
A Microstructure-based Family of
Tractable Classes for CSPs?

Martin C. Cooper1, Philippe Jégou2, and Cyril Terrioux2

1 IRIT
University of Toulouse III
31062 Toulouse, France
cooper@irit.fr

2 Aix-Marseille Université, CNRS, ENSAM, Université de Toulon, LSIS UMR 7296
Avenue Escadrille Normandie-Niemen

13397 Marseille Cedex 20, France
{philippe.jegou, cyril.terrioux}@lsis.org

Abstract. The study of tractable classes is an important issue in Artificial Intelli-
gence, especially in Constraint Satisfaction Problems. In this context, the Broken
Triangle Property (BTP) is a state-of-the-art microstructure-based tractable class
which generalizes well-known and previously-defined tractable classes, notably
the set of instances whose constraint graph is a tree. In this paper, we propose
to extend and to generalize this class using a more general approach based on
a parameter k which is a given constant. To this end, we introduce the k-BTP
property (and the class of instances satisfying this property) such that we have
2-BTP = BTP, and for k > 2, k-BTP is a relaxation of BTP in the sense that
k-BTP ((k + 1)-BTP. Moreover, we show that if k-TW is the class of in-
stances having tree-width bounded by a constant k, then k-TW ((k + 1)-BTP.
Concerning tractability, we show that instances satisfying k-BTP and which are
strong k-consistent are tractable, that is, can be recognized and solved in poly-
nomial time. We also study the relationship between k-BTP and the approach of
Naanaa who proposed a set-theoretical tool, known as the directional rank, to ex-
tend tractable classes in a parameterized way. Finally we propose an experimental
study of 3-BTP which shows the practical interest of this class, particularly w.r.t.
the practical solving of instances satisfying 3-BTP and for other instances, w.r.t.
to backdoors based on this tractable class.

1 Introduction

Finding islands of tractability, generally called tractable classes is an important issue in
Artificial Intelligence, especially in Constraint Satisfaction Problems (CSPs [1]). Many
studies have addressed this issue, from the very beginnings of Artificial Intelligence.
These results are often theoretical in nature with, in certain cases, tractable classes
which can be considered as somewhat artificial. But some tractable classes have ac-
tually been used in practice, such as the classes defined by constraint networks with
bounded tree-width [2, 3]. More recently, the concept of hybrid class has been defined,

? supported by ANR Project ANR-10-BLAN-0210 and EPSRC grant EP/L021226/1.

for example with the class BTP [4]. This class strictly contains both structural tractable
classes (such as tree-structured CSPs) and tractable classes defined by language restric-
tions. One major advantage of this class, in addition to its generalization of already-
known tractable classes, is related to its practical interest. Indeed, instances of this class
can be solved in polynomial time using algorithms, such as MAC (Maintaining Arc-
Consistency [5]) and RFL (Real Full Look-ahead [6]), implemented in efficient solvers
which allows it to be used directly in practice. In addition, it may also help to explain
theoretically the practical efficiency of solvers, even though the theoretical complexity
of the algorithms employed by the solvers is exponential in the worst case.

In this paper, we return to this type of approach by generalizing the tractable class
BTP which is defined by a property excluding certain patterns (called Broken Trian-
gles) in the microstructure graph associated with a binary CSP instance. Very recent
work in this same direction introduced the class ETP [7] which generalizes BTP by
relaxing some of its conditions, since it tolerates some broken triangles which are for-
bidden by BTP . Here we propose a broader generalization called k-BTP which ex-
tends this previous work along two axes. First, in the spirit of ETP , the new class
allows the presence of a larger number of broken triangles, generalizing strictly ETP
(and thus BTP). Secondly, the class k-BTP is parameterized by a constant k, thus pro-
viding a generic version, which may prove of theoretical interest for general values of
k, although in practice we consider the case k = 3 to be of most interest. Thus, while
BTP is defined for sets of three variables and ETP for sets of four variables, k-BTP
is defined on the basis of sets of k + 1 variables where k is a fixed constant. According
to this approach, BTP = 2-BTP while ETP (3-BTP . Thus, this approach makes
it possible to strictly generalize these two classes. Furthermore, k-BTP retains some
of their interesting properties and practical advantages mentioned above. Notably, we
show that classical algorithms such as MAC or RFL can solve instances belonging to
k-BTP in polynomial time, assuming that these instances verify Strong k-Consistency
[8]. Moreover, we highlight the relationships of this class with known structural and
hybrid classes. We show in particular that the class of constraint networks whose tree-
width is bounded by k is strictly included in the class k-BTP . This result gives a first
answer to a question recently asked by M. Vardi about the relationships between ETP
and the tractable class induced by instances of bounded tree-width. We also highlight a
recent but relatively unknown result that was proposed by Naanaa [9] whose relation-
ships with k-BTP we investigate.

In Section 2 we recall the definitions of the tractable classes BTP and ETP . In
Section 3 we define the new class k-BTP and show that instances from this class can
be detected in polynomial time even when the variable order is not known in advance.
Furthermore, we show that, under the extra hypothesis of strong k-consistency, such
instances can be solved in polynomial time, and, in fact, standard algorithms will solve
them. In Section 4 we investigate relationships between k-BTP and several known
tractable classes and in Section 5 we report results of experimental trials on benchmark
problems.

