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Abstract. Benzenoids are a subfamily of hydrocarbons (molecules that
are only made of hydrogen and carbon atoms) whose carbon atoms form
hexagons. These molecules are widely studied in theoretical chemistry.
Then, there is a lot of problems relative to this subject, like the benzenoid
generation or the enumeration of all its Kekulé structures (i.e. all valid
configurations of double bonds). In this context, the computation of the
local aromaticity of a given benzenoid is an important problematic since
the aromaticity cannot be measured. Nowadays, computing aromaticity
requires quantum chemistry calculations that are too expensive to be
used on medium to large-sized molecules. But, there exist some methods
related to graph theory which can allow us to compute it. In this article,
we describe how constraint programming can be useful in order to com-
pute the aromaticity of benzenoids. Moreover we show that our method
is much faster than the reference one, namely NICS.

Keywords: Constraint programming · Modeling · Graph variables and
constraints · Chemistry

1 Introduction

Polycyclic aromatic hydrocarbons (PAHs) are hydrocarbons whose carbons are
forming cycles of different sizes. The properties of these molecules depend on
their aromaticity, which is a fundamental concept in chemistry (defined in Sec-
tion 2). Since the discovery of graphene by Andre Geim and Konstantin Novoselov
awarded with the 2010 Nobel price in physics, the interest in the aromaticity
concept vividly revives due to its potential importance in nanoelectronics: aro-
maticity favors electronic flow through molecules, thus aromatic compounds are
of interest for the design of nanoelectronic compounds. Benzenoids are a sub-
family of PAHs made of 6-membered carbon rings (i.e. each cycle of six carbon
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Fig. 1. Two small benzenoids: benzene (a) and anthracene (b) with their graphical
representations (c) and (d).

atoms forms a hexagon). To fill carbon valency, each atom of carbon is bonded
to either two other carbons and one hydrogen or three carbons. For example,
Figures 1(a)-(b) are representing two benzenoids: benzene and anthracene.

PAHs are well-studied in various domains because of their energetic sta-
bility, molecular structures or optical properties. In natural environment, these
molecules are created by the incomplete combustion of carbon contained in com-
bustibles [11]. PAHs are also studied in interstellar chemistry because they are
suspected to be present in interstellar clouds and are believed to act as catalysts
for chemical reactions taking place in space [3]. They are also intensively studied
in other domains like molecular nanoelectronics [24] or organic synthesis [20,13].

In this context, aromaticity is very important. It allows chemists to link the
energetic stability of a molecule to its molecular structure [2]. The stability of a
molecule is a measure of the energy needed to break all chemical bonds and sepa-
rate all the atoms of the molecule apart. Because of aromaticity, some molecules
have an extra term in this energy: breaking them apart requires more energy
than for non aromatic molecules with the same number of atoms. Recently,
some methods using quantum chemistry were established in order to compute
the aromaticity of a given molecule. The most popular one called NICS (Nuclear
Independent Chemical Shift [1]) consists of applying a magnetic field perpendic-
ular to the molecular plane and observe the behavior of its electrons. Analyzing
the response of the electronic density allows chemists to quantify the aromaticity
of the molecule. However, this method has a very high cost and computing the
aromaticity of large molecules can easily take a few days. This large computa-
tional cost is due to the fact that quantum chemistry calculations require many
steps involving iterative procedures before doing the actual calculation of aro-
maticity. To circumvent this drawback, some methods using graph theory were
proposed in the 1990s [19,10,9], which roots can be tracked back to the work of
Hückel in the 1930s [7]. They will be presented in the following parts.

In this paper, we present a new method based on constraint programming in
order to compute the local aromaticity of benzenoids. For example, this method
needs to enumerate particular cycles or count the number of Kekulé structures.
Such tasks can be modeled as CSP instances and solved efficiently thanks to
constraint solvers like Choco [4] while requiring a reduced implementation effort
unlike usual methods from theoretical chemistry or any bespoke methods based
on algorithm engineering.
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Fig. 2. Kekulé structures of anthracene.

