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Abstract

It was shown that constraint satisfaction problems
(CSPs) with a low width can be solved efficiently by struc-
tural methods. However, these methods often present an
important drawback: they generally require a large amount
of memory space, what makes their use difficult or impos-
sible. For instance, the BTD method solves efficiently diffi-
cult instances thanks to the recording of goods and nogoods.
As this recording may require an exponential memory size,
the exploitation of a compact data structure is crucial. In
this paper, we propose to store (no)goods in Binary Deci-
sion Diagrams (BDD). BDDs are data structures which ef-
ficiently represent informations in a compact and canonical
form. Finally, we assess the practical interest of this trade-
off which allows to save space memory and consequently to
solve problems that cannot be solved without BDDs.

1 Introduction

The CSP formalism (Constraint Satisfaction Problem)
offers a powerful framework for representing and solv-
ing efficiently many problems. Modeling a problem as a
CSP consists in defining a set X of variables x1, x2, . . . xn,
which must be assigned in their respective finite domain, by
satisfying a set C of constraints which express restrictions
between the different possible assignments. A solution is
an assignment of every variable which satisfies all the con-
straints. Determining if a solution exists is a NP-complete
problem.

CSPs are usually solved by backtracking search. This
approach, often efficient in practice, has an exponential the-
oretical time complexity in O(e.dn) for an instance having
n variables and e constraints and whose largest domain has
d values. Several works have been developed, in order to

provide better theoretical complexity bounds according to
particular features of the instance. The best known com-
plexity bounds are given by the ”tree-width” of a CSP (often
denoted w). This parameter is related to some topological
properties of the constraint graph which represents the in-
teractions between variables via the constraints. It leads to
a time complexity in O(n.dw+1). This bound is reached by
several structural methods like Tree-Clustering [9] (see [11]
for a survey and a theoretical comparison of these methods).
These methods rely on the notion of tree-decomposition of
the constraint graph. They aim to cluster variables such
that the cluster arrangement is a tree. Depending on the
instances, we can expect a significant gain w.r.t. enumer-
ative approaches. Yet, the space complexity, often linear
for enumerative methods, may make such an approach un-
usable in practice. It can be reduced to O(n.s.ds) with s
the size of the largest minimal separators of the graph [8].
Such a space complexity is an important drawback which
surely explains why most of performed works remains the-
oretical. Indeed, except [13, 10], no practical results have
been provided. Even for implemented methods, the amount
of required memory may be problematic. For instance, the
BTD method (for Backtracking with Tree-Decomposition
[13]), which records structural goods and nogoods in hash
tables, requires sometimes more memory than available for
solving some instances. A priori, this memory problem is
even more delicate for optimization problems modeled as
Valued CSPs (VCSPs [19]). In fact, solving a VCSP of-
ten requires to explore a larger part of the search space (the
problem is NP-Hard and is usually solved thanks to branch
and bound algorithms). Hence, a structural method like
BTD [23] may produce and record a lot of goods, what may
make the method unusable in practice if we do not exploit a
relevant data structure for storing the recorded goods.

For both CSP and VCSP formalisms, the use of a com-
pact data structure for storing (no)goods is crucial. A solu-
tion may consist in using Binary Decision Diagram (BDD)
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[4]. BDDs are data structures which efficiently represent in-
formations in a compact and canonical form. They are used
in many areas, (e.g. circuit design or combinatorial logic).
This approach was already used previously in solving VCSP
with an extension of BTD [18]. However, the presented re-
sults did not provide any information about the interest of
this approach, in particular for structured problems. In this
article, we empirically study the use of BDDs for a method
like BTD. We thus try to better understand their contribu-
tion. We note in particular a very significant profit in space
which makes it possible to solve problems by avoiding the
saturation of the memory. However, the time required for
the management of BDDs results in less interesting runtime.
That leads us to propose orientations of research to optimize
the use of BDDs within this framework.

This paper is organized as follows. Section 2 provides
the basic notions about (V)CSPs and methods based on the
tree-decomposition notion. In section 3, we remind of the
BDD framework and we explain how BDDs are exploited
in BTD. Then, section 4 provides some empirical results to
assess the practical interest of our propositions. In section
5, we conclude and discuss about related works.

