
Broken Triangles: From Value Merging to a
Tractable Class of General-Arity Constraint

Satisfaction Problems∗

Martin C. Cooper†, Aymeric Duchein†, Achref El Mouelhi‡,
Guillaume Escamocher§, Cyril Terrioux‡ and Bruno Zanuttini¶

Abstract

A binary CSP instance satisfying the broken-triangle property (BTP) can
be solved in polynomial time. Unfortunately, in practice, few instances sat-
isfy the BTP. We show that a local version of the BTP allows the merging
of domain values in arbitrary instances of binary CSP, thus providing a
novel polynomial-time reduction operation. Extensive experimental trials
on benchmark instances demonstrate a significant decrease in instance size
for certain classes of problems. We show that BTP-merging can be gen-
eralised to instances with constraints of arbitrary arity and we investigate
the theoretical relationship with resolution in SAT. A directional version
of general-arity BTP-merging then allows us to extend the BTP tractable
class previously defined only for binary CSP. We investigate the complex-
ity of several related problems including the recognition problem for the
general-arity BTP class when the variable order is unknown, finding an
optimal order in which to apply BTP merges and detecting BTP-merges in
the presence of global constraints such as AllDifferent.

keywords: CSP, constraint satisfaction, domain reduction, tractable class, hy-
brid tractability, NP-completeness, global constraints

∗ c© 2016. This manuscript version is made available under the CC-BY-NC-ND 4.0 license
http://creativecommons.org/licenses/by-nc-nd/4.0. The final publication is avail-
able at Elsevier via http://dx.doi.org/10.1016/j.artint.2016.02.001.
†IRIT, Université de Toulouse, CNRS, INPT, UPS, UT1, UT2J, France. cooper@irit.fr

Aymeric.Duchein@irit.fr
‡Aix-Marseille Université, CNRS, ENSAM, Université de Toulon, LSIS UMR 7296, Marseille,

France. achref.elmouelhi@lsis.org cyril.terrioux@lsis.org
§INSIGHT Centre for Data Analytics, University College Cork, Cork, Ireland. guillaume.

escamocher@insight-centre.org
¶GREYC, UMR 6072, Normandie Université, UNICAEN, CNRS, ENSICAEN, Caen, France.

bruno.zanuttini@unicaen.fr

1

http://creativecommons.org/licenses/by-nc-nd/4.0
http://dx.doi.org/10.1016/j.artint.2016.02.001
mailto:cooper@irit.fr
mailto:Aymeric.Duchein@irit.fr
mailto:achref.elmouelhi@lsis.org
mailto:cyril.terrioux@lsis.org
mailto:guillaume.escamocher@insight-centre.org
mailto:guillaume.escamocher@insight-centre.org
mailto:bruno.zanuttini@unicaen.fr

1 Introduction

At first sight one could assume that the discipline of constraint programming
has come of age. On the one hand, efficient solvers are regularly used to solve
real-world problems in diverse application domains while, on the other hand,
a rich theory has been developed concerning, among other things, global con-
straints, tractable classes, reduction operations and symmetry. However, there
often remains a large gap between theory and practice, which is perhaps most
evident when we look at the large number of deep results concerning tractable
classes which have yet to find any practical application. The research reported
in this paper is part of a long-term project to bridge the gap between theory
and practice. Our aim is not only to develop new tools but also to explain why
present tools work so well.

Most research on tractable classes has been based on classes defined by
placing restrictions either on the types of constraints [1, 2] or on the constraint
hyper-graph whose vertices are the variables and whose hyper-edges are the
constraint scopes [3, 4]. Another way of defining classes of binary CSP in-
stances consists of imposing conditions on the microstructure, a graph whose
vertices are the possible variable-value assignments with an edge linking each
pair of compatible assignments [5, 6]. If each vertex of the microstructure, cor-
responding to a variable-value assignment 〈x, a〉, is labelled (or coloured) by
the variable x, then this so-called coloured microstructure retains all informa-
tion from the original instance. The broken-triangle property (BTP) is a simple
local condition on the coloured microstructure which defines a tractable class
of binary CSP [7]. The BTP corresponds to forbidding a simple pattern, known
as a broken triangle, in the coloured microstructure for a given variable order.
Inspired by the BTP, investigation of other forbidden patterns in the coloured
microstructure has led to the discovery of new tractable classes [8, 9, 10] as well
as new reduction operations based on variable or value elimination [11, 12].
The BTP itself has also been directly generalised in several different ways. For
example, it has been shown that under an assumption of strong path con-
sistency, the BTP can be considerably relaxed since not all broken triangles
need be forbidden to define a tractable class [13, 14, 15]. Indeed, even without
any assumptions of consistency, it is not necessary to forbid all broken trian-
gles [12]. Imposing the BTP in the dual problem leads directly to a tractable
class of general-arity CSPs [16]. The BTP has also been generalised to the Bro-
ken Angle Property which defines a tractable class of Quantified Constraint
Satisfaction Problems [17].

In this paper we show that the absence of broken triangles on a pair of
values in a domain allows us to merge these two values while preserving the
satisfiability of the instance. Furthermore, given a solution to the reduced in-
stance, it is possible to find a solution to the original instance in linear time
(Section 3). We then investigate the interactions between arc consistency and
BTP-merging operations (Section 4) and show that it is NP-hard to find the
best sequence of BTP-merging (and arc consistency) operations (Section 5). The
effectiveness of BTP-merging in reducing domains in binary CSP benchmark

2

problems is investigated in Section 6. In the second half of the paper we con-
sider general-arity CSPs. Section 7 shows how to generalise BTP-merging to
instances containing constraints of any arity (where all constraints are given in
the form of either tables, lists of compatible tuples or lists of incompatible tu-
ples). We then go on to consider global constraints, and in particular the AllDif-
ferent constraint, in Section 8. Finally, a directional version of the general-arity
BTP allows us to define a tractable class of general-arity CSP instances which
is incomparable with the tractable class obtained by directly imposing the BTP
in the dual [16] (Section 9). However, on the negative side, we then show that
it is NP-complete to determine the existence of a variable order for which an
instance falls into this tractable class. The results of Sections 3, 7, 9 and Sec-
tions 4, 5 first appeared in two conference papers (respectively [18] and [19]).

2 The Constraint Satisfaction Problem

For simplicity of presentation we use two different representations of con-
straint satisfaction problems. In the binary case, our notation is fairly standard,
whereas in the general-arity case we use a notation close to the representation
of SAT instances. This is for presentation only, though, and our algorithms do
not need instances to be represented in this manner.

Definition 1 A binary CSP instance I consists of

• a set X of n variables,

• a domain D(x) of possible values for each variable x ∈ X ,

• a relation Rxy ⊆ D(x) × D(y), for each pair of distinct variables x, y ∈ X ,
which consists of the set of compatible pairs of values (a, b) for variables (x, y).

A partial solution to I on Y = {y1, . . . , yr} ⊆ X is a set {〈y1, a1〉, . . . , 〈yr, ar〉}
such that ∀i, j ∈ [1, r], (ai, aj) ∈ Ryiyj

. A solution to I is a partial solution on X .

For simplicity of presentation, Definition 1 assumes that there is exactly one
constraint relation for each pair of variables. The number of constraints e is the
number of pairs of variables x, y such that Rxy 6= D(x)×D(y). An instance I is
arc consistent if for each pair of distinct variables x, y ∈ X , each value a ∈ D(x)
has an AC-support at y, i.e. a value b ∈ D(y) such that (a, b) ∈ Rxy .

In our representation of general-arity CSP instances, we require the notion
of tuple which is simply a set of variable-value assignments. For example, in the
binary case, the tuple {〈x, a〉, 〈y, b〉} is compatible if (a, b) ∈ Rxy and incompatible
otherwise.

Definition 2 A (general-arity) CSP instance I consists of

• a set X of n variables,

• a domain D(x) of possible values for each variable x ∈ X ,

3

�
�

�

• �
�

�

•

�
�

�

•

•
hhhhhhA
A
A
A

x

a

b
y

d

z

e �
�
�
�
�

Figure 1: A broken triangle on two values a, b for a given variable x.

• a set NoGoods(I) consisting of incompatible tuples.

A partial solution to I on Y = {y1, . . . , yr} ⊆ X is a tuple t = {〈y1, a1〉, . . . ,
〈yr, ar〉} such that no subset of t belongs to NoGoods(I). A solution is a partial
solution on X .

3 Value merging in binary CSP based on the BTP

In this section we consider a method, based on the BTP, for reducing domain
size while preserving satisfiability. Instead of eliminating a value, as in classic
reduction operations such as arc consistency or neighbourhood substitution,
we merge two values. We show that the absence of broken-triangles [7] on two
values for a variable x in a binary CSP instance allows us to merge these two
values in the domain of x while preserving satisfiability. This rule generalises
the notion of virtual interchangeability [20] as well as neighbourhood substitu-
tion [21].

It is known that if for a given variable x in an arc-consistent binary CSP
instance I , the set of (in)compatibilities (known as a broken-triangle) shown
in Figure 1 occurs for no two values a, b ∈ D(x) and no two assignments
to two other variables, then the variable x can be eliminated from I with-
out changing the satisfiability of I [7, 11]. In figures, each bullet represents
a variable-value assignment, assignments to the same variable are grouped to-
gether within the same oval and compatible pairs of assignments are linked
by solid lines. In Figure 1 (and in other figures illustrating forbidden patterns)
incompatible pairs of assignments are linked by broken lines. Even when this
variable-elimination rule cannot be applied, it may be the case that for a given
pair of values a, b ∈ D(x), no broken triangle occurs. We will show that if this
is the case, then we can perform a domain-reduction operation which consists
in merging the values a and b.

Definition 3 Merging values a, b ∈ D(x) in a binary CSP consists in replacing a, b
in D(x) by a new value c which is compatible with all variable-value assignments
compatible with at least one of the assignments 〈x, a〉 or 〈x, b〉. A value-merging
condition is a polytime-computable property P (x, a, b) of assignments 〈x, a〉, 〈x, b〉

4

in a binary CSP instance I such that when P (x, a, b) holds, the instance I ′ obtained
from I by merging a, b ∈ D(x) is satisfiable if and only if I is satisfiable.

We now formally define the value-merging condition based on the BTP.

Definition 4 A broken triangle on the pair of variable-value assignments a, b ∈
D(x) consists of a pair of assignments d ∈ D(y), e ∈ D(z) to distinct variables
y, z ∈ X \ {x} such that (a, d) /∈ Rxy , (b, d) ∈ Rxy , (a, e) ∈ Rxz , (b, e) /∈ Rxz and
(d, e) ∈ Ryz . The pair of values a, b ∈ D(x) is BT-free if there is no broken triangle
on a, b.

Proposition 5 In a binary CSP instance, being BT-free is a value-merging condition.
Furthermore, given a solution to the instance resulting from the merging of two values,
we can find a solution to the original instance in linear time.

Proof: L 2et I be the original instance and I ′ the new instance
in which a,b have been merged into a new value c. Clearly, if I is satisfiable
then so is I ′. It suffices to show that if I ′ has a solution s which assigns c to x,
then I has a solution. Let sa, sb be identical to s except that sa assigns a to x
and sb assigns b to x. Suppose that neither sa nor sb are solutions to I . Then,
there are variables y, z ∈ X \ {x} such that 〈a, s(y)〉 /∈ Rxy and 〈b, s(z)〉 /∈ Rxz .
By definition of the merging of a, b to produce c, and since s is a solution to
I ′ containing 〈x, c〉, we must have (b, s(y)) ∈ Rxy and (a, s(z)) ∈ Rxz . Finally,
(s(y), s(z)) ∈ Ryz since s is a solution to I ′. Hence, 〈y, s(y)〉, 〈z, s(z)〉, 〈x, a〉,
〈x, b〉 forms a broken-triangle, which contradicts our assumption. Hence, the
absence of broken triangles on assignments 〈x, a〉, 〈x, b〉 allows us to merge
these assignments while preserving satisfiability.

Reconstructing a solution to I from a solution s to I ′ simply requires check-
ing which of sa or sb is a solution to I . Checking if sa or sb is a solution only
requires checking the (at most) n − 1 binary constraints that include x. Thus
finding a solution to the original instance can be achieved in linear time. 2

We can see that the BTP-merging rule, given by Proposition 5, generalises
neighbourhood substitution [21]: if b is neighbourhood substitutable by a, then
no broken triangle occurs on a, b and merging a and b produces a CSP instance
which is identical (except for the renaming of the value a as c) to the instance
obtained by simply eliminating b from D(x). BTP-merging also generalises
the merging rule proposed by Likitvivatanavong and Yap [20]. The basic idea
behind their rule is that if the two assignments 〈x, a〉, 〈x, b〉 have identical com-
patibilities with all assignments to all other variables except concerning at most
one other variable, then we can merge a and b. This is clearly subsumed by
BTP-merging.

The BTP-merging operation is not only satisfiability-preserving but, from
Proposition 5, we know that we can also reconstruct a solution in polynomial
time to the original instance I from a solution to an instance Im to which we
have applied a sequence of merging operations until convergence. It is known
that for the weaker operation of neighbourhood substitutability, all solutions
to the original instance can be generated in O(N(de + n2)) time, where N is

5

�
�

�

•

•

�
�

�

•

•

�
�

�

•

•
B
B
B
B
B
BB

��
��

��A
A
A
A

PPPPPP

�
�
�
�

A
A
A
A

@
@

�
�
�
�

x

(a)y

z

b

a a′

b′

�
�

�

• �
�

�

•

•

�
�

�

•

•
hhhhhhJ
J
JJ

L
L
L
L
LL

((((
((

�
�
�
�x

�
�
�
�

(b)y

z

c
a′

b′

Figure 2: (a) A broken triangle (shown in bold) exists on values a′, b′ at variable
z. (b) After BTP-merging of values a and b in D(x), this broken triangle has
disappeared.

the number of solutions to the original instance, n is the number of variables, d
the maximum domain size and e the number of constraints [22]. We now show
that a similar result also holds for the more general rule of BTP-merging.

Proposition 6 Let I be a binary CSP instance and suppose that we are given

• a sequence of m triples of the form (xi, ai, bi)
m−1
i=0 , implicitly defining a sequence

of instances I0 = I, I1, · · · , Im such that Ii+1 is obtained from Ii by BTP-
merging values ai, bi for xi (i = 0, . . . ,m− 1),

• the set of all N solutions to the instance Im.

All solutions to I can then be enumerated with delay O(mn) after a preprocessing step
in O(mnd2) (hence in total time O(n2d3 + Nn2d)).

