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Abstract

We propose a framework for solving CSPs based both on backtracking tech-
niques and on the notion of tree-decomposition of the constraint networks.
This mixed approach permits us to define a new framework for the enu-
meration, which we expect that it will benefit from the advantages of two
approaches: a practical efficiency of enumerative algorithms and a warranty
of a limited time complexity by an approximation of the tree-width of the
constraint networks. Finally, experimental results allow us to show the ad-
vantages of this approach.

1 Introduction

The CSP formalism (Constraint Satisfaction Problem) offers a powerful framework for rep-
resenting and solving efficiently many problems. Formulating a problem as a CSP consists
in defining a set X of variables x1,xs,...%,, which must be assigned in their respective
finite domain D;, by satisfying a set C' of constraints which express restrictions between the
different possible assignments. A solution is an assignment of every variable which satisfies
all constraints. Many academic or real problems can be formulated in this framework. This
formal framework allows the expression of NP-complete problems.

The usual method for solving CSPs is based on backtracking search, which, in order to be
efficient, must use both filtering techniques and heuristics for choosing the next variable or
value. This approach, often efficient in practice, has an exponential theoretical complexity
in O(m.d™) where n and m are respectively the number of variables and the number of
constraints of the treated instance, while d is the maximum size of domains.

Several works have been developed, in order to provide bounds of the theoretical com-
plexity according to particular features of the instance, like for example the acyclicity of
a constraint network [Fre82] [DP87]. The best known bounds of complexity are given by
the ”tree-width” of a CSP, i.e. a parameter associated with the graph which represents the
interactions between variables via the constraints. Different methods are proposed like the



Tree-Clustering [DP89] (see [GLS00] for a survey about these methods and their theoretical
comparison). Tree-Clustering is based on the notion of tree-decomposition of the graph.
It aims to represent any constraint network by covering the constraints by cliques, whose
arrangement is a tree. The new structure must be equivalent in terms of set of solutions.
The best decomposition leads to a time complexity in O(n.d**!), where w is the tree-width
of the network [RS86]. Depending on the instances, the effective gain may be significant
with respect to enumerative approaches. Yet, the space complexity, which isn’t considered
for the backtracking because it is generally linear, may make such an approach absolutely
ineffective in practice. It can be reduced to O(n.s.d®) where s is the maximum size of min-
imal separators of the network [DF01].

The purpose of this contribution is to propose an alternative way which aims to benefit
from backtracking for its practical efficiency while giving bounds of complexity which will be
ones provided by structural approaches. The main idea of our approach is that backtracking
search will be guided, for the choice of variables, by the structure of the network’s tree-
decomposition. The order imposed to enumeration will allow to exploit two notions. The
first one is the notion of ”structural nogood”. It’s a nogood in the classical sense of the
term (i.e. a partial assignment of the set of variables which can’t be extended to a solution
[SV94]), but we only find it thanks to structural properties. It will be used for pruning the
tree search by cuts which permit not to explore inconsistent subtrees. The second notion
is one of ”structural good”. A good is a partial assignment which has at least a consistent
extension on a well-identified part of the problem. A good will be detected by structural
criteria. The pruning induced by goods is used to cut branches of the search tree in order
to avoid exploring consistent subtrees. In some respects, exploiting goods leads to realize a
”forward-jump” in the search tree, by analogy with the classical and reverse terminology of
backjumping. Note that related notions of goods and nogoods based on structural properties
have been introduced in [BM96] but these notions are formally different.

The exploitation of the structure through the notions of structural goods and nogoods
is at the root of our scheme of enumerative resolution. We will explain how this approach
can guarantee a theoretical time bound, which is at most O(n.d**!) if we get an optimal
tree-decomposition of the network, while limiting the space complexity to O(n.s.d®). The
given bounds are in the worst case; so we will show that our approach is always more efficient
than Tree-Clustering because our method requires less time and less space. Experimental
results will confirm these features.

In section 2, we remember the main notations and results about CSPs as well as the
notions of graph theory exploited in tree-decomposition methods. Section 3 presents the
method and justifies its validity. In section 4, we then provide comparative theoritical results
and time and space complexities. Section 5 presents some experimental results, section 6
recalls some related works, and we finally give some perspectives which are offered by our
approach in section 7.



2 Preliminaries

2.1 Notations

Formally, a Constraint Satisfaction Problem is defined by a quadruplet P = (X, D,C, R)
with X = {z1,22,...,2,} a finite set of variables and D = {D1,Ds,...,D,} a finite
set of domains such that D; is the finite set of values which the variable x; can take.
C ={C,Cy,...,Cy} is a finite set of constraints such that a constraint C; is defined by a
set of variables {;,,%i,,...,z;; } and R ={Ri1, Rz, ..., Ry} is a finite set of relations over
the domains of variables of each constraint, i.e. a relation is associated with each C; such
that R; € D;, X ... % Diu‘ The relation R; defines the allowed assignments of variables, i.e.
the assignments which satisfy the constraint C;.

Given such a quadruplet, different queries can be formulated, like the decision problem
which concerns the existence of an assignment of variables satisfying all the constraints, i.e.
does a function f: X — U}, D; exist such that Vi, 1 <i <m, (f(2,), f(2i,),..., f(@,,)) €
R;. If such a function exists, then f is a solution of P. The CSP problem is NP-complete.

Afterwards, we call binary CSP every instance of CSP whose arity of constraints is two.
For binary CSPs (every constraint involves a pair of variables), the mathematical object
corresponding to the constraint network is a graph (X, C), whose vertices and edges are
labeled respectively by the domains and the relations; it is called the constraint graph. For
n-ary CSPs (the constraints have any arity), the mathematical object is an hypergraph, the
constraint hypergraph. In this paper, we restrict the study to binary CSPs, without loss of
generality, in order to simplify the explanations.

2.2 Tree-Decomposition of CSPs

The significant works about CSPs can be divided in three trends, which aren’t incompatible:
the techniques of simplification by filtering, the optimization of backtracking algorithms, and
the decomposition methods based on the exploitation of polynomial classes.

The basic method of resolution, generally called Chronological Backtracking, assigns to
each variable a value of its domain, by checking the consistency of the current instantiation
- compatibility of the new assignment with the previous ones - and by going back as far
as possible in the search tree if an inconsistency occurs, or by extending it otherwise. This
approach leads to a combinatorial explosion. Its worst-case time complexity is O(m.d™) while
its space complexity can be bounded to O(n). In order to lessen the impact of the theoretical
and practical inefficiency of such an approach, many different techniques were developed. For
example, simplify the treated instance by filtering, before or during the resolution. Either,
analyze the reasons of failures in order to prevent these failures reproducing (constraint
learning [Dec90], nogood recording [SV94]) as well as jumping back as far as possible in
the search tree (backjumping [Gas79], dependency directed backtracking [SS77], conflict-
directed backjumping [Pro93], Dynamic Backtracking [Gin93]). Jointly, many heuristics
were proposed with a view to guide the algorithms for the choices of variables and values to
assign first. To date, there is neither algorithm, nor heuristic which are always better than
other ones, because the particular features of instances can favour one method or another



one. Note that if we consider static variables (and/or values) ordering, a formal comparison
between backtracking algorithms can be partially established (see [KvB97]). [CvB01] partly
extends these results to dynamic orderings.

The only guarantee which can exist in terms of theoretical complexity before solving
a problem are offered by decomposition methods. They proceed by isolating the parts
intrinsically exponential - that is to say untractable in polynomial theoretical time - to
induce a second step which guarantees a polynomial time of resolution. These methods
generally exploit topological properties of the constraint graph and are based on the notion
of tree-decomposition of graphs [RS86], as defined below.

Definition 1 (tree-decomposition [RS86]) Let G = (X, E) be a graph.
A tree-decomposition of G is a pair (C,T) with T = (I,F) a tree and C = {C; : i € I} a
family of subsets of X, such that each C; is a node of T and verifies:

1. UserCi = X,
2. for all edge {x,y} € E, there exists i € I with {x,y} C C;, and
3. foralli,j,k €1, if k is in a path from i to j in T, then C;NC; C Cy,

The width of a tree-decomposition (C,T) is equal to max;cr|C;| — 1. The tree-width of the
graph G is the minimal width over all the tree-decompositions of G.

Figure 1: A constraint graph on 15 variables.

