the best structural approaches is O(S.mw+1),
with the guarantee to have w < n, and in many cases,
w � n. Given a hypertree-decomposition of width h,
the time complexity is then O(S.rh), with r the maxi-
mum size of relations (tables) associated to constraints. [6]
has shown that hypertree-decomposition is better than tree-
decomposition, since h ≤ w.

The practical interest of such approaches has been
proved in some recent works around (V)CSPs [9, 10, 11,
2]. These empirical observations seem to contradict the
theoretical results, since they rely on tree-decomposition
while, in our knowledge, no approach based on hypertree-
decomposition has shown a practical interest yet. From a
first analysis, we can think that it is due to the fact that the
complexity bounds based on hypertree-decomposition are
often reached to the detriment of the practical efficiency.

For example, they assume that relations associated to con-
straints are expressed by tables, what is sometimes unreal-
istic from a practical viewpoint. Moreover, to ensure com-
plexity bounds as O(S.rh), the method performs joins of
relations. For solving CSPs, such an approach is generally
also unrealistic due to the size of the generated relations. On
the other hand, the methods that have shown their feasibility
and their practical interest are based on assignments of vari-
ables, exploiting the practical efficiency of backtracking-
based algorithms (as FC or MAC), while they ensure the
complexity bounds as O(S.mw+1).

In this paper, we introduce a theoretical justification to
these experimental observations. First, we investigate the
complexity of algorithms as FC, with a new viewpoint. In-
deed, we present here another evaluation of their complex-
ity which is related to the size of relations associated to
constraints: O(S.rk), where k is a structural parameter of
the CSP, independently of any decomposition method used.
This result is then exploited to show that for structural meth-
ods using tree-decomposition, we can now express their
complexity by O(S.rh). The result shows the relations be-
tween decomposition methods in a different light and intro-
duces a new viewpoint for the constraint tractability hier-
archy introduced in [6]. Note that the proof of the result
presented in [6] remains true. Here, we modify its con-
sequence because we change the basic hypothesis on the
complexity of the basic algorithms used to solve clusters in
tree-decomposition based approaches.

Section 2 presents the analysis of the complexity of enu-
merative algorithms like FC based on the size of relations.
Section 3 describes how this analysis can be exploited to
propose new complexity bounds for tree-decomposition ap-
proaches and indicates a new comparison with hypertree-
decomposition ones.

2 Complexity of FC Revisited

2.1 Complexity expressed by the size of domains

A finite constraint satisfaction problem or finite con-
straint network (X, D, C, R) is defined as a set of variables
X = {x1, . . . xn}, a set of domains D = {d1, . . . dn} (the
domain di contains all the possible values for the variable
xi), and a set C of constraints among variables. A con-
straint ci ∈ C on an ordered subset of variables, ci =
(xi1 , . . . xiai

) (ai is called the arity of the constraint ci),
is defined by an associated relation ri ∈ R of allowed com-
binations of values for the variables in ci. Note that we take
the same notation for the constraint ci and its scope. We
denote a the maximal arity of the constraints in C. Without
loss of generality, we assume that each variable is involved
in at least one constraint. A solution of (X, D, C, R) is
an assignment of each variable which satisfies all the con-

straints. The CSP structure can be represented by the hy-
pergraph (X,C), called the constraint hypergraph. If each
constraint of a CSP is binary (i.e. involves exactly two vari-
ables), then (X, C) is a graph called the constraint graph.

In this paper (as in [6]), we assume that the relations are
not empty and can be represented by tables as in relational
database theory. Then, we denote by S the size of a CSP
(which verifies S ≤ n.m + a.r.|C| where r = max{|ri| :
ri ∈ R}). Let Y = {x1, . . . xk} be a subset of X and
A an assignment of Y . A can be considered as a tuple
A = (v1, . . . vk). The projection of A on a subset Y ′ of
Y , denoted A[Y ′], is the restriction of A to the variables of
Y ′. The projection of the relation ri on the subset Y ′ of ci

is the set of tuples ri[Y ′] = {t[Y ′]|t ∈ ri}. The join of
relations will be denoted on, and the join of A with a rela-
tion ri is A on ri = {t|t is a tuple on Y ∪ ci and t[Y] =
A and t[ci] ∈ ri}.