2 Background

Formally, a constraint satisfaction problem also called constraint network is a triple
(X,D,C), where X = {x1, . . . , xn} is a set of n variables, D = (Dx1

, . . . , Dxn
) is a

list of finite domains of values, one per variable, andC = {c1, . . . , ce} is a finite set of e
constraints. Each constraint ci is a pair (S(ci), R(ci)), where S(ci) = {xi1 , . . . , xik} ⊆
X is the scope of ci, and R(ci) ⊆ Dxi1

× · · · ×Dxik
is its compatibility relation. The

arity of ci is |S(ci)|. In this paper, we only deal with the case of binary CSPs, that
is CSPs for which all the constraints are of arity 2. Hence, we will denote by cij the
constraints involving xi and xj . The structure of a constraint network is represented by
a graph, called the constraint graph, whose vertices correspond to variables and edges
to the constraint scopes. An assignment to a subset Y of X is said to be consistent if
it does not violate any constraint whose scope is included in Y . We use the notation
R(cij)[a] to represent the set of values in Dxj

compatible with a ∈ Dxi
. Thus, if there

is a constraint with scope {i, j}, then R(cij)[a] = {b ∈ Dxj
|(a, b) ∈ R(cij)}; if there

is no constraint with scope {i, j}, then, by default,R(cij)[a] = Dxj
. We recall the BTP

property presented in [4].

Definition (BTP) A binary CSP instance (X,D,C) satisfies the Broken Triangle Prop-
erty (BTP) w.r.t. the variable ordering < if, for all triples of variables (xi, xj , xk) s.t.
i < j < k, if (vi, vj) ∈ R(cij), (vi, vk) ∈ R(cik) and (vj , v

′
k) ∈ R(cjk), then

either (vi, v
′
k) ∈ R(cik) or (vj , vk) ∈ R(cjk). If neither of these two tuples exist,

(vi, vj , vk, v
′
k) is called a broken triangle on xk w.r.t. xi and xj .

If there exists at least one broken triangle on xk w.r.t. xi and xj , (xi, xj , xk) is
called a broken triple on xk w.r.t. xi and xj . Let BTP be the set of the instances for
which BTP holds w.r.t. some variable ordering. The BTP property is related to the
compatibility between domain values, which can be graphically visualized (Figure 1)
on the microstructure graph. For example, in Figure 1 (a), there is a broken triangle
on x3 with respect to the variables x1 and x2 since we have (v1, v

′
3) /∈ R(c13) and

(v2, v3) /∈ R(c23) while (v1, v2) ∈ R(c12), (v1, v3) ∈ R(c13) and (v2, v
′
3) ∈ R(c23)

hold. So (x1, x2, x3) is a broken triple on x3 w.r.t. x1 and x2. In contrast, in Figure 1
(b), if one of the two dashed edges (that is binary tuples) appears in the microstructure,
the BTP property holds for all variable orderings.

Very recently, the property BTP has been relaxed to the Extendable-Triple Property
[7] by considering four variables rather than three, and allowing some broken triangles.

Definition (ETP) A binary CSP instance P satisfies the Extendable-Triple Property
(ETP) with respect to the variable ordering < if, and only if, for all subsets of four vari-
ables (xi, xj , xk, xl) such that i < j < k < l, there is at most one broken triple on xl
among (xi, xj , xl), (xi, xk, xl) and (xj , xk, xl).

In this way, a binary CSP can satisfy the ETP property while it contains two broken
triples among (xi, xj , xk, xl), one on xk, and another one on xl, while none is possible
with BTP. So, ETP strictly generalizes BTP since each instance satisfying BTP satis-
fies ETP while the reverse is false. So the class of instances satisfying BTP (denoted

v3

3v’v1

v2
x2

x1 x3

v3

3v’v1

v2
x2

x1 x3

(a) (b)

Fig. 1. A non-BTP instance (a) and a BTP one (b) w.r.t. the order x1 < x2 < x3 if one of the
dashed lines occurs.

BTP) is strictly included in the class of instances satisfying ETP (denoted ETP) as
indicated in Theorem 1 of [7] (BTP (ETP). As in the case of BTP, ETP allows us
to define a tractable class but we need to impose an additional property related to the
level of local consistency which must be verified. While the set of instances satisfy-
ing BTP define a tractable class, the set of instances satisfying ETP must also satisfy
Strong-Path-Consistency [8], that is arc and path-consistency. Nevertheless, such in-
stances have some of the desirable properties of instances satisfying BTP, e.g. they can
be solved in polynomial time by usual algorithms such as MAC or RFL. In the next
section, we introduce a new property which generalizes BTP and ETP.

3 k-BTP: Definition and Properties

In this section, we introduce a new property k-BTP which generalizes previous work
along two axes. First, the property ETP is relaxed in the sense that we allow more
broken triangles than ETP when considering subsets of four variables. But we also in-
troduce a parameter k ≥ 2 allowing us to consider subsets of k + 1 variables, with
k = 2 corresponding to BTP and k = 3 corresponding to a strict generalization of ETP.

Definition (k-BTP) A binary CSP instance P satisfies the property k-BTP for a given
k (2 ≤ k < n) and with respect to the variable ordering< if, and only if, for all subsets
of k+1 variables xi1 , xi2 , . . . xik+1

such that i1 < i2 < . . . < ik−1 < ik < ik+1, there
is at least one triple of variables (xij , xij′ , xik+1

) with 1 ≤ j 6= j′ ≤ k such that there
is no broken triangle on xik+1

w.r.t. xij and xij′ . Let k-BTP be the set of the instances
for which k-BTP holds w.r.t. some variable ordering.