The paper is organized as follows. Section 2 recalls some basic notions about
chemistry and constraint programming. Then, Section 3 introduces some existing
methods to compute the aromaticity of benzenoids. In Section 4, we describe
a new method which exploits constraint programming in order to compute the
local aromaticity. In Section 5, we present some experimental results which show
the interest of our approach. Finally, we conclude and give some perspectives in
Section 6.

2 Preliminaries

2.1 Theoretical Chemistry

Benzene (represented in Figure 1(a)) is a molecule made of 6 carbon atoms and 6
hydrogen atoms. Its carbon atoms form a hexagon (also called benzenic cycle or
benzenic ring) and each of them is linked to a hydrogen atom. Benzenoids are a
subfamily of PAHs containing all molecule which can be obtained by aggregating
benzenic rings. For example, Figure 1(b) shows anthracene, which contains three
benzenic rings.

Before going further, we recall some basic definitions of chemistry. Firstly,
the valence of an atom is the number of bonds that it can build with its electrons
(one electron per bond). Carbon and hydrogen atoms have a valence of 4 and 1
respectively. As in a benzenoid, each carbon atom is linked either to two other
carbon atoms and one hydrogen atom or to three other carbon atoms, we can
easily deduce that one of its electrons is not used. These electrons are called π-
electron and can be used to enhance one bond by establishing double bonds (i.e.
a bond involving two electrons per atom). Therefore, each carbon is involved in
a double bond and two single bonds.

A Kekulé structure of a benzenoid is a valid configuration of its double bonds
(i.e. a configuration in which each carbon atom is involved in exactly one double
bond). Figure 2 depicts all the Kekulé structures of anthracene. A benzenoid
can have several Kekulé structures or none (Figure 3(a) depicts an example
of benzenoid which has no Kekulé structure). We denote K(B) the set of all
Kekulé structures of a benzenoid B. Note that the number of Kekulé structures
of a benzenoid can be exponential. Therefore, given a benzenoid, generating
all its Kekulé structures is a hard problem. A benzenoid continually alternates
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Fig. 3. A benzenoid having no Kekulé structure (a), a conjugated circuit in thick line
(b) and an example of redundant circuits (c) and (d).

between its Kekulé structures. This dynamic is at the origin of the notion of
aromaticity. There exist some methods based on graph theory which allow to
compute the resonance energy of a given benzenoid (i.e. the energy induced by
its aromaticity) and these methods require to be able to enumerate all its Kekulé
structures [15].

Aromaticity is a concept built by chemists in the early 20th century in order
to account for the surprising chemical stability of the benzene molecule. In this
molecule, after making a single bond to each of its three neighbors (two carbon
and one hydrogen), each carbon of the hexagonal geometry carries one extra
electron. Electrons tend to form bonds (i.e. pair with another electron) when-
ever possible. Thus, this electron forms a molecular bond with the electron of
a neighboring carbon atom. When all six electrons do the same, the electronic
structure, first proposed by Kekulé [8], is obtained. Yet, two such structures exist
as the pairing for one carbon can be with any of its two neighbors. The inter-
action or resonance of these two coexisting solutions is described by quantum
physics and leads to an over-stabilization energy called aromaticity. This concept
can be extended to fused benzene rings. It turns out that aromatic molecules
often have a characteristic smell and/or taste, hence the name of the concept.

Due to the physical nature of aromaticity, hydrogen atoms do not play any
role in its determination. Thus, it is custom not to take them into account in
connectivity based methods. So, we do not represent them afterwards. Therefore,
a benzenoid can be represented as an undirected graph B = (V,E), with V the
set of vertices and E the set of edges. Every vertex in V represents a carbon atom
and every edge of E represents a bond between the two corresponding carbons.
Moreover, this kind of graph, is connected, planar and bipartite. Figures 1(c)
and (d) represent the graphs related to the molecules of benzene and anthracene.
Finally, we can remark that the set of double bonds of a Kekulé structure is
nothing more than a perfect matching on the benzenoid. As a reminder, a perfect
matching of an undirected graph G = (V,E) is a set of edges E′ ⊆ E such that
∀(e1, e2) ∈ E′ × E′, e1 6= e2, e1 ∩ e2 = ∅ and

⋃
e∈E′

e = V .
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2.2 Constraint Programming

An instance P of the Constraint Satisfaction Problem (CSP) is a triplet (X,D,C).
X = {x1, . . . , xn} is a set of n variables. For each variable xi of X, there exists
an associated domain Dxi ∈ D = {Dx1 , . . . , Dxn} which represents the values
that xi can take. C = {c1, ..., ce} represents a set of e constraints. Constraints
represent the interactions between the variables and describe the allowed com-
binations of values.