The basic approach for solving CSP is based on the clas-
sical procedure called Backtracking (BT). The time com-
plexity of this basic algorithm is O(a.r.|C|.mn) since the
number of potential nodes developed during the search is
mn and assuming that a constraint check A[ci] ∈ ri is
computable in O(a.r). To simplify the notations, it can be
expressed by O(S.mn). Generally, this algorithm is never
used because it is clearly inefficient in practice.

The most classical approach to improve BT is based on
filtering. After any assignment A on Y with xk the last as-
signed variable, a filtering will be achieved in the domains
of future variables. This filtering removes the values which
are not compatible with the assignment of xk. The first al-
gorithm proposed for such a filtering is Forward Checking
(FC [7]). It was initially defined on binary CSPs. Numer-
ous extensions and generalizations of FC have been pro-
posed in order to solve non-binary CSPs or to exploit more
powerful filters [7, 13, 1]. In this paper, we consider one
of these extensions called nFC2 [1] whose level of filtering
seems to realize a good trade-off according to the presented
empirical results obtained on non-binary CSPs.

Let us consider a current assignment A which satis-
fies all the constraints included in Y . After the assign-
ment of the last variable xk, nFC2 applies arc-consistency
in one pass (see [1] for more details) on each constraint
of Cc,f where Cc,f is the set of constraints involving the
current variable and at least one future variable (formally,
Cc,f = {cj ∈ C|xk ∈ cj and cj 6⊂ Y }). Consequently,
the obtained filtered domains depend on the order accord-
ing to which the constraints are processed. In order to han-
dle easily the filtered domains, we define nFC2m in such
a way that its filtering can be seen as the minimal filtering
of nFC2 among all the possible constraint orders. Actu-
ally, in nFC2m, the domain of each future variable is fil-
tered independently of ones of the other future variables.
The filtered domain of a future variable xi is the set of

c1 c2 c3
x y z u v w x y w
a a a a a a a a a
a b c a b b a b c
a c b c c c

Assignment Algorithm Action
(x, a) nFC2 AC({c3}) then AC({c1})

nFC2m AC({c3}) and AC({c1})
(u, a) nFC2 AC({c2})

nFC2m AC({c2})
(x, a) nFC2 nFC2m (u, a) nFC2 nFC2m

dAx a a dAx a a
dAy a, b a, b dAy a, b a, b
dAz a, c a, b, c dAz a, c a, b, c
dAu a, c a, c dAu a a
dAv a, b, c a, b, c dAv a a
dAw a, c a, c dAw a a

Figure 1. Filtering caused by nFC2 and nFC2m

after assignments (x, a) and (u, a).

values dAi = {vi ∈ d
A[Y \{xk}]
i |∀cj ∈ Cc,f s.t. xi ∈

cj ,∃t ∈ rj , t ∈
∏

xl∈cj
d
A[Y \{xk}]
l and t[xi] = vi} and

one of an assigned variable xj is dAj = {A[xj]}. Initially,
d∅i = {vi ∈ di|∀cj ∈ C, xi ∈ cj ,∃t ∈ rj , t[xi] = vi}
(i.e. we only consider the value vi which appears in each
relation involving xi). By so doing, given an assignmentA,
the filtering caused by nFC2m (i.e. the set of pairs (xi, vi)
s.t. the value vi has been removed from the domain of xi) is
clearly included in one caused by nFC2 (for any constraint
order). Like nFC2, if the domain of a future variable be-
comes empty, then nFC2m backtracks; otherwise, it keeps
on the search with a future variable. One can easily prove
that nFC2m is sound and complete and terminates (the proof
is similar to one of nFC2 proposed in [1]). Regarding the
time complexity, the size of the search space is bounded by
O(mn). The analysis reported in [1] indicates that the lo-
cal cost at any node, i.e. the number of checks performed,
is O(|Cc,f |.(a − 1).ma−1). Note that it is easy to express
this complexity by taking into account the maximal size r
of the relations ri, to get finally O(|Cc,f |.a.r). Necessarily
|Cc,f |.a.r ∈ O(S), with S the size of the CSP, and so the
cost of nFC2 and nFC2m can be bounded now by O(S.mn).