One can observe that 2-BTP is exactly BTP while 3-BTP includes ETP. So, we can
immediately extend Theorem 1 of [7] since BTP (ETP (3-BTP . But above all,
a more general result holds, which is an immediate consequence of the definition of
k-BTP:

Theorem 1 For all k ≥ 2, k-BTP ((k+1)-BTP

To analyze the tractability of k-BTP, we now show that the instances of this class
can be recognized in polynomial time:

Theorem 2 Given a binary CSP instance P = (X,D,C) and a constant k with 2 ≤
k < n, there is a polynomial time algorithm to find a variable ordering < such that P
satisfies k-BTP w.r.t. <, or to determine that no such ordering exists.

Proof: As in the corresponding proofs for BTP [4] and ETP [7], we define a CSP in-
stance Po which is consistent if and only if a possible ordering exists. More precisely,
this instance has a variable oi with domain {1, . . . , n} per variable xi ofX . The value of
oi represents the position of the variable xi in the ordering. We add a constraint involv-
ing {oi1 , oi2 , . . . oik , oik+1

} and imposing the condition oik+1
< max(oi1 , oi2 , . . . oik)

for each k+1-tuple of variables (xi1 , xi2 , . . . xik , xik+1
) such that each triple of vari-

ables (xij , xij′ , xik+1
) with 1 ≤ j 6= j′ ≤ k has at least one broken triangle on xik+1

w.r.t. xij and xij′ .
If Po has a solution, then let < be any total ordering of the variables which is a

completion of the partial ordering given by the values of the variables oi. Then for
each k+1-tuple of variables (xi1 , xi2 , . . . xik , xik+1

), with i1 < . . . < ik+1, we have
at least one triple of variables (xij , xij′ , xik+1

) with 1 ≤ j 6= j′ ≤ k which has
no broken triangle on xik+1

w.r.t. xij and xij′ . Indeed, if this were not the case, then
the constraint oik+1

< max(oi1 , oi2 , . . . oik) would have been imposed, which is in
contradiction with i1 < . . . < ik+1. So, if Po has a solution, we have an ordering
satisfying the k-BTP property. Conversely, let us consider an ordering satisfying the k-
BTP property and assume that Po has no solution. It means that at least one constraint
oik+1

< max(oi1 , oi2 , . . . oik) is violated. So each triple of variables (xij , xij′ , xik+1
)

with 1 ≤ j 6= j′ ≤ k has at least one broken triangle on xik+1
, which is impossible

since this ordering satisfies the k-BTP property. Hence Po has a solution if and only if
P admits an ordering satisfying the k-BTP property.

We now prove that Po can be built and solved in polynomial time. Finding all
the broken triples can be achieved in O(n3.d4) time, while defining the constraints
oik+1

< max(oi1 , oi2 , . . . oik) can be performed in O(nk+1). So Po can be computed
in O(n3.d4 + nk+1). Moreover, Po can be solved in polynomial time by establishing
generalized arc-consistency since its constraints are max-closed [10]. 2

We analyze now the complexity of solving instances of the class k-BTP (k ≥ 3).
The following theorem shows that this is NP-hard since this is true even for the smaller
class ETP ⊂ 3-BTP .

Theorem 3 Deciding whether an instance of the class ETP is satisfiable is NP-complete.

Proof: It sufficies to exhibit a polynomial reduction from binary CSP to its subproblem
ETP . Given any binary CSP instance I , we can construct an equivalent instance I ′ by

1. adding a new variable xij (with domain Dxij
= Dxi

) for each constraint cij
2. adding a new equality constraint between each xi and xij
3. replacing each constraint ({xi, xj}, R) by the constraint ({xij , xj}, R).

Let < be any variable order in I ′ in which all the new variables xij occur after all the
original variables xk. Since each variable is constrained by at most two variables which
precede it in this order, we can easily deduce that I ′ satisfies ETP. It follows from this
polynomial reduction that deciding whether an instance of the class ETP is satisfiable

is NP-complete. 2

To ensure the tractability of the class k-BTP , we consider an additional condition
which is that instances satisfy Strong k-Consistency [8].

Definition (Strong k-Consistency) A binary CSP instance P satisfies i-Consistency if
any consistent assignment to i−1 variables can be extended to a consistent assignment
on any ith variable. A binary CSP instance P satisfies Strong k-Consistency if it satis-
fies i-Consistency for all i such that 1 < i ≤ k.

Strong k-Consistency and k-BTP allow us to define a new tractable class:

Theorem 4 Let P be a binary CSP instance P such that there exists a constant k with
2 ≤ k < n for which P satisfies both Strong k-Consistency and k-BTP w.r.t. the
variable ordering <. Then P is consistent and a solution can be found in polynomial
time.

Proof: We consider an ordering for variable assignments corresponding to the order-
ing <. As the instance satisfies Strong k-Consistency, it satisfies arc-consistency and
thus, no domain is empty and each value has a support in each other domain. Moreover,
as the instance satisfies Strong k-Consistency, we have a consistent assignment on the
k first variables. Now, and more generally, suppose that we have a consistent assign-
ment (u1, u2, . . . ul−1, ul) for the l first variables x1, x2, . . . xl−1, xl in the ordering,
with k ≤ l < n. We show that this assignment can be consistently extended to the
variable xl+1. To show this, we must prove that ∩1≤i≤lR(cil+1)[ui] 6= ∅, that is there
is at least one value in the domain of xl+1 which is compatible with the assignment
(u1, u2, . . . ul−1, ul).