Solving a CSP instance P = (X,D,C) amounts to find an assignment of
all the variables of X with a value contained in their associated domain which
satisfies all the constraints of C. Such an assignment is called a solution. This
problem is NP-hard [22].

Many libraries are available to represent and solve CSP instances. In this
paper, we exploit the open-source Java library Choco [4]. This choice is highly
guided by our need to be able to define graph variables and directly apply graph-
related constraints (e.g. connected or cyclic constraints). Graph variables have
as domain a set of graphs defined by a lower bound (a sub-graph called GLB)
and an upper bound (a super-graph called GUB). Moreover, Choco implements
the usual global constraints which make the modeling easier and its solver is
efficient and configurable.

3 Computing Resonance Energy of a Benzenoid

3.1 Definitions

Resonance energy is used to quantify the energy induced by the aromaticity of
a benzenoid. It allows us to get information about its stability (the lower the
energy, the greater the stability). It is possible to compute this energy globally
(on the entire molecule), which is called global aromaticity or locally (by assign-
ing an energy to each hexagon), which is called local aromaticity. The latter is
the most interesting since it allows us to identify the least stable parts of the
molecule. Knowing that chemical reactions are more likely to occur on these
parts, it can be used to predict the location of a reaction.

Randić presented a method which approximates the resonance energy of a
given benzenoid by enumerating all the linearly independent Minimal Conju-
gated Circuits (later called h-MCCs) of each of its Kekulé structures [17]. Before
going further, we have to introduce some definitions:

Definition 1 ([14]). Let B be a benzenoid and K one of its Kekulé structures.
A conjugated circuit C of K is a cycle of B whose edges correspond alternately
to single and double bonds in K. The size of C (noted |C|) is the integer i such
that C contains 4i+ 2 edges.

So, a conjugated circuit is a cycle alternating between single and double
bonds. For example, the cycle in thick line in Figure 3(b) is a conjugated circuit
of size 2.



6 Y. Carissan et al.

Given a benzenoid B and one of its cycles C, we call interior of C the sub-
graph induces by all the edges and vertices which are in the interior of C.

Now, let us introduce the covering of a hexagon by a conjugated circuit:

Definition 2 ([18]). Let B be a benzenoid and K one of its Kekulé structure.
A conjugated circuit C of K covers a hexagon h if and only if h is contained into
the interior of C. Two conjugated circuits are said redundant circuits if they
cover the same hexagon.

For example, let us consider the Kekulé structure in Figure 3(c). The hexagon
h is covered by two conjugated circuits: a first one of size 4 (Figure 3(c)) and
a second one of size 3 (Figure 3(d)). In this case, we pay more attention to the
circuit with the smallest size:

Definition 3 ([18]). Let B be a benzenoid and K one of its Kekulé structure.
C is a minimal conjugated circuit of the hexagon h of B (also called h-MCC)
w.r.t. K if C is one of the covering circuits of h having the smallest size.

So, if we look at Figures 3(c)-(d), the circuit of size 3 is a h-MCC for the
hexagon h.

An energy is given to each of these conjugated circuits depending on their
size (a smaller circuit has a higher energy). Thereafter, we denote Ri the energy
induced by a conjugated circuit of size i. Initially, these values were calculated
using the formula Ri = 1

i2 , but optimized values were established by linear re-
gression: R1 = 0.869, R2 = 0.246, R3 = 0.100 and R4 = 0.041 [16]. These values
make it possible to compute the energy induced for a given Kekulé structure:

Definition 4 ([18]). Let B be a benzenoid and K one of its Kekulé structure.
The energy R(K) induced by the minimal circuits of K is defined as follows:

R(K) =
∑

i∈{1,2,...}

ri(K)×Ri

where ri(K) is the number of minimal circuits of size i in K.