Proof: W 2e start by comput-
ing, for each constraint Rxy in the original instance I , its successive versions
Rt1

xy, . . . , R
tmxy
xy , where t1, . . . , tmxy

∈ {1, . . . ,m} record by which BTP-merging
operation this version was produced. Since each BTP-merging operation can
change only O(n) constraints (those involving xi), this preprocessing step re-
quires time O(mnd2).

Now given a solution s to Ii we proceed inductively as follows. If i = 0
then we output s, otherwise we test whether sa or sb (or both) are solutions to
Ii−1, where sa (resp. sb) is obtained from s by setting xi to ai (resp. to bi), as
in the proof of Proposition 5. For each of them found to be a solution to Ii−1,
we recurse with Ii−1. This requires O(n) time per step, since again there are at
most n − 1 constraints to be checked (those involving xi) and these have been
precomputed. Finally, since at each step either sa or sb is guaranteed to be a
solution to Ii−1, we indeed generate solutions to I with delay O(mn). 2

The weaker operation of neighbourhood substitution has the property that
two different convergent sequences of eliminations by neighbourhood substi-
tution necessarily produce isomorphic instances Im1 , Im2 [22] . This is not the
case for BTP-merging. Firstly, and perhaps rather surprisingly, BTP-merging
can have as a side-effect to eliminate broken triangles. This is illustrated in the

6

�
�

�
�•

•
•

�
�

�
�•

•

�
�

�
�•

•
•PPPPPPPP��

��
��

��

A
A
A
A
AA

B
B
B
B
B
B
B
B

@
@
@

�
�
�
�
��

x �
�
�
�
��

(a)
y

z

b

a a′

b′
L
L
L
L
L
L
L

J
J
J
J

hhhhhhhh

((((
((((

�
�
�
�
��

�
�
�
�
�
��

�
�

�
�•

•

�
�

�
�•

•

�
�

�
�•

•
•

��
��

��
��

A
A
A
A
AA

B
B
B
B
B
B
B
B

@
@
@

�
�
�
�
��

x

(b)
y

z

c a′

b′

hhhhhhhh

((((
((((

�
�
�
�
��

�
�
�
�
�
�
�

A
A
A
A
AA

PPPPPPPP

�
�
�
�
��

Figure 3: (a) This instance contains no broken triangle. (b) After BTP-merging
of values a and b in D(x), a broken triangle (shown in bold) has appeared on
values a′, b′ ∈ D(z).

3-variable instance shown in Figure 2. In order to avoid cluttering up figures
with broken lines linking each pair of incompatible assignments, in all figures
illustrating binary CSP instances, we use the convention that those pairs of
assignments which are not explicitly linked with a solid line are incompati-
ble. The instance in Figure 2(a) contains a broken triangle on values a′, b′ for
variable z, but after BTP-merging of values a, b ∈ D(x) into a new value c, as
shown in Figure 2(b), there are no broken triangles in the instance. Secondly,
BTP-merging of two values in D(x) can introduce a broken triangle on a vari-
able z 6= x, as illustrated in Figure 3. The instance in Figure 3(a) contains no
broken triangle, but after the BTP-merging of a, b ∈ D(x) into a new value c, a
broken triangle has been created on values a′, b′ ∈ D(z).

4 Mixing Arc Consistency and BTP-merging

Given the omnipresence of arc consistency in constraint solvers, it is natural
to investigate its relationship and interaction with BTP-merging. Values which
can be BTP-merged may or may not be arc consistent. Trivially, two values
a, b ∈ D(x) which are compatible with all assignments to all other variables can
be BTP-merged, but cannot be eliminated by arc consistency. Conversely, if a ∈
D(x) has no AC-support at y but otherwise is compatible with all assignments
to all other variables, b ∈ D(x) has no AC-support at z 6= y but otherwise
is compatible with all assignments to all other variables, and Ryz 6= ∅, then
a, b can both be eliminated by arc consistency but a, b cannot be BTP-merged.
Having established the incomparability of arc consistency and BTP-merging,
we now investigate their possible interactions.

We have already observed that BTP-merging is a generalisation of neigh-
bourhood substitutability, since if a ∈ D(x) is neighbourhood substitutable for
b ∈ D(x) then a, b can be BTP-merged. The possible interactions between arc
consistency (AC) and neighbourhood substitution (NS) are relatively simple
and can be summarised as follows [22]:

7

�
�

�

••

•

�� �
• •

�� �
• •

@
@
@
@
@

l
l
l
l
l
l
l

�
�
�
�
�

�
�
�
�
�
�
�

a

b

(a)

�
�

�

•

•

�� �
• •

�� �
• •

@
@
@
@
@
@
@

@
@
@
@
@

�
�
�
�
�
�
�

�
�
�
�
�

c

(b)

Figure 4: (a) An instance in which applying AC leads to the elimination of
all values (starting with the values a and b), but applying BTP merging leads
to just one elimination, namely the merging of a with b (with the resulting
instance shown in (b)).

1. The fact that a ∈ D(x) is AC-supported or not at variable y remains in-
variant after the elimination of any other value b (in D(x) \ {a} or in the
domain D(z) of any variable z 6= x) by neighbourhood substitution.

2. An arc-consistent value a ∈ D(x) that is neighbourhood substitutable
remains neighbourhood substitutable after the elimination of any other
value by arc consistency.

3. On the other hand, a value a ∈ D(x) may become neighbourhood substi-
tutable after the elimination of a value c ∈ D(y) (y 6= x) by arc consistency.

Indeed, it has been shown that the maximum cumulated number of elimina-
tions by arc consistency and neighbourhood substitution can be achieved by
first establishing arc consistency and then applying any convergent sequence
of NS eliminations (i.e. any valid sequence of eliminations by neighbourhood
substitution until no more NS eliminations are possible) [22].

The interaction between arc consistency and BTP-merging is not so simple
and can be summarised as follows:

1. The fact that a ∈ D(x) is AC-supported or not at variable y remains in-
variant after the BTP-merging of any other pair of other values b, c (in
D(x) \ {a} or in the domain D(z) of any variable z 6= x). However, af-
ter the BTP-merging of two arc-inconsistent values the resulting merged
value may be arc consistent. An example is given in Figure 4(a). In this
3-variable instance, the two values a, b ∈ D(x) can be eliminated by arc
consistency (which in turn leads to the elimination of all values), or alter-
natively they can be BTP-merged (to produce the new value c) resulting
in the instance shown in Figure 4(b) in which no more eliminations are
possible by AC or BTP-merging.

8

2. A single elimination by AC may prevent one or more BTP-mergings. An
example is given in Figure 5(a). In this 4-variable instance, if the value
b is eliminated by AC, then no other eliminations are possible by AC or
BTP-merging in the resulting instance (shown in Figure 5(b)), whereas if
a and b are BTP-merged into a new value d (as shown in Figure 5(c)) this
destroys a broken triangle thus allowing c to be BTP-merged with d (as
shown in Figure 5(d)).

3. On the other hand, two values in the domain of a variable x may become
BTP-mergeable after an elimination of a value d ∈ D(z) (z 6= x) by arc
consistency. An example is given in Figure 6. In this 4-variable instance,
initially a and b cannot be BTP-merged (Figure 6(a)), but after value d is
eliminated from D(z) by AC, the broken triangle has disappeared and
a, b can be BTP merged (Figure 6(b)).

5 The order of BTP-mergings

We saw in Section 3 that BTP-merging can both create and destroy broken tri-
angles. This implies that the choice of the order in which BTP-mergings are
applied may affect the total number of merges that can be performed. Unfor-
tunately, maximising the total number of merges in a binary CSP instance turns
out to be NP-hard, even when bounding the maximum size of the domains d
by a constant as small as 3. For simplicity of presentation, we first prove this
for the case in which the instance is not necessarily arc consistent. We will then
prove a tighter version, namely NP-hardness of maximising the total number
of merges even in arc-consistent instances.

Theorem 7 The problem of determining if it is possible to perform k BTP-mergings
in a boolean binary CSP instance is NP-complete.

Proof: F 2or a given sequence of k BTP-mergings, verifying if
this sequence is correct can be performed inO(kn2d2) time because looking for
broken triangles for a given couple of values takes O(n2d2). As we can verify
a solution in polynomial time, the problem of determining if it is possible to
perform k BTP-mergings in a binary CSP instance is in NP. So to complete the
proof of NP-completeness it suffices to give a polynomial-time reduction from
the well-known 3-SAT problem. Let I3SAT be an instance of 3-SAT (SAT in
which each clause contains exactly 3 literals) with variables X1, . . . , XN and
clauses C1, . . . , CM . We will create a boolean binary CSP instance ICSP which
has a sequence of k = 3×M mergings if and only if I3SAT is satisfiable.

For each variable Xi of I3SAT , we add a new variable zi to ICSP . For each
occurrence of Xi in the clause Cj of I3SAT , we add two more variables xij

and yij to ICSP . Each D(zi) contains only one value ci and each D(xij) (resp.
D(yij)) contains only two values ai and bi (resp. a′i and b′i). The roles of vari-

9

�
�

�

••

•
�
�

�

•

•

�� �
• •

�� �
• •

((((
(((

((((
(hhhhhhhhhhhh

@
@
@
@
@

l
l
l
l
l
l
l

e
e
e
e
e
ee

@
@
@
@
@
@
@

�
�
�
�
�
�
�

%
%
%
%
%
%%

�
�
�
�
�@
@
@
@
@
@
@

@
@
@
@
@

�
�
�
�
�
�
�

�
�
�
�
�

a

b
c

(a)

�
�

�

•

•
�
�

�

•

•

�� �
• •

�� �
• •

((((
(((

((((
(hhhhhhhhhhhh

@
@
@
@
@

@
@
@
@
@
@
@

�
�
�
�
�
�
�

�
�
�
�
�@
@
@
@
@
@
@

@
@
@
@
@

�
�
�
�
�
�
�

�
�
�
�
�

a

c

(b)

�
�

�

•

•
�
�

�

•

•

�� �
• •

�� �
• •

((((
(((

((((
(hhhhhhhhhhhh

@
@
@
@
@

@
@
@
@
@
@
@

�
�
�
�
�
�
�

�
�
�
�
�@
@
@
@
@
@
@

@
@
@
@
@

�
�
�
�
�
�
�

�
�
�
�
�

d

c

(c)

�
�

�

•

�
�

�

•

•

�� �
• •

�� �
• •

l
l
l
l
l
l
l

e
e
e
e
e
ee

%
%
%
%
%
%%

,
,
,
,
,
,
,@
@
@
@
@
@
@

@
@
@
@
@

�
�
�
�
�
�
�

�
�
�
�
�

(d)

Figure 5: (a) An instance in which applying AC leads to one elimination (the
value b) (as shown in (b)), but applying BTP merging leads to two eliminations,
namely a with b (shown in (c)) and then d with c (shown in (d)).

�
�

�

•

�
�

�

•

•

�
�

�

•

•

�
�

�

•

•
B
B
B
B
B
BB

��
��

��

�
�
�
�A

A
A
A

�
�
�
�A

A
A
A

PPPPPP

Q
Q
Q
Q
Q
Q
Q
Q

L
L
L
L
L
L

T
T
T
T

PPPPPP

z

t(a)y

x

d

c a

b

�
�

�

•

�
�

�

• �
�

�

•

•

�
�

�

•

•
B
B
B
B
B
BB�
�
�
�

�
�
�
�A

A
A
A

PPPPPP

Q
Q
Q
Q
Q
Q
Q
Q

L
L
L
L
L
L

T
T
T
T

PPPPPP

z

t(b)y

x

c a

b

Figure 6: (a) A broken triangle (shown in bold) exists on values a, b at vari-
able x. (b) After removing value d from D(z) by AC, this broken triangle has
disappeared.

10

�
�

�

•

•

�
�

�

•

�
�

�

•

•

@
@
@
@�
�
�
�

xij

zi

yij

bi

ai a′i

b′i

ci

(a)

�
�

�

•

•

�
�

�

•

•

�
�

�

•

•

S
S
S
S
S

��
��

yij

yil

yik

a′j

b′j

b′k

a′k

a′l

b′l

(b)

Figure 7: (a) Representation of the variable Xi and its negation (by the pos-
sibility of performing a merge in D(xij) or D(yij), respectively, according to
rules (1),(2)). (b) Representation of the clause (Xj ∨ Xk ∨ Xl). Pairs of points
joined by a solid line are compatible and incompatible otherwise.

ables xij and yij are the following:

Xi = true ⇔ ∀j, ai, bi can be merged in D(xij) (1)
Xi = false ⇔ ∀j, a′i, b′i can be merged in D(yij) (2)

In order to prevent the possibility of merging both (ai, bi) and (a′i, b
′
i), we

define the following constraints for zi, xij and yij : ∀j Rxijzi = {(bi, ci)} and
Ryijzi = {(b′i, ci)}; ∀j ∀ k Rxijyik

= {(ai, a′i)}. These constraints are shown in
Figure 7(a) for a single j (where a pair of points not joined by a solid line are
incompatible). By this gadget, we create a broken triangle on each yij when
merging values in the xij and vice versa.

The idea is that BTP-merging ai and bi in any D(xij) (1 ≤ j ≤ N) prevents
us from BTP-merging a′i and b′i in any D(yik) (1 ≤ k ≤ N), thus ensuring
that the value of Xi is the same in each clause in which it occurs. If Xi is
prevented from being assigned either false or true according to the rules (1)
and (2) (because of the clause gadgets described below), then I3SAT will be
detected as unsatisfiable since the total number of merges will be less than
3×M .

For each clause Ci = (Xj , Xk, Xl), we add the following constraints in order
to have at least one of the literals Xj , Xk, Xl true: Ryijyik

= {(a′j , b′k)}, Ryikyil
=

{(a′k, b′l)} and Ryilyij = {(a′l, b′j)}. This construction, shown in Figure 7(b), is
such that it allows two mergings on the variables yij , yik, yil before a broken
triangle is created. For example, merging a′j , b′j and then a′k, b′k creates a broken
triangle on a′i, b

′
i. So a third merging is not possible.

If the clause Ci contains a negated literal Xj instead of Xj , it suffices to
replace yij by xij . Indeed, Figure 8 shows the construction for the clause (Xj ∨
Xk ∨Xl) together with the gadgets for each variable.