We first prove this for l = k. Consider the consistent assignment (u1, u2, . . . uk−1,
uk) on the k first variables. Consider a k+1th variable xk+1 appearing later in the order-
ing. Since P satisfies k-BTP , there exists at least one triple of variables (xj , xj′ , xk+1)
with 1 ≤ j 6= j′ ≤ k such that there is no broken triangle on xk+1 w.r.t. xj and xj′ . By
Lemma 2.4 given in [4], we have:

(R(cjk+1)[uj] ⊆ R(cj′k+1)[uj′])

or

(R(cj′k+1)[uj′] ⊆ R(cjk+1)[uj])

Without loss of generality, assume that we have R(cjk+1)[uj] ⊆ R(cj′k+1)[uj′] and
j < j′. Since P satisfies Strong k-Consistency, we know that the sub-assignment
of (u1, u2, . . . , uj , . . . uk−1, uk) on k − 1 variables excluding the assignment uj′ for
xj′ can be consistently extended to xk+1. Moreover, we know that R(cjk+1)[uj] ⊆
R(cj′k+1)[uj′] and by arc-consistency, R(cijik+1

)[uj] 6= ∅. Thus, (u1, u2, . . . , uj , . . .,
uj′ , . . . , uk, uk+1) is a consistent assignment to the k + 1 first variables.

Note that this proof holds for all subsets of k + 1 variables such that xk+1 appears
later in the ordering <, not only for the k + 1 first variables x1, x2, . . . xk−1, xk and
xk+1.

Now, we prove the property for l with k < l < n. That is, we show that a consistent
assignment (u1, u2, . . . ul−1, ul) can be extended to a (l + 1)th variable. As induction
hypothesis, we assume that every consistent assignment on l − 1 variables can be ex-
tended to a lth variable, which appears later in the considered ordering <.

Consider a consistent assignment (u1, u2, . . . ul−1, ul) on the l first variables. Let
(ui1 , ui2 , . . . uik) be a sub-assignment on k variables of the assignment (u1, u2, . . . ul−1,
ul). AsP satisfies k-BTP, and as k < l < n, for all subsets of k variables xi1 , xi2 , . . . xik ,
we know that there is a triangle which is not broken in xl+1 w.r.t. xij and xij′ , with
xij and xij′ appearing in the variables xi1 , xi2 , . . . xik . So, without loss of general-
ity, we can consider that i1 ≤ ij < ij′ ≤ ik ≤ l and we have R(cij l+1)[uij] ⊆
R(cij′ l+1)[uij′]. Note that xij and xij′ can be interchanged in the ordering if neces-
sary.

Now, consider the consistent assignment (u1, u2, . . . ul−1, ul) on the l first vari-
ables. By the induction hypothesis, each partial assignment of (u1, u2, . . . ul−1, ul) on
l − 1 variables can be extended to a consistent assignment on xl+1 with a compatible
value ul+1. So, consider the partial assignment on l − 1 variables where uij′ does not
appear. This assignment is for example (u1, u2, . . . uij , . . . ul−1, ul, ul+1). As we have
R(cij l+1)[uij] ⊆ R(cij′ l+1)[uij′], the value uij′ is also compatible with ul+1, and thus
the assignment (u1, u2, . . . uij , . . . uij′ , . . . ul−1, ul, ul+1) on the l+ 1 first variables is
a consistent assignment.
So, every consistent assignment (u1, u2, . . . ul−1, ul) on (x1, x2, . . . xl−1, xl) can be
extended to a (l + 1)th variable, for all l with k < l < n. And more generally, we
have shown that every consistent assignment on l variables, not necessarily consecutive
in the ordering (as are the l first variables), can be extended to a consistent assignment
for every (l + 1)th variable which appears after these l variables in the ordering <
associated with k-BTP. Thus, the induction hypothesis holds for the next step.

Note that this proof also shows that an instance which satisfies Strong k-Consistency
and k-BTP (with respect to the variable ordering <) is consistent.

Finally, given the ordering <, we show that finding a solution can be performed in
polynomial time. Given a consistent assignment (u1, u2, . . . ul) with l < n, finding a
compatible value ul+1 for the next variable xl+1 is feasible by searching in its domain
whose size is at most d. For each value, we need to verify the constraints connecting the
variable xl+1 which can be done in O(el+1) if the next variable xl+1 has el+1 neigh-
bors in the previous variables. Since Σ1≤l<nel+1 = e, the total cost to find a solution
is O((n+ e).d). 2

In the sequel, we denote k-BTP -SkC , the class of instances satisfying k-BTP and
Strong k-Consistency. One of the most interesting properties of the tractable class BTP
is the fact that the instances of this class can be solved in polynomial time using classical
algorithms (such as MAC or RFL) implemented in most solvers. The next property
establishes that a similar result holds for k-BTP -SkC . Indeed, the proof of Theorem 4
allows us to show that algorithms such as BT (Backtracking), MAC and RFL can solve
any instance of the class k-BTP -SkC in polynomial time:

Theorem 5 Given a binary CSP instance P = (X,D,C) and a variable ordering <
such that P satisfies k-BTP w.r.t. <, and is Strongly-k-Consistent, the algorithms BT,
MAC and RFL find a solution of the instance P in polynomial time.

Proof: As the instance satisfies Strong k-Consistency, BT using the ordering < for
the variable assignment can find a consistent assignment on x1, x2, . . . xk−1 and xk.
Moreover, given l, with k < l < n, it is shown in the proof of Theorem 4 that a con-
sistent assignment (u1, u2, . . . ul−1, ul) on x1, x2, . . . xl−1 and xl can be extended to a
(l + 1)th variable, that is on xl+1. To find the assignment of xl+1, we need to look for
a compatible value in its domain. This is feasible in O(el+1.d) assuming that xl+1 has
el+1 neighbors in the previous variables. So, as for the proof of Theorem 4, finding a
solution of P is globally feasible in O((n+ e).d). If we consider now algorithms such
as MAC or RFL, by the same reasoning, we show that their complexity is bounded by
O(n.(n + e).d2) due to the additional cost of the arc-consistency filtering performed
after each variable assignment. 2

In Section 5, we discuss the interest of the class k-BTP from a practical viewpoint.
In the next section, we study the relationships between k-BTP and some tractable
classes.