Note that for the reader who isn’t familiar with these notions, the definition of a tree 7 =
(I, F) refers to a set of edges F which is required to satisfy the part (3) of definition 1. Even
if the complexity of the problem of finding tree-decomposition is NP-Hard [ACP87], many
works have been developed in this direction [BGO01], which often exploit equivalent definitions
of this notion, including one based on an algorithmic approach related to triangulated graphs
(see [Gol80] for an introduction to triangulated graphs). The link between triangulated
graphs and tree-decomposition is obvious. Indeed, given a triangulated graph, the set of
maximal cliques C = {Cy,Ca,...Ci} of (X, E) corresponds to the family of subsets associated



with a tree-decomposition. As any graph G = (X, E) isn’t necessarily triangulated, a tree-
decomposition can be approximated by triangulating G. We call triangulation the addition
to G of a set E’ of edges such that G’ = (X,F U E’) has no cycle of length at least
4 without a chord (i.e. an edge joining two non-consecutive vertices in the cycle). The
width of a triangulation G’ of graph G is equal to the maximal size of cliques minus one
in the resulting graph G’. The tree-width of G is then equal to the minimal width over all
triangulations.

Figure 2: The constraint graph given in figure 1 after its triangulation (dashed lines).

The graph in figure 1 is not triangulated. In figure 2, a possible triangulation of this graph
is provided where the maximum size of cliques is four (see figure 3). This is an optimal trian-
gulation, so, the tree-width of this graph is three. In figure 4, a tree whose nodes correspond
to maximal cliques of the triangulated graph is a possible tree-decomposition for the graph of
figure 1. So, we get C; = {A,B,C,D},Co ={C,D,E},Cs ={FE,F,G},C4, ={C,D,H},C5 =
{D,H,I},C¢ = {H,I,J},C; ={H,J,K},Cs = {B,D,L,M},Cog = {L,M,N} and ,Cy9 =
{M,N, O}

The CSP decomposition method called Tree-Clustering, proposed by Dechter and Pearl
[DP89] is based on these notions (see also [DF01] for a more recent description); it proceeds
by four steps:

1. Triangulate the constraint graph

2. Find maximal cliques (each clique corresponds to a subproblem)
3. Solve every subproblem induced by the maximal cliques

4. Solve the new acyclic n-ary CSP.

The guiding idea of this method is to provide a systematic scheme, which, from any CSP,
produces an equivalent n-ary CSP by a covering of the set of constraints in order to build an
acyclic constraint hypergraph. Such a CSP can be solved in polynomial time with respect
to the size of the induced n-ary CSP.

This method is generally presented [DP89] using an approximation of the optimal tri-
angulation (some comments about triangulations are given in section 5). Phases 1 and 2
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Figure 3: The acyclic hypergraph induced by maximal cliques of the triangulated graph given in figure 2.

are feasible in polynomial time, more precisely, in O(n +m’) with m’ the number of edges
of the graph after the triangulation (m < m’/ < n?). Moreover, note that the tree associ-
ated to the acyclic hypergraPh can be computed in linear time, given the maximal cliques.
Step 3 is feasible in O(m.d¥" *1) with w™ the size minus one of the biggest produced clique
(wt +1 < n). The last step has the same complexity. The space complexity, which is
bound to the storage of solutions of subproblems, can be reduced to O(n.s.d®) with s the
maximal size of minimal separators, which equals the size of the biggest intersection between
subproblems (s < w™). Finally, note that for every decomposition which induces a value
w™, we have w < wt with w the tree-width of the initial constraint graph.

Figures 1 to 3 can be considered as an illustration of this method. In figure 1, we see
a constraint graph. After step 1, the triangulation adds two edges (the dashed lines). A
covering of this graph by maximal cliques defines an acyclic hypergraph. Each maximal
clique defines a subproblem.

¢ @p @ Cg
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Figure 4: The tree-decomposition of the triangulated constraint graph given in figure 2.

Although theoretically interesting, all the practical interest of this method isn’t proved
yet, even if it’s clear that, for some classes of CSP, it can provide an useful approach [DF01].



One reason of the lack of efficiency of Tree-Clustering is due to the heaviness of the approach,
and specially the required space. In the case where all the solutions are searched, it may be
useful. In the other hand, if we check the consistency or if we search only one solution, we
will prefer to use an enumerative algorithm such as Forward Checking (denoted FC [HES0],
Real Full Look-Ahead (denoted RFLA [Nad88]) or Maintaining Arc-Consistency (denoted
MAC [SF94]), due to the space costs of Tree-Clustering, and to its practical efficiency.

In the next section, we show how the reference to such a structural decomposition allows
to establish a search procedure based on enumeration while keeping the complexity bounds
given above.

3 The BTD Method

3.1 Presentation

The BTD method (for Backtracking with Tree-Decomposition) proceeds by an enumerative
search guided by a static pre-established partial order induced by a tree-decomposition of the
constraint-network. So, the first step of BTD consists in computing a tree-decomposition or
an approximation of a tree-decomposition. The obtained partial order allows to exploit some
structural properties of the graph, during the search, in order to prune some branches of the
search tree. Hence, what distinguishes BTD from other techniques concerns the following
points:

e the variable instantiation order is induced by a tree-decomposition of the constraint
graph,

e some parts of the search space won’t be visited again as soon as their consistency is
known (notion of structural good),

e some parts of the search space won’t be visited again if it is known that the current
instantiation leads to a failure (notion of structural nogood).

Note that this method is called BTD for Backtracking with Tree-Decomposition, but we
will see latter that the enumerative search can be implemented with the basic Backtracking,
or FC, or MAC (and more sophisticated algorithms).

3.2 Theoretical Foundations

Let P = (X,D,C,R) be an instance where (X,C) is a graph, with A = (C,7) a tree-
decomposition (or an approximation) where 7 = (I, F) is a tree. We suppose that the
elements of C = {C; : i € I} are indexed with respect to the notion of compatible numeration:

Definition 2 A numeration on C compatible with a prefiz numeration of T = (I, F') with
C;y the root is called compatible numeration N¢.



Note that the example of tree-decomposition given in figure 4 is a compatible numeration
on C. We note Desc(C;) the set of variables belonging to the union of the descendants Cj
of C; in the tree rooted in C;, C; included. For example, Desc(Cy) = C4UCs UCs UCr =
{C,D,H,1,J,K}. Note that the numeration N¢ defines a partial variable ordering that
permits to get an enumeration order of the variables of P:

Definition 3 An order <x of variables of X such thatVa € C;,Vy € C;, withi < j, x Xx y
is a compatible enumeration order.

For example, the alphabetical order A, B, ..., N, O is a compatible enumeration order.
The tree-decomposition with the numeration No permits to clarify some relations in the
constraint graph.

Theorem 1 Let C; be a son of C; (soi < j). There doesn’t exist an edge {x,y} in the graph
(X, C) where z € (UL_Cu)\(C; N C;) and y € Desc(C;)\(C; NC;).

Proof:
By construction, C;NC; is clearly a separator of the graph which disconnects (ui;llck)\(c,» N
Cj) and DGSC(Cj)\(Ci n CJ) O

For example, let ¢ = 1, j = 4, and C4 be a son of C;. There is no edge in G between
(Cl UCs UCg)\(Cl 064) = {A, B,C,D,E.F, G}\{C, D} = {A, B,E,F, G} and Desc(C4)\(C1 N
Cy)={C,D,H,I,J,K\{C,D} ={H,I,J K}.

In terms of CSP, there is no constraint joining these two subsets of variables and there-
fore these two subproblems. Consequently, the compatibility relations between instantiations
pass only through the separator C; N C;.

The BTD method is based on compatible enumeration order and this first theorem. Let
us consider a consistent instantiation A of variables of C; U...UC;UCiy1U...UC;_1, with
C; a son of C;. Due to the definition of compatible orders, the enumeration continues with
the variables of the lineage Desc(C;) except ones which belong to C; N C;. Then two cases
arise depending on whether a consistent extension of the current instantiation on Desc(C;)
exists or not:

e There is no consistent extension. In such a case, the reason of the inconsistency
can only be the unsatisfaction of some constraints which join two variables of Desc(C;)
or (not exclusive or) a variable of this set and a variable which precedes it in the order,
so which belongs to C;NC; (see theorem 1). In both case, if a new consistent assignment
A’ such that A" and A are equal on C; N C; is tried, its extension on Desc(C;) will
lead to the same failure, independently of what precedes. In fact, the instantiation
restricted to C; N C; may be considered as a nogood in the usual sense of the term,
although, here, it is found by structural criteria. This nogood can be recorded and
exploited during next searches.

e There exists a consistent extension. By a similar reasoning to previous one, we
can prove that every instantiation which is the same on C; N C; will lead to a success
on Desc(C;), because it is independent of what precedes. This assignment can be



now considered as a good in the sense that on a part of the problem, Desc(C;), this
assignment has a consistent extension. Like nogoods, goods may be recorded and used
during further searches, allowing to jump in the search tree (forward-jumping), what
leads to continue the enumeration with the variables located after ones of Desc(C;) in
the compatible enumeration order.