2 Preliminaries

A constraint satisfaction problem (CSP) is defined by a
tuple (X, D,C). X is a set {x1, . . . , xn} of n variables.
Each variable xi takes its values in a finite domain from D
(d denotes the size of the largest domain). The variables
are subject to the constraints from C. Given an instance
(X, D,C), the CSP problem consists in determining if there
is an assignment of each variable which satisfies each con-
straint. This problem is NP-complete. In this paper, without
loss of generality, we only consider binary constraints (i.e.
constraints which involve two variables). So, the structure
of a CSP can be represented by the graph (X, C), called the
constraint graph. The vertices of this graph are the vari-
ables of X and an edge joins two vertices if the correspond-
ing variables share a constraint.

Tree-Clustering [9] is the basic method for solving CSPs
thanks to the structure of its constraint graph. It is based
on the notion of tree-decomposition of graphs [17]. Let
G = (X, C) be a graph, a tree-decomposition of G is a
pair (E, T ) where T = (I, F ) is a tree with nodes I and
edges F and E = {Ei : i ∈ I} a family of subsets of X ,
such that each subset (called cluster) Ei corresponds to a
node of T and verifies: (1) ∪i∈IEi = X , (2) for each edge
{x, y} ∈ C, there exists i ∈ I with {x, y} ⊆ Ei and (3)
for all i, j, k ∈ I , if k is in a path from i to j in T , then
Ei ∩ Ej ⊆ Ek. The width of a tree-decomposition (E, T )
is equal to maxi∈I |Ei| − 1. The tree-width w of G is the
minimal width over all the tree-decompositions of G.

The time complexity of Tree-Clustering is O(n.dw+1)

while its space complexity can be reduced to O(n.s.ds)
with s the size of the largest minimal separators (i.e. in-
tersection between clusters) of the graph [8]. Note that
Tree-Clustering does not provide interesting results in prac-
tical cases. So, an alternative approach, called BTD and
also based on tree-decomposition of graphs, was proposed
in [13]. It seems to provide empirical results among the best
ones obtained by structural methods.

The BTD method proceeds by an enumerative search
guided by a pre-established partial order induced by a tree-
decomposition of the constraint-network. So, the first step
of BTD consists in computing a tree-decomposition from
which a partial variable ordering is induced. This order-
ing allows BTD to exploit some structural properties of the
graph and so to prune some parts of the search tree, what
distinguishes BTD from other enumerative methods. More
precisely, such a variable ordering is produced thanks to
a depth-first traversal of the cluster tree. So, BTD begins
with the variables of the root cluster E1. Inside a cluster
Ei, it proceeds classically like any backtracking algorithm
by assigning a value to a variable, checking constraints and
backtracking if a failure occurs. When all the variables of
the cluster Ei are assigned, BTD keeps on the search with
the first son of Ei (if there is one). More generally, let us
consider a son Ej of Ei. Given the current assignment A
on Ei ∩ Ej , BTD checks whether the assignment A corre-
sponds to a structural good or nogood. A structural good
(respectively nogood) of Ei with respect to Ej is a con-
sistent assignment A on the separator Ei ∩ Ej such that
there exists (resp. does not exist) a consistent extension of
A on Desc(Ej). Desc(Ej) denotes the variables which
belong to the descent of the cluster Ei rooted in Ej . If A
corresponds to a good, we already know that the assign-
ment A can be consistently extended on Desc(Ej) and so
BTD does not solve again the subproblem corresponding
to Desc(Ej). It keeps on the search with the next clus-
ter according to the considered depth-first traversal of the
root cluster (what is called a forward-jump, by analogy with
backjump). In case A corresponds to a nogood, we al-
ready know that there exists no consistent extension of A
on Desc(Ej). Then BTD does not solve again the subprob-
lem corresponding to Desc(Ej) and a backtrack occurs. Fi-
nally, if A corresponds neither to a good nor to a nogood,
BTD solves the subproblem rooted in Ej . If BTD succeeds
in extending consistently A on Desc(Ej), A is recorded as
a new structural good on Ei ∩ Ej . Otherwise, A is mem-
orized as a new structural nogood. Note that a structural
nogood is a particular kind of nogood justified by structural
properties of the constraint network.