For example, Figure 1 illustrates the differences between
nFC2 and nFC2m with the n-ary CSP used in [1] (figure
1, p 210). The CSP has 6 variables {x, y, z, u, v, w} with
the same domain {a, b, c}, and 3 constraints c1(x, y, z),
c2(u, v, w) and c3(x, y, w). The initial domains are reduced
to those values in the relations. nFC2 and nFC2m enforce
arc-consistency (”in one pass” [1]) on the same sets of con-
straints. Since nFC2 takes into account the filterings done
to enforce arc-consistency on previous constraints, the con-
straint order is important. In contrast, nFC2m behaves like
if it performs arc-consistency on all constraints at the same
time. Thus, after the assignment (x, a), if nFC2 enforces
AC({c1}) before AC({c3}), the value b for the variable z

will not be filtered unlike in the example.

2.2 Complexity expressed by the size of relations

Now, we analyze the complexity of nFC2m w.r.t. the
size of relations. Theorem 1 states that any assignment con-
sidered by nFC2m satisfies both the constraints whose vari-
ables are totally assigned and ones whose a part of variables
is assigned. By so doing, we can ensure that nFC2m enu-
merates the assignments in the limit of the joins of the corre-
sponding relations, what allows us to refine its complexity.
To simplify the formalism, we denote by Yk the ordered set
Y = (x1, . . . , xk) (X , CY = {cj ∈ C|cj ∩ Y 6= ∅} and
CY,f = {cj ∈ CY |cj 6⊂ Y }.

Theorem 1 If A = (v1, . . . , vk) ∈onci∈CYk
ri[ci ∩ Yk]

and ∀j, k + 1 ≤ j ≤ n, dAj 6= ∅, then ∀vk+1 ∈
dAk+1, (v1, . . . , vk, vk+1) ∈onci∈CYk+1

ri[ci ∩ Yk+1].

Proof: Let A′ = (v1, . . . , vk, vk+1) be the extension of the
assignment A obtained by assigning xk+1 with the value
vk+1 ∈ dAk+1.
We want to prove that A′ ∈onci∈CYk+1

ri[ci ∩ Yk+1].
First, we consider a partition of the constraint set CYk+1 as
follows:
CYk+1 = {ci ∈ C|ci ⊂ Yk+1} ∪ CYk+1,f (1)

= {ci ∈ C|ci ⊂ Yk} ∪
{ci ∈ C|ci\Yk = {xk+1}} ∪
{ci ∈ C|ci ∈ CYk+1,f and xk+1 ∈ ci} ∪
{ci ∈ C|ci ∈ CYk+1,f and xk+1 6∈ ci} (2)

So, we have: onci∈CYk+1
ri[ci ∩ Yk+1]

(1)
= (onci⊂Yk+1 ri) on (onci∈CYk+1,f

ri[ci ∩ Yk+1]) (1)
(2)
= (onci⊂Yk

ri) on (onci\Yk={xk+1} ri) on
(onci∈CYk+1,f and xk+1∈ci ri[ci ∩ Yk+1]) on
(onci∈CYk+1,f and xk+1 6∈ci ri[ci ∩ Yk]) (3)

Then, by construction of the non-empty domain dAk+1,
for each constraint ci ∈ C s.t. xk+1 ∈ ci and ci ∩ Y 6= ∅,
there exists a tuple t ∈ ri s.t. t[Yk ∩ ci] = A[Yk ∩ ci] and
t[xk+1] = vk+1, i.e. s.t. t[ci ∩ Yk+1] = A′[ci ∩ Yk+1].