The closest works of our approach are ones of Bayardo and Miranker in [BM94] whose
study is limited to the resolution of binary CSPs whose constraint graph is a tree. Our
approach can be considered as a generalization of their work since their goods and nogoods
instantiate variables while our goods and nogoods instantiate sets of variables (separators).
In [BM96], Bayardo and Miranker propose another generalization of goods and nogoods
which is not based on separators but on sets of ancestors in an ordered constraint graph.
Formally, their work is different though their use of goods and nogoods during search is
similar to ours (see section 6 for more details).

Now, we formally introduce goods and nogoods based on separators.

Definition 4 Given C; and C; one of its sons, a good (resp. nogood) of C; with respect to
C;, noted g(C;/C;) (resp. ng(Ci/C;)), is a consistent assignment A of C; NC; such that there
exists (resp. doesn’t exist) a consistent extension of A on Desc(C;).

The following lemma 1 and its corollary show that the interactions between a subproblem
rooted in C; and the remaining of the CSP pass through the intersection between C; and its
father C;. These properties are at the origin of the cuttings (for the nogoods) and the jumps
(for the goods) which will be realized in the tree search.

Lemma 1 Given C; and C; one of its sons, given Y C X such that Desc(C;)NY =C;NC;,
every consistent instantiation B of Desc(C;) is compatible with every consistent instantiation

AofY ZﬁA[Cl ﬂCj] = B[Cl ﬁCj].

Proof:

According to theorem 1 and by construction, the only constraints joining the variables of
Y to the variables of Desc(C;) are the constraints which involve the variables common to
Desc(C;) and to Y, i.e. C; NC;. It results that A and B are compatible iff each common
variable has the same value in A and B (i.e. A[C;NC;] = B[C;NC,]). O

It ensues the following corollary:

Corollary 1 Given C; and C; one of its sons, every consistent instantiation B of Desc(C;)
is compatible with every consistent instantiation A of (X\Desc(C;)) UC; iff AlC; NC;] =
BIC; N Cy].

We then formalize the exploitation of goods:

Lemma 2 (jump by the goods) Given C; and C; one of its sons, given Y C X such that
Desc(C;) NY = C;NCy, for all g(C;/C;), every consistent instantiation A of Y such that
A[C; N C;] = g(C;i/C;) has a consistent extension on Desc(C;).



Proof: Let A be a consistent instantiation such that A[C; N C;] = ¢g(C;/C;). According to
the definition of goods, there exists an instantiation B on Desc(C;) such that B is consistent
and B[C; N C;] = ¢(C;/C;). As A[C; NC] = ¢(C;/C;) = B[C; NCj], A and B are compatible
(according to lemma 1). Therefore, B is a consistent extension of A on Desc(C;).O]

Thus, if a partial instantiation A is such that A[C; N C;] is a good of C; with respect to
Cj, then it isn’t necessary to extend the search on Desc(C;). So the enumeration goes on
with the variables of the first Cj, located out of Desc(C;), for instance the next brother of
C;, if there exists one.

Lemma 3 (cutting by the nogoods) Given C; and C; one of its sons, given Y C X such
that Desc(C;) NY = C; NC;j, for all ng(C;/C;), there is no assignment A of Y such that
A[C; N C;] =ng(C;/C;) and such that A has a consistent extension on Desc(C;).

Proof:  According to the definition of a nogood, there is no extension of ng(C;/C;) on
Desc(Cj). As A[C; N C;] = ng(Ci/C;), A can’t be extended on Desc(C;). O

3.3 The Basic Algorithm

The method obtained from these notions can be implemented in several ways according to
whether a filtering is associated or not with the enumeration. However, the mechanisms will
be similar. The BTD method explores the search space by using a compatible order <x,
which begins with the variables of C;. Inside C;, the enumeration works in classical way. On
the other hand, when all the variables are assigned by satisfying all the involved constraints,
we then get a consistent instantiation A of variables of C; U ... UC;. The search must go
on with the variables of the first son C;11 of C; if there exists one. More generally, let us
consider the case of one son C; of C;. We check if A[C; NC;] is a good or a nogood and we
take appropriate action:

e In the case of a nogood, we change the current instantiation on C;.

e In the case of a good, a ”forward-jump” happens in order to continue the enumeration
with the first variable located after those of Desc(C;). Figure 5 illustrates the case of
a forward-jump, assuming that A[C,NCs5] = A[{D, H}] is a good. We show in part (a)
the jump in a compatible enumeration order, and in part (b), where the search goes
on in the structure of the instance.

o In the other cases, i.e. A[C; NC;] is neither a good nor a nogood, A must be extended
in consistent way on the variables of Desc(C;). If so, A[C; NC,] is recorded as a good;
on the contrary, if A can’t be extended in consistent way, the nogood A[C; N C;] is
recorded.

Figure 6 describes the BTD algorithm restricted to the consistency check: it returns
True if the consistent instantiation .4 can be extended to a consistent instantiation on Vg,
and on all the descents of C;; False otherwise. V¢, represents the set of unassigned variables
of C; and G and N respectively the set of recorded goods and of nogoods. This algorithm
is run after having computed a tree-decomposition (or an approximation) of the constraint
graph.

10
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Figure 5: Example of a forward-jump with a good .A[C4 NCs] on {D, H}. In (a), we show the jump along
the enumeration order, while in (b) we see the jump in the structure of the problem.

Theorem 2 BTD is sound, complete and terminates.

Proof:  This algorithm is proved by induction, exploiting properties of structural goods
and nogoods. The induction is made on the number of variables appearing in the lin-
eage of C; except the already assigned variables of C;. This set of variables is denoted
VARG, Ve,) = Ve, U( U (Dese(C\(CNG;)))
CjeSons(Cy)
VAR(C;, Ve,) is then the set of variables to assign to know whether A can be extended
to a consistent assignment on Ve, and its lineage.

To prove BTD, we must prove the property P(A,VAR(C;, Ve,)) defined as:
"BTD(A,C;, V¢,) returns true if the consistent assignment A can be extended to a consistent
assignment on V¢, and the lineage of C;; otherwise, BTD returns false”.

Consider P(A,():
If VAR(C;, Ve,) = 0, then Vi, = 0 and Sons(C;) = ). Since A is a consistent assignment,
A can be extended to a consistent assignment on Vg, and on the lineage of C;. Therefore
P(C;, VAR(C;, V¢,)) is true.

Induction step: P(A,S) with S # (). Suppose that VS’ C S, P(A,S’) holds.

- Ve, £0:
During the While loop (lines 28-34) the assertion: ”there is no value v of = already
checked such that A extended by that value leads to a consistent assignment for Ve,
and the lineage of C;” is true.
If BTD is called (line 32), AU{z « v} is then consistent (since no constraint is violated)
and VAR(Ci, Ve (2y) € VAR(C;,Ve,). According to the induction hypothesis, the

11



1. BTD(A,C;, V)

2. If Ve, = 0

3. Then

4. If Sons(C;) = @ Then Return True

5. Else

6. Consistency < True

7. F — Sons(C;)

8. While F # () and Consistency Do

9. Choose C;j in F

10 F — F\{C;}

11. If A[C; NC;] is a good of C;/C; in G Then Consistency < True
12. Else

13. If A[C; NC;] is a nogood of C;/C;j in N Then Consistency < False
14. Else

15. Consistency < BTD(A,C;j,C;\(C; NC;))

16. If Consistency

17. Then Record the good A[C; NC;] of C;/C; in G
18. Else Record the nogood A[C; NC;] of C;/Cj in N
19. EndIf

20. EndIf

21. EndWhile

22. Return Consistency

23. EndIf

24. Else

25. Choose x € V¢,
26. dy — Dy

27.  Consistency < False

28. While d; # 0 and —Consistency Do

29. Choose v in dy

30. dy — dg\{v}

31. If Ac € C such that c isn’t satisfied by AU {z « v}
32. Then Consistency < BTD(AU {z — v},C;, Vg, \{z})
33. EndIf

34. EndWhile
35.  Return Consistency
36. EndIf

Figure 6: The BTD algorithm.

assignment A has been extended if BTD(AU {z «— v},C;, Ve, \{z}) is true. In that
case, BT D(A,C;, Ve,) returns true and P(A, VAR(C;, V¢,)) is satisfied.

After the loop (line 35), all the possible values have been tried without consistent
extension of A. Therefore, BT D(A,C;, Ve,) returns false and P(A,VAR(C;, Ve,)) is
satisfied.

- Ve, =0:
During the While loop (lines 8-21) the assertion: ”for each son Cy already checked,
A can be extended to a consistent assignment on Desc(Cy)” holds.
We show that this assertion is true at the end of the loop.
Let C; be a son of C; to be examined.