By extension, one defines the energy induced by a benzenoid.

Definition 5 ([18]). Let B be a benzenoid. The energy R(B) induced by B is
defined as follows:

R(B) =
∑

K∈K(B)

R(K)

Finally, one can define the resonance energy of a benzenoid:

Definition 6 ([18]). Let B be a benzenoid. The resonance energy E(B) of
B is defined as follows:

E(B) =
R(B)

|K(B)|
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For example, if we look at the Kekulé structures of anthracene in Figure 2
and consider all their h-MCCs, we can easily see that its resonance energy is
6R1+4R2+2R3

4 = 1.57 if we take the optimized Ri values.
To conclude with this part, we call local aromaticity of a benzenoid B on

the hexagon h the energy obtained by using the previous formula, but with only
looking at conjugated circuits which are minimal circuits covering h.

Definition 7. Let h be a hexagon of a benzenoid B. The local resonance energy
E(B, h) of h is defined as follows:

E(B, h) =

∑
K∈K(B), C a h−MCC w.r.t. K

R|C|

|K(B)|

For example, if we consider Figure 2, the local aromaticity of hexagon h1 of
anthracene is 2R1+R2+R3

4 = 0.521. Indeed, if we look at hexagon h1, we have:

– A circuit of size 1 for Kekulé structure 1 (the circuit covering h1).
– A circuit of size 1 for structure 2 (the same circuit as before).
– A circuit of size 2 for structure 3 (the circuit covering h1 and h2).
– A circuit of size 3 for structure 4 (the circuit covering h1, h2 and h3).

Note that the sum of E(B, h) over all the hexagons h of B is equal to the energy
E(B).

3.2 Computing the Resonance Energy

Lin and Fan [10] proposed a method based on the definition of the resonance
energy. Given a benzenoid B, this method first enumerates all minimal conju-
gated circuits (i.e. computes a h-MCC for all its hexagons h) for each Kekulé
structure. Then, it deduces the energy induced by each minimal conjugated cir-
cuit and adds them up. Finally, it divides the obtained sum by the number of
Kekulé structures to obtain the resonance energy. Such a method was implied
in Randić’s work. The main contribution of Lin and Fan consists in describing
how to compute the h-MCCs. For that, they identify the specific forms of the h-
MCC depending on the location of the double bonds of h. Therefore this method
requires to analyze the double bonds of all the hexagons.

The main drawback of this method is that it requires to generate all the
Kekulé structures of the benzenoid. As the number of Kekulé structures may be
exponential, this method is clearly inefficient in practice and can only be used
for small benzenoids.

To overcome this, Lin [9] proposed another method that is able to compute
all the minimal circuits of a given benzenoid without generating its Kekulé struc-
tures. This method only considers circuits having a size at most 4. So, it provides
an approximation of the resonance energy. Before describing this method, let us
introduce some needed definitions.
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Fig. 4. A cycle C such as M(C) = 2 (a) and an example of computation of the number
of occurrences of a cycle (b).

Definition 8. Let B be a benzenoid and C a cycle of B (with 4i + 2 edges
∀i ∈ N). M(C) is the number of perfect matchings of C and its interior inducing
a minimal circuit for at least one of the hexagons it covers.

For example, let us consider C as being the cycle of size 2 represented in Figure
4(a). C can induce two different conjugated circuits that are clearly minimal and
cover the two hexagons. So we have M(C) = 2.

Definition 9 ([19]). Let B = (V,E) be a benzenoid and C a cycle of B (with
4i+ 2 edges ∀i ∈ N). B[C] is the sub-graph of B induced by C and its interior.

The method presented by Lin [9] relies on the following theorem:

Theorem 1 ([19]). Let B be a benzenoid and C a cycle of B (with 4i+ 2 edges
∀i ∈ N). C is a h-MCC in |K(B − B[C])| ×M(C) Kekulé structures of B where
B − B[C] is the sub-graph induced by the removal of the vertices belonging to C
and its interior.