The maximum number of mergings that can be performed are one per oc-
currence of each variable in a clause, which is exactly 3×M . Given a sequence
of 3 × M mergings in the CSP instance, there is a corresponding solution to
I3SAT given by (1) and (2). To give a concrete example, consider the gadget
shown in Figure 8 representing the clause Xj ∨Xk ∨Xl. This gadget is made

11

�
�

�

•

•
�
�

�

•

•

�
�

�

•

�
�
�@
@
@

�
�

�

•

•
�
�

�

•

•

�
�

�

•

e
e
e
e%
%
%
%

�
�

�

•

•
�
�

�

•

•

�
�

�

•

�
�
�@
@
@

��
��
��
�

�
�
�
�
�
�

T
T
T
T
T
T

yij

b′j

a′j
xij

bj

aj

cj

zj

yik

b′k

a′k
xik

bk

ak

ck

zk

yil

b′l

a′l

xil

bl

al

cl

zl

Figure 8: Gadget representing the clause (Xj ∨Xk ∨Xl).

up of three triangles of the type shown in Figure 7(a). To perform three merges
in this gadget, we must perform exactly one merging in each of these trian-
gles. For example, if we merge the pairs of values (aj , bj), (ak, bk) and (al, bl),
then this sequence of merges corresponds to the assignment (Xj , Xk, Xl) =
(true, true, true) which satisfies the clause. On the other hand, the assign-
ment (Xj , Xk, Xl) = (true, false, true), which does not satify the clause, is
impossible due to the central triangle of variables (of the type shown in Fig-
ure 7(b)) which prevents us from simultaneously merging the three pairs of
values (aj , bj), (a′k, b

′
k) and (al, bl).

The above reduction allows us to code I3SAT as the problem of testing the
existence of a sequence of k = 3 ×M mergings in the corresponding instance
ICSP . This reduction being polynomial, we have proved the NP-completeness
of the problem of determining whether k BTP merges are possible in a boolean
binary CSP instance. 2

The reduction in the proof of Theorem 7 supposes that no arc-consistency
operations are used. We will now show that it is possible to modify the re-
duction so as to prevent the elimination of any values in the instance ICSP by
arc-consistency, even when the maximum size of the domains d is bounded
by a constant as small as 3. Recall that an arc-consistent instance remains arc-
consistent after any number of BTP-mergings.

Theorem 8 The problem of determining if it is possible to perform k BTP-mergings
in an arc-consistent binary CSP instance is NP-complete, even when only considering
binary CSP instances where the size of the domains is bounded by 3.

Proof: I 2n order to ensure arc-consistency of the
instance ICSP , we add a new value di to the domain of each of the variables
xij , yij , zi. However, we cannot simply make di compatible with all values in

12

�
�

�

••

•

�
�

�

•

•

�
�

�

••

•�
�
�
�
�

S
S
S
S
S

��
��

QQ
QQ

�
�
�
�

@
@
@
@

�
�
�
�
�
�
�

A
A
A
A
A
A
A

((((
(((
hhhh

hhh
��
��
��
�

PP
PP

PP
P

ai
bi

di

xij

a′i

b′i

di

yij

ci

di

zi

Figure 9: Ensuring arc consistency between the variables zi, yij , xij by addition
of new values di.

all other domains, because this would allow all values to be merged with di,
destroying in the process the semantics of the reduction.

In the three binary constraints concerning the triple of variables xij , yij , zi,
we make di compatible with all values in the other two domains except di. In
other words, we add the following tuples to constraint relations, as illustrated
in Figure 9:

• ∀i∀j, (ai, di), (bi, di), (di, ci) ∈ Rxijzi

• ∀i∀j, (a′i, di), (b′i, di), (di, ci) ∈ Ryijzi

• ∀i∀j, (ai, di), (bi, di), (di, a
′
i), (di, b

′
i) ∈ Rxijyij

This ensures arc consistency, without creating new broken triangles on ai, bi
or a′i, b

′
i, while at the same time preventing BTP-merging with the new value

di. It is important to note that even after BTP-merging of one of the pairs ai, bi
or a′i, b

′
i, no BTP-merging is possible with di in D(xij), D(yij) or D(zi) due to

the presence of broken triangles on this triple of variables. For example, the
pair of values ai, di ∈ D(xij) belongs to a broken triangle on ci ∈ D(zi) and
di ∈ D(yij), and this broken triangle still exists if the values a′i, b

′
i ∈ D(yij) are

merged.
We can then simply make di compatible with all values in the domain of

all variables outside this triple of variables. With these constraints we ensure
arc consistency without changing any of the properties of ICSP used in the
reduction from 3-SAT described in the proof of Theorem 7. For each pair of
values ai, bi ∈ D(xij) and a′i, b

′
i ∈ D(yij), no new broken triangle is created

since these two values always have the same compatibility with all the new
values dk. As we have seen, the constraints shown in Figure 9 prevent any
merging of the new values dk. 2

Corollary 9 The problem of determining if it is possible to perform k value elimina-
tions by arc consistency and BTP-merging in a binary CSP instance is NP-complete,
even when only considering binary CSP instances where the size of the domains is
bounded by 3.

A related question concerns the complexity of finding the optimal order of
BTP-mergings within the domain of a single variable. It turns out that this too

13

is NP-Complete. The proof of this theorem [19] is based on a similar technique
to that used in the proof of Theorem 7.

Theorem 10 The problem of determining if it is possible to perform k BTP-mergings
within a same domain in a binary CSP instance is NP-Complete.

6 Experimental trials

In this section, we study BTP-merging from a practical viewpoint.

6.1 Experimental protocol

To test the utility of BTP-merging we performed extensive experimental tri-
als on CSP benchmark instances available from the International CP Competi-
tion1. Among the 7,272 CSP benchmark instances, we consider all the instances
including only binary constraints (namely 3,795 instances). For each of these
instances, we performed BTP-mergings until convergence with a time-out of
one hour. In total, we obtained results for 2,944 instances out of 3,795 bench-
mark instances. In the other instances, the search for all BTP-mergings did not
terminate within the time-out. Note that some of the considered instances have
constraints defined by predicates. In such cases, these constraints are first ex-
pressed in extension before applying the BTP-merging algorithm. The runtime
of this transformation is included in the reported runtime.

BTP-mergings are performed by checking first for virtual interchangeabil-
ity and then by looking for BTP-mergeable pairs of values. These two steps are
repeated until a fixed point is reached. By so doing, the virtual interchangeabil-
ity step allows us to merge more quickly some pairs of values since the virtual
interchangeability rule is easier to check than the BTP rule. Our experiments
(not reported here) have shown that this version of BTP-merging is signifi-
cantly faster than one presented in [18] while leading to a similar number of
mergings.

For the BTP-merging step, we consider the variables according to a given
ordering. Among the different variable orderings we tried, we opted in our
experimental trials for one which orders the variables according to increasing
degree (the degree of a variable being the number of constraints whose scope
contains the variable). Note that this ordering differs from the one used in
[18] which corresponds to a lexicographical ordering. In practice, we obtain
a similar number of mergings with these two orderings but the algorithm is
significantly faster with the first one. In general, we observed that the different
variable orderings we tried had more impact on runtime than on the number
of mergings performed.

For a given variable x, we check for each pair of values a, b ∈ D(x) whether
a, b are BTP-mergeable. If a broken triangle on a, b is found, we save it in a
data structure. Then if, later, we have to check again the BTP-mergeability of

1http://www.cril.univ-artois.fr/CPAI08

14

a, b, we start with this saved broken triangle. If this triangle is still broken, we
can immediately deduce that a, b are not BTP-mergeable, thus avoiding some
useless checks. On the other hand, if this triangle is no longer broken, we check
whether a, b are BTP-mergeable. If no broken triangle occurs on a, b (that is a, b
are BTP-mergeable), we immediately merge a, b. This greedy algorithm is a
natural choice since by Theorem 8 it is NP-hard to optimise the order of BTP-
merges. For efficiency reasons, when merging a, b, we keep one value (assume
without loss of generality that a is this value) and delete the other one instead
of creating a new value c and removing a and b as evoked in Definition 3. Then
a is made compatible with each variable-value assignment compatible with the
assignment 〈x, b〉.

We also implemented the deletion of values by neighbourhood substitu-
tion, by virtual interchangeability or by arc-consistency (which is enforced
by the AC-2001 algorithm [23]). In the remainder of this section, we denote
AC+P the application of AC followed by merging according to the property
P where P may be BTP-merging, neighbourhood substitution (NS) or vir-
tual interchangeability (VI). For solving, we use MAC (for Maintaining Arc-
Consistency [24]) based on AC-2001 together with the variable ordering heuris-
tic dom/wdeg [25]. The choice of MAC is a natural choice since most state-of-
the-art solvers rely on it. All the algorithms are implemented in C++.

The experimentations were performed on 8 Dell PowerEdge M820 blade
servers with two processors (Intel Xeon E5-2609 v2 2.5 GHz and 32 GB of mem-
ory) under Linux Ubuntu 14.04.

6.2 Comparisons between BTP-merging and AC+BTP-merging

We compare in this subsection the results obtained by BTP-merging and by
AC+BTP-merging. First, as shown in Figure 10, AC+BTP-merging is able to
process (i.e. find a fixed point in which no more BTP-mergings are possi-
ble) more instances within the time-out than BTP-merging alone. More pre-
cisely, AC+BTP-merging succeeds in terminating within the time-out for 2,944
instances against 2,856 for BTP-merging. In both cases, for more than one
third of these instances, some mergings occur. Figure 11 compares the per-
centages of values removed by BTP-merging and AC+BTP-merging for the in-
stances for which both BTP-merging and AC+BTP-merging terminate. Clearly,
AC+BTP-merging outperforms BTP-merging since the percentage of values
removed by AC+BTP-merging is always greater than or equal to the num-
ber of values removed by BTP-merging. We can see that for certain types
of problem, (AC+)BTP-merging is very effective (more than 90% of deleted
values), whereas for others hardly any merging of values occurred. In par-
ticular, we have observed that often the instances for which no merging is
possible have some disequality constraints (which makes sense, since even a
conjunction of disequality constraints as simple as (x 6= y) ∧ (x 6= z) ∧ (y 6=
z) with a, b ∈ D(x), a ∈ D(y), b ∈ D(z), induces a broken triangle on a, b).
For instance, for the graph coloring instances, (AC+)BTP-mergings only occur
when the instances have variables with degree 0 or 1. In contrast, (AC+)BTP-

15

 1600

 1800

 2000

 2200

 2400

 2600

 2800

 3000

 1 10 100 1000 10000

in

st
an

ce
s

time (s)

BTP merging
AC + BTP merging

Figure 10: Number of instances processed by BTP-merging with and without
AC preprocessing depending on the elapsed time (in seconds).

merging is very effective for some real-world instances from frequency assign-
ment problems (fapp*, graph* or scen*) or for some patterned instances
(like BlackHole* or os-taillard*). Note that at best, BTP-merging re-
duces all variable domains to singletons (and so cannot remove all the values
in a domain). For example, this is the case for all instances hanoi* which sat-
isfy the broken-triangle property [26]. Tables 1 and 2 provide some detailed
results for some selected instances. These instances have been selected in such
a way that all observed trends are represented.

Regarding runtime, BTP-merging and AC+BTP-merging are often close as
shown in Figure 12. However, for a few instances, such as langford-4-14,
AC+BTP-merging requires more time than BTP-merging. Such a result is often
explained by the fact that the values used to quickly find broken triangles in
BTP-merging have been removed by AC in AC+BTP-merging. In contrast, in
most cases, achieving an AC preprocessing is useful since it saves time. More-
over, sometimes, it turns out to be very useful since it makes it possible to
process more instances. For example, for the instance fapp25-2230-8, the
values removed by AC make it possible for the BTP-merging step to terminate.
Finally, we can note that a large part of the considered instances are processed
quickly. Indeed, for about 57% of instances, achieving (AC+)BTP-merging re-
quires less than one second.

16

In
st

an
ce

n
e

#
va

lu
es

N
S

V
I

BT
P

#
de

l.
#

de
l.

#
de

l.
#

N
S

#
V

I
Ti

m
e

b
q
w
h
-
1
5
-
1
0
6
-
1
8
_
e
x
t

10
6

59
7

38
5

0
0

0
0

0
<0

.0
1

l
e
-
4
5
0
-
5
a
-
2
-
e
x
t

45
0

5,
71

4
90

0
0

0
0

0
0

0.
04

g
e
o
5
0
-
2
0
-
d
4
-
7
5
-
1
0
0
_
e
x
t

50
39

3
1,

00
0

0
0

0
0

0
0.

05
r
a
n
d
-
2
4
-
2
4
-
2
7
6
-
1
3
9
-
5
3
0
2
1
_
e
x
t

24
27

6
57

6
0

0
0

0
0

0.
03

l
a
n
g
f
o
r
d
-
4
-
1
4

56
1,

54
0

3,
13

6
0

0
0

0
0

8.
18

h
a
y
s
t
a
c
k
s
-
2
1

44
1

4,
43

0
9,

26
1

0
20

20
0

20
6.

44
r
a
n
d
-
2
-
4
0
-
1
8
0
-
8
4
-
9
0
0
-
5
6
_
e
x
t

40
84

7,
20

0
0

35
8

35
8

0
35

8
23

.4
7

m
u
l
s
o
l
-
i
-
4
-
3
1

18
5

3,
94

6
5,

73
5

30
0

30
0

30
0

30
0

30
0

8.
01

e
0
d
d
r
2
-
1
0
-
b
y
-
5
-
7

50
26

5
6,

21
5

36
6

0
36

6
21

8
0

22
4.

11
i
n
i
t
h
x
-
i
-
2
-
2
8

64
5

13
,9

79
18

,0
60

2,
34

9
2,

34
9

2,
34

9
2,

34
9

2,
34

9
22

0.
76

s
c
e
n
1
-
f
9

91
6

5,
54

8
28

,5
96

36
8

53
2

1,
20

0
25

1
58

8
66

9.
72

f
a
p
p
0
1
-
0
2
0
0
-
8

20
0

1,
10

8
26

,9
63

0
11

3
11

3
0

11
3

2,
52

8.
42

e
h
i
-
8
5
-
2
9
7
-
3
3
_
e
x
t

29
7

4,
09

4
2,

07
9

0
0

89
1

0
0

1.
18

o
s
-
t
a
i
l
l
a
r
d
-
4
-
1
0
5
-
5

16
48

2,
50

0
81

2
0

81
2

40
6

0
10

2.
73

s
c
e
n
1
0
-
w
1
-
f
3

68
0

1,
13

8
25

,1
92

89
3

6,
62

6
7,

41
9

2,
41

1
6,

77
0

34
5.

57
B
l
a
c
k
H
o
l
e
-
4
-
7
-
e
-
0
_
e
x
t

11
2

1,
26

1
2,

10
2

69
7

88
7

89
6

46
3

88
7

5.
71

B
l
a
c
k
H
o
l
e
-
4
-
1
3
-
e
-
1
_
e
x
t

20
8

4,
21

7
7,

33
4

2,
54

1
3,

20
9

3,
22

6
1,

69
1

3,
20

9
15

1.
31

o
s
-
t
a
i
l
l
a
r
d
-
4
-
9
5
-
7

16
48

2,
50

8
1,

55
8

0
1,

57
3

77
7

49
12

3.
43

s
c
e
n
4

68
0

3,
96

7
26

,8
56

0
26

8
3,

10
3

21
4

45
5

44
5.