+ If A[C;NC;] is a good of C;/C;, by lemma 2, we know that A can be extended on
Desc(Cj). Therefore, the assertion is true at the end of the loop.

12



+ If A[C;NC;] is a nogood of C; /C;, by lemma 3, we know that A cannot be extended
on Desc(C;). The loop is then finished.

+ If A[C; NC;] is neither a good, nor a nogood, then, BTD is called with A which is
a consistent assignment and VAR(C;,C;\(C; NC;)) C VAR(C;,0). So, according
to the induction hypothesis, BTD(A,C;,C;\(C; NC;)) returns true if A admits a
consistent assignment on Desc(C;), and then the assertion is verified. Otherwise,
the loop is stopped.

After the loop (line 22), BTD(A,C;, D) returns true if A has been consistently
extended on every son, and returns false otherwise.

Therefore, P(A, VAR(C;,Ve,)) is satisfied. Note that the memorization of goods
and nogoods is justified by their definition.

To summarize, since BTD satisfies P(A,VAR(C;, Ve¢,)), in particular BTD satisfies the
property P(,VAR(Cy,Cy)) for the first call, and then BTD is sound, complete and termi-
nates. [J

3.4 Extensions of BTD

We now discuss extensions of the BTD algorithm presented in the previous section. It is
based on Chronological Backtracking. It is well known that this algorithm isn’t efficient
in practice. So, its natural extensions which generally exploit lookahead techniques like
arc-consistency or forward-checking must be integrated to the BTD approach.

Thus, we introduce two extensions based on filterings:

e FC-BTD which is BTD using the classical filtering used in Forward-Checking [HES80].
e MAC-BTD which is BTD using an arc-consistency filtering [SF94].

These extensions are straightforward if the used filtering doesn’t modify the structure
of the constraint network. Indeed, a more powerful filtering like path-consistency [Mon74]
[Mac77] applied during search is not possible because new edges can be added to the con-
straint network, modifying its structural properties with consequences on the properties of
BTD. So that for FC-BTD, the correctness of the extension is trivial, for MAC-BTD this
extension is straightforward but we consider it must be established by the next property:

Theorem 3 Let C; be a son of C; and let A be a consistent assignment on ui;llck. Assume
that the arc-consistent closure of the CSP P after the assignment A (denoted AC(P,A))
has no empty domains. If g is a good of C; with respect to C; in P such that g = A[C; NC;],
then g is a good in AC(P,A).

Proof:

Let B be a consistent assignment on Desc(C;) associated to the good g. That is B is a
solution of the subproblem of P induced by the variables occurring in Desc(C;). Therefore,
we get A[C; N C;] = B[C; N C;]. By definition, B satisfies all the constraints belonging to
Desc(Cj). Moreover, all the values in A are compatible with all the values in B. Indeed,
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the constraints between A and B associate pairs of variables {x;,z;} such that z; € C; and
xj € C;. Then, three cases exist:

1. z; € C;. Therefore, since A is a consistent assignment, A satisfies the constraints
occurring in C; especially {x;, x;}.

2. z; € Cj. Therefore, since B is a consistent assignment, B satisfies the constraints
occurring in C; especially {z;,z;}.

3. z;,x; € C; N C; which is a particular case of the upper cases.

Therefore, the assignment defined by the assignment A extended by B, that is AU B, is
a solution of the subproblem defined by the variables appearing in A or in Desc(C;) since
all the constraints are satisfied. Thus, AU B is a consistent assignment, and then the values
in B necessarily appear in AC(P, A). O

Another way to improve backtracking search consists in using a non-chronological back-
tracking like Backjumping classically denoted BJ [Gas79]. Backjumping allows us to define
three immediate extensions of BTD:

e BTD-BJ which is BTD using Backjumping.

e FC-BTD-BJ which is BTD using the classical filtering used in Forward-Checking
and Backjumping.

¢ MAC-BTD-BJ which is BTD using an arc-consistency filtering and Backjumping.

BTD-BJ (respectively FC-BTD-BJ and MAC-BTD-BJ) is similar to BTD (resp. FC-
BTD and MAC-BTD) with an additional phase of backjump. This phase of backjump is
achieved when BTD comes back to the cluster C; after a failure during the search for an
extension of the current instantiation over the descent of C; rooted in a son C; of C;. It
consists in coming back to the deepest variable which belongs both to C; and C;.

Finally, note that the BTD algorithm only builds a consistent instantiation which can
be extended to a solution of the treated instance, if one exists. Indeed, some variables are
unassigned due to the jumps realized thanks to goods. Nonetheless, it’s easy to extend
the produced assignment to a solution of the problem by using a backtracking search and
by checking the recorded goods and nogoods as new constraints. Note that this extension
doesn’t change anything to the complexity bounds provided in the next section.

4 Time and space Complexities

In this section, we first assess the time and space complexities of the BTD algorithm. Then,
we compare BTD with the Chronological Backtracking and the Tree-Clustering. Note that
these results also hold if we consider more sophisticated backtracking search as FC or MAC.
Let us assume that a tree-decomposition or its approximation has been computed.

We begin by evaluating the space complexity of BTD:

14



Theorem 4 BTD has a space complezity in O(n.s.d®) where s is the size of the largest
intersection C; N C; with C; son of C;.

Proof: BTD only records the goods and the nogoods. Goods and nogoods are instantiations
on the intersections C; NC; with C; son of C;. Therefore, if s is the size of the largest of these
intersections, BTD has a space complexity in O(n.s.d®) because the number of intersections
C;NC; is bounded by n while the number of goods and nogoods associated to one intersection
is bounded by d® and the size of a good or a nogood is at most s.[]

Next, we calculate the time complexity of BTD.

Theorem 5 BTD has a time complexity in O(n.s*>.m. log(ds).dw++1) with wt + 1 the size
of the largest C; and s the size of the largest intersection C; N C; with C; son of C;.

Proof:
Assume that we want to extend an instantiation on C;. There exist two cases:

- Either C; = C1, and then find the consistent instantiations on C; has a worst-case time
complexity in O(m.dI%!). Note that m is due to the number of constraints to check
to ensure consistency.

- Or C; is a son of C;. Let A be a consistent assignment on Y (Y C X such that
Desc(C;) NY =C;NC;).
Find the consistent extensions of A[C; NC;] on C; has a worst-case time complexity in
O(m.de e,

BTD searches the extension of A[C; NC;] once and only once (thanks to recorded goods
and nogoods). As there exist at most dl®"%! assignments A[C; N C;], the worst-case
time complexity of finding the extension on C; is in o(dl%1).

Therefore, if w™ +1 is the size of the largest C;, the search of an extension by BTD has a
complexity in O(n.m.dwﬂrl)7 to which must be added the cost of managing and exploiting
goods and nogoods. As this cost is zero for C;, we focus on the case where C; is a son of C;.
The comparison between A[C; N C;] and a recorded good (or nogood) requires O(|C; N C;l)
steps. The addition or the search of a good (or a nogood) is in O(|C; N C;|log(d/€"Cil)). So
the management and the exploitation of goods and nogoods have a complexity in O(d'ci| ICin
Cj|log(dIN¢i1)), given C; and one of its sons C;. Therefore, on the overall search, it has a
cost in O(n.s.m.d*" 1 log(d*)).

Thus, the time complexity of BTD is O(n.m.dwhrl +n.sm.d?’ 1 log(d®)), i.e. a complexity
in O(n.s2.m.log(d*).d*" ). O

The time and space complexities of BTD are comparable to ones of Tree-Clustering.
We now show that BTD develops fewer nodes (or as many nodes in the worst case) than
Chronological Backtracking (denoted BT) and than Tree-Clustering (denoted TC). In order
to do these comparisons, we consider that BT and TC use the same variables/values order
as BTD and TC must exploit the same tree-decomposition as BTD. Using compatible orders
allows to compare easily BT with BTD. Nevertheless, it’s clear that a compatible order isn’t
necessarily a good variable order for BT. A more general comparison between BTD and BT
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(FC and MAC to0), requires to study different orders. So, this analysis should be extended
in the future to consider different orders. We first compare BTD and BT:

Theorem 6 Given a compatible order, BTD develops at most as many nodes as BT.

Proof:  Using goods and nogoods permits BTD to avoid some redundancies in the tree
search. So BTD develops at most as many nodes as BT.OJ

Like BT, BTD stops as soon as the problem’s consistency is found. In the other hand,
TC builds every consistent assignment on C;, for each C;. Furthermore, when BTD doesn’t
develop a consistent instantiation on C;, it ensues a saving in number of nodes on all the
descent of C;.

And so, the next theorem shows the gain in nodes of BTD with respect to TC:

Theorem 7 Given a compatible order, BTD develops at most as many nodes as TC, which
uses BT for solving each C;.