For optimization problems, a generalization of the BTD
method has been proposed [23]. It proceeds like in the CSP
case except that it relies on a branch and bound algorithm
(instead of backtracking algorithm) and that it records val-
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ued goods (instead of goods and nogoods). In fact, the val-
ued goods correspond to an extension of both goods and no-
goods. A valued structural good of Ei w.r.t. Ej (with Ej a
son of Ei) is a pair (A, v) with A an assignment on Ei∩Ej

and v the optimal cost of the subproblem induced by A and
rooted in Ej . Its computation is close to one of a structural
nogood since finding an optimal assignment requires to ex-
plore exhaustively the corresponding search subspace. In
contrast, regarding its exploitation, depending on its associ-
ated cost, it can lead to a backtrack (like nogoods) or to a
forward-jump (like goods).

Recording and exploiting (no)goods allow BTD to prune
some redundant parts of the search space and so to of-
fer an interesting theoretical time complexity bound in
O(n.dw+1) while classical enumerative algorithms have a
time complexity in O(e.dn) (w + 1 ≤ n). Unfortunately,
the space complexity, generally linear for classical enumer-
ative algorithms, is in O(n.s.ds), what is the main draw-
back of structural methods like BTD. Due to the amount
of required memory, few structural methods have been im-
plemented and used successfully. The experimental results
about BTD given in [13, 14] have been obtained by using an
hash table for each separator. However, this solution does
not allow to solve any problem since, in some cases, the
amount of available memory is not sufficient. Hence, the
storage in goods and nogoods in compact data structure like
BDDs may reduce the amount of required memory.

3 Goods and nogoods stored in BDDs

3.1 ROBDDs for partial assignments

In the framework of BDDs, Reduced Ordered Binary
Decision Diagrams (ROBDD [4, 5]) are commonly ex-
ploited. ROBDDs aim to represent boolean functions under
the shape of oriented graphs without circuit. ROBDDs of-
fer a powerful setting for solving boolean equation systems
or for the treatment of various operations on boolean func-
tions. More generally, they make it possible to represent
sets in a concise way, such as for example the sets of as-
signments. We recall here their principles and mechanisms
of construction (see [1, 4, 3, 5, 15] for more details).

Given a boolean formula F and its set X of variables, we
consider a total order (x1, . . . xn) on X . The decision tree
associated to F is a labeled path to nodes representing all
interpretations of F . Internal nodes are labeled by elements
of X , while leaves or terminal nodes are labeled by 0 or 1.
These labels are noted var(s) for each node s compatible
with the order on X: a node of the ith level in the graph is
labeled var(s) = xi, the root is labeled x1. The internal
nodes s possess two children corresponding to the interpre-
tations of var(s): the left child lc(s) (var(s) is interpreted
to 0) and the right child rc(s) (var(s) is interpreted to 1).

Figure 1. Associated OBDD (a) to the func-
tion defined by the formula (x ⇔ y) ∧ (z ⇔ t)
according to the order (x, y, z, t) [4]. The left
edges are in dotted lines, the right edges in
solid lines. Corresponding ROBDD (b).

One calls vertices (s, lc(s)) and (s, rc(s)) respectively the
left vertex and the right vertex. Thus, every maximal path
joining the root to a leaf is equivalent to an interpretation;
it is a model if the label of the leaf is 1 (positive maximal
path) and a counter-model if the label is 0.

The OBDD representing a boolean function F corre-
sponds to a concise expression of the decision tree of F .
It is a directed graph without circuit but can possess cycles.

The OBDD is the smallest graph which satisfies the fol-
lowing properties:

• it contains at most two terminal nodes: one labeled 1
and the other 0; if the represented function is a tautol-
ogy (or a function with no model), the graph is reduced
to a unique node labeled 1 (or 0).

• for any internal node s, var(s) < var(lc(s)) and
var(s) < var(rc(s)), but if var(s) = xi, we do
not have necessarily neither var(lc(s)) = xi+1, nor
var(rc(s)) = xi+1, nor var(lc(s)) = var(rc(s)).