89
g
r
a
p
h
1
3
-
w
0

91
6

45
8

35
,1

76
0

34
,2

60
34

,2
60

17
,1

30
34

,2
60

0.
36

l
a
r
g
e
-
9
2
-
u
n
s
a
t
_
e
x
t

92
4,

18
6

8,
46

4
8,

28
0

8,
27

5
8,

28
0

4,
23

3
8,

27
9

2.
83

l
a
r
d
-
9
2
-
9
2

92
4,

18
6

8,
55

6
7,

16
3

5,
30

3
8,

34
7

84
0

5,
31

4
44

8.
00

f
a
p
p
2
5
-
2
2
3
0
-
8

2,
23

0
11

,9
74

61
0,

08
4

44
,1

68
-

-
-

-
-

h
a
n
o
i
-
5
_
e
x
t

30
29

6,
80

8
0

27
6,

77
8

41
6,

75
2

0.
45

Ta
bl

e
1:

Fo
r

ea
ch

se
le

ct
ed

in
st

an
ce

,t
he

nu
m

be
r
n

of
va

ri
ab

le
s,

th
e

nu
m

be
r
e

of
co

ns
tr

ai
nt

s,
th

e
to

ta
ln

um
be

r
of

va
lu

es
,t

he
nu

m
be

r
of

va
lu

es
re

m
ov

ed
by

ne
ig

hb
ou

rh
oo

d
su

bs
ti

tu
ti

on
(N

S)
or

by
vi

rt
ua

li
nt

er
ch

an
ge

ab
ili

ty
(V

I)
,t

he
nu

m
be

r
of

va
lu

es
re

m
ov

ed
by

BT
P-

m
er

gi
ng

,
th

e
nu

m
be

r
of

va
lu

es
fo

r
w

hi
ch

ne
ig

hb
ou

rh
oo

d
su

bs
ti

tu
ti

on
or

vi
rt

ua
l

in
te

rc
ha

ng
ea

bi
lit

y
ho

ld
am

on
g

th
e

va
lu

es
re

m
ov

ed
by

BT
P-

m
er

gi
ng

an
d

th
e

ru
nt

im
e

in
se

co
nd

s
of

BT
P-

m
er

gi
ng

.A
da

sh
m

ea
ns

th
at

th
e

in
fo

rm
at

io
n

is
un

kn
ow

n
be

ca
us

e
th

e
ru

nt
im

e
of

BT
P-

m
er

gi
ng

ex
ce

ed
s

th
e

ti
m

e-
ou

to
fo

ne
ho

ur
.

17

In
st

an
ce

#
va

lu
es

A
C

N
S

V
I

BT
P

#
de

l.
#

de
l.

#
de

l.
#

de
l.

#
N

S
#

V
I

Ti
m

e
b
q
w
h
-
1
5
-
1
0
6
-
1
8
_
e
x
t

38
5

0
0

0
0

0
0

<0
.0

1
l
e
-
4
5
0
-
5
a
-
2
-
e
x
t

90
0

0
0

0
0

0
0

0.
04

g
e
o
5
0
-
2
0
-
d
4
-
7
5
-
1
0
0
_
e
x
t

1,
00

0
0

0
0

0
0

0
0.

05
r
a
n
d
-
2
4
-
2
4
-
2
7
6
-
1
3
9
-
5
3
0
2
1
_
e
x
t

57
6

0
0

0
0

0
0

0.
03

l
a
n
g
f
o
r
d
-
4
-
1
4

3,
13

6
1,

42
8

0
0

0
0

0
35

.1
8

h
a
y
s
t
a
c
k
s
-
2
1

9,
26

1
0

0
20

20
0

20
6.

45
r
a
n
d
-
2
-
4
0
-
1
8
0
-
8
4
-
9
0
0
-
5
6
_
e
x
t

7,
20

0
0

0
35

8
35

8
0

35
8

23
.5

0
m
u
l
s
o
l
-
i
-
4
-
3
1

5,
73

5
0

30
0

30
0

30
0

30
0

30
0

7.
93

e
0
d
d
r
2
-
1
0
-
b
y
-
5
-
7

6,
21

5
0

36
6

0
36

6
21

8
0

22
5.

09
i
n
i
t
h
x
-
i
-
2
-
2
8

18
,0

60
0

2,
34

9
2,

34
9

2,
34

9
2,

34
9

2,
34

9
22

5.
93

s
c
e
n
1
-
f
9

28
,5

96
7,

60
4

0
38

3
39

0
16

8
38

3
32

9.
40

f
a
p
p
0
1
-
0
2
0
0
-
8

26
,9

63
9,

15
5

21
15

9
17

4
6

15
9

1,
00

3.
46

e
h
i
-
8
5
-
2
9
7
-
3
3
_
e
x
t

2,
07

9
2

0
0

88
9

0
0

1.
19

o
s
-
t
a
i
l
l
a
r
d
-
4
-
1
0
5
-
5

2,
50

0
28

7
81

0
0

81
8

40
4

22
10

2.
44

s
c
e
n
1
0
-
w
1
-
f
3

25
,1

92
5,

13
4

0
6,

32
1

6,
80

8
2,

13
8

6,
45

1
19

0.
51

B
l
a
c
k
H
o
l
e
-
4
-
7
-
e
-
0
_
e
x
t

2,
10

2
28

0
63

4
80

2
80

2
42

7
80

2
2.

93
B
l
a
c
k
H
o
l
e
-
4
-
1
3
-
e
-
1
_
e
x
t

7,
33

4
79

3
2,

42
2

3,
00

7
3,

00
7

1,
62

3
3,

00
7

79
.5

7
o
s
-
t
a
i
l
l
a
r
d
-
4
-
9
5
-
7

2,
50

8
45

1
1,

34
6

4
1,

40
6

65
6

12
2

10
6.

43
s
c
e
n
4

26
,8

56
19

,5
34

0
77

4
2,

16
1

40
6

92
4

44
.4

4
g
r
a
p
h
1
3
-
w
0

35
,1

76
0

0
34

,2
60

34
,2

60
17

,1
30

34
,2

60
0.

36
l
a
r
g
e
-
9
2
-
u
n
s
a
t
_
e
x
t

8,
46

4
0

8,
28

0
8,

27
5

8,
28

0
4,

23
3

8,
27

9
2.

82
l
a
r
d
-
9
2
-
9
2

8,
55

6
4,

35
0

4,
11

4
3,

87
8

4,
11

4
2,

49
4

3,
88

6
3.

93
f
a
p
p
2
5
-
2
2
3
0
-
8

61
0,

08
4

59
0,

85
0

5,
29

4
14

,4
69

16
,4

49
4,

20
9

15
,8

40
22

6.
09

h
a
n
o
i
-
5
_
e
x
t

6,
80

8
6,

77
8

0
0

0
0

0
<0

.0
1

Ta
bl

e
2:

Fo
r

ea
ch

se
le

ct
ed

in
st

an
ce

,
th

e
to

ta
l

nu
m

be
r

of
va

lu
es

,
th

e
nu

m
be

r
of

va
lu

es
re

m
ov

ed
by

A
C

,b
y

A
C

an
d

ne
ig

h-
bo

ur
ho

od
su

bs
ti

tu
ti

on
(N

S)
or

by
vi

rt
ua

li
nt

er
ch

an
ge

ab
ili

ty
(V

I)
af

te
r

A
C

pr
ep

ro
ce

ss
in

g,
th

e
nu

m
be

r
of

va
lu

es
re

m
ov

ed
by

BT
P-

m
er

gi
ng

af
te

r
A

C
pr

ep
ro

ce
ss

in
g,

th
e

nu
m

be
r

of
va

lu
es

fo
r

w
hi

ch
ne

ig
hb

ou
rh

oo
d

su
bs

ti
tu

ti
on

or
vi

rt
ua

li
nt

er
ch

an
ge

ab
il-

it
y

ho
ld

am
on

g
th

e
va

lu
es

re
m

ov
ed

by
BT

P-
m

er
gi

ng
an

d
th

e
ru

nt
im

e
in

se
co

nd
s

of
BT

P-
m

er
gi

ng
.

18

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 10 20 30 40 50 60 70 80 90 100

A
C

+B
T

P

BTP

Figure 11: Percentage of values removed by BTP vs percentage of values re-
moved by AC and BTP-merging (AC+BTP) for each considered instance.

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 0 500 1000 1500 2000 2500 3000 3500

A
C

+B
T

P

BTP

Figure 12: Runtime of BTP-merging vs runtime of AC+BTP-merging for each
considered instance.

19

6.3 Comparisons with neighbourhood substitution and virtual
interchangeability

As shown in Section 3, the BTP-merging rule generalises the notion of neigh-
bourhood substitution as well as virtual interchangeability. Hence, when we
compare the percentage of values removed by BTP-merging with the number
of values removed by neighbourhood substitution or virtual interchangeabil-
ity, BTP-merging is always better than or equivalent to neighbourhood sub-
stitution or virtual interchangeability. The same trend is observed when the
instances are preprocessed by AC. Figures 13 and 14 compare the percentage
of values removed by BTP-merging and by neighbourhood substitution or vir-
tual interchangeability after having enforced AC. Nevertheless, even when the
percentages are equal, we have no guarantee that BTP-merging removes the
same values as neighbourhood substitution or virtual interchangeability. So,
in order to make a finer comparison, we check, for each BTP-mergeable pair of
values, whether neighbourhood substitution or virtual interchangeability may
also hold. Table 1 gives these results for a selection of the considered instances.
For a few instances, all the values removed by BTP-merging can also be deleted
by neighbourhood substitution or virtual interchangeability. In most cases (e.g.
for the instances inithx-i-2-28 or mulsol-i-4-31), the removed values
belong to domains of variables having a degree 0 or 1. At the opposite ex-
treme, for some instances, such as ehi-85-297-33_ext, none of the values
removed by BTP-merging can be removed by neighbourhood substitution or
virtual interchangeability. For the majority of instances, BTP-merging removes
some values which are removed neither by neighbourhood substitution nor by
virtual interchangeability. We observe the same trends when the instances are
preprocessed by AC (Table 2).

6.4 Impact on solving

In this subsection, we investigate the impact of removed values on the solv-
ing performed by MAC. For these experiments, we only consider those 828
instances which are arc-consistent and for which AC+BTP-merging removes
at least one value. First, we observe that MAC with AC+BTP-merging solves
697 instances against 688 for MAC alone within the time-out of one hour. Note
that the runtime of MAC with AC+BTP-merging includes the runtime of the
solving and the AC+BTP-merging. Figure 15 provides a comparison of the
runtimes of MAC and MAC with AC+BTP-merging for the selected instances.
Clearly, for most instances, MAC outperforms MAC with AC+BTP-merging
with respect to runtime. This result is clearly due to the cost of achieving
AC+BTP-merging which sometimes turns out to be too expensive with re-
spect to the runtime of solving. However, in some cases, MAC with AC+BTP-
merging is faster than MAC alone and, overall, is able to solve more instances.

In order to better assess the impact on solving, we now consider the num-
ber of nodes developed by MAC and MAC with AC+BTP-merging. We can see
in Figure 16 that solving by MAC with AC+BTP-merging turns out to be more

20

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 10 20 30 40 50 60 70 80 90 100

A
C

+B
T

P

AC+NS

Figure 13: Percentage of values removed by AC and neighbourhood substi-
tution (AC+NS) vs percentage of values removed by AC and BTP-merging
(AC+BTP) for each considered instance.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 10 20 30 40 50 60 70 80 90 100

A
C

+B
T

P

AC+VI

Figure 14: Percentage of values removed by AC and virtual interchangeability
(AC+VI) vs percentage of values removed by AC and BTP-merging (AC+BTP)
for each considered instance.

21

 0.0001

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

 0.0001 0.001 0.01 0.1 1 10 100 1000 10000

B
T

P+
M

A
C

MAC

Figure 15: Runtime of MAC vs runtime of MAC after BTP-merging. Runtimes
are given in seconds.

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1 10 100 1000 10000 100000 1e+06 1e+07

B
T

P+
M

A
C

MAC

Figure 16: Number of nodes developed by MAC vs number of nodes devel-
oped by MAC after BTP-merging.

22

efficient than we would have thought by just studying the total runtime. In-
deed, thanks to the values removed by AC+BTP-merging, MAC with AC+BTP-
merging is often able to develop less nodes than MAC alone. The total number
of nodes developed by MAC with AC+BTP-merging is 27% less than the total
number of nodes developed by MAC (32 millions compared to 44 millions).
These preliminary results concerning solving are promising. However, in or-
der to make MAC with AC+BTP-merging competitive, we have now to look
for better algorithms for achieving AC+BTP-merging or techniques for iden-
tifying which instances could best profit from BTP-merging during prepro-
cessing. Note that the cost of searching for broken triangles precludes using
BTP-merging during search.

An interesting phenomenon which is worthy of further investigation is that
the number of nodes in the search tree may actually increase due to merg-
ing (since it tends to make constraints less tight) even though domain size
has decreased. Likitvivatanavong and Yap [20] mention that search runtime
may increase after merging virtual interchangeable values and indeed they ob-
served that the number of instances for which search runtime increased was
approximately the same as the number of instances in which search runtime
decreased. An open theoretical question concerning the performance of MAC
with or without BTP-merging is the existence of conditions under which BTP-
merging is guaranteed not to increase the number of nodes in the search tree.
Similarly, further experimental trials would be necessary to uncover relation-
ships between the expected gain by BTP-merging and parameters such as av-
erage domain size, constraint density and constraint tightness.

7 Generalising BTP-merging to constraints of arbi-
trary arity

In the remainder of the paper, we assume that the constraints of a general-
arity CSP instance I are given in the form described in Definition 2, i.e. as a
set of incompatible tuples NoGoods(I), where a tuple is a set of variable-value
assignments. For simplicity of presentation, we use the predicate Good(I, t)
which is true iff the tuple t is a partial solution, i.e. t does not contain any
pair of distinct assignments to the same variable and @t′ ⊆ t such that t′ ∈
NoGoods(I). We first generalise the notion of broken triangle and merging to
the general-arity case, before showing that absence of broken triangles allows
merging.

Definition 11 A general-arity broken triangle (GABT) on values a, b ∈ D(x) con-
sists of a pair of tuples t, u (containing no assignments to variable x) satisfying the
following conditions:

1. Good(I, t ∪ u) ∧ Good(I, t ∪ {〈x, a〉}) ∧ Good(I, u ∪ {〈x, b〉})

2. t ∪ {〈x, b〉} ∈ NoGoods(I) ∧ u ∪ {〈x, a〉} ∈ NoGoods(I)

23

�
�

�

• �
�

�

•

�
�

�

•

•
hhhhhhA
A
A
A

x
�
�
�
�
�

a

b

t

u

Y

Z

Figure 17: A general-arity broken triangle on values a, b ∈ D(x).