Proof: BTD and TC develop in the worst case the same number of nodes for C;. For
all other C; (j # 1), TC searches systematically all consistent assignments on C;, whereas
BTD only builds the consistent instantiations on C; which are compatible with the current
instantiation on C;, the father of C;. Thus, BTD develops at most as many nodes as TC. I

Finally, to conclude this section, note that if we put FC or MAC instead of BT, the
theorem 6 still holds. Moreover, for time complexity, we get the theoretical complexity time
by multiplying the cost by a factor due to the cost of one filtering, in the same spirit as the
complexity analysis proposed in [Lar00].

5 Experimental results

The following experiments are carried out with a view to assessing the interest of a method
like BTD. The first experiments concern networks whose tree-width is not necessarily small.
For them, we hope that BTD is as efficient as any classical enumerative algorithms. The
second experiments work on structured CSPs: we hope that BTD will exploit efficiently topo-
logical properties of the network when these properties are related to tree-decomposition,
that is CSP with small tree-width. Finally, we assess the behaviour of our method on some
real-world instances.

5.1 About implementation
5.1.1 The implemented algorithms

We implement different versions of BTD. The first version, noted FC-BTD, corresponds to
a simple implementation of the BTD algorithm based on the Forward-Checking algorithm.
The second version, noted FC-BTD-BJ, is FC-BTD with the additional phase of backjump
(see subsection 3.4 for more details). The last two versions, noted respectively FC-BTD~ and
FC-BTD-BJ~, respectively correspond to FC-BTD and FC-BTD-BJ without the recording
of the goods and nogoods. We need these versions to assess the contribution of goods and

16



nogoods. In other words, these versions correspond to Forward Checking where the choice
of the next variable to instantiate is partly guided by a compatible enumeration order of
BTD. Likewise, we define the MAC based versions of BTD.

We implement several algorithms in order to compare them with the different versions of
BTD. We use FC [HE80], Forward-Checking with Conflict-directed BackJumping (denoted
FC-CBJ [Pro93]), and MAC [SF94]. For MAC, arc-consistency is achieved thanks to the
AC-2001 algorithm ([BRO1]), which has an optimal worst-case time complexity.

For the purpose of comparing the number of developed nodes and the space requirements
of BTD and Tree-Clustering, we implement a partial version of Tree-Clustering. By partial
version, we mean that we only compute all solutions of each cluster. We don’t solve the
acyclic CSP obtained from the previous computation because this step presents no interest
for our comparisons. We note TC-FC our partial implementation of Tree-Clustering based
on the Forward-Checking algorithm. Of course, BID and TC-FC exploit the same tree-
decomposition (or the same approximation). Finally, note that we only assess the required
memory for TC-FC without recording any partial instantiation because we would need too
much space.

5.1.2 Heuristic for choosing the next variable to instantiate

For choosing the next variable to instantiate, all the algorithms in this study use the heuristic
dom/deg [BR96]. This heuristic is one of the best heuristics for ordering variables. According
to this heuristic, the next variable to instantiate is the variable x; which minimizes the ratio
‘\IFDZI‘ with D; the current domain of x; and I'; the set of the neighbours of x;. We select the

next variable:

- among all the unassigned variables of the problem for FC, FC-CBJ or MAC,

- among all the unassigned variables of the current cluster for the different versions of
BTD.

Note that the different versions of FC-BTD (respectively MAC-BTD) use exactly the
same variable ordering.

5.1.3 Approximation of a tree-decomposition by triangulation

As the problem of finding a tree-decomposition is NP-Hard, we only use an approximation
of a tree-decomposition by triangulating the constraint graph.

We try several algorithms for triangulating the constraint graph among the LEX-M
algorithm ([RTL76]), the LB-TRIANG algorithm ([Ber99]) and the Fill-in Computation al-
gorithm ([TY84]). The first two algorithms produce a minimal triangulation (a triangulation
E’ of a graph G = (V, E) is minimal if there is no triangulation E” such that E” C E’).
They have a time complexity in O(nm) with n the number of vertices and m one of edges
of the graph, whereas the time complexity of the Fill-in Computation algorithm is linear
in O(n + m') (m’ is the number of edges of the triangulated graph). The experimentations
on classical random problems show that the LEX-M algorithm provides the best results for
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BTD. So, for all the following results, we use the LEX-M algorithm to compute a triangu-
lation.

From this triangulation, if we compute an approximation of a tree-decomposition, we
obtain that cliques and separators have on average a reasonable size, that is to say, the
time and the memory needed by BTD are feasible in practice. On the contrary, the largest
separator size may be too important, that is to say BTD may request too much memory.
So, to prevent this problem, we propose to limit the size of separators by a given parameter
Smaz, like in [DFO01]. This trade-off is made to the detriment of the size of clusters and so of
the time. First we compute normally the clique-tree. Then, we traverse the tree in breadth
first search. If the son C; has an intersection with its parent C; whose size is less than smaa,
the son and its parent remain unchanged. Else, we merge the parent C; and its son C;. The
obtained cluster replaces C; in the tree (so we call this cluster C;). Furthermore, the sons of
C; become the sons of C;. Finally, note that these modifications don’t change the size of the
intersection between C; and the brothers of C;.

For the provided results, we limit the separator size to 5. For this size, the separator size
is neither too small, nor too large.

5.2 The experimental protocol

The following experimentations are realized on a Linux-based PC with an Intel Pentium ITI
550 MHz processor and 256 Mb of memory. We set a one hour time limit for determining
whether a problem is consistent or not. Beyond one hour, the search is stopped and the
problem’s consistency is said unknown. The given run-time includes the time of the prelim-
inary treatments (like computing an approximation of a tree-decomposition).

We work on random binary CSPs generated according to two models and on real-world
instances.

5.2.1 Classical random CSPs

In order to produce classical random instances, we use the random generator written by D.
Frost, C. Bessiere, R. Dechter and J.-C. Régin. This generator ' takes 4 parameters n, d, m
and T. Tt builds a CSP of class (n,d, m,T) with n variables, each having a domain of size d,
and m binary constraints (0 < m < @) in which T tuples are forbidden (0 < T < d?).
Among the CSPs produced by this generator, we keep only thoses whose constraint graph
is connected.

The listed results are the averages of results obtained on 100 problems per class. We ex-
periment on random instances with 50 variables and domains of size 15 and whose constraint
graph has a density between 10% and 30%. We also test some problems with a larger domain
from the class (50,25,123,439). Considered classes are close to the satisfiability’s threshold.

I (downloadable at http://www.lirmm.fr/~bessiere/generator.html)
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5.2.2 Structured random CSPs

We define a new binary CSPs random generator, which produces instances with a structured
constraint graph. The constraint graph is triangulated. This property allows us to exactly
know the tree-width of the constraint network, and then to know the theoretical complexity
bound. This generator takes 5 parameters n, d, "maz, I and Spq.. It builds a binary CSP
of the class (n,d, "maz, T, Smaz) With n variables which have domains of size d and whose
constraint graph has the following properties:

- each vertex v belongs at least to a maximal clique with a size greater than 1,
- the cliques have a size at most 7,44,

- the intersection between two cliques has a size at most s;,qz,

- the cliques form a clique-tree and then the graph is triangulated.

To build such a problem, we first choose a set of r,,,, variables to form the root clique.
Then, while there are remaining variables, we proceed like this:

1. choose randomly a parent clique C;,

2. choose randomly a size of the intersection between C; and its son C; (the size is bounded
by 1 and $pqz),

3. choose randomly a size of the clique C; (the size is at least 3 and bounded by the size
of the intersection plus 1 and 7,4z),

4. choose randomly the variables of C; which belong to the separator.

We associate to each constraint a relation in which T tuples are forbidden (0 < T < d?).
An important drawback of this generator is that the number of constraints depends on the
produced problem. For each class (n,d, "mazs T Smaz), We solve 100 problems and present
the average of obtained results. The given results correspond to problems of the classes
(50,25,15,T,5) with T between 265 and 281. Theses classes are near the satisfiability’s
threshold.

5.2.3 Real-world instances

We experiment our algorithm on some real-world instances of the CELAR from the FullRL-
FAP archive?. These instances correspond to radio link frequency assignment problems. For
more details, they are described in [CAGL'99]. Note that solving the problems SCEN#01
and SCEN#08 requires a special adaptation of our implementation of BTD because these
problems have a constraint graph with several connected components.