Let us consider the benzenoid B described in Figure 4(b) and the cycle C
depicted in red thick line. So, B[C] corresponds exactly to all the hexagons in the
interior of C, namely the hexagons depicted in red thick line in the middle figure.
To compute the number of occurrences of C as a h-MCC, we have to compute
the number of perfect matchings of the sub-graph induced by B −B[C]. In this
example, this sub-graph (depicted in red thick solid line in the rightmost figure)
has two perfect matchings. Moreover, we have M(C) = 1 because if we consider
the two Kekulé structures of C which allow it to be a conjugated circuit, there
is only one of them for which C is a minimal circuit for at least one of its
hexagon. So, we can conclude that C appears twice as an h-MCC in all the
Kekulé structures of B.

To sum up, the method presented by Lin [9] (described in Algorithm 1)
takes as input a benzenoid B and a base containing all the cycles of size at most
4 which can induce at least one h-MCC, and another base containing all the
redundant circuits of the same sizes. On Line 1, it generates the set of cycles of
B which belongs to the first base (we denote this set C∗). Then, for each cycle
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Algorithm 1: Compute Resonance Energy

Input: a benzenoid B, a base of h-MCC, a base of redundant circuits
Output: the resonance energy E(B)

1 C∗ ← generate circuits(B, 1, 4)
2 energy ← 0
3 foreach C ∈ C∗ do
4 energy ← energy + R|C| × |K(B −B[C])| ×M(C)
5 foreach (C1, C2) ∈ C∗ × C∗ do
6 if redundant(C1, C2) then
7 size← max(|C1|, |C2|)
8 energy ← energy −Rsize × |K(B −B[C1 ∪ C2])|

9 return energy
|K(B)|

in C∗, it counts how many h-MCC are induced by this cycle in all the Kekulé
structures of B (Lines 3-4), as shown in Figure 4(b). To conclude, it needs to
find all couple of cycles of B which can produce one of the redundant circuits
described in the second base and to take care not to count the cycle having the
largest size (Lines 5-8).

The principal interest of this method is that it does not require to enumerate
all the Kekulé structures of the given benzenoid. The only problem it has to
solve is counting the number of perfect matchings in a graph, what was proved
to be polynomial for benzenoids [6].

4 The Proposed Method

4.1 Preliminary Definitions

In this part, we propose a new method, using constraint programming, which
refines method propose by Lin [9] by computing local aromaticity. Remind that
local aromaticity is more useful than global one since it helps to predict the
parts of molecules where chemical reactions may take place while leading to
global information like global aromaticity. Before going into details, we have to
introduce some definitions. First, we need to handle coordinates:

Definition 10. Let B = (V,E) be a benzenoid. A coordinate function c :
V → Z2 of B is a function that maps a couple of integers (c(v).x, c(v).y) (i.e.
an abscissa and an ordinate in the Cartesian coordinate plane) to each vertex v
of B such that if (v0, v1, v2, v3, v4, v5) are the vertices forming a hexagon (given
clockwise) with v0 the vertex having the largest ordinate, we have:

c(v1) = (c(v0).x+ 1, c(v0).y − 1)
c(v2) = (c(v0).x+ 1, c(v0).y − 2)
c(v3) = (c(v0).x, c(v0).y − 3)
c(v4) = (c(v0).x− 1, c(v0).y − 2)
c(v5) = (c(v0).x− 1, c(v0).y − 1)
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(a) (b)

Fig. 5. Benzene with coordinates (a) and example of interval (b).

Figure 5(a) describes a simple example of coordinates for benzene.
Then, we consider some particular edges:

Definition 11. Let B be a benzenoid and c a coordinate function. An edge e =
(u, v) ∈ E is a vertical edge of B if and only if c(u).x = c(v).x.

The vertical edges of the benzenoid depicted in Figure 5(a) are {1, 2} and
{4, 5}. We now introduce the notion of interval related to vertical edges:

Definition 12. Let B be a benzenoid and c a coordinate function. An interval
I of B is a couple I = (e1, e2) of vertical edges such as:

e1 = (u1, v1) ∈ E
e2 = (u2, v2) ∈ E
c(u1).y = c(u2).y
c(v1).y = c(v2).y

We denote: 
I.x1 = c(u1).x
I.y1 = c(u1).y
I.x2 = c(u2).x
I.y2 = c(v1).y

We denote |I| = |I.x2 − I.x1| the size of I.