The pair of values a, b ∈ D(x) is GABT-free if there is no broken triangle on a, b.

A general-arity broken triangle is illustrated in Figure 17. This figure is
identical to Figure 1 except that Y ,Z are now sets of variables and t,u are tuples.
Note that the sets Y and Z may overlap. As in the binary case, a dashed line
represents a nogood (i.e. a tuple not in the constraint relation on its variables).
A solid line now represents a partial solution.

If the constraints are represented by nogoods, as in our Definition 2, then
to decide whether there is a GABT on a, b in a CSP instance, one can use the
second condition in Definition 11 and explore all pairs t∪{〈x, b〉}, u∪{〈x, a〉} ∈
NoGoods(I). On the other hand, if the constraints are represented as lists of
allowed tuples, then one can use the first condition in Definition 11 and explore
all pairs t ∪ {〈x, a〉}, u ∪ {〈x, b〉} of tuples explicitly allowed by the constraints
in I (since the second condition implies that under this representation, there
is a constraint over the variables of t and x, and one over the variables of u
and x). Whatever the representation, a pair t, u can be checked to be a GABT
on a, b by evaluating the properties of Definition 11, all of which involve only
constraint checks. Hence deciding whether a pair a, b is GABT-free is polytime
for constraints given in extension (as the set of satisfying assignments) as well
as for those given by nogoods (the set of assignments violating the constraint).

Definition 12 Merging values a, b ∈ D(x) in a general-arity CSP instance I con-
sists of replacing a, b in D(x) by a new value c which is compatible with all variable-
value assignments compatible with at least one of the assignments 〈x, a〉 or 〈x, b〉, thus
producing an instance I ′ with the new set of nogoods defined as follows:

NoGoods(I ′) = {t ∈ NoGoods(I) | 〈x, a〉, 〈x, b〉 /∈ t}
∪ {t ∪ {〈x, c〉} | t ∪ {〈x, a〉} ∈ NoGoods(I) ∧

∃t′ ∈ NoGoods(I) s.t. t′ ⊆ t ∪ {〈x, b〉}}
∪ {t ∪ {〈x, c〉} | t ∪ {〈x, b〉} ∈ NoGoods(I) ∧

∃t′ ∈ NoGoods(I) s.t. t′ ⊆ t ∪ {〈x, a〉}}

A value-merging condition is a polytime-computable property P (x, a, b) of assign-
ments 〈x, a〉, 〈x, b〉 in a CSP instance I such that when P (x, a, b) holds, the instance
I ′ is satisfiable if and only if I is satisfiable.

24

This merging operation can be performed in polynomial time whether con-
straints are represented positively in extension or negatively as nogoods. For
representations using nogoods this is clear from Definition 12. For represen-
tations in extension, simply observe that as in the binary case, the operation
amounts to gathering together tuples which satisfy Good(I, ·) and containing
〈x, a〉 or 〈x, b〉, and setting x to c in them.

Proposition 13 In a general-arity CSP instance, being GABT-free is a value-merging
condition. Furthermore, given a solution to the instance resulting from the merging of
two values, we can find a solution to the original instance in linear time.

Proof: I 2n order to prove that satisfiability is preserved by this merging
operation, it suffices to show that if s is a solution to I ′ containing 〈x, c〉, then
either sa = (s\{〈x, c〉})∪{〈x, a〉} or sb = (s\{〈x, c〉})∪{〈x, b〉} is a solution to I .
Suppose, for a contradiction that this is not the case. Then there are tuples t, u ⊆
s \ {〈x, c〉} such that t ∪ {〈x, b〉} ∈NoGoods(I) and u ∪ {〈x, a〉} ∈NoGoods(I).
Since t, u are subsets of the solution s to I ′ and t, u contain no assignments
to x, we have Good(I, t ∪ u). Since t ∪ {〈x, c〉} is a subset of the solution s
to I ′, we have t ∪ {〈x, c〉} /∈ NoGoods(I ′). By the definition of NoGoods(I ′)
given in Definition 12, and since t∪{〈x, b〉} ∈NoGoods(I), we know that @t′ ∈
NoGoods(I) such that t′ ⊆ t ∪ {〈x, a〉}. But then Good(I, t ∪ {〈x, a〉}). By a
symmetric argument, we can deduce Good(I, u ∪ {〈x, b〉}). This provides the
contradiction we were looking for, since we have shown that a general-arity
broken triangle occurs on t, u, 〈x, a〉, 〈x, b〉.

Reconstructing a solution to the original instance can be achieved in linear
time, since it suffices to verify which (or both) of sa or sb is a solution to I . 2

Relationship with Resolution in SAT

We now show that in the case of Boolean domains, there is a close relationship
between merging two values a, b on which no GABT occurs and a common
preprocessing operation used by SAT solvers. Given a propositional CNF for-
mula ϕ in the form of a set of clauses (each clause Ci being represented as a set
of literals) and a variable x occurring in ϕ, recall that resolution is the process
of inferring the clause (C0 ∪ C1) from the two clauses ({x̄} ∪ C0), ({x} ∪ C1).
Define the formula Res(x, ϕ) to be the result of performing all such resolutions
on ϕ, removing all clauses containing x or x̄, and removing subsumed clauses:

Res(x, ϕ) = min
⊂

({C | C ∈ ϕ;x, x̄ /∈ C}∪{(C0∪C1) | ({x̄}∪C0), ({x}∪C1) ∈ ϕ})

It is a well-known fact that Res(x, ϕ) is satisfiable if and only if ϕ is.
Eliminating variables in this manner from SAT instances, to get an equi-

satisfiable formula with less variables, is a common preprocessing step in SAT
solving, and is typically performed provided it does not increase the size of
the formula [27]. A particular case is when it amounts to simply removing all
occurrences of x, which is the case, for instance, if x or x̄ is unit or pure in ϕ, or
if all resolutions on x yield a tautological clause.

25

Definition 14 A variable x is said to be erasable from a CNF ϕ if

Res(x, ϕ) ⊆ {C | C ∈ ϕ;x, x̄ /∈ C} ∪ {C0 | ({x̄}∪C0) ∈ ϕ} ∪ {C1 | ({x}∪C1) ∈ ϕ}

A CNF ϕ can be seen as the CSP instance Iϕ on the set X of variables occur-
ring in ϕ, with D(x) = {>,⊥} for all x ∈ X , and NoGoods(Iϕ) = {C | C ∈ ϕ},
where ({x1, · · ·xp, x̄p+1, · · · , x̄q}) = {〈x1,⊥〉, . . . , 〈xp,⊥〉, 〈xp+1,>〉, . . . , 〈xq,>〉}.

Proposition 15 Assume that no GABT occurs on values ⊥,> for x in Iϕ. Assume
moreover that no clause in ϕ is subsumed by another one2. Then x is erasable from ϕ.

Proof: R 2ephrasing Definition 11 (1) in terms of clauses, for any two
clauses ({x̄} ∪ C0), ({x} ∪ C1) ∈ ϕ we have one of (i) ∃C ∈ ϕ,C ⊆ (C0 ∪ C1),
(ii) ∃C ′ ∈ ϕ,C ′ ⊆ (C0 ∪ {x}), or (iii) ∃C ′′ ∈ ϕ,C ′′ ⊆ (C1 ∪ {x̄}). Moreover,
in Case (ii) C ′ must contain x, for otherwise the clause ({x̄} ∪ C0) would be
subsumed in ϕ, contradicting our assumption. Similarly, in Case (iii) C ′′ must
contain x̄.

In Case (i) the resolvent (C0 ∪ C1) of ({x̄} ∪ C0), ({x} ∪ C1) is subsumed
by C in Res(x, ϕ), and hence does not occur in it. Similarly, in the second case
(C0 ∪C1) is subsumed by the resolvent of ({x̄}∪C0) and C ′, which is precisely
C0. The third case is dual. We finally have that the only resolvents added are
of the form C0 (resp. C1) for some clause ({x̄} ∪ C0) (resp. ({x} ∪ C1)) of ϕ, as
required. 2

We can show the converse is also true provided that a very reasonable prop-
erty holds.

Proposition 16 Assume that ϕ satisfies: ∀({x} ∪C) ∈ ϕ, @C ′ ⊆ C, ({x̄} ∪C ′) ∈ ϕ
and dually ∀({x̄} ∪ C) ∈ ϕ,@C ′ ⊆ C, ({x} ∪ C ′) ∈ ϕ. If x is erasable from ϕ, then
no GABT occurs on values ⊥,> for x in Iϕ.

Proof: A 2ssume
for a contradiction that there is a GABT on values ⊥,> for x in Iϕ, let t, u be
witnesses to this, and write t∪{〈x,>〉} = ({x̄} ∪ C0), u∪{〈x,⊥〉} = ({x} ∪ C1).
Then the clause (C0 ∪ C1) is produced by resolution on x. Since x is erasable,
(C0 ∪ C1) is equal to or subsumed by a clause C ∈ Res(x, ϕ), where (applying
Definition 14 in reverse) either C, or ({x} ∪ C), or ({x̄} ∪ C) is in ϕ. The first
case contradicts Good(Iϕ, t ∪ u), so assume by symmetry ({x} ∪ C) ∈ ϕ. From
C /∈ ϕ and C ∈ Res(x, ϕ) we get ∃C ′ ⊆ C, ({x̄} ∪ C ′) ∈ ϕ. But then the pair of
clauses ({x} ∪ C), ({x̄} ∪ C ′) ∈ ϕ violates the assumption of the claim. 2

8 BTP-merging in the presence of global constraints

Global constraints are an important feature of constraint programming. They
not only facilitate modelling of complex problems but many global constraints

2This is without loss of generality since such clauses can be removed in polytime and such
removal preserves logical equivalence.

26

also have dedicated efficient filtering algorithms [28]. In the presence of global
constraints there are specific questions which need to be addressed to know
whether BTP-merging is useful. The first thing to verify is that mergings are
possible in the presence of one or more global constraints. A second important
point is whether these BTP-mergings can be detected in polynomial time. A
third point is to determine whether the semantics of the global constraint(s) are
preserved by the operation of merging two values. For those global constraints
that are decomposable into the conjunction of low-arity constraints, we can
also ask whether BTP-merging applied to the decomposed version is equiva-
lent to BTP-merging applied to the original global constraint(s). The answers
to these questions depend on the global constraints. This section presents re-
sults concerning the important global constraint AllDifferent. These results are
both negative and positive.

Proposition 17 Determining whether two values can be GABTP-merged in a CSP
instance consisting of two AllDifferent constraints is coNP-complete.

Proof: I 2t suffices to show that the problem of testing the
existence of a general-arity broken triangle (GABT) in a CSP instance consisting
of two AllDifferent constraints is NP-complete. We denote this problem by
∃GABT(2AllDiff). Clearly, the validity of a GABT can be checked in polynomial
time. Testing the satisfiability of a CSP instance consisting of two AllDifferent
constraints (a problem which we denote by CSP(2AllDiff)) is known to be NP-
complete [29]. Thus to complete the proof it suffices to exhibit a polynomial
reduction from CSP(2AllDiff) to ∃GABT(2AllDiff).

Let I be an instance, over variables X , consisting of two AllDifferent con-
straints with scopes S1, S2. Without loss of generality, we suppose that S1 ∪
S2 = X . Let x, y, z be three variables not in X with domains containing
only values not occurring in the domains of the variables in X , including
a, b ∈ D(x) with a ∈ D(y), a /∈ D(z), b ∈ D(z), b /∈ D(z). We construct a
new instance I ′ with variables X ∪ {x, y, z}, with domains as in I for variables
in X and the domains of variables x, y, z as just described. The instance I ′

has just two constraints: AllDifferent constraints with scopes S1 ∪ {y, x} and
S2 ∪ {z, x}. We will show that I ′ has a GABT on a, b ∈ D(x) if and only if I
has a solution. A GABT on a, b ∈ D(x) consists of tuples t, u (containing no
assignments to variable x) satisfying the following conditions: Good(I ′, t ∪ u),
Good(I ′, t ∪ {〈x, a〉}), Good(I ′, u ∪ {〈x, b〉}), t ∪ {〈x, b〉} ∈ NoGoods(I ′) and
u ∪ {〈x, a〉} ∈ NoGoods(I ′). Since u ∪ {〈x, a〉} ∈ NoGoods(I ′), but Good(I ′, u),
we must have 〈y, a〉 ∈ u, since y is the only variable other than x containing a in
its domain. Similarly, we can deduce that 〈z, b〉 ∈ t. Now Good(I ′, t∪u) implies
that (t \ {〈z, b〉}) ∪ (u \ {〈y, a〉}) is a solution to I . On the other hand, suppose
that s is a solution to I . Let u = s[S1] ∪ {〈y, a〉} and t = s[S2] ∪ {〈z, b〉}
(where s[S] represents the subset of s corresponding to assignments to vari-
ables in S). Then the tuples t and u satisfy the conditions: Good(I ′, t ∪ u),
Good(I ′, t ∪ {〈x, a〉}), Good(I ′, u ∪ {〈x, b〉}), t ∪ {〈x, b〉} ∈ NoGoods(I ′) and
u ∪ {〈x, a〉} ∈ NoGoods(I ′). Thus t, u form a GABT on a, b ∈ D(x).

27

We have shown that I ′ has a GABT on a, b ∈ D(x) if and only if I has a
solution. Since the reduction from CSP(2AllDiff) to ∃GABT(2AllDiff) is clearly
polynomial, this completes the proof. 2

Another problem with merging values in the presence of global constraints
is that the global constraint may lose its semantics when values are merged.
To give an example, consider an instance I in which a variable x (with domain
D(x) = A) occurs in the scope of a single constraint, an AllDifferent constraint
on variables X . Since there is only one constraint on variable x, there can be
no GABT on any pair of values in D(x). It is easy to see that we can, in fact,
GABTP-merge all the values in D(x). When the domain of x becomes a sin-
gleton, we can clearly eliminate x. However, the resulting constraint on the
variables X \ {x} combines both an AllDifferent constraint on X \ {x} and a
constraint which says that the set of values assigned to these variables does not
contain all of A. This constraint clearly does not have the same semantics as an
AllDifferent constraint. In general, merging values can transform global con-
straints which have efficient filtering algorithms into new global constraints
which do not have efficient filtering algorithms.