So, A′
[⋃

ci|xk+1∈ci

(ci ∩ Yk+1)

]
∈ (onci\Yk={xk+1} ri)

on (onci∈CYk+1,f and xk+1∈ci
ri[ci ∩ Yk+1]).

Moreover, A ∈onci∈CYk
ri[ci ∩ Yk]

= (onci⊂Yk
ri) on (onci∈CYk,f

ri[ci ∩ Yk])
= (onci⊂Yk

ri) on (onci∈CYk,f and xk+1 6∈ci ri[ci ∩ Yk]) on
(onci∈CYk,f and xk+1∈ci

ri[ci ∩ Yk])
So, A′[Yk] = A ∈ (onci⊂Yk

ri) on
(onci∈CYk,f and xk+1 6∈ci

ri[ci ∩ Yk]).
Hence, from (3), A′ ∈onci∩Yk+1 ri[ci ∩ Yk+1]. �

Theorem 2 The time complexity of nFC2m for solving a
CSP (X, D, C, R) is O(S.r|C|).

Proof: For any assignment A on Y considered by nFC2m

(the variable order is assumed static and induced by Y), we
haveA ∈onci∈CY

ri[ci∩Y] (theorem 1). So, as the number
of nodes is equal to the number of assignments, it can be
bounded, for a given depth |Y |, by

∏
ci∈CY

|ri|. Moreover,
CY ⊂ C. Hence,

∏
ci∈CY

|ri| ≤
∏

ci∈C |ri| ≤ r[C|. So,
as the height of the search tree is bounded by n, the number
of nodes is bounded by n.r|C|. As the cost in each node is
O(S), nFC2m has a complexity in O(S.r|C|). �

This complexity can be refined again by taking into ac-
count the notion of minimum cover of the constraint set:

Definition 1 Given a set X and C, a family of subset of X ,
a cover of X is a subset C ′ ⊂ C such that ∪ci∈C′ = X . C ′

is a minimum cover of X if there is no cover C ′′ such that
|C ′′| < |C ′|. The value |C ′| will be denoted k(X,C).

Theorem 3 The time complexity of nFC2m for solving a
CSP (X, D, C, R) is O(S.rk(X,C)).

Proof: For any assignment A on Y considered by nFC2m

(the variable order is assumed static and induced by Y), we
have A ∈onci∈CY

ri[ci ∩ Y] (theorem 1). Moreover, at
each level of the search tree, we have {ci ∈ C ′|ci ∩ Y 6=
∅} ⊂ CY with C ′ a cover of X . Hence,A ∈onci∈C′|ci∩Y 6=∅
ri[ci∩Y]. So, at each level, the number of nodes is bounded
by

∏
ci∈C′|ci∩Y 6=∅ |ri| ≤

∏
ci∈C′ |ri| ≤ r|C

′|. Hence, the

total number of nodes is bounded by n.r|C
′|. Therefore, as

the local cost for each node is O(S), nFC2m has a complex-
ity in O(S.r|C

′|). If, now we consider a minimum cover,
this complexity becomes O(S.rk(X,C)). �

We can note that nFC2m exploits naturally a minimum
cover of C without having to achieve an expensive compu-
tation of this cover (finding a minimum cover is NP-Hard
[5]). This result can be extended to any other algorithm
which maintains a filtering at least as powerful as nFC2m’s
one. For instance, it still holds for nFCi (i ≥ 2) and MAC.

Let us consider again the example in Figure 1. A mini-
mum cover of this problem is the set {c1, c2}. Let us con-
sider the join of r1 and r2 and the search tree of nFC2m

according to the static variable order (x, y, z, u, v, w). One
can observe that each tuple computed by nFC2m is in the
join of r1 and r2. In other words, the cost of nFC2m is less
than one of the join r1 on r2.