2we thank the Centre d’Electronique de I’Armement (France).
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5.3 Experimental results for classical random CSPs

5.3.1 Comparisons of the different versions of BTD

Before comparing BTD to some classical algorithms like FC or MAC, we study the behaviour
of our algorithm. First, we assess the contribution of backjumping by counting the number
of nodes developed by FC-BTD which aren’t visited by FC-BTD-BJ. We observe there is
no gain for most classes and a slight one for classes (50,15,123,141) or (50,25,123,439) (the
classes we use are given in table 1). But, even if there is a gain, it is insignificant. As
a good or a nogood is recorded each time BTD comes back from a cluster to its parent,
we can say, according to the little number of recorded goods and nogoods, that FC-BTD
and FC-BTD-BJ rarely visit the descendants of the root cluster. Therefore, the phase of
backjumping is seldom used, which explains that FC-BTD and FC-BTD-BJ obtain similar
or equal results for classical random problems.

Then, we measure the contribution of goods and nogoods by counting the number of
nodes developed by FC-BTD-BJ~ which aren’t visited by FC-BTD-BJ. Like the previous
comparison, there is no gain or a slight one. Indeed only a few goods or nogoods are used by
FC-BTD-BJ to prune the search because of the little number of recorded goods and nogoods.
And so FC-BTD-BJ~ and FC-BTD-BJ present similar results. For information, we obtain
similar results with MAC-BTD. As the various versions of BTD based on FC (respectively
on MAC) obtain similar results, for the following comparisons on classical random problems,
we only present the results of FC-BTD-BJ (resp. MAC-BTD-BJ).

5.3.2 Comparisons between FC-BTD-BJ and FC and between MAC-BTD-BJ
and MAC

Table 1 presents the number of nodes and of constraint checks and the run-time for FC and
FC-BTD-BJ. We observe that FC-BTD-BJ and FC are comparable. And even, for some
classes, FC-BTD-BJ improves the results of FC, by developing fewer nodes and realizing
fewer constraint checks than FC.

Class FC FC-BTD-BJ
# nodes # checks time # nodes #checks time
(50,15,123,141) 15,884 458,342 250 19,417 541,178 263
(50,15,184,112) 223,588 7,346,620 3,775 229,901 7,521,911 3,490
(50,15,245,93) 1,742,077 | 64,695,274 | 31,613 1,690,389 | 62,741,411 | 28,045
(50,15,306,78) 6,695,576 | 275,447,261 | 130,334 6,516,523 | 268,222,843 | 122,202
(50,15,368,68) | 19,899,917 | 865,863,076 | 410,365 || 20,202,681 | 880,491,613 | 374,439
(50,25,123,439) 148,793 5,968,598 3,164 183,304 7,106,934 3,416

Table 1: [Classical random CSPs] Number of nodes, and number of constraint checks and
run-time (in milliseconds) for FC and FC-BTD-BJ.

Similar results are obtained with MAC and MAC-BTD-BJ, as shown in table 2.
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Class MAC MAC-BTD-BJ
# nodes # checks time # nodes # checks time
(50,15,123,141) 433 211,854 158 426 212,751 160
(50,15,184,112) 10,570 4,749,549 4,366 10,589 4,767,163 4,468
(50,15,245,93) 115,272 | 53,354,043 55,693 111,641 51,618,005 52,203
(50,15,306,78) 577,928 | 263,294,873 293,339 560,541 | 255,317,033 279,650
(50,15,368,68) | 2,024,325 | 936,053,949 | 1,082,427 || 2,053,352 | 948,798,297 | 1,101,599
(50,25,123,439) 2,912 2,600,557 1,767 2,703 2,476,033 1,674

Table 2: [Classical random CSPs|] Number of nodes, and number of constraint checks and
run-time (in milliseconds) for MAC and MAC-BTD-BJ.

5.3.3 Comparisons between FC-BTD-BJ and FC-CBJ

As FC-BTD-BJ exploits backjumping and ”forwardjumping”, we compare our algorithm
with a classical backjumping algorithm, namely FC-CBJ. Table 3 provides the number of
nodes, of constraint checks and the run-time for FC-CBJ. We observe that FC-CBJ often
develops fewer nodes than FC-BTD-BJ. However, if we consider the run-time, we note that
FC-BTD-BJ is faster than FC-CBJ for all the classes. A partial explanation of such a result
is the cost of the computation of the conflicts which is too expensive compared to the number
of saved nodes.

Class FC-CBJ FC-BTD-BJ
# nodes # checks time # nodes # checks time
(50,15,123,141) 13,820 407,967 285 19,417 541,178 263
(50,15,184,112) 214,314 7,089,277 4,657 229,901 7,521,911 3,490
(50,15,245,93) 1,707,839 | 63,628,692 | 39,310 1,690,389 | 62,741,411 | 28,045
(50,15,306,78) 6,612,237 | 272,582,414 | 160,745 6,516,523 | 268,222,843 | 122,202
(50,15,368,68) | 19,722,533 | 859,100,282 | 504,513 || 20,202,681 | 880,491,613 | 374,439
(50,25,123,439) 127,093 5,208,464 3,613 183,304 7,106,934 3,416

Table 3: [Classical random CSPs] Number of nodes, and number of constraint checks and
run-time (in milliseconds) for FC-CBJ.

5.3.4 Comparisons between BTD and Tree-Clustering

We compare the space requirements for FC-BTD-BJ and our partial version of Tree-Clustering.
In order to measure the memory requirement, we count one unit per assigned value contained
in the recorded partial instantiation. For example, recording a good about five variables re-
quires five units. Table 4 presents the memory required by FC-BTD-BJ (for recording goods
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and nogoods), the memory required by TC-FC (for recording consistent instantiations re-
spectively on separators and on clusters), the number of developed nodes and the run-time
(in milliseconds) for TC-FC. We observe that TC-FC requires significantly more memory
than FC-BTD-BJ, because FC-BTD-BJ records only a part of the goods which TC-FC
memorizes. Note that for some classes like (50,25,123,439), TC-FC requires too much mem-
ory in practice. Furthermore, TC-FC develops significantly more nodes and is slower than
FC-BTD-BJ. So it seems difficult to use Tree-Clustering in practice.

Class FC-BTD-BJ TC-FC
memory memory # nodes time
separator cluster
(50,15,123,141) 24.7 219,402 | 406,212,164 | 155,668,480 | 62,994
(50,15,184,112) 9.9 163,523 1,840,482 942758 8,752
(50,15,245,93) 1.3 33,217 401,269 2,438,672 | 38,894
(50,15,306,78) 0.5 11,620 199,244 | 12,932,108 | 226,546
(50,15,368,68) 0.1 7,052 53,470 | 25,859,906 | 492,491
(50,25,123,439) 19.2 || 1,560,479 | 375,943,617 | 89,379,304 | 106,367

Table 4: [Classical random CSPs] Comparison between FC-BTD-BJ and Tree-Clustering
based on FC.

5.3.5 Summary

FC-BTD and MAC-BTD obtain results which are comparable with ones of FC (or FC-CBJ)
and MAC respectively. It seems difficult to use Tree-Clustering in practice, due to the
required space.

5.4 Experimental results with structured random CSPs
5.4.1 Comparisons of the different versions of BTD

Like for classical problems, before making a comparison between BTD and classical algo-
rithms like FC, FC-CBJ or MAC, we study the behaviour of our algorithm. First, with a
view to comparing FC-BTD and FC-BTD-BJ, we assess the contribution of the backjumping
by counting the number of nodes developed by FC-BTD which aren’t visited by FC-BTD-
BJ. Figure 7 presents the number of nodes developed by FC-BTD and FC-BTD-BJ. We
note on this figure that FC-BTD-BJ develops significantly fewer nodes than FC-BTD. The
economy in term of number of nodes varies between 8% and 26%. However, using the back-
jumping has a cost. Indeed, according to figure 8 (which reports the run-time for FC-BTD
and FC-BTD-BJ), we observe that the gain in time is slightly less important than one in
nodes. It is bounded by 5% and 19%.

In order to assess the contribution of goods and nogoods, we count the number of nodes
developed by FC-BTD-BJ~ which aren’t visited by FC-BTD-BJ. According to figure 9, it
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Figure 7: [Structured random CSPs (50,25,15,7T,5)] Number of nodes developed by FC-
BTD and FC-BTD-BJ.
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Figure 8: [Structured random CSPs (50, 25,15, T, 5)] Run-time (in milliseconds) for FC-BTD
and FC-BTD-BJ.
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turns out that FC-BTD-BJ always develops fewer nodes than FC-BTD-BJ~ and the gain is
very important in some cases, namely near the satisfiability’s threshold. The two algorithms
differ only in recording and using goods and nogoods. It ensues that the gain in nodes is
obtained thanks to the use of goods and nogoods. This gain leads to an economy in time,
as shown in figure 10 (which presents the run-time for FC-BTD-BJ and FC-BTD-BJ ™).
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Figure 9: [Structured random CSPs (50,25,15,T,5)] Number of nodes developed by FC-
BTD-BJ and FC-BTD-BJ~.