After these negative results, we now give some positive results. It turns out
that we can take advantage of the semantics of (global) constraints to reduce
the complexity of searching for broken triangles. Suppose that instance I con-
tains only AllDifferent constraints. Instead of looking for GABTP-merges, we
can decompose the AllDifferent constraints into binary constraints and look
for BTP-merges in the resulting instance Ibin. The presence of a general-arity
broken triangle on a, b ∈ D(x) in I implies the presence of a broken triangle
on a, b ∈ D(x) in Ibin, but the converse is not true. Thus BT-merging in Ibin
is a strictly weaker operation than GABT-merging in I . The advantages of BT-
merging in Ibin is that (1) it can be detected in linear time, and (2) it conserves
the semantics of the AllDifferent constraints, as we will now show.

Lemma 18 Suppose that instance I contains only binary difference constraints x 6=
y. For each variable x, let Sx denote the set of variables constrained by x. Two distinct
values a, b in the domain of a variable x can be BTP-merged if and only if one of the
following conditions holds:

1. there is at most one variable y ∈ Sx such that {a, b} ∩Dy 6= ∅

2. either ∀y ∈ Sx, a /∈ Dy or ∀y ∈ Sx, b /∈ Dy .

Proof: S 2ince I contains
only difference constraints, if y, z are two distinct variables in Sx, then the pair
of assignments 〈y, a〉, 〈z, b〉 are necessarily compatible. Furthermore, from Def-
inition 4, a broken triangle on a, b ∈ D(x) necessarily consists of assignments
〈y, a〉, 〈z, b〉where x, y, z are distinct variables. Absence of a broken triangle on
a, b ∈ D(x) is thus equivalent to there being at most one variable y ∈ Sx such
that {a, b} ∩Dy 6= ∅, or ∀y ∈ Sx, a /∈ Dy or ∀y ∈ Sx, b /∈ Dy . 2

Lemma 19 Suppose that instance I contains only binary difference constraints and
that a, b ∈ D(x) are BT-free. After BT-merging of a, b ∈ D(x), the variable x can

28

be eliminated without the introduction of new constraints, producing an instance I ′

which is satisfiable if and only if I is satisfiable.

Proof: I 2f y 6= x, then ∀d ∈ D(y), 〈y, d〉 is either compatible
with 〈x, a〉 or 〈x, b〉, since the only possible constraint between y and x is y 6= x.
Hence, once a, b ∈ D(x) are merged, the resulting new value c is compatible
with all assignments to all other variables. It follows immediately that x and
all binary constraints with x in their scope can be eliminated while preserving
the satisfiability of the instance. 2

Proposition 20 If I is an instance containing only binary difference constraints, then
the result of applying BTP-merges (and eliminating the corresponding variables) until
convergence is unique and can be found in O(n2d2) time and O(nd2) space, where d
is the maximum domain size.

Proof: F 2or each variable x and for each
pair of distinct values a, b ∈ D(x), we can establish in O(n) time three counters
Nx
{a}, N

x
{b}, N

x
{ab}, where Nx

A = |{y | y ∈ Sx ∧ A ∩ D(y) 6= ∅}|.
By Lemma 18, to determine whether a, b can be BTP-merged, it suffices to

check whether Nx
{a,b} ≤ 1 or Nx

{a} = 0 or Nx
{b} = 0. After each BTP-merge, and

the elimination of the corresponding variable, the constraints on the remaining
variables remain unchanged. Thus, when a variable y is eliminated, due to the
BT-merging of two values in its domain, for each variable x ∈ Sy : for each
a ∈ D(y) ∩ D(x), we decrement the counter Nx

{a} and for each pair a, b ∈ D(x)

such that a ∈ D(y) or b ∈ D(y), we decrement the counter Nx
{ab}. Updating

these data structures can be achieved in O(nd2) each time a variable y is elimi-
nated. Since at most n variables can be eliminated, the total time complexity is
O(n2d2). The space complexity required to store the counters is O(nd2).

We now show that all maximal sequences of BTP-merges result in the same
instance. For this we observe that if a, b ∈ D(x) can be BTP-merged in an in-
stance I , and c, d can also be BTP-merged in I , then a, b can be BTP-merged
in the instance I ′ obtained from I by BTP-merging c, d ∈ D(y). Indeed, by
Lemma 19, the BTP-merge of c, d ∈ D(y) leads immediately to the elimination
of the variable y, and clearly, such elimination cannot invalidate the character-
ization of Lemma 18. By symmetry it also holds that c, d can be BTP-merged
in the instance obtained from I by BTP-merging a, b, hence the order of BTP-
merges does not matter. 2

We have seen that applying the definition of GABT-merging to CSP in-
stances containing AllDifferent constraints is coNP-complete and can also alter
the semantics of the global constraints. However, Lemma 18 provides a weaker
form of merging (which is equivalent to BT-merging if the instance contains
only AllDifferent constraints that have been decomposed into an equivalent
set of binary difference constraints) which can be applied in O(n2d2) time. It is
worth pointing out that this is much more efficient than a brute-force applica-
tion of the definition of BT-merging in a binary CSP instance until convergence,
which has worst-case time complexity O(n4d5).

29

9 A tractable class of general-arity CSP

In binary CSP, the broken-triangle property defines an interesting tractable
class when broken triangles are forbidden according to a given variable or-
dering. Unfortunately, this tractable class was limited to binary CSPs [7]. Sec-
tion 7 described a general-arity version of the broken-triangle property whose
absence on two values allows these values to be merged while preserving sat-
isfiability. An obvious question is whether GABT-freeness can be adapted to
define a tractable class. In this section we show that this is possible for a fixed
variable ordering, but not if the ordering is unknown.

Definition 11 defined a general-arity broken triangle (GABT). What hap-
pens if we forbid GABTs according to a given variable ordering? Absence of
GABTs on two values a, b for the last variable x in the variable ordering allows
us to merge a and b while preserving satisfiability. It is possible to show that
if GABTs are absent on all pairs of values for x, then we can merge all val-
ues in the domain D(x) of x to produce a singleton domain. This is because
(as we will show later) merging a and b, to produce a merged value c, can-
not introduce a GABT on c, d for any other value d ∈ D(x). Once the domain
D(x) becomes a singleton {a}, we can clearly eliminate x from the instance,
by deleting 〈x, a〉 from all nogoods, without changing its satisfiability. It is at
this moment that GABTs may be introduced on other variables, meaning that
forbidding GABTs according to a variable ordering does not define a tractable
class.

Nevertheless, we will show that strengthening the general-arity BTP allows
us to avoid this problem. The resulting directional general-arity version of BTP
(for a known variable ordering) then defines a tractable class which includes
the binary BTP tractable class as a special case.

Note that the set of general-arity CSP instances whose dual instance sat-
isfies the BTP also defines a tractable class which can be recognised in poly-
nomial time even if the ordering of the variables in the dual instance is un-
known [16]. This DBTP class is incomparable with the class we present in the
present paper (which is equivalent to BTP in binary CSP) since DBTP is known
to be incomparable with the BTP class already in the special case of binary
CSP [16]. A general-arity broken triangle can be said to be centred on a pair of
values in the domain of a variable whereas a broken triangle in the dual instance
is centred on a pair of tuples in a constraint relation. One consequence of this
is that eliminating tuples from constraint relations cannot introduce broken
triangles in the dual instance, whereas the (directional) GATP is only invari-
ant under elimination of domain values. On the other hand, the (directional)
GABTP is invariant under adding a complete constraint (i.e. whose relation
is the direct product of the domains of the variables in its scope) whereas this
operation can introduce broken triangles in the dual instance. Another impor-
tant difference is that directional GABTP depends on an order on the variables
whereas DBTP depends on an order on the constraints.

30

�
�

�

• �
�

�

•

�
�

�

•

•
hhhhhhA
A
A
A

x
�
�
�
�
�

a

b

t<x

Y

Z

u<x

Figure 18: Illustration of a directional general-arity broken triangle.

9.1 Directional general-arity BTP

Recall that we assume that a CSP instance I is given in the form of a set of in-
compatible tuples NoGoods(I), where a tuple is a set of variable-value assign-
ments, and that the predicate Good(I, t) is true iff the tuple t does not contain
any pair of distinct assignments to the same variable and @t′ ⊆ t such that t′ ∈
NoGoods(I). We suppose given a total ordering < of the variables of a CSP
instance I . We write t<x to represent the subset of the tuple t consisting of as-
signments to variables occurring before x in the order <, and V ars(t) to denote
the set of all variables assigned by t.

Definition 21 A directional general-arity (DGA) broken triangle on assignments
a, b to variable x in a CSP instance I is a pair of tuples t, u (containing no assignments
to variable x) satisfying the following conditions:

1. t<x and u<x are non-empty

2. Good(I, t<x ∪ u<x) ∧ Good(I, t<x ∪ {〈x, a〉}) ∧ Good(I, u<x ∪ {〈x, b〉})

3. ∃t′ s.t. V ars(t′) = V ars(t) ∧ (t′)<x = t<x ∧ t′ ∪ {〈x, a〉} /∈ NoGoods(I)

4. ∃u′ s.t. V ars(u′) = V ars(u) ∧ (u′)<x = u<x ∧ u′∪{〈x, b〉} /∈NoGoods(I)

5. t ∪ {〈x, b〉} ∈ NoGoods(I) ∧ u ∪ {〈x, a〉} ∈ NoGoods(I)

I satisfies the directional general-arity broken-triangle property (DGABTP) ac-
cording to the variable ordering < if no directional general-arity broken triangle occurs
on any pair of values a, b for any variable x.

Points (1), (2) and (5) of Definition 21 are illustrated by Figure 18. The two
important differences compared to a general-arity broken triangle (Figure 17)
are that there is now a variable ordering <, with y < x for all variables y ∈ Y ∪
Z, and the two dashed lines now represent nogoods u∪{〈x, a〉} and t∪{〈x, b〉}
which possibly involve assignments to variables w > x.

We will show that any instance I satisfying the DGABTP can be solved in
polynomial time by repeatedly alternating the following two operations: (i)

31

merge all values in the last remaining variable (according to the order <); (ii)
eliminate this variable when its domain becomes a singleton. We will give the
two operations (merging and variable-elimination) and show that both opera-
tions preserve satisfiability and that neither of them can introduce DGA bro-
ken triangles. Moreover, as for GABT-freeness, the DGABTP can be tested in
polynomial time for a given order whether constraints are given as tables of
satisfying assignments or as nogoods. Indeed, in the former case, using items
(3) and (4) in Definition 21 we can restrict the search for a DGA broken triangle
to pairs of tuples satisfying some constraint (there must be a constraint with
scope V ars(t′ ∪{x}) since there is a nogood on these variables by item (5), and
similarly for u′). This is sufficient to define a tractable class.

9.2 Merging

Let x be the last variable according to the variable order <. When values a, b
in the domain of variable x do not belong to any DGA broken triangle, we
can replace a, b by a new value c to produce an instance I ′ with the new set of
nogoods given by Definition 12. Since x is the last variable in the ordering <,
DGA broken triangles on a, b ∈ D(x) are GA broken triangles (and vice versa).
Thus, from Proposition 13 we can deduce that satisfiability is preserved by this
merging operation. What remains to be shown is that merging two values in
the domain of the last variable cannot introduce the forbidden pattern.

Lemma 22 Merging two values a, b into a value c in the domain of the last variable
x (according to a DGABTP variable order <) in an instance I cannot introduce a
directional general-arity broken triangle (DGABT) in the resulting instance I ′.

Proof: W 2e first claim that this operation cannot introduce a DGABT on
a variable y < x. Indeed, assume there is a DGABT on d, e ∈ D(y) in I ′, that is,
that there are tuples v, w such that

1. v<y and w<y are non-empty

2. Good(I ′, v<y ∪ w<y) ∧ Good(I ′, v<y ∪ {〈y, d〉}) ∧ Good(I ′, w<y ∪
{〈y, e〉})

3. ∃v′ V ars(v′) = V ars(v) ∧ (v′)<y = v<y ∧ v′ ∪ {〈y, d〉} /∈NoGoods(I ′)

4. ∃w′ V ars(w′) = V ars(w) ∧ (w′)<y = w<y ∧ w′∪{〈y, e〉} /∈NoGoods(I ′)

5. v ∪ {〈y, e〉} ∈ NoGoods(I ′) ∧ w ∪ {〈y, d〉} ∈ NoGoods(I ′)

If v′ contains the assignment 〈x, c〉 then, by construction of NoGoods(I ′) (Def-
inition 12), ∃v′′ ∈ {(v′ \ 〈x, c〉) ∪ {〈x, a〉}, (v′ \ 〈x, c〉) ∪ {〈x, b〉}} such that
v′′ ∪{〈y, d〉} /∈NoGoods(I). If v′ does not contain 〈x, c〉 then let v′′ = v′. Define
w′′ in a similar way. Now considering the last item, if v contains 〈x, c〉 then
by construction of NoGoods(I ′) there is v′′′ assigning a or b to x and otherwise
equal to v, such that v′′′ ∪ {〈y, e〉} was in NoGoods(I), and if v 63 〈x, c〉 we let
v′′′ = v. We define w′′′ similarly. Then:

32

1. (v′′′)<y = v<y and (w′′′)<y = w<y are non-empty

2. Good(I, (v′′′)<y ∪ (w′′′)<y) ∧ Good(I, (v′′′)<y ∪ {〈y, d〉}) ∧ Good(I ,
(w′′′)<y∪{〈y, e〉}) (since x is the last variable, (v′′′)<y = v<y and (w′′′)<y =
w<y)

3. V ars(v′′) = V ars(v′′′) ∧ (v′′)<y = (v′′′)<y ∧ v′′∪{〈y, d〉} /∈NoGoods(I)

4. V ars(w′′) = V ars(w′′′) ∧ (w′′)<y = (w′′′)<y ∧ w′′ ∪ {〈y, e〉} /∈
NoGoods(I))

5. v′′′ ∪ {〈y, e〉} ∈ NoGoods(I) ∧ w′′′ ∪ {〈y, d〉} ∈ NoGoods(I)

that is, there was a DGABT on d, e in I , contradicting our assumption.
We now show that a broken triangle cannot be introduced on x. Observe

that since x is the last variable, for all tuples t not containing an assignment
to x, t<x = t holds. We use this tacitly in the rest of the proof. Suppose for a
contradiction that I contained no DGABT, but that after merging a, b ∈ D(x) in
I to produce the instance I ′, in which a, b have been replaced by a new value
c, we have a DGABT on c, d. Then there is a pair of non-empty tuples t, u
(containing no assignments to variable x) satisfying in particular the following
conditions:

(1) Good(I ′, t ∪ u) (4) t ∪ {〈x, d〉} ∈ NoGoods(I ′)
(2) Good(I ′, t ∪ {〈x, c〉}) (5) u ∪ {〈x, c〉} ∈ NoGoods(I ′)
(3) Good(I ′, u ∪ {〈x, d〉})

We show that there was a DGABT in I either on a, d, on b, d or on a, b.
Since merging only affects tuples containing 〈x, a〉 or 〈x, b〉, (1) implies that

Good(I, t∪u) and hence Good(I, t∪u′) for all u′ ⊆ u. Similarly, (3) implies that
Good(I, u ∪ {〈x, d〉}) and hence Good(I, u′ ∪ {〈x, d〉}) for all u′ ⊆ u. Similarly,
(4) implies that t ∪ {〈x, d〉} ∈NoGoods(I).
There are three possible cases to consider:

(a) Good(I, t ∪ {〈x, a〉}),

(b) Good(I, t ∪ {〈x, b〉}),

(c) ∃t1, t2 ⊆ t such that t1 ∪ {〈x, a〉}, t2 ∪ {〈x, b〉} ∈ NoGoods(I).

case (a): By Definition 12 of the creation of nogoods during merging, (5) im-
plies that ∃u′ ⊆ u such that u′ ∪ {〈x, a〉} ∈ NoGoods(I). We know that u′

is non-empty since u′ ∪ {〈x, a〉} ∈ NoGoods(I) but Good(I, t ∪ {〈x, a〉}) (and
hence Good(I, {〈x, a〉})). We have Good(I, t ∪ u′), Good(I, t ∪ {〈x, a〉}) (and
hence t∪{〈x, a〉} /∈NoGoods(I)), Good(I, u′∪{〈x, d〉}) (and hence u′∪{〈x, d〉} /∈
NoGoods(I)), t∪{〈x, d〉} ∈NoGoods(I), u′∪{〈x, a〉} ∈NoGoods(I) and hence
there was a DGABT on a, d in I .
case (b): Symmetrically to case (a), there was a DGABT on b, d in I .