Figure 1 (a) gives an example of an OBDD. Every maxi-
mal path of the OBDD corresponds to a partial instantiation,
restricted to variable labels of nodes of the path. If the label
of the last node is 1 (or 0), all the extensions of this inter-
pretation are models (or counter-models) of the represented
function. Conversely, to any interpretation corresponds a
unique maximal path in the OBDD. We will note Ic the in-
terpretation associated to the maximal path c. The consis-
tency check of a function F is achieved by verifying if the
OBDD is reduced to the terminal node 0. To verify if an in-
terpretation is a model, it is sufficient to browse the OBDD
from the root while achieving the branching corresponding
to the interpretation. The time complexity is linear in the
number of variables. A model can be obtained by searching
a positive maximal path. Its complexity is O(|BF |) where
|BF | is the size of the OBDD associated to F .

The size of a OBDD can be significantly reduced us-
ing other reductions in order to obtain a Reduced OBDD
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(ROBDD). The reduction of the graph associated to a for-
mula F relies on an elimination of redundant nodes. This
reduction does not modify the satisfiability of the encoded
formula, but allows to reduce considerably the OBDD size
compared to the decision tree. The elimination of redun-
dancy in the graph representing the function is defined by
these three transformations:

1. duplicated terminal node elimination: all terminal
nodes labeled 0 (or 1) are merged in only one node
labeled 0 (or 1).

2. duplicated internal node elimination: if two internal
nodes u and v are such that var(u) = var(v), lc(u) =
lc(v) and rc(u) = rc(v), then these nodes are merged.

3. redundant internal node elimination: an internal node
u verifying lc(u) = rc(u) is eliminated, the retractable
incident edge of u being directed towards lc(u).

The graph representing a boolean function is reduced if it
contains no internal node u such that lc(u) = rc(u), and if
it does not contain two distinct internal nodes u and v such
that the sub-graphs rooted by u and v are isomorphic (i.e.
they represent a same function). A ROBDD is a reduced
graph representing a boolean function. Figure 1 (b) gives
an example of ROBDD. The reduced graphs possess some
properties [4]:

• For every reduced graph, for every node u of this
graph, the sub-graph rooted by u is a reduced graph.

• Given a boolean function F and an order on the vari-
ables of F , there is a unique (up to isomorphism)
reduced graph representing this function; it is the
ROBDD representing F . Any other graph represent-
ing F contains more nodes.

The ROBDD reduction depends on the variable ordering.
The order impact on the size of the ROBDD can be signif-
icant [5]. For example, for boolean functions representing
the addition of integer numbers, the size of the ROBDD can
grow linear to exponential. Furthermore, there are some
pathological cases, as boolean functions representing the
multiplication of integer numbers, for some order, the size
of the ROBDD is exponential.

To build the ROBDD associated to a function F writing
itself by f < op > g where < op > is an boolean operator,
one has to compose the sub-graphs Bf and Bg associated
to f and g. The time complexity is in O(|Bf |.|Bg|) where
|Bf | and |Bg| denote respectively the number of ROBDDs
nodes for Bf and Bg . Especially, if F is a function having
a variable x in its scope, the computation of the ROBDD
encoding the restriction of F to x, F < and > x (case
where x = 1) will be linear in the size of the ROBDD.

3.2 (Valued) (No)Goods stored in BDDs

There exist several extensions of BDD (e.g. FDD, ADD,
BED, MTBDD, BMD, KMDD or BGD), each one depend-
ing on its application area. In our approach, we exploit the
Multi-valued Decision Diagram (MDD [21]) and Algebraic
Decision Diagram (ADD [2]) extensions, respectively for
solving CSPs and VCSPs. These two extensions represent
discrete functions whose input variables are binary for ADD
and multi-valued for MDD in the form of rooted, directed,
ordered acyclic graphs. Each internal node corresponds to
a binary variable for ADD and multi-valued variable for
MDD and each leaf node represents one value of the func-
tion. Each internal node has d edges such that each edge
corresponds to one of the d possible values for a variable.