Now, if we generalize this example by adding any num-
ber of variables in c1 and c2, the classical complexity is
O(S.mn) which is exponential while it is O(S.r2) (poly-
nomial) using nFC2m with the new evaluation. Moreover,
the theoretical result given by the theorem 3 surprisingly
contradicts empirical evaluations. Indeed, generally more a
problem is constrained, more it is easy to solve (excepted
for under-constrained problems). So, the bounds given by
theorems 2 and 3 with S.rk(X,C) ≤ S.r|C| indicate that less
the problem is constrained, less its complexity is high. But,

observing the example, it is more efficient to check also
constraint c3 during the search on c1 ∪ c2 (the whole prob-
lem), than to check only c1 and c2 because the dead-ends
will be found earlier.

3 Complexity of Tree-Decomposition Meth-
ods Revisited

For lack of place, we do not give here neither details,
nor proofs for results presented in this section. So inter-
ested readers must see [8]. The decomposition of constraint
networks was introduced in [4] with Tree-Clustering (TC).
TC and other methods based on this approach [3] rely on
the notion of tree-decomposition of graphs [12]. Neverthe-
less, given a non-binary CSP, and so a constraint hyper-
graph, we can exploit it by considering its primal graph.
Let H = (X, C) be a hypergraph, the primal graph of H
is the graph G = (X, AC) where AC = {{x, y} ⊂ X :
∃ci ∈ C s.t. {x, y} ⊂ ci}. So, given a CSP, we consider its
primal graph to define an associated tree-decomposition of
the CSP.

Assume that we have a tree-decomposition of width w
for the constraint network. Initially, TC was defined on
binary CSPs. Nevertheless, extensions have been defined
for non-binary CSPs (see [3]). Here we give a particular
generalization of TC. Given a tree-decomposition (E, T)
associated to a CSP where E = {E1, E2, . . . EN} is the
set of clusters, the subproblem associated to a cluster Ei

is defined by the same set of variables Ei but considers
now included constraints and constraints which intersect
Ei. Formally, the set of constraint for a cluster Ei is
CEi = {cj ∈ C : cj ∩Ei 6= ∅}. The relations associated to
these constraints are REi = {rj [cj ∩Ei] : cj ∈ CEi}. Each
subproblem (cluster) is solved independently and after this
step, TC solves the whole CSP as an acyclic CSP. The cost
of the first step is bounded by the cost of finding all the solu-
tions of subproblems. This complexity is generally defined
by O(S.mw+1), since the maximal size of clusters is w + 1
assuming that the cost for enumerating solutions on clusters
is O(S.mw+1). Moreover, the maximal number of solutions
in each cluster is also bounded by O(mw+1), and then, the
cost of the last step is also bounded by O(S.mw+1).

Theorem 3 allows us to propose another bound, assum-
ing that we use a procedure as nFC2m for solving each
cluster. The cost of solving a cluster Ei is now O(Si.r

ki),
where Si is the size of the subproblem associated to Ei,
while ki = k(Ei,CEi

) (i.e. the parameter associated to a
minimum cover of Ei). Note that the size of the set of
solutions in Ei is bounded by O(rki). So the total cost
for solving the whole decomposed CSP is O(S.rk) where
k = max{ki : i ∈ I}. So we have now:

Theorem 4 The time complexity of Tree-Decomposition

methods for solving CSPs is O(S.rk).

[6] provides a theoretical comparison of the well known
structural methods for solving CSP and a hierarchy on these
methods related to their power w.r.t. the classes of prob-
lems they can solve in polynomial time. [6] states that
the hypertree decomposition strongly generalizes the other
methods like Tree-Clustering. This notion of hypertree de-
composition can be seen as a generalization of one of tree-
decomposition.

A hypertree-decomposition associates a tree-
decomposition with a covering by hyperedges of each
cluster. The aim is to reduce the size of the covering sets
(the number of covering hyperedges for each cluster). Thus,
a CSP instance can be solved in O(S.rh) with h the width
of a hypertree-decomposition of its constraint hypergraph
(the method, proposed in [6], consists in computing an
acyclic equivalent CSP by solving each cluster thanks to
relation joins and then in solving classically the obtained
acyclic CSP). Moreover, there exists a class of problems
whose hypertreewidth is bounded while their treewidth is
not. According to this, hypertree-decomposition strongly
generalizes Tree-Clustering.