33

case (c): We claim that Good(I, t1 ∪ {〈x, b〉}). If not, then we would have
∃t3 ⊆ t1 such that t3∪{〈x, b〉} ∈NoGoods(I) which would imply t1∪{〈x, c〉} ∈
NoGoods(I ′) which is impossible since, by (2) above, we have Good(I ′, t ∪
{〈x, c〉}). By a symmetrical argument, we can deduce Good(I, t2 ∪ {〈x, a〉}).
Since Good(I, t∪u) and t1, t2 ⊆ t, we have Good(I, t1∪ t2). Since t1∪{〈x, a〉} ∈
NoGoods(I) and Good(I, t2 ∪ {〈x, a〉}) (and hence Good(I, {〈x, a〉})), we must
have t1 6= ∅. By a symmetric argument, t2 6= ∅. We therefore have non-
empty tuples t1, t2 such that Good(I, t1 ∪ t2), Good(I, t1 ∪ {〈x, b〉} (and hence
t1 ∪ {〈x, b〉} /∈ NoGoods(I)), Good(I, t2 ∪ {〈x, a〉}) (and hence t2 ∪ {〈x, a〉} /∈
NoGoods(I)), t1∪{〈x, a〉} ∈NoGoods(I), t2∪{〈x, b〉} ∈NoGoods(I) and hence
we have a DGABT in I on a, b.

Since in each of the three possible cases, we produced a contradiction, this
completes the proof. 2

9.3 Tractability of DGABTP for a known variable ordering

We are now in a position to give a new tractable class of general-arity CSP
instances based on the DGABTP.

Theorem 23 A CSP instance I satisfying the DGABTP on a given variable ordering
can be solved in polynomial time.

Proof: S 2uppose that I satisfies the DGABTP for
variable ordering < and that x is the last variable according to this ordering.
Lemma 22 tells us that DGA broken triangles cannot be introduced by merging
all elements in D(x) to form a singleton domain {a}. At this point it may be
that {〈x, a〉} is a nogood. In this case the instance is clearly unsatisfiable and
the algorithm halts returning this result. If not then we simply delete 〈x, a〉
from all nogoods in which it occurs. This operation of variable elimination
clearly preserves satisfiability. It is polynomial time to recursively apply this
merging and variable elimination algorithm until a nogood corresponding to a
singleton domain is discovered or until all variables have been eliminated (in
which case I is satisfiable).

To complete the proof of correction of this algorithm, it only remains to
show that elimination of the last variable x cannot introduce a DGA broken
triangle on another variable y. For all tuples t, u and all values c, d ∈ D(y),
none of Good(I, t<y ∪ u<y), Good(I, t<y ∪ {〈y, c〉}) and Good(I, u<y ∪ {〈y, d〉})
can become true due to the variable elimination operation described above. On
the other hand it is possible that t ∪ {〈y, d〉} or u ∪ {〈y, c〉} becomes a nogood
due to variable elimination. Without loss of generality, suppose that t∪{〈y, d〉}
becomes a nogood and that t′ ∪ {〈y, d〉} is not a nogood for some t′ such that
V ars(t′) = V ars(t) and (t′)<y = t<y . Then by construction there was a nogood
t∪{〈y, d〉}∪{〈x, a〉} before the variable x (with singleton domain {a}) was elim-
inated, and t′ ∪{〈y, d〉}∪ {〈x, a〉}was not a nogood. But then there was a DGA
broken triangle (given by tuples t ∪ {〈x, a〉}, u on values c, d ∈ D(y)) before
elimination of x. This contradiction shows that variable elimination cannot
introduce DGA broken triangles. 2

34

9.4 Finding a DGABTP variable ordering is NP-hard

An important question is the tractability of the recognition problem of the class
DGABTP when the variable order is not given, i.e. testing the existence of a
variable ordering for which a given instance satisfies the DGABTP. In the case
of binary CSP, this test can be performed in polynomial time [7]. Unfortu-
nately, as the following theorem shows, the problem becomes NP-complete in
the general-arity case.

When a DGABTP ordering exists, there is at least one variable x such that
all pairs of values a, b ∈ D(x) are GABT-free. In fact there may be several such
variables which are all candidates for being the last variable in the DGABTP
ordering. For any such variable x, after merging all values in the domain D(x)
so that it becomes a singleton {a}, we can eliminate x from the instance, by
deleting 〈x, a〉 from all nogoods, without changing its satisfiability. It is at this
moment that DGABTs may be introduced on other variables. In the binary
case, we can eliminate all such variables without the risk of introducing bro-
ken triangles. This is because deleting 〈x, a〉 from a binary nogood, such as
{〈x, a〉, 〈y, b〉}, produces the unary nogood 〈y, b〉 corresponding to the elimi-
nation of b from D(y) and the DGABTP cannot be destroyed by such domain
reductions. In the general-arity case, on the other hand, we cannot use such
a greedy algorithm since the elimination of such a variable x may destroy the
DGABTP for the as-yet-unkown variable ordering < if x is not the last variable
according to <.

Theorem 24 Testing the existence of a variable ordering for which a CSP instance
satisfies the DGABTP is NP-complete (even if the arity of constraints is at most 5).

Proof: T 2he problem is in
NP since verifying the DGABTP is polytime for a given order, so it suffices to
give a polynomial-time reduction from the well-known NP-complete problem
3SAT. Let I3SAT be an instance of 3SAT with variables X1, . . . , XN and clauses
C1, . . . , CM . We will create a CSP instance ICSP which has a DGABTP variable-
ordering if and only if I3SAT is satisfiable. For each variable Xi of I3SAT , we
add two variables xi, yi to ICSP . To complete the set of variables in ICSP , we
add three special variables v, w, z. We add constraints to ICSP in such a way
that each DGABTP ordering of its variables corresponds to a solution to I3SAT

(and vice versa). The role of the variable z is critical: a DGABTP ordering > of
the variables of ICSP corresponds to a solution to I3SAT in which Xi = true
⇔ xi > z. The variables yi are used to code Xi: yi > z in a DGABTP ordering if
and only if Xi = false in the corresponding solution to I3SAT . The variables
v, w are necessary for our construction and will necessarily satisfy v, w < z in
a DGABTP ordering. Each clause C = l1 ∨ l2 ∨ l3, where l1, l2, l3 are literals in
I3SAT , is imposed in ICSP by adding constraints which force one of l1, l2, l3 to
be false. To give a concrete example, if C = X1 ∨X2 ∨X3, then constraints are
added to ICSP to force y1 < z or y2 < z or y3 < z in a DGABTP ordering. If
the clause C contains a negated variable Xi instead of Xi, it suffices to replace
yi by xi.

35

We now give in detail the necessary gadgets in ICSP to enforce each of the
following properties in a DGABTP ordering:

1. v, w < z

2. yi < z⇔ xi > z

3. yi < z or yj < z or yk < z

We introduce broken triangles in order to impose these properties. However,
it is important not to inadvertently introduce other broken triangles. This can
be avoided by making all pairs of assignments 〈x, a〉, 〈x′, a′〉 from two different
gadgets incompatible (i.e. {〈x, a〉, 〈x′, a′〉} ∈NoGoods(ICSP)). We also assume
that two gadgets which use the same variable x use distinct domain values
in D(x). To avoid creating a trivial instance in which the gadgets disappear
after establishing arc consistency, we can also add extra values in each domain
which are compatible with all variable-value assignments in the gadgets.

We give the details of the three types of gadget:

1. The gadget to force v, w < z in a DGABTP ordering consists of values
a0 ∈ D(z), b0, b1 ∈ D(v), c0, c1 ∈ D(w) and three nogoods {〈z, a0〉, 〈v, b0〉},
{〈z, a0〉, 〈w, c0〉}, {〈v, b1〉, 〈w, c1〉}. The only way to satisfy the DGABTP
on this triple of variables is to have v, w < z since there are broken trian-
gles on variables v and w.

2. To force yi < z⇔ xi > z in a DGABTP ordering we use two gadgets, the
first to force yi > z ∨ xi > z and the second to force yi < z ∨ xi < z.

The first gadget is a broken triangle consisting of values a1, a2 ∈ D(z),
d0 ∈ D(xi), e0 ∈ D(yi) and two nogoods {〈z, a1〉, 〈xi, d0〉}, {〈z, a2〉, 〈yi, e0〉}.
In a DGABTP ordering we must have yi > z ∨ xi > z.

The second gadget consists of values a3, a4 ∈ D(z), b2 ∈ D(v), c2 ∈
D(w), d1 ∈ D(xi), e1 ∈ D(yi) and four nogoods {〈z, a3〉, 〈v, b2〉, 〈xi, d1〉},
{〈z, a4〉, 〈v, b2〉, 〈xi, d1〉}, {〈z, a4〉, 〈w, c2〉, 〈yi, e1〉}, {〈z, a3〉, 〈w, c2〉, 〈yi, e1〉}.
We assume that we have forced v, w < z using the gadget described in
point (1). The tuples t = {〈v, b2〉, 〈xi, d1〉}, u = {〈w, c2〉, 〈yi, e1〉} then
form a DGA broken triangle on assignments a3, a4 ∈ D(z) if xi, yi > z. If
either xi < z or yi < z then there is no DGA broken triangle; for exam-
ple, if xi < z, then we no longer have Good(ICSP ,t<z ∪ {〈z, a3〉}) since
t<z ∪ {〈z, a3〉 is precisely the nogood {〈z, a3〉, 〈v, b2〉, 〈xi, d1〉}. Thus this
gadget forces yi < z ∨ xi < z in a DGABTP ordering.

3. The gadget to force yi < z or yj < z or yk < z in a DGABTP ordering con-
sists of values a5, a6 ∈ D(z), b3 ∈ D(v), c3 ∈ D(w), e2 ∈ D(yi), e3 ∈ D(yj),
e4 ∈ D(yk) and five nogoods: {〈z, a6〉, 〈v, b3〉, 〈yi, e2〉, 〈yj , e3〉, 〈yk, e4〉},
{〈z, a5〉, 〈w, c3〉}, {〈z, a5〉, 〈yi, e2〉}, {〈z, a5〉, 〈yj , e3〉}, {〈z, a5〉, 〈yk, e4〉}. The
tuples t = {〈v, b3〉, 〈yi, e2〉, 〈yj , e3〉, 〈yk, e4〉}, u = {〈w, c3〉} form a DGA
broken triangle on a5, a6 ∈ D(a) if yi, yj , yk > z. If yi < z or yj < z or
yk < z, then there is no DGA broken triangle; for example, if yi < z, then

36

we no longer have Good(ICSP ,t<z ∪ {〈z, a5〉}) since {〈z, a5〉, 〈yi, e2〉} is a
nogood. Thus this gadget forces yi < z or yj < z or yk < z in a DGABTP
ordering.

The above gadgets allow us to code I3SAT as the problem of testing the exis-
tence of a DGABTP ordering in the corresponding instance ICSP . To complete
the proof it suffices to observe that this reduction is clearly polynomial. 2

Our proof of Theorem 24 used large domains. The question still remains
whether it is possible to detect in polynomial time whether a DGABTP variable
ordering exists in the case of domains of bounded size, and in particular in the
important case of SAT.

10 Conclusion

This paper described a novel reduction operation for binary CSP, called BTP-
merging, which is strictly stronger than neighbourhood substitution. Experi-
mental trials have shown that in several benchmark-domains, applying BTP-
merging until convergence can significantly reduce the total number of variable-
value assignments. We gave a general-arity version of BTP-merging and demon-
strated a theoretical link with resolution in SAT. From a theoretical point of
view, we then went on to define a general-arity version of the tractable class
defined by the broken-triangle property for a known variable ordering. Our in-
vestigation of the interaction of BTP-merging and AllDifferent constraints has
shown that the semantics of binary difference constraints can allow us to speed
up the search for BTP-merges. An interesting avenue of future research is to
try to take advantage of the semantics of other types of constraints to speed up
the search for BTP-merges.

11 Acknowledgments

This research was supported by ANR Project ANR-10-BLAN-0210. Martin
Cooper was also supported by EPSRC grant EP/L021226/1.

References

[1] D. A. Cohen, P. G. Jeavons, The complexity of constraint languages, in:
F. Rossi, P. van Beek, T. Walsh (Eds.), Handbook of Constraint Program-
ming, Elsevier, 2006, pp. 245–280.