Solving a (V)CSP instance thanks to the BTD method
often requires to record a large amount of informations
(namely (no)goods). The (no)goods allow to save signifi-
cantly time but consume a great quantity of memory. In fact,
currently, for the empirical results presented in [13, 14, 12],
(no)goods are vectors of values stored in hash tables. Pre-
cisely, we use an hash table per separator for storing goods
and another one for nogoods. When we use hash tables, we
often memorize redundant informations. Indeed, in most
cases, several assignments may contain a same subassign-
ment. So, we clearly see the interest to use a compact and
efficient structure which makes it possible to reduce the size
of the recorded data. Our choice is related to two extensions
of BDD to finite domains, namely MDD [21] for CSP and
ADD [2] for VCSP. Each hash table is replaced by a MDD
or a ADD.

Now, if we consider a VCSP, to memorize a valued good
in an ADD, it is enough to represent the value of the cor-
responding assignment in the terminal node labeled by that
value.

We exploit the package extracted from VIS1. This pack-
age has been developed at the Colorado University. It also
uses the CUDD package2. We note that, in most of the
applications for efficiency questions, the multi-valued vari-
able is built with sets of ROBDDs in the internal structures.
Then, each one is decomposed in a set of binary variables.
For example, in figure 2, we represent x ∈ {0, 1, 2} by
two binary variables. More generally, we decompose x in
log2(|Dx|) binary variables (Dx indicates the field of val-
ues of x). In this manner, the set of the values taken by
a multi-valued variable is built on a ROBDD. Of course,
some packages implement directly MDDs without passing
by ROBDD structure [16], but, unfortunately, they gener-
ally suffer from the problem of optimization [20].

In order to obtain good results, the variables are or-

1Verification Interacting with Synthesis. http://vlsi.colorado.edu/˜vis
2Colorado University Decision Diagrams:

http://vlsi.colorado.edu/˜fabio
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Figure 2. Mapping from a MDD to a ROBDD.

dered according to the variable ordering induced by the tree-
decomposition. This order is static. Indeed, the results with
dynamic orders for all binary variables which optimize the
required memory space do not show a great usefulness: we
have observed that the saved amount of memory space with
a dynamic order does not exceed 15% w.r.t. a static order,
while we may spend 40% of additional time.

Finally, the check of a (no)good associated to s variables
can be performed in O(s ∗ log2(d)). The log2(d) factor
comes from the decomposition of the multi-valued variables
in binary variables. The most important problem here is
related to the addition of a new (no)good. Indeed, the time
complexity is then O(|MDD|.|NG|) where |MDD| and
|NG| denote respectively the size of the current MDD and
the size of the (no)good, precisely |NG| = s ∗ log2(d).

4 Experimental results

4.1 Experimental protocol

Applying a structural method on an instance generally
assumes that this instance presents some particular topo-
logical features. So, our study is first performed on in-
stances having a structure which can be exploited by struc-
tural methods like Tree-Clustering or BTD. In practice, the
two current ways of recording (no)goods are compared here
on random partial structured CSPs and on real-world VCSP
instances in order to point up the best one w.r.t. the (V)CSP
solving runtime and the required amount of memory space.
For building a random partial structured instance of a class
(n, d, w, t, s, nc, p), the first step consists in producing ran-
domly a structured CSP according to the model described in
[13]. This structured instance consists of n variables having
d values in their domain. Its constraint graph is a clique tree
with nc cliques whose size is at most w and whose separa-
tor size does not exceed s. Each constraint forbids t tuples.
Then, the second step removes randomly p% edges from the
structured instance. The experimentations are performed on
a Linux-based PC with a Pentium IV 2.8GHz and 512MB of
memory. For each considered random class, the presented

results are the average on 50 instances. We limit the run-
time to 30 minutes. Above, the solver is stopped and the in-
volved instance is considered as unsolved. In the following
tables, the symbol > denotes that at least one instance can-
not be solved within 30 minutes and so the mean runtime is
greater than the provided value. The letter M means that at
least one instance cannot be solved because it requires more
than 512MB of memory. For valued CSP, we experiment
on some real-world instances, namely radio-link frequency
assignment problems from the FullRLFAP archive [6]. Of
course, for these instances, the runtime is not limited.