Using the results of section 2, we can prove that if
a CSP can be solved in O(S.rh) thanks to a hypertree-
decomposition HD of its hypergraph, with h its width,
it can also be solved with the same time complexity
bound using TC on one tree-decomposition induced by the
hypertree-decomposition and denoted TDHD. Then, since
HD defines a cover of the clusters of hyperedges whose
size is at most h, a minimum cover of each cluster in TDHD

is also at most h.

Theorem 5 k ≤ h with k = max{k(Ei,CEi
) : i ∈ I ′}.

Corollary 1 The TC time complexity for solving P is
O(S.rh).

This result proves that TC performs at least as good as
hypertree-decomposition.

4 Conclusion

Firstly, we have shown that the complexity of algorithms
as nFC2 (backtracking + filtering) can be expressed by
O(S.rk), with r the maximum size of relations associated
to the constraints, k a structural parameter of the CSP
and S the size of the CSP. Previously, this complexity
was essentially expressed by O(S.mn) with m the size
of domains, and n the number of variables. This result
shows that the complexity of structural methods using
tree-decomposition for solving CSPs is finally at the same
level than hypertree-decomposition. This result gives a
theoretical explanation of the experimental results observed

by the community. Among the different continuations
of this work, one of the most interesting should be to
analyze the possible modification of the hierarchy between
decomposition methods introduced in [6]. Another could
be to improve the practical efficiency of decomposition
methods by computing better tree-decompositions of
constraint networks, considering also the quality of the
associated hypertree-decomposition.

Acknowledgments This work is supported by an ANR
grant (STAL-DEC-OPT project).

References

[1] C. Bessière, P. Meseguer, E. C. Freuder, and J. Larrosa. On
forward checking for non-binary constraint satisfaction. Ar-
tificial Intelligence, 141:205–224, 2002.

[2] S. de Givry, T. Schiex, and G. Verfaillie. Exploiting Tree De-
composition and Soft Local Consistency in Weighted CSP.
In Proc. of AAAI, pages 22–27, 2006.

[3] R. Dechter. Constraint processing. Morgan Kaufmann Pub-
lishers, 2003.

[4] R. Dechter and J. Pearl. Tree-Clustering for Constraint Net-
works. Artificial Intelligence, 38:353–366, 1989.

[5] M. Garey and D. Johnson. Computer and Intractability. In
Freeman, 1979.

[6] G. Gottlob, N. Leone, and F. Scarcello. A Comparison of
Structural CSP Decomposition Methods. Artificial Intelli-
gence, 124:343–282, 2000.

[7] R. Haralick and G. Elliot. Increasing tree search efficiency
for constraint satisfaction problems. Artificial Intelligence,
14:263–313, 1980.

[8] P. Jégou, S. Ndiaye, and C. Terrioux. A new Evaluation of
Forward Checking and its Consequences on Efficiency of
Tools for Decomposition of CSPs. Technical report, LSIS,
2008.

[9] P. Jégou and C. Terrioux. Hybrid backtracking bounded by
tree-decomposition of constraint networks. Artificial Intelli-
gence, 146:43–75, 2003.

[10] P. Jégou and C. Terrioux. Decomposition and good record-
ing for solving Max-CSPs. In Proc. of ECAI, pages 196–
200, 2004.

[11] R. Marinescu and R. Dechter. Dynamic Orderings for
AND/OR Branch-and-Bound Search in Graphical Models.
In Proc. of ECAI, pages 138–142, 2006.

[12] N. Robertson and P. Seymour. Graph minors II: Algorithmic
aspects of treewidth. Algorithms, 7:309–322, 1986.

[13] D. Sabin and E. Freuder. Contradicting Conventional Wis-
dom in Constraint Satisfaction. In Proc. of ECAI, pages
125–129, 1994.

[14] C. Terrioux and P. Jégou. Bounded backtracking for the val-
ued constraint satisfaction problems. In Proc. of CP, pages
709–723, 2003.