Similar experimentations are realized with FC-BTD and FC-BTD™. First, it results
from these experimentations that FC-BTD™ is unable to solve some instances in one hour.
Table 5 gives their number. Therefore, in order to compare FC-BTD and FC-BTD ™, we
take into account the problems solved by FC-BTD ™. Figure 11 shows the number of nodes
developed by FC-BTD and FC-BTD™.

Then, we observe that FC-BTD develops fewer nodes than FC-BTD™, thanks to the
use of goods and nogoods. Furthermore, the difference between FC-BTD and FC-BTD™
is more important than one between FC-BTD-BJ and FC-BTD-BJ~. This gap highlights
a lot of redundancies in the search tree developed by FC-BTD™, which underlines all the
more the contribution of goods and nogoods and/or of the phase of backjumping (because
FC-BTD-BJ~ is not so penalized as FC-BTD™).

According to the previous results, we focus our study on FC-BTD-BJ for the next com-
parisons.

5.4.2 Comparisons between FC-BTD-BJ and FC and between MAC-BTD-BJ
and MAC

FC and MAC are unable to solve some problems in one hour. Hence, in order to compare FC
(respectively MAC) and FC-BTD-BJ (resp. MAC-BTD-BJ) we consider only the instances
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Figure 10: [Structured random CSPs (50,25,15,T,5)] Run-time (in milliseconds) for FC-
BTD-BJ and FC-BTD-BJ~.

FC-BTD || FC-BTD~™ FC MAC

T C I c|rjugjc|Irjuvyc|1|uU
265 || 70| 30 || 70 {30 | O (|67 30| 3 ||67]|30| 3
266 || 61 | 39 || 60 |38 | 2 ||56[39]| 5 || 55|35 10
267 || 63| 37 || 62 36| 2 ||61]36| 3 ||60]|36| 4
268 || B7 | 43 || 56 |42 | 2 || 55| 42 | 3 || 54| 42| 4
269 || 63| 37 || 62|37 | 1 (|58 |35 7 ||54]35 |11
270 | 60 | 40 || 60 | 39| 1 ||53 |40 | 7 || 53|39 8
271 || B3 | 47 || 51 |46 | 3 || 46 | 47 | 7 || 43 | 47 | 10
272 )| 51 | 49 || 49 |48 | 3 (|47 | 49| 4 || 44|49 | 7
273 || 51 | 49 || 50 | 46 | 4 || 45 | 45 | 10 || 44 | 45 | 11
2741139 ] 61 || 38|60 | 2 (| 34|61 |5 ||32]60| 8
275 || 37| 63 || 35 (62| 3 ||32]60| 8 ||31]58|11
276 || 29 | 71 26 |70 | 4 |27 | 71| 2 (| 24|71 | 5
2771139 ] 61 || 36 |57 | 7 (| 34615 [|33]59| 8
278 1135 ] 65 || 33 65| 2 || 26|64 |10 25|64 |11
279 11411 59 || 39 |57 | 4 || 35|57 | 8 || 33|56 |11
2801124 | 76 || 24|72 4 (21|75 4 (|20]|75|5
281 || 27| 73 || 26|72 2 (|25 72| 3 ||24|72)| 4

Table 5: [Structured random CSPs (50, 25,15, T, 5)] Number of consistent (C), inconsistent
(I) and unknown (U) problems.
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Figure 11: [Structured random CSPs (50,25, 15,7T,5)] Number of nodes developed by FC-
BTD and FC-BTD~ (with a log scale).

which FC (resp. MAC) can solve in one hour. Table 5 gives the number of problems solved
by FC (resp. MAC). Note that FC-BTD-BJ and MAC-BTD-BJ solve all the considered
instances.
Figure 12 presents the run-time for FC, FC-BTD-BJ and FC-BTD-BJ~. We note that FC-
BTD-BJ is significantly faster than FC. Indeed, the ratio of the run-time for FC over one for
FC-BTD-BJ is between 7 and 24. We save time not only thanks to the goods and nogoods,
but also thanks to the backjumping. Indeed, the contribution of the backjumping is proved
by the run-time for FC-BTD-BJ~, which is better than one of FC in most cases.

We obtain similar results when we compare MAC and MAC-BTD-BJ, as is shown by
figure 13. MAC-BTD-BJ is between 2 and 7 times as fast as MAC.

5.4.3 Comparisons between FC-BTD-BJ and FC-CBJ

As FC-BTD-BJ uses backjumping and ”forwardjumping”, we have to compare FC-BTD-
BJ with an algorithm which exploits backjumping like FC-CBJ. Figures 14 and 15 present
the number of nodes and the run-time for FC-CBJ and FC-BTD-BJ. About the number of
nodes, neither FC-CBJ nor FC-BTD-BJ is always better than the other one. Nonetheless,
FC-BTD-BJ is always faster than FC-CBJ. This difference in time is mostly explained by
the cost of the computation of conflicts in FC-CBJ which is too important in comparison
with the gain obtained thanks to backjumping.

5.4.4 Comparisons between BTD and Tree-Clustering

Like for classical random problems, we compare the space requirements for FC-BTD-BJ and
our partial version of Tree-Clustering. Table 4 shows the memory requirement of FC-BTD-
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Figure 12: [Structured random CSPs (50,25,15,T,5)] Run-time (in milliseconds) for FC-
BTD-BJ, FC-BTD-BJ~ and FC.
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Figure 14: [Structured random CSPs (50,25, 15,T,5)] Number of nodes developed by FC-
CBJ and FC-BTD-BJ.

BJ (for recording good ands nogoods), the memory requirement of TC-FC (for recording
consistent instantiations respectively on separators and on clusters), the number of devel-
oped nodes and the run-time (in milliseconds) for TC-FC. We observe that FC-BTD-BJ
outperforms TC-FC by requiring significantly less memory. Furthermore, it develops fewer
nodes and is faster than TC-FC. So, the use of Tree-Clustering seems difficult in practice.

5.4.5 Summary

Among the different versions of FC-BTD (respectively MAC-BTD), the best one is FC-
BTD-BJ (respectively MAC-BTD-BJ). FC-BTD-BJ and MAC-BTD-BJ are significantly
faster than FC and MAC respectively. Note that FC and MAC are unable to solve some
instances. FC-BTD-BJ is faster than FC-CBJ although they develop comparable number
of nodes. FC-BTD-BJ requires fewer memory is faster than TC-FC.

5.5 Real-world instances

Table 7 presents the results obtained for some instances of the CELAR from the FullRLFAP
archive. In several cases, MAC-BTD-BJ realizes either fewer constraint checks than MAC
or as many as MAC, except for the SCEN#02 instance for which MAC-BTD-BJ does a few
additional checks. About the run-time, MAC-BTD-BJ and MAC are comparable, except for
the SCEN#05 instance. For this instance, MAC-BTD-BJ is significantly faster than MAC
thanks to its reduced number of constraint checks.

We don’t give any results about TC-FC because TC-FC is unable to find all solutions of the
root cluster for all problems except the obviously inconsistent ones.
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Figure 15: [Structured random CSPs (50,25, 15,T,5)] Run-time (in milliseconds) for FC-
CBJ and FC-BTD-BJ.

5.6 Summary about experimental results

In this section, we have presented experiments on three kinds of CSPs benchmarks:
e (Classical random CSPs,
e Structural random CSPs,
e Real-world instances.

For the first class, BTD, that is FC-BTD or MAC-BTD, obtains similar results than FC
or MAC. So, the exploitation of the structure doesn’t slow down the efficiency of search. For
structured random CSPs, we have observed a significant improvement of the search in using
FC-BTD (respectively MAC-BTD) with respect to FC (resp. MAC). We also have observed
that FC-CBJ develops as many nodes as FC-BTD, but FC-BTD is faster. Finally, on real-
world instances, BTD obtains either better results than classical algorithms, or comparable
ones

For these different kinds of benchmarks, we have observed that Tree-Clustering cannot
be run for two reasons. On the one hand, its practical time complexity is too high. On the
other hand, the required space is really prohibitive, making this method untractable while
this criterion doesn’t constitute a problem for BTD.