We use MCS [22] to compute a tree-decomposition
since [12] has pointed out that MCS computes relevant
tree-decompositions w.r.t. CSP solving. Given a tree-
decomposition, for CSP instances, we choose as root cluster
the cluster which minimizes the ratio of the expected num-
ber of partial solutions of the cluster over its size. Likewise,
for each cluster, its sons are ordered according this increas-
ing ratio. For VCSP instances, we choose as root cluster
the largest one and the sons are ordered according to the
increasing size of the intersection with their parent cluster.
Inside a cluster, for both CSP and VCSP instances, the unas-
signed variables are ordered thanks to the dom/deg heuristic.
This heuristic chooses as next variable the variable x which
minimizes the ratio number of the remaining values for x
over the degree of x in the constraint graph.

4.2 Experimental results

In this part, we compare two versions of the BTD
method. These two versions differ in the way they store
the (no)goods. On the one hand, the (no)goods are stored
in several hash tables (one per separator). It is the initial
version of BTD [13, 14]. On the other hand, in the ver-
sion proposed here, (no)goods are recorded in MDDs for
CSP and ADDs for VCSP. This comparison only focuses
on the runtime and the required amount of memory space.
In particular, we do not need to consider other data like the
number of visited nodes or the number of performed con-
straint checks. Indeed, the two versions exactly obtain the
same results if they exploit the same heuristics for choosing
the root cluster, the next son cluster or the next variable to
visit. Regarding the required memory space, we assess it by
counting the required memory in MB, and by reporting the
number of recorded values in hash tables, and the number
of binary nodes in the MDDs.

Tables 1 and 2 provide the results obtained on random
partial structured CSPs for a limited separator size and an
unlimited one. One of the main interests of the restriction of
the separator size consists in limiting the amount of required
memory space. Indeed, with smaller separators, the size
of (no)goods and their potential number decrease. With-
out such a limitation, the BTD version based on hash tables
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Table 1. Number of recorded value in hash tables, number of binary nodes in the MDDs, required
memory space in MB for hash tables and MDDs, ratio hash table size in MB / MDD size in MB for
Consistent and Inconsistent instances and runtime in seconds for a separator size limited to 5. For
the class (250,20,20,99,10,25,0.1), one instance cannot be solved within the time limit by the version
based on MDDs. For this class, the reported MDD size and the ratio correspond to the mean over
the 49 solved instances.

Memory Space Time
Instances Size Ratio

(n, d, w, t, s, nc, pr) Hash MDD C I Hash MDD
# values MB # nodes MB

(150,25,15,215,5,15,0.1) 16,168 6.75 6,795 0.11 91.6 43.9 2.30 2.69
(150,25,15,237,5,15,0.2) 22,799 7.64 7,652 0.12 106.9 48.1 1.79 2.38
(150,25,15,257,5,15,0.3) 29,448 9.46 7,412 0.18 137.9 49.6 1.01 1.80
(150,25,15,285,5,15,0.4) 5,418 13.12 3,764 0.06 259.1 177.7 0.40 0.52
(250,20,20,107,5,20,0.1) 47,836 9.11 8,558 0.14 160.8 43.7 10.39 11.70
(250,20,20,117,5,20,0.2) 59,392 10.33 9,516 0.15 200.1 40.5 8.52 10.46
(250,20,20,146,5,20,0.4) 90,180 14.83 8,250 0.13 252.9 73.8 3.81 6.03
(250,20,20,99,10,25,0.1) 1,554,308 25.22 100,696 1.61 27.0 12.2 58.21 >82.36
(250,25,15,230,5,25,0.2) 72,645 12.78 19,472 0.32 81.8 26.3 4.13 6.30
(250,25,15,253,5,25,0.3) 85,627 15.79 13,713 0.22 240.2 43.1 4.00 6.30

turns out sometimes to be unable to solve some instances by
lack of memory space.