4 Relationship with some tractable classes

We consider the important tractable class based on the notion of tree-decomposition of
graphs [11].

Definition (Tree-Decomposition) Given a graph G = (X,C), a tree-decomposition
of G is a pair (E, T) with T = (I, F) a tree and E = {Ei : i ∈ I} a family of subsets
of X , such that each subset (called cluster or bag in Graph Theory) Ei is a node of T
and satisfies:

1. ∪i∈IEi = X ,
2. for each edge {x, y} ∈ C, there exists i ∈ I with {x, y} ⊆ Ei, and
3. for all i, j, k ∈ I , if k is in a path from i to j in T , then Ei ∩ Ej ⊆ Ek.

The width of a tree-decomposition (E, T) is equal to maxi∈I |Ei| − 1. The tree-width
w of G is the minimal width over all the tree-decompositions of G.

Let k-TW be the class of binary CSPs instances such that their tree-width is less
than or equal to a constant k. Recently, M. Vardi asked a question about the relationships
between k-TW and ETP or other generalizations of BTP . The next theorems give a
first partial answer to this question.

Theorem 6 k-TW ((k + 1)-BTP .

Proof: We show firstly that k-TW ⊆ (k + 1)-BTP . It is well known that if the tree-
width of a binary instance of CSP is bounded by k, there is an ordering < on variables,
such that for xi ∈ X , |{xj ∈ X : j < i and cji ∈ C}| ≤ k [2]. Now, consider a subset

of k+ 2 variables xi1 , xi2 , . . . xik , xik+1
, xik+2

such that i1 < i2 < . . . < ik−1 < ik <
ik+1 < ik+2. Since the tree-width is bounded by k, we know that there are at most
k constraints cijik+2

∈ C. So, there is at least one triple of variables (xij , xij′ , xik+2
)

with 1 ≤ j 6= j′ ≤ k such that cijik+2
/∈ C or cij′ ik+2

/∈ C. Without loss of generality,
assume that there is no constraint cijik+2

∈ C. Thus, there is no broken triangle on
xik+2

w.r.t. xij and xij′ because all the values of Dxij
are compatible with all the val-

ues of Dxik+2
. So, the considered instance of CSP satisfies the property (k + 1)-BTP .

Finally, it is easy to define instances whose tree-width is strictly greater than k which
satisfy the property (k + 1)-BTP . For example, we can consider an instance of CSP
with domains of size one, with the complete constraint graph, and with one solution.
The tree-width of this instance is n− 1 while it satisfies k-BTP for all possible values
of k. 2

The cost of checking for satisfiability of instances in k-TW has a similar cost to
that of achieving Strong (k+1)-Consistency, that is O(nk+1dk+1). Nevertheless, this
does not allow us to establish a formal inclusion of k-TW in (k+1)-BTP -S(k+1)C
which is tractable while (k+1)-BTP is NP-complete for k ≥ 2 by Theorem 3. But if
we denote k-TW -S(k+1)C, the class of binary CSPs instances belonging to k-TW
and which satisfy Strong (k+1)-Consistency, the next result holds:

Theorem 7 k-TW -S(k+1)C ((k + 1)-BTP -S(k+1)C.

The tractable class BTP has also recently been generalized in a different way to that
proposed in this paper, again by noticing that not all broken triangles need to be forbid-
den [12]. We will show that these two generalizations are orthogonal.

Definition (∀∃-BTP) A binary CSP instance P satisfies the property ∀∃-BTP w.r.t. the
variable ordering < if, and only if, for each pair of variables xi, xk such that i < k,
for all vi ∈ Dxi , ∃vk ∈ Dxk

such that (vi, vk) ∈ R(cik) and for all xj with j < k and
j 6= i, and for all vj ∈ Dxj and for all v′k ∈ Dxk

, (vi, vj , vk, v′k) is not a broken tri-
angle on xk w.r.t. xi and xj . Let ∀∃-BTP be the set of the instances for which ∀∃-BTP
holds w.r.t. some variable ordering.

The class ∀∃-BTP can be solved and recognized in polynomial time [12]. It repre-
sents a tractable class which strictly includes BTP since it does not forbid all broken
triangles. Since k-BTP also does not forbid all broken triangles, it is natural to compare
these two classes. We do this for the special case k = 3, but the same argument applies
for any value of k ≥ 3.

Theorem 8 Even for sets of binary CSP instances which are strong path consistent, the
properties 3-BTP and ∀∃-BTP are incomparable.

Proof: Consider an instanceP ∗ in which each domainDxk
contains a value a∗ such that

for all other variables xi, for all values vi ∈ Dxi
, (vi, a∗) ∈ R(cik). Then P ∗ satisfies

∀∃-BTP since there can be no broken triangle of the form (vi, vj , a
∗, v′k), the value a∗

being compatible with all assignments to all other variables. It is easy to complete such

an instance P ∗ so that it does not satisfy 3-BTP for any variable ordering by adding
broken triangles on domain elements other than a∗.