To conclude, BTD seems to be an approach which can exploit structural features of
CSPs, without the drawbacks of other structural decomposition methods related to space
complexity.
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T | FC-BTD-BJ TC-FC
memory memory # nodes time
separator cluster
265 3,599 563,376 | 16,269,923 | 4,329,007 | 14,718
266 4,054 544,683 | 15,741,988 | 4,081,041 | 13,270
267 3,471 391,140 | 13,536,010 | 3,630,053 | 12,486
268 4,174 500,454 | 14,331,723 | 3,779,950 | 12,439
269 3,218 426,517 | 12,862,473 | 3,477,518 | 11,743
270 5,567 457,120 | 13,071,460 | 3,505,728 | 11,652
271 5,005 413,560 | 13,010,768 | 3,451,125 | 11,170
272 4,273 453,395 | 11,745,237 | 3,192,403 | 10,770
273 5,476 401,098 | 11,476,495 | 3,083,502 | 10,286
274 9,008 444 808 | 10,237,218 | 2,805,207 | 9,750
275 5,289 393,569 | 9,107,353 | 2,575,782 | 9,324
276 5,134 342,977 | 8,301,716 | 2,385,563 | 8,921
277 8,408 379,848 | 9,794,940 | 2,712,032 | 9,246
278 5,910 350,243 | 8,589,484 | 2,384,354 | 8,370
279 6,734 416,477 | 8,265,270 | 2,307,709 | 7,917
280 8,304 319,735 | 7,267,237 | 2,066,851 7,398
281 5,637 247,736 | 6,232,299 | 1,790,943 | 6,554

Table 6: [Structured random CSPs (50,25, 15,7, 5)] Memory requirements for FC-BTD-BJ
and Tree-Clustering based on FC.

6 Related works

We can classify related works in three principal trends:

e Backtracking exploiting structural goods and nogoods as in Bayardo and Miranker
[BM94] [BM96] .

o Tree-Clustering [DP89] and its theoretical improvements [GLS00].

e Hybrid approaches trying compromise between Tree-Clustering (or adaptive consis-
tency [DP89]) and Backtracking [DF01] [Lar00].

As indicated in the presentation of BTD (see section 3.2), the closest works are ones of
Bayardo and Miranker in [BM94] and in [BM96]. Note that our approach can be considered
as a natural generalization of [BM94] since their study is limited to acyclic binary CSPs
(trees). With respect to [BM96], while the exploitation of goods and nogoods is similar
to ours, our notions of goods and nogoods are formally different. In [BM96], a good (or a
nogood) is defined with respect to a variable x; and to an ordering on vertices. A good (or a
nogood) is an assignment of a set of variables which precede x; in the ordering and are con-
nected to at least one variable belonging to the descendants of x; in the tree-decomposition.
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Instance MAC MAC-BTD-BJ

# checks time # checks time
SCEN#01 | 1,857,660 610 1,855,040 790
SCEN#02 427,104 120 427,306 150
SCEN#03 947,199 300 930,909 400

SCEN#04 246,034 90 246,013 120
SCEN#05 | 9,220,866 | 15,380 || 1,190,682 210
SCEN#06 691,367 90 691,367 80

SCEN#07 | 1,123,856 110 || 1,123,856 110
SCEN#08 | 2,346,455 240 || 2,346,455 230
SCEN#09 84 10 84 10
SCEN#10 84 10 84 10
SCEN#11 | 22,520,823 | 25,520 || 22,513,770 | 25,230

Table 7: [Real-world Instances] Number of constraint checks and run-time (in milliseconds)
of MAC and MAC-BTD-BJ for some instances of the FullRLFAP archive.

This definition is thus formally different from ours. For example, if we consider a trian-
gulated constraint graph, and z; € C;, the last variable in C;, then a good (or a nogood)
will be an assignment of C;\{z;}. Then, the space requirement of Learning-Tree-Solve (the
algorithm of [BM96]) will be O(n.d®" 1) (wt + 1 is the size of the largest C;) while the
space requirement of BTD is limited to O(n.d®) with s the size of the largest separator.
The time complexity of Learning-Tree-Solve is O(exp(w™ + 1)) like BTD. Note that these
comments do not constitute an analysis but present some elements for a comparison that
indicate the formal difference between these methods.

Finally, the practical interest of Learning-Tree-Solve isn’t presented in [BM96]. Moreover,
in [BP00], Bayardo and Pehoushek recall the practical advantages on exploiting nogoods
for consistency checking. Nevertheless they have also evoked the difficulty to implement
efficiently this notion of goods which isn’t realized neither in [BM96] nor in [BP0O].

The work of Baget and Tognetti [BT01] can be considered as a similar approach. In-
deed, in their method, clusters are defined by biconnected components, and then goods and
nogoods (they don’t use these expressions) are limited to the assignment of one variable, the
one which separates biconnected components. The time complexity of their method is then
O(n.d*) with k the maximum size of biconnected components. In this case, w™ +1 < k. If
we consider the constraint graph in figure 1, we get two biconnected components, {E, F, G}
and {A,B,C,D,H,I,J,K,L,M,N,O}, and then, k = 12 while w™ = 3. Nevertheless,
Baget and Tognetti indicated a few ways to improve their approach exploiting a general-
ization to k-connected components. Note that no experimental result is presented in [BT01].

BTD is principally based on tree-decomposition. So, works which have been developed
like Tree-Clustering and its improvements are interesting for our purpose. In [GLS00], an
improvement of Tree-Clustering is presented while a theoretical comparison between decom-
position methods is given. These results may indicate ways for (theoretical) improvements
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of BTD but we are not sure of their practical effects.

BTD can be considered as an hybrid approach realizing a tradeoff between practical
time and space complexity. In [DF01], Dechter and El Fattah present a time-space tradeoff
scheme. This scheme allows them to propose a spectrum of algorithms such that tree-
clustering and cycle-cutset conditioning (linear for space complexity) are two extremes in
this spectrum. Another interesting idea in their work is the possibility to modify the size of
separators to minimize space. We have exploited this idea in section 5 to minimize the size
of separators. Finally, note that their experimental results are limited to the valuation of
structural parameters (w™ and s) on real-world structured instances (combinatorial circuits),
and then no result on the efficiency in solving these instances is presented.

In [Lar00], Larrosa proposes an hybrid method based on Adaptive Consistency [DP89]
and on Backtracking (or FC or MAC). Adaptive Consistency (AdCons) relies on the general
scheme of variable elimination which replace sets of variables by new constraints which sum-
marize the effects of eliminated variables. AdCons has the same bounds as Tree-Clustering
for time and space complexities. So, exponential space complexity limits severely the algo-
rithm usefulness. The idea of Larrosa consists in limiting the size of the new constraints
produced by AdCons to a parameter k. If larger arity constraints should be produced,
then it switches to search (BT, FC, MAC, ...). This hybrid approach allows to bound the
required space to O(d*) but the time complexity is now O(exp(z(k) + k 4+ 1)). Here z(k)
is a structural parameter induced by k£ and the width of the constraint graph such that
z(k) + k < n. Note that for sparse constraint graphs (6 per cent), and limited values of k
(k = 2), the author obtains interesting results on random CSPs.

7 Summary and Conclusion

The CSP formalism offers a powerful framework for representing and solving efficiently
many problems. Generally, CSPs are solved applying tree search algorithms which use
optimizations of backtracking and then obtain good experimental results. However, since
CSP is a NP-complete problem, there are no better bound for theoretical time complexity
than the size of the search space, which is exponential. On the contrary, methods which
offer better bounds for time complexity - which are generally based on tree-decomposition
of CSPs - haven’t proved yet their practical efficiency. This paper presents a framework -
BTD - for solving CSPs. BTD is based both on backtracking techniques and on the notion
of tree-decomposition of the constraint network.

We have shown that BTD inherits the advantages of the two other approaches: the prac-
tical efficiency of backtracking algorithms, and a warranty of limited time/space complexity.
In section 4, we have proved that the theoretical time and space complexities of BTD are
similar to Tree-Clustering’s ones, namely a time complexity in O(n.s%.m. log(ds).dw++1) and
a space complexity in O(n.s.d®). Moreover, experiments allow us to show that:

- BTD is as efficient as classical algorithms on classical random problems, in some cases,
it is even better,

- on structured random problems, BTD presents a significant gain thanks to the ex-
ploitation of goods and nogoods,

32



- on real-world instances, BTD obtains either better results than classical algorithms,
or comparable ones,

- about required space, BTD can be used in practice, unlike Tree-Clustering which is
too expensive in memory.

Among the potential extensions of this method, the first one concerns the generalization
to n-ary CSPs, which shouldn’t raise much difficulty, because it’s immediately obtained
by construction. A more promising extension is related to optimization tasks. In fact, if
we consider, for instance, the valued CSP framework [SFV95], methods like Russian Dolls
Search [VLS96] or the dynamic programming approach [Kos99| are among the most efficient
ones. These methods record and exploit some informations they explicit during the search.
Now, if we exploit a method like BTD which limits the number of recorded informations, we
can expect significant gains in practice. Finally, the theoretical comparison between BTD
and BT (respectively FC-BTD vs FC and MAC-BTD vs MAC) should be extended in the
future to consider different orders.
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