To sum up, an interval represents the space contained between two vertical
edges that have the same ordinate. Figure 5(b) shows an example of interval.

4.2 Method Description

In this part, we describe our refined algorithm (see Algorithm 2) based on con-
straint programming. This method takes as input a benzenoid B = (V,E), a
coordinate function c, a base containing all the cycles of size at most 4 that can
induce at least one h-MCC, and another one containing all the couples of cycles
of the first base which can form redundant circuits and it returns an approxima-
tion of the local energy E(B, h) for each hexagon h. With this aim in view, we
first compute the set C∗ of all the cycles of B whose size is at most 6 (Line 1).
Then for each cycle C of C∗ (Line 2), we first identify the cycle by a collection of
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Algorithm 2: Compute Resonance Energy CP

Input: a benzenoid B, a coordinate function c, a base of h-MCC, a base of
redundant circuits

Output: the local resonance energy E(B, h) for each hexagon h of B
1 C∗ ← generate cycles choco(B, 1, 6)
2 foreach C ∈ C∗ do
3 id← identify cycle(C)
4 if in minimal circuits base(id) then
5 foreach Cm ∈ minimal circuits(C) do
6 h← hexagon s.t. Cm is a h-MCC
7 energy[h]← energy[h] + R|Cm| × |K(B −B[Cm])|

8 else if in redudant circuits base(id) then
9 foreach (C1, C2) s.t. C = C1

⋃
C2 and redundant(C1, C2) do

10 h← hexagon s.t. C1 and C2 are redundant over h
11 C′ ← circuit with max size(C1, C2)
12 energy[h]← energy[h]− |K(B −B[C])| ×R|C′|

13 foreach h of B do energy[h]← energy[h]/|K(B)|
14 return energy

intervals (Line 3). Then, if C appears in the base of minimal circuits (Line 4), we
enumerate all of the minimal circuits it induces and for each of them (Line 5), we
add its contribution to the local resonance energy of the hexagon for which it is
minimal (Lines 6-7). Please note that for each cycle C, we treat separately each
of its minimal circuits, so we do not have to consider M(C) anymore. However,
C can also correspond to the contouring of the union of two redundant circuits
over a hexagon h (Line 8-9-10). If so, we have not to take into account the con-
tribution of the largest circuit (Lines 11-12). Finally, we divide the contribution
of each hexagon by the number of Kekulé structures of B (Line 13).

Now, we detail below the main steps of Algorithm 2.

Enumeration of All the Cycles We need to identify all the cycles which
correspond to either a h-MCC of size at most 4 (Line 4 of Algorithm 2) or a
union of two h-MCCs (Line 6). As the union of two h-MCCs of size 4 is at most
of size 6, we have to enumerate all the cycles of size at most 6.

In order to enumerate all the cycles of size at most 6, we model this problem
as a CSP instance P1 = (X1, D1, C1). First, we consider a graph variable xG
whose domain is all the possible graphs between the empty graph and the graph
B. This variable models the cycle we look for. To ensure that the value of this
variable is a cycle, we impose the graph constraint cycle [5] on xG. It remains
to be ensured that the size of this cycle is at most 6. For this, we introduce
a Boolean variable xe per edge e of B. xe is set to 1 if the edge e appears in
the graph depicted by xG, 0 otherwise. Then, we use a collection of channeling
constraints in order to link the variables xe and the variable xG. More precisely,
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for each edge e, we use a channeling constraint between xe and xG which imposes
xe = 1 ⇐⇒ e appears in xG. Finally, we add a global constraint sum over all
the variables xe to impose

∑
xe|e∈E

xe ∈ {6, 10, 14, 18, 22, 26} because we consider

circuits of size at most 6 and a circuit of size i has 4i+ 2 edges. The channeling
and sum constraints make it possible to ensure that the size of the built cycle is
suitable. At the end, we obtain the following instance P1:
X1 = {xG} ∪ {xe|e ∈ E}
D1 = {DxG

} ∪ {Dxe
|e ∈ E} with DxG

= {g|∅ ⊆ g ⊆ B} and Dxe
= {0, 1}

C1 = {cycle(xG),
∑

xe|e∈E
xe ∈ {6, 10, 14, 18, 22, 26}} ∪ {channeling(xe, xG)|e ∈ E}

As Choco implements graph variables and offers a large amount of graph-
related constraints and global constraints, this model can be easily expressed
with Choco.