Consider a 3-variable binary CSP instance P3 with domains {0, 1, 2} and the fol-
lowing three constraints: x1 6= x2, x1 6= x3, x2 6= x3, i.e. a 3-colouring problem
on a complete graph on three vertices. Then P3 is strong path consistent and trivially
satisfies 3-BTP (since there are only 3 variables), but P3 does not satisfy ∀∃-BTP for
any ordering i < j < k of the variables (due to the existence of broken triangles on
assignments (xi, a), (xj , b), (xk, a), (xk, b) for all pairs of distinct colours a, b). 2

We now consider a very general tractable class recently discovered by Naanaa [9]
and which undoubtedly deserves to be better known.

Let E be a finite set and let {Ei}i∈I be a finite family of subsets of E. The family
{Ei}i∈I is said to be independent if and only if for all J ⊂ I ,

⋂
i∈I

Ei ⊂
⋂
j∈J

Ej

(where the notationA ⊂ B means thatA is a proper subset ofB). Observe that {Ei}i∈I
cannot be independent if ∃j 6= j′ ∈ I such that Ej ⊆ Ej′ , since in this case and with
J = I \ {j′} we would have ⋂

i∈I
Ei =

⋂
j∈J

Ej .

Definition (Directional Rank) Let P be a binary CSP instance whose variables are to-
tally ordered by<. The directional rank of variable xm is the size k of the largest consis-
tent assignment (a1, . . . , ak) to a set of variables xi1 , . . . , xik (with i1 < . . . < ik < m)
such that the family of sets {R(cijm)[aj]}j=1,...,k is independent. The directional rank
of P (w.r.t the ordering < of its variables) is the maximum directional rank over all its
variables.

Naanaa has shown that if P is a binary CSP instance which has directional rank
no greater than k and is directional strong (k + 1)-consistent then I is globally con-
sistent [9]. We denote DR-k, the set of these instances. Naanaa points out that some
known tractable classes, such as binary CSP instances with connected row convex con-
straints [13], have bounded directional rank.

If a binary CSP instance P is (k + 1)-BTP, then no variable can have a direc-
tional rank greater than k. This is because for any variable xm and any assignments
(a1, . . . , ak+1) to any set of variables xi1 , . . . , xik+1

with i1 < . . . < ik+1 < m, by
the definition of (k + 1)-BTP, we must have R(cijm)[aj] ⊆ R(cij′m)[aj′] for some
j 6= j′ ∈ {1, . . . , k + 1}; hence, as observed above, the sets {R(cijm)[aj]}j=1,...,k+1

cannot be independent. It follows that the tractability of (k+1)-BTP -S(k+1)C is also
a corollary of the result of Naanaa [9]. On the other hand, the property (k + 1)-BTP,
although subsumed by DR-k, can be detected in time complexity O(nkdk + n3d4)
compared to O(nk+1dk+1) for DR-k.

5 Experiments

In this section, we compare the tractable classes BTP , ETP -SPC , k-BTP -SkC and
DR-k-1 (where SPC stands for Strong Path Consistency) from a practical viewpoint.
We only consider the case k = 3, since strong k-consistency becomes too expensive in
time for k > 3 and may add constraints of arity k − 1.

Tractable classes are often critized for being artificial in the sense that their under-
lying properties seldom occur in real instances. So, here, we first highlight the existence
of instances belonging to some of these classes among the benchmark instances classi-
cally exploited for solver evaluations and comparisons. More precisely, our experiments
involve 2,373 binary benchmarks from the third CSP Solver Competition3 and cover all
the benchmarks exploited in [7].

Then we will investigate the possible link between efficient solving and belonging
to these tractable classes.

5.1 Instances belonging to tractable classes

Since the tractable classes ETP -SPC , 3-BTP -SPC and DR-2 require strong path-
consistency, we first achieve SPC on each instance before checking whether it belongs
to the considered classes, in the same spirit as [14, 15]. In so doing, 628 instances are de-
tected as inconsistent and so they trivially belong to all of these tractable classes. 85 of
the remaining instances belong to 3-BTP -SPC while 87 have directional rank at most
two. Among these instances, we have respectively 71 and 76 instances in BTP -SPC
and ETP -SPC . These differences between these tractable classes are well highlighted
by some instances of the bqwh-15-106 family since we can observe all the possible
configurations of the relations BTP -SPC (ETP -SPC (3-BTP -SPC (DR-2.
For example, instance bqwh-15-106-13 belongs to all the considered tractable classes
while instances bqwh-15-106-28, bqwh-15-106-16 and bqwh-15-106-76 only belong
respectively to three, two or one of these tractable classes. Table 1 presents some in-
stances belonging to classes ETP -SPC , 3-BTP -SPC or DR-2. It also provides the
tree-width w of these instances and their tree-width w′ once SPC is enforced. When
the exact tree-width is unknown (recall that computing an optimal tree-decomposition
is an NP-hard problem), we give a range. We can note the diversity of these instances
(academic, random or real-world instances). Some of these instances belong to 3-BTP -
SPC or DR-2 thanks to their structure. For instance, graph12-w0 and hanoi-7 have an
acyclic constraint graph while the tree-width of domino-100-100 and crossword-m1-uk-
puzzle01 is two. However, most instances have a tree-width greater than two. Moreover,
in most cases, the application of SPC may significantly increase the original tree-width
of these instances. For example, the tree-width of instance driverlogw-09-sat is initially
bounded by 108 and is equal to 629 after the application of SPC. This increase is ex-
plained by the pairs of values which are forbidden by SPC. When SPC forbids a pair of
values (vi, vj) for a given pair of variables (xi, xj), it removes (vi, vj) from the rela-
tion R(cij) if the constraint cij exists. However, if the constraint cij does not exist yet,
SPC must first add it to the problem. In such a case, depending on the added constraints

3 See http://www.cril.univ-artois.fr/CPAI08.

Table 1. Some instances belonging to BTP -SPC , ETP -SPC , 3-BTP -SPC or DR-2 after the
application of SPC with their tree-width w and the tree-width w′ of the instances once SPC is
enforced.