Table 1 highlights the great performances of the version
based on MDDs in terms of memory space. MDDs con-
sume at least 15 times less memory space as hash tables.
For some classes of instances, this rate can be greater than
50. Such a result is not surprising because the (no)goods
often share values. According to table 1, the rate ap-
pears to be more important for consistent problems. In-
deed, this gain is mostly explained by the weak number of
recorded (no)goods for such instances. As few (no)goods
are recorded, their storage in MDDs or in hash tables re-
quires little memory space. However, only a tiny part of the
memory used for the storage of the hash tables is devoted to
the storage of the values of these (no)goods and the remain-
ing part (array of pointers) turns out to be very expensive.
Hence, we observe an important rate like one we could ob-
tain by comparing an empty hash table and an empty MDD.
In contrast, for inconsistent problems, the main part of the
memory used for the hash tables is devoted to the storage
of the (no)goods. The rate is then greater than 12. For
such instances, BTD visits fully the search tree and so it
produces and records more (no)goods. Moreover, the more
(no)goods are recorded, the more chance of sharing values
is increased. So, clearly, the representation as MDDs is of-
ten more compact for inconsistent instances than for consis-
tent ones, what is not the case by using hash tables.

Regarding the runtime presented in Table 1, we observe
an inverse behaviour but the rate is less important. The ver-
sion based on MDDs is at most twice as slow than one based

on hash tables due to the cost of the main operations. For
hash tables, the memorization of a new (no)good can be
achieved in linear time (w.r.t. the size of the considered
(no)good) while checking if a (no)good is present in the
hash table requires a time close to linear (w.r.t. the size of
the considered (no)good) as soon as the (no)goods are fairly
distributed in the hash table. For MDDs, we have seen in
section 3 that the addition of a new (no)good is more ex-
pensive since we have multiplicative factor related to the
size of the MDD.

Hence, a direct representation as a MDD (i.e. without a
mapping to BDD) would be more interesting here. How-
ever, if, by so doing, we save a log2(d) factor for the run-
time, we consume more memory with the same factor. We
note that the two versions solve all the instances, except
one instance of the class (250,20,20,99,10,25,0.1) for the
version based on MDDs. This instance cannot be solved
within the time limit.

Given the promising results obtained thanks to MDDs in
terms of required memory space, we assess the behaviour
of the two versions for an unlimited separator size. By
so doing, the size and the number of (no)goods increase
and so we can expect a greater benefit from MDDs. Table
2 presents the observed results. Like previously, the ver-
sion based on MDDs outperforms one based on hash ta-
bles w.r.t. the required memory space while it spends more
time for solving the instances. This additional time cor-
responds again to the cost of managing (no)goods in the
MDDs. Nonetheless, unlike for a limited separator size, the
version based on hash tables does not succeed in solving all
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Table 2. Number of recorded value in hash tables, number of binary nodes in the MDDs, required
memory space in MB for hash tables and MDDs, ratio hash table size in MB / MDD size in MB for
Consistent and Inconsistent instances and runtime in seconds for an unlimited separator size.

Memory Space Time
Instances Size Ratio

(n, d, w, t, s, nc, pr) Hash MDD C I Hash MDD
# values MB # nodes MB

(150,25,15,215,5,15,0.1) 188,510 16.04 90,042 1.44 16.7 8.6 2.57 8.25
(150,25,15,237,5,15,0.2) 340,683 20.58 123,594 1.98 20.1 8.1 2.70 12.65
(150,25,15,257,5,15,0.3) 252,311 23.60 86,961 1.39 35.3 10.1 1.55 8.71
(150,25,15,285,5,15,0.4) M - 55,573 0.89 - - M 3.44
(250,20,20,107,5,20,0.1) 1,898,500 31.82 317,018 5.07 15.9 4.8 18.17 43.30
(250,20,20,117,5,20,0.2) 2,614,225 41.70 274,648 4.39 17.1 6.5 13.67 37.91
(250,20,20,146,5,20,0.4) 463,786 39.54 150,649 2.41 17.1 15.8 2.37 15.64
(250,20,20,99,10,25,0.1) M - 960,291 15.36 - - M 139.00
(250,25,15,230,5,25,0.2) 2,235,933 45.53 356,295 5.70 28.4 9.2 24.90 33.04
(250,25,15,253,5,25,0.3) M - 236,044 3.77 - - M 30.84

the instances due to the expensive amount of required mem-
ory space while the compactness of the MDD representation
allows to solve them.