Counting the Number of Kekulé Structures For each cycle C of C∗, we
need to count the number of Kekulé structures of C (Line 5) or one of B −B[C]
(Lines 5 and 10). In 2001, Rispoli presented a method which can count the
number of Kekulé structures of a benzenoid [21]. The main idea of this method
is to transform the given benzenoid B into a specific matrix whose determinant
is the number of Kekulé structures of B. Unfortunately, although this task is
polynomial, it is too time-consuming. For instance, for a molecule having 19
hexagons and 54 carbon atoms, the method proposed by Rispoli requires more
than 15 minutes while the approach we propose only needs a few seconds. It
seems that the time-expensive step is the computation of the determinant. So,
we consider an alternative solution based again on constraint programming. We
model this problem as a CSP instance P2 = (X2, D2, C2) for which every solution
corresponds to a Kekulé structure. As any benzenoid B = (V,E) is a bipartite
graph, we can divide V into two disjoint sets V1 and V2 such that every edge
of E links a vertex of V1 to one of V2. We consider a variable yv per vertex
v of V1 whose domain contains every vertex w from V2 such that {v, w} ∈ E.
By so doing, if the variable yv is assigned with value w, it means that the edge
{v, w} corresponds to a double bond. By definition of a solution, this ensures
that there is a single double bond for any carbon atom of V1. It remains to ensure
the same property for the vertices of V2. This can be achieved by considering
an all-different constraint involving all the variables of X2. So we obtain the
following instance P2:X2 = {yv|v ∈ V1}

D2 = {Dyv
|v ∈ V1} with Dyv

= {w|w ∈ V2, {v, w} ∈ E}
C2 = {all-different(X2)}

Clearly, the solutions of P2 correspond to the Kekulé structures of B and so to
perfect matchings of B. Regarding the filtering of the all-different constraint,
Regin proposed an efficient algorithm based on the matchings of a particular
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Fig. 6. A cycle and the relations between its intervals (a), and a second example of
redundant circuits (b).

graph, called the value graph [23]. We can then note that, for our instance P2,
the value graph related to the all-different constraint we use is exactly the
graph B. Moreover, any solver enforcing this filtering at each step of the search is
able to count efficiently the number of solutions since only assignments leading to
solutions are explored. Note that another model was proposed [12]. It considers
binary variables and sum global constraints, but does not provide any theoretical
guarantee about the efficiency, unlike the model we propose. Finally, the model
we describe applies for a benzenoid B and can be easily specialized to apply to
any part of B (e.g. any cycle C or induced sub-graph B −B[C]).

Identification of Cycles Once Choco returns a cycle, we need to determine if
this cycle belongs to the base of h-MCCs (Line 4) or one of redundant circuits
(Line 6). For achieving this task, we first represent any cycle by the bias of a
set of intervals and some relations between these intervals. The purpose of these
relations is to represent the distance between two vertical edges of each couple
of intervals (either the two left edges or the two right edges). So, with a set of
intervals with this kind of relations, we are able to build the associated cycle and
vice versa. Figures 6(a) shows an example of such a representation. Accordingly,
we construct each base by describing every cycle (h-MCC or redundant cycle)
identified by Lin [9] by a set of intervals and some relations between them. Now,
each time a new cycle is returned by Choco, we translate it into a set of intervals
and their relations, and check if it belongs to one of the two bases by simply
comparing sets and relations. So, we are able to determine if this cycle can induce
h-MCC or if it can be obtained by the union of redundant circuits.