Instance n w w′ BTP -SPC ETP -SPC 3-BTP -SPC DR-2
bqwh-15-106-13 106 [7, 48] 104 yes yes yes yes
bqwh-15-106-16 106 [6, 45] 99 no no yes yes
bqwh-15-106-28 106 [7, 52] 105 no yes yes yes
bqwh-15-106-76 106 [6, 44] 100 no no no yes
bqwh-15-106-77 106 [7, 50] 100 no no yes yes
bqwh-18-141-33 141 [7, 64] 134 yes yes yes yes
bqwh-18-141-57 141 [7, 66] 137 yes yes yes yes
domino-100-100 100 2 2 yes yes yes yes

domino-5000-500 5000 2 2 yes yes yes yes
driverlogw-04c-sat 272 [19, 56] [214, 221] no no no yes
driverlogw-09-sat 650 [39, 108] 629 yes yes yes yes
fapp17-0300-10 300 [6, 153] [6, 154] yes yes yes yes
fapp18-0350-10 350 [5, 192] [12, 199] yes yes yes yes
fapp23-1800-9 1800 [6, 1325] [41, 1341] yes yes yes yes

graph12-w0 680 1 1 yes yes yes yes
graph13-w0 916 1 1 yes yes yes yes

hanoi-7 126 1 1 yes yes yes yes
langford-2-4 8 7 7 yes yes yes yes
lard-83-83 83 82 82 no no yes yes
lard-91-91 91 90 90 no no yes yes

os-taillard-4-100-0 16 [3, 9] 15 yes yes yes yes
os-taillard-4-100-9 16 [3, 9] 15 yes yes yes yes

scen5 400 [11, 32] [167, 188] no no yes yes

and their number, the tree-width may significantly increase. Note that the considered
instances whose tree-width is initially at most two have a tree-width unchanged by the
application of SPC.

5.2 Link between efficient solving and belonging to tractable classes

In this subsection, our aim is not to provide a new module based on tractable classes
in order to improve the efficiency of solvers but to see whether we can exploit some
tractable classes to explain the efficiency of solvers on some instances. Indeed, we think
that tractable classes are more useful from a practical viewpoint if they are implicitly
handled by classical solvers than by ad-hoc methods (as is generally the case). For
instance, it is well kwown that MAC can solve in backtrack-free manner any binary
CSP whose constraint network is acyclic without knowing that the instance has this
particular feature [16].

Most state-of-the-art solvers rely on variants of MAC or RFL algorithms. In the
following, we focus our study on MAC but we have observed similar results for RFL.

As far as solving is concerned, all the instances belonging to 3-BTP -SPC or DR-2
are solved in a backtrack-free manner by MAC except the instance driverlogw-04c-sat

which needs one backtrack. Note that MAC has no knowledge about the variable or-
dering used to satisfy 3-BTP or to obtain a directional rank of at most two. In most
cases, we have observed that the ordering CSP instance built in the proof of Theorem
2 in order to compute a suitable variable ordering has no constraints. So any variable
ordering is suitable. In contrast, for about a dozen instances, this CSP has several con-
straints but remains clearly under-constrained and the constraint network has several
connected components. This ensues that the ordering CSP in general a huge number of
solutions. So it is very likely that MAC exploits implicitly one of these suitable variable
orderings. For example, the ordering CSP for checking whether the bqwh-15-106-76
instance (which has 106 variables) has a directional rank at most two has 65 connected
components and admits more than 33 million solutions.

Some of the instances are solved efficiently by MAC in a backtrack-free manner
even though they do not belong to one of the studied tractable classes. Hence, we now
consider the notion of backdoor [17] with the aim in view to provide some explanation
about this efficiency in the same spirit as [7]. A backdoor is a set of variables defined
with respect to a class such that once the backdoor variables are assigned, the problem
falls in the class. Here, we are interested in backdoors which are discovered implic-
itly by MAC when it assigns some variables. Indeed, after some assignments and the
associated filtering, the remaining part of the problem may become tractable. So we
assess the number of variables which must be assigned before MAC finds implicitly a
backdoor w.r.t. one of the studied classes. In practice, over the 50 considered instances,
we observe that MAC finds a backdoor w.r.t. BTP after having assigned more variables
than for the other considered classes. The numbers of assigned variables required to find
a backdoor respectively for ETP and 3-BTP are very close, and even equal in most
cases. By considering DR-2, we save a few variables compared to ETP and 3-BTP .
For example, MAC needs to assign at most five variables before finding a backdoor
w.r.t. to 3-BTP or DR-2 for 14 instances compared to 12 and 4 instances, respectively,
for ETP and BTP4. Of course, the resulting instances do not necessarily satisfy strong
path-consistency and so we cannot exploit directly Theorem 5 to explain the efficiency
of MAC. Nevertheless, when the instance is 3-BTP and strong path-consistent after
having assigned some variables, MAC may exploit implicitly a suitable variable order-
ing since, as evoked above, the corresponding ordering CSP often admits a large number
of solutions. Furthermore Theorem 5 provides sufficient conditions so that MAC solves
some instances in polynomial time, but these conditions are not always necessary. For
instance, MAC solves the instances which belong to BTP in polynomial time with-
out requiring a suitable variable ordering or the satisfaction of strong path-consistency.
Hence, one part of the explanation of the practical efficiency of MAC may lie in its
ability to exploit implicitly different tractable classes.