Finally, we assess the interest of this approach for VC-
SPs on some real-world instances. We observe similar
trends to ones obtained for CSPs. The exploitation of ADDs
allows us to save a great amount of memory space. Indeed,
the version based on ADDs consumes at least 4 times less
memory space. Regarding the runtime, like previously, the
version based on hash tables is faster. However, we can note
that, except for the SUBCELAR0 instance, the difference of
runtime between the two compared versions is significantly
reduced (only about 5%).

To sum up, the compactness of recorded informations
allows to reduce the amount of required memory space but
it requires some additional runtime. Hence, unlike the re-
sults about the memory space, the runtime obtained by us-
ing MDDs is not competitive enough w.r.t. one of the ini-
tial version of BTD based on hash tables. As explained
above, this additional cost results from the construction and
the management of MDDs mapped to BDDs. For VCSP,
the version based on ADDs presents sometimes competi-
tive runtime while reducing significantly the required space
memory. However, in spite of the non-competitive runtime,
the BTD version based on MDDs/ADDs remains interest-
ing. Indeed, it is often possible to spend more time for solv-
ing an instance whereas we cannot consume more mem-
ory than available and, unfortunately, we cannot foresee the
amount of needed memory space.

5 Conclusion and discussion

In this article, we have studied the solving of structured
(V)CSPs. In particular, we have been interested in the
BTD method [13, 23] whose efficiency results from the ex-
ploitation of structural (no)goods learnt and recorded dur-
ing the search. Whereas, in its initial version, BTD rep-
resented (no)goods in extension with hash tables, we have
studied here from a practical viewpoint the interest which
can present a memorization of these informations in a com-
pact structure like BDDs (MDDs and ADDs precisely).

A similar work [18] has already been performed with an
extension of BTD for solving VCSPs. However, the pre-
sented results did not provide any information about the in-
terest of the use of ADD, in particular for structured prob-
lems. Here, our study aims to better assess this interest w.r.t.
the saved amount of memory, but also the runtime.

Regarding the structured CSPs, we have observed a very
significant profit in terms of required memory space. In-
deed, several problems which could not be solved by BTD
with the hash tables are now manageable. More generally,
one observes a systematic profit for space on all the prob-
lems. Regarding the runtime, we have observed a degra-
dation of the efficiency. Indeed, the time devoted to the
management of BDDs, in particular for the addition of
(no)goods, slows down significantly the effectiveness of the
approach. This report leads us to continue this work while
trying to better manage space. In particular, we should pro-
pose an approach which would improve significantly the
runtime. For VCSP, we have observed a slightly differ-
ent trend. Indeed, the BTD version based on ADDs has
sometimes presented competitive runtime on real-world in-

7



Table 3. Number of recorded value in hash tables, number of binary nodes in the ADDs, required
memory space in MB for hash tables and ADDs and runtime in seconds for an unlimited separator
size.

Instances Memory Space Time
Hash ADD Hash ADD

#values MB #nodes MB
SUBCELAR0 176,741 2.35 12,680 0.20 374.7 735.0
SUBCELAR1 482,694 3.10 32,960 0.53 827.0 844.8
SUBCELAR2 1,105,558 6.80 93,431 1.49 766.9 803.3
SUBCELAR3 2,696,358 15.81 241,126 3.86 7,493.9 7,889.5
SUBCELAR4 3,090,263 18.65 264,480 4.23 12,923.1 13,185.0

stances while reducing significantly the required space.
On the level of the other prospects to this work, we will

keep on evaluating this approach on real problems for both
CSPs and VCSPs. Nonetheless, it still seems more inter-
esting to us and more promising to focus our study on op-
timization problems like Valued CSP rather than decision
ones. That is possible by exploiting ADDs [2] like pro-
posed in [18] or used in this study. However, such an exten-
sion could also pass by the design of a new kind of BDDs
better adapted to the solving of optimization problems, or
then, by the adaptation of approaches even more effective
than BDDs such as for example d-DNNF [7].
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