Furthermore, the second base contains, for each cycle C, a set of a couple of
cycles whose union forms C. This allows us to remove the energy that we have
over-counted due to redundant circuits (Line 10). For example, let us consider
C as being the union of the two circuits represented in Figure 6(b). It can be
obtained either by the union of the cycles of the leftmost figure (of sizes 3 and
4), or by the cycles of the rightmost one (of sizes 3 and 4 too). So, each time
Choco finds C in a benzenoid, we need to remove the energy associated to two
circuits of size 4.
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5 Experimentations

In this part, we provide an experimental comparison between our CP-based
method (denoted CRECP for Compute Resonance Energy CP ) and a refer-
ence method, namely NICS. In our comparison, we do not consider the method
proposed by Lin since this latter is not available and re-implementing it is not
a trivial task. Moreover chemists are more interested by local aromaticity than
global one [1].

About the experimental protocol, the CRECP method was implemented in
Java and compiled with Java SE 1.8. It relies on Choco Solver version 4.2.3. Note
that we used the default settings of Choco. For NICS, we exploited the implemen-
tation provided in a commercial program (see http://gaussian.com/). Both
CRECP and NICS are run on server with 2.20 GHz Intel Xeon Gold processor
and 256 Gb under CentOS Linux release 8.1.1911. We consider as benchmark a
set of 28 benzenoids of various and reasonable size so that NICS can be executed
within a reasonable amount of time. The sources of CRECP and benchmark are
available at https://github.com/AdrienVaret/CPLocalAromaticity.

First, Table 1 shows a comparison between the runtimes of NICS and CRECP
method. Clearly, the CRECP method is much faster than the NICS method. In-
deed, for the considered benzenoids, the runtime of CRECP does not exceed one
minute while NICS may requires several hours. For instance, for the benzenoid
28, NICS takes about 14 hours to compute the local aromaticity, while CRECP
only needs 43 seconds.

Then, an important question from a chemical viewpoint is the quality of
computed values. Remind that, if both approaches give a description of local
aromaticity, CRECP and NICS cannot lead to similar numbers. Indeed, the
circuit approach of CRECP is an attempt to describe the behavior of the elec-
tronic structure of the molecule as a superposition of closed electronic circuits
whereas the NICS approach measures how much the electronic structure would
be distorted by an external magnetic field. However, their trends should coin-
cide. Figure 7 presents the values of the local energy of some hexagons for some
considered benzenoids. Blue and red values are respectively ones produced by
CRECP and NICS. The values of unlabeled hexagons can be deduced by symme-
try. As the values produced by the two methods are incomparable in nature, our
comparison must focus on the ordering that these values induce on the hexagons.
As we can see, both methods lead to similar orderings, what shows that our ap-
proach may constitute an interesting and faster alternative to assess the local
aromaticity of benzenoid.

6 Conclusions and Perspectives

In this paper, we have presented a new method based on constraint program-
ming for computing the local aromaticity of benzenoids. This method refines the
method proposed by Lin by dealing with local aromaticity instead of global one.
In practice, we have shown that it turns to be significantly faster than NICS

http://gaussian.com/
https://github.com/AdrienVaret/CPLocalAromaticity
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Fig. 7. Results of NICS (red/bottom values) and CRECP (blue/top values) methods.

(which is considered as a reference by theoretical chemists) while providing sim-
ilar results.

This work is a preliminary step in which we only consider conjugated circuit
of size at most 4. By so doing, we make an approximation which may be of poor
quality for some classes of benzenoids. An extension of this work consists in
identifying all the h-MCC of size greater than 4 and the corresponding union of
redundant circuits. If this work was done by hand by Lin [9] for h-MCCs of size
at most 4, constraint programming will be of great help here to cope with the
combinatorial explosion. Beyond, many problems about benzenoids in theoretical
chemistry may fall within the scope of constraint programming. For instance,
when no Kekulé structure exists for a given benzenoid, chemists are interested
in finding the structure that comes closest to it, what may be expressed as a
constraint optimization problem.
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15. Randić, M.: Aromaticity of Polycyclic Conjugated Hydrocarbons. Chemical Re-
views 103(9), 3449–3606 (2003). https://doi.org/10.1021/cr9903656
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