4 Note that these instances do not include all the instances mentioned in [7] since some of them
belong to 3-BTP -SPC and/or DR-2.

6 Conclusion

This paper introduces a novel family of tractable classes for binary CSPs, denoted k-
BTP whose tractability is associated with a given level of strong k-consistency. It is
based on a hierarchy of classes of instances with the BTP class as the base case. While
BTP is defined on subsets of 3 variables, the k-BTP class is defined on sets of k+1
variables, while relaxing the restrictive conditions imposed by BTP which is the class
2-BTP . We showed that k-BTP inherits some of the desirable properties of BTP, such
as polynomial solvability using standard algorithms such as MAC. We also showed
that k-BTP strictly generalizes the class of instances whose tree-width is bounded by
a constant and we analyzed the relationships with the class based on the notion of
directional rank recently introduced by Naanaa. To assess the practical interest of the
k-BTP class, an experimental analysis is presented focusing on the particular case of
3-BTP . This analysis shows a significant advantage of 3-BTP compared to BTP and
to CSPs of bounded tree-width.

Further research is required to determine if the condition corresponding to strong
k-consistency is actually necessary or whether a weaker condition would suffice. In-
deed, experiments showed that MAC can solve without backtracking certain instances
belonging to 3-BTP even when they do not verify the corresponding level of consis-
tency. From a practical point of view, an interesting challenge is to find the minimum
(generally) required level of consistency among different kinds of local consistencies
such as PIC [18], maxRPC [19] or SAC [20]. Note that, from a theoretical point of view,
we can easily deduce from Theorem 3 that any local consistency that only performs do-
main filtering (e.g. PIC, maxRPC, SAC) cannot be sufficient (assuming P6=NP) since
ETP is invariant under domain filtering operations.

Moreover, studying a relaxation of the k-BTP condition needs to be addressed so as
to further expand the class of instances that can be solved in polynomial time, but along
different avenues to the one proposed in [9], even if further theoretical and experimental
research are clearly required to fully appreciate all the consequences of Naanaa’s result.
Finally, it could be interesting to investigate a similar approach to the one introduced in
[21] which provides a novel polynomial-time reduction operation based on the merging
of domain values.

References

1. F. Rossi, P. van Beek, and T. Walsh. Handbook of Constraint Programming. Elsevier, 2006.
2. R. Dechter and J. Pearl. Tree-Clustering for Constraint Networks. Artificial Intelligence,

38:353–366, 1989.
3. G. Gottlob, N. Leone, and F. Scarcello. A Comparison of Structural CSP Decomposition

Methods. Artificial Intelligence, 124:343–282, 2000.
4. M.C. Cooper, P. Jeavons, and A. Salamon. Generalizing constraint satisfaction on trees:

hybrid tractability and variable elimination. Artificial Intelligence, 174:570–584, 2010.
5. D. Sabin and E. Freuder. Contradicting Conventional Wisdom in Constraint Satisfaction. In

Proceedings of ECAI, pages 125–129, 1994.
6. B. Nadel. Tree Search and Arc Consistency in Constraint-Satisfaction Algorithms, pages

287–342. In Search in Artificial Intelligence. Springer-Verlag, 1988.

7. P. Jégou and C. Terrioux. The Extendable-Triple Property: a new CSP Tractable Class be-
yond BTP. In Proceedings of AAAI, pages 3746–3754, 2015.

8. E. Freuder. A Sufficient Condition for Backtrack-Free Search. Journal of the ACM, 29
(1):24–32, 1982.

9. W. Naanaa. Unifying and extending hybrid tractable classes of csps. Journal of Experimental
and Theoretical Artificial Intelligence, 25(4):407–424, 2013.

10. P. Jeavons and M. Cooper. Tractable constraints on ordered domains. Artificial Intelligence,
79(2):327–339, 1995.

11. N. Robertson and P.D. Seymour. Graph minors II: Algorithmic aspects of treewidth. Algo-
rithms, 7:309–322, 1986.

12. M.C. Cooper. Beyond consistency and substitutability. In Proceedings of CP, pages 256–
271, 2014.

13. Y. Deville, O. Barette, and P. van Hentenryck. Constraint satisfaction over connected row
convex constraints. Artificial Intelligence, 109(1-2):243–271, 1999.

14. A. El Mouelhi, P. Jégou, and C. Terrioux. Hidden Tractable Classes: from Theory to Practice.
In Proceedings of ICTAI, pages 437–445, 2014.

15. A. El Mouelhi, P. Jégou, and C. Terrioux. Hidden Tractable Classes: from Theory to Practice.
Constraints, 2015.

16. D. Sabin and E. Freuder. Understanding and Improving the MAC Algorithm. In Proceedings
of CP, pages 167–181, 1997.

17. R. Williams, C.P. Gomes, and B. Selman. Backdoors to typical case complexity. In Proceed-
ings of IJCAI, pages 1173–1178, 2003.

18. E. Freuder and C.D. Elfe. Neighborhood inverse consistency preprocessing. In Proceedings
of AAAI, pages 202–208, 1996.

19. R. Debruyne and C. Bessière. From restricted path consistency to max-restricted path con-
sistency. In Proceedings of CP, pages 312–326, 1997.

20. R. Debruyne and C. Bessière. Domain Filtering Consistencies. Journal of Artificial Intelli-
gence Research, 14:205–230, 2001.

21. M.C. Cooper, A. El Mouelhi, C. Terrioux, and B. Zanuttini. On broken triangles. In Pro-
ceedings of CP, pages 9–24, 2014.