[2] N. Creignou, P. G. Kolaitis, H. Vollmer (Eds.), Complexity of Constraints -
An Overview of Current Research Themes [Result of a Dagstuhl Seminar],
Vol. 5250 of Lecture Notes in Computer Science, Springer, 2008.
URL http://dx.doi.org/10.1007/978-3-540-92800-3

37

http://dx.doi.org/10.1007/978-3-540-92800-3
http://dx.doi.org/10.1007/978-3-540-92800-3
http://dx.doi.org/10.1007/978-3-540-92800-3

[3] M. Grohe, The complexity of homomorphism and constraint satisfaction
problems seen from the other side, J. ACM 54 (1).
URL http://doi.acm.org/10.1145/1206035.1206036

[4] D. Marx, Tractable hypergraph properties for constraint satisfaction and
conjunctive queries, J. ACM 60 (6) (2013) 42.
URL http://doi.acm.org/10.1145/2535926

[5] P. Jégou, Decomposition of domains based on the micro-structure of finite
constraint-satisfaction problems, in: R. Fikes, W. G. Lehnert (Eds.), Pro-
ceedings of the 11th National Conference on Artificial Intelligence. Wash-
ington, DC, USA, July 11-15, 1993., AAAI Press / The MIT Press, 1993, pp.
731–736.
URL http://www.aaai.org/Library/AAAI/1993/aaai93-109.
php

[6] A. Z. Salamon, P. G. Jeavons, Perfect constraints are tractable, in: P. J.
Stuckey (Ed.), Principles and Practice of Constraint Programming, 14th
International Conference, CP 2008, Sydney, Australia, September 14-
18, 2008. Proceedings, Vol. 5202 of Lecture Notes in Computer Science,
Springer, 2008, pp. 524–528.
URL http://dx.doi.org/10.1007/978-3-540-85958-1_35

[7] M. C. Cooper, P. G. Jeavons, A. Z. Salamon, Generalizing constraint satis-
faction on trees: Hybrid tractability and variable elimination, Artif. Intell.
174 (9-10) (2010) 570–584.
URL http://dx.doi.org/10.1016/j.artint.2010.03.002

[8] D. A. Cohen, M. C. Cooper, P. Creed, D. Marx, A. Z. Salamon, The
tractability of CSP classes defined by forbidden patterns, J. Artif. Intell.
Res. (JAIR) 45 (2012) 47–78.
URL http://dx.doi.org/10.1613/jair.3651

[9] M. C. Cooper, G. Escamocher, Characterising the complexity of constraint
satisfaction problems defined by 2-constraint forbidden patterns, Discrete
Applied Mathematics 184 (2015) 89–113.
URL http://dx.doi.org/10.1016/j.dam.2014.10.035

[10] M. C. Cooper, S. Živný, Tractable triangles and cross-free convexity in dis-
crete optimisation, J. Artif. Intell. Res. (JAIR) 44 (2012) 455–490.
URL http://dx.doi.org/10.1613/jair.3598

[11] D. A. Cohen, M. C. Cooper, G. Escamocher, S. Živný, Variable and value
elimination in binary constraint satisfaction via forbidden patterns, J.
Comput. Syst. Sci. 81 (7) (2015) 1127–1143.
URL http://dx.doi.org/10.1016/j.jcss.2015.02.001

[12] M. C. Cooper, Beyond consistency and substitutability, in: O’Sullivan [31],
pp. 256–271.
URL http://dx.doi.org/10.1007/978-3-319-10428-7_20

38

http://doi.acm.org/10.1145/1206035.1206036
http://doi.acm.org/10.1145/1206035.1206036
http://doi.acm.org/10.1145/1206035.1206036
http://doi.acm.org/10.1145/2535926
http://doi.acm.org/10.1145/2535926
http://doi.acm.org/10.1145/2535926
http://www.aaai.org/Library/AAAI/1993/aaai93-109.php
http://www.aaai.org/Library/AAAI/1993/aaai93-109.php
http://www.aaai.org/Library/AAAI/1993/aaai93-109.php
http://www.aaai.org/Library/AAAI/1993/aaai93-109.php
http://dx.doi.org/10.1007/978-3-540-85958-1_35
http://dx.doi.org/10.1007/978-3-540-85958-1_35
http://dx.doi.org/10.1016/j.artint.2010.03.002
http://dx.doi.org/10.1016/j.artint.2010.03.002
http://dx.doi.org/10.1016/j.artint.2010.03.002
http://dx.doi.org/10.1613/jair.3651
http://dx.doi.org/10.1613/jair.3651
http://dx.doi.org/10.1613/jair.3651
http://dx.doi.org/10.1016/j.dam.2014.10.035
http://dx.doi.org/10.1016/j.dam.2014.10.035
http://dx.doi.org/10.1016/j.dam.2014.10.035
http://dx.doi.org/10.1613/jair.3598
http://dx.doi.org/10.1613/jair.3598
http://dx.doi.org/10.1613/jair.3598
http://dx.doi.org/10.1016/j.jcss.2015.02.001
http://dx.doi.org/10.1016/j.jcss.2015.02.001
http://dx.doi.org/10.1016/j.jcss.2015.02.001
http://dx.doi.org/10.1007/978-3-319-10428-7_20
http://dx.doi.org/10.1007/978-3-319-10428-7_20

[13] P. Jégou, C. Terrioux, The extendable-triple property: A new CSP
tractable class beyond BTP, in: B. Bonet, S. Koenig (Eds.), Proceedings
of the Twenty-Ninth AAAI Conference on Artificial Intelligence, January
25-30, 2015, Austin, Texas, USA., AAAI Press, 2015, pp. 3746–3754.
URL http://www.aaai.org/ocs/index.php/AAAI/AAAI15/
paper/view/9939

[14] M. C. Cooper, P. Jégou, C. Terrioux, A microstructure-based family of
tractable classes for CSPs, in: Pesant [30], pp. 74–88.
URL http://dx.doi.org/10.1007/978-3-319-23219-5_6

[15] W. Naanaa, Unifying and extending hybrid tractable classes of CSPs, Jour-
nal of Experimental and Theoretical Artificial Intelligence 25 (4) (2013)
407–424.
URL http://dx.doi.org/10.1080/0952813X.2012.721138

[16] A. E. Mouelhi, P. Jégou, C. Terrioux, A hybrid tractable class for non-
binary CSPs, Constraints 20 (4) (2015) 383–413.
URL http://dx.doi.org/10.1007/s10601-015-9185-y

[17] J. Gao, M. Yin, J. Zhou, Hybrid tractable classes of binary quantified con-
straint satisfaction problems, in: W. Burgard, D. Roth (Eds.), Proceedings
of the Twenty-Fifth AAAI Conference on Artificial Intelligence, AAAI
2011, San Francisco, California, USA, August 7-11, 2011, AAAI Press,
2011.
URL http://www.aaai.org/ocs/index.php/AAAI/AAAI11/
paper/view/3507

[18] M. C. Cooper, A. El Mouelhi, C. Terrioux, B. Zanuttini, On broken trian-
gles, in: O’Sullivan [31], pp. 9–24.
URL http://dx.doi.org/10.1007/978-3-319-10428-7_5

[19] M. C. Cooper, A. Duchein, G. Escamocher, Broken triangles revisited, in:
Pesant [30], pp. 58–73.
URL http://dx.doi.org/10.1007/978-3-319-23219-5_5

[20] C. Likitvivatanavong, R. H. Yap, Eliminating redundancy in CSPs through
merging and subsumption of domain values, ACM SIGAPP Applied
Computing Review 13 (2).

[21] E. C. Freuder, Eliminating interchangeable values in constraint satisfac-
tion problems, in: T. L. Dean, K. McKeown (Eds.), Proceedings of the 9th
National Conference on Artificial Intelligence, Anaheim, CA, USA, July
14-19, 1991, Volume 1., AAAI Press / The MIT Press, 1991, pp. 227–233.
URL http://www.aaai.org/Library/AAAI/1991/aaai91-036.
php

[22] M. C. Cooper, Fundamental properties of neighbourhood substitution in
constraint satisfaction problems, Artif. Intell. 90 (1-2) (1997) 1–24.
URL http://dx.doi.org/10.1016/S0004-3702(96)00018-5

39

http://www.aaai.org/ocs/index.php/AAAI/AAAI15/paper/view/9939
http://www.aaai.org/ocs/index.php/AAAI/AAAI15/paper/view/9939
http://www.aaai.org/ocs/index.php/AAAI/AAAI15/paper/view/9939
http://www.aaai.org/ocs/index.php/AAAI/AAAI15/paper/view/9939
http://dx.doi.org/10.1007/978-3-319-23219-5_6
http://dx.doi.org/10.1007/978-3-319-23219-5_6
http://dx.doi.org/10.1007/978-3-319-23219-5_6
http://dx.doi.org/10.1080/0952813X.2012.721138
http://dx.doi.org/10.1080/0952813X.2012.721138
http://dx.doi.org/10.1007/s10601-015-9185-y
http://dx.doi.org/10.1007/s10601-015-9185-y
http://dx.doi.org/10.1007/s10601-015-9185-y
http://www.aaai.org/ocs/index.php/AAAI/AAAI11/paper/view/3507
http://www.aaai.org/ocs/index.php/AAAI/AAAI11/paper/view/3507
http://www.aaai.org/ocs/index.php/AAAI/AAAI11/paper/view/3507
http://www.aaai.org/ocs/index.php/AAAI/AAAI11/paper/view/3507
http://dx.doi.org/10.1007/978-3-319-10428-7_5
http://dx.doi.org/10.1007/978-3-319-10428-7_5
http://dx.doi.org/10.1007/978-3-319-10428-7_5
http://dx.doi.org/10.1007/978-3-319-23219-5_5
http://dx.doi.org/10.1007/978-3-319-23219-5_5
http://www.aaai.org/Library/AAAI/1991/aaai91-036.php
http://www.aaai.org/Library/AAAI/1991/aaai91-036.php
http://www.aaai.org/Library/AAAI/1991/aaai91-036.php
http://www.aaai.org/Library/AAAI/1991/aaai91-036.php
http://dx.doi.org/10.1016/S0004-3702(96)00018-5
http://dx.doi.org/10.1016/S0004-3702(96)00018-5
http://dx.doi.org/10.1016/S0004-3702(96)00018-5

[23] C. Bessière, J. Régin, Refining the basic constraint propagation algorithm,
in: B. Nebel (Ed.), Proceedings of the Seventeenth International Joint Con-
ference on Artificial Intelligence, IJCAI 2001, Seattle, Washington, USA,
August 4-10, 2001, Morgan Kaufmann, 2001, pp. 309–315.

[24] D. Sabin, E. C. Freuder, Contradicting conventional wisdom in constraint
satisfaction, in: A. Borning (Ed.), Principles and Practice of Constraint
Programming, Second International Workshop, PPCP’94, Rosario, Orcas
Island, Washington, USA, May 2-4, 1994, Proceedings, Vol. 874 of Lecture
Notes in Computer Science, Springer, 1994, pp. 10–20.
URL http://dx.doi.org/10.1007/3-540-58601-6_86

[25] F. Boussemart, F. Hemery, C. Lecoutre, L. Saïs, Boosting systematic search
by weighting constraints, in: R. L. de Mántaras, L. Saitta (Eds.), Pro-
ceedings of the 16th Eureopean Conference on Artificial Intelligence,
ECAI’2004, including Prestigious Applicants of Intelligent Systems, PAIS
2004, Valencia, Spain, August 22-27, 2004, IOS Press, 2004, pp. 146–150.

[26] A. El Mouelhi, P. Jégou, C. Terrioux, Hidden tractable classes: From theory
to practice, in: 26th IEEE International Conference on Tools with Artificial
Intelligence, ICTAI 2014, Limassol, Cyprus, November 10-12, 2014, IEEE
Computer Society, 2014, pp. 437–445.
URL http://dx.doi.org/10.1109/ICTAI.2014.73

[27] N. Eén, A. Biere, Effective preprocessing in SAT through variable and
clause elimination, in: F. Bacchus, T. Walsh (Eds.), Theory and Applica-
tions of Satisfiability Testing, 8th International Conference, SAT 2005, St.
Andrews, UK, June 19-23, 2005, Proceedings, Vol. 3569 of Lecture Notes
in Computer Science, Springer, 2005, pp. 61–75.
URL http://dx.doi.org/10.1007/11499107_5

[28] W.-J. van Hoeve, I. Katriel, Global constraints, in: F. Rossi, P. van Beek,
T. Walsh (Eds.), Handbook of Constraint Programming, Elsevier, 2006, pp.
169–208.

[29] M. Kutz, K. M. Elbassioni, I. Katriel, M. Mahajan, Simultaneous match-
ings: Hardness and approximation, J. Comput. Syst. Sci. 74 (5) (2008) 884–
897.
URL http://dx.doi.org/10.1016/j.jcss.2008.02.001

[30] G. Pesant (Ed.), Principles and Practice of Constraint Programming - 21st
International Conference, CP 2015, Cork, Ireland, August 31 - Septem-
ber 4, 2015, Proceedings, Vol. 9255 of Lecture Notes in Computer Science,
Springer, 2015.
URL http://dx.doi.org/10.1007/978-3-319-23219-5

[31] B. O’Sullivan (Ed.), Principles and Practice of Constraint Programming
- 20th International Conference, CP 2014, Lyon, France, September 8-
12, 2014. Proceedings, Vol. 8656 of Lecture Notes in Computer Science,

40

http://dx.doi.org/10.1007/3-540-58601-6_86
http://dx.doi.org/10.1007/3-540-58601-6_86
http://dx.doi.org/10.1007/3-540-58601-6_86
http://dx.doi.org/10.1109/ICTAI.2014.73
http://dx.doi.org/10.1109/ICTAI.2014.73
http://dx.doi.org/10.1109/ICTAI.2014.73
http://dx.doi.org/10.1007/11499107_5
http://dx.doi.org/10.1007/11499107_5
http://dx.doi.org/10.1007/11499107_5
http://dx.doi.org/10.1016/j.jcss.2008.02.001
http://dx.doi.org/10.1016/j.jcss.2008.02.001
http://dx.doi.org/10.1016/j.jcss.2008.02.001
http://dx.doi.org/10.1007/978-3-319-23219-5
http://dx.doi.org/10.1007/978-3-319-23219-5
http://dx.doi.org/10.1007/978-3-319-23219-5
http://dx.doi.org/10.1007/978-3-319-23219-5
http://dx.doi.org/10.1007/978-3-319-10428-7
http://dx.doi.org/10.1007/978-3-319-10428-7
http://dx.doi.org/10.1007/978-3-319-10428-7

Springer, 2014.
URL http://dx.doi.org/10.1007/978-3-319-10428-7

41

http://dx.doi.org/10.1007/978-3-319-10428-7

	Introduction
	The Constraint Satisfaction Problem
	Value merging in binary CSP based on the BTP
	Mixing Arc Consistency and BTP-merging
	The order of BTP-mergings
	Experimental trials
	Experimental protocol
	Comparisons between BTP-merging and AC+BTP-merging
	Comparisons with neighbourhood substitution and virtual interchangeability
	Impact on solving

	Generalising BTP-merging to constraints of arbitrary arity
	BTP-merging in the presence of global constraints
	A tractable class of general-arity CSP
	Directional general-arity BTP
	Merging
	Tractability of DGABTP for a known variable ordering
	Finding a DGABTP variable ordering is NP-hard

	Conclusion
	Acknowledgments

