
Agreeing Within a Few Writes∗

Zohir Bouzid , Pierre Sutra+, and Corentin Travers++

+Télécom SudParis, France
++Université Bordeaux 1 - LaBRI, France

Abstract

The notion of adopt-commit object [29] is of pivotal importance in understanding the consensus
problem. This object models an attempt of the processes to agree on some common value, and precisely
captures the cost of the fast path a process takes during a solo run. In this paper, we address the
problem of implementing an adopt-commit object in the shared memory model in the minimal number
of write operations. We consider that the number of processes (n), their identities (c), as well as the size
of the input set (m) may all vary.

Our first contribution is an algorithm that executes three write operations, a value we show optimal
in the general case. We also prove that this number reduces to two when either m is known and bounded,
or n identities are available. In the corner case where n = 2, and either c = 2 or the input set is finite, a
single write suffices.

Further, we introduce Janus, an elegant adopt-commit implementation that executes O(n) shared
memory operations, including O(

√
n) writes. Building upon Janus, we explain how to design an adopt-

commit object that executes O(
√
n− c+ 1) write operations. We prove that this last value is tight

when the number of registers in use is bounded and m is unknown.

Keywords: Anonymity, asynchronous shared memory, agreement, consensus, adopt-commit,
conflict detector, solo fast algorithms, homonym processes.

1 Introduction

Reaching agreement is a fundamental problem in distributed computing. Roughly speaking, it
requires a set of processes to decide upon some subset of their input values. Consensus [28], k-set
agreement [20] and total order broadcast [18] all belong to this class of problems. These tasks are
the key building blocks of many of the systems at work in today modern computing infrastructures.

It is well-known that as soon as one of the processes may fail-stop, agreeing necessitates additional
mechanisms than asynchronous read/write shared memory [11, 28, 40, 41, 51], namely either the
enforcement of synchrony assumptions [19], or the use of hardware synchronization primitives [39].
To sidestep this problem, several researchers starting from Lamport [44] have proposed to execute
a tentative fast path solely composed of read/write operations before calling a more expensive
mechanism. Exploiting good runs is the prolific idea behind the notions of splitter [48], conflict

∗A preliminary version of this work appeared in the proceedings of the 15th International Conference On Principles
Of Distributed Systems (OPODIS’11) under the title “Anonymous Agreement: The Janus Algorithm” by the same
authors.

1

detector [5], and solo-fast algorithms [7] that execute only read/write operations in the absence of
contention.

In this context, a central question is to measure precisely the cost of this fast path. Several
parameters are of interest here, including the number of processes (n), how many identities are
available in the system (c ≤ n), and the total number of input values (m). For instance, we would
like to understand the benefits of having a distinct identity for each process (c = n), in comparison
to the case where processes are anonymous (c = 1).

In this paper, we focus our attention on processing the fewest writes in the fast path. Our
rationale behind this choice is the key observation that writing is generally more expensive than
reading. For instance, in the current cache-coherent architectures, each write may invalidate the
remote caches, increasing the miss rate and deteriorating performance [38, 52]. Upcoming memory
technologies are expected to widen this gap [32].

Contributions. The notion of adopt-commit object translates an attempt of the processes to agree
on a common input value [29, 54]. When implemented with solely read/write operations, it precisely
captures the fast path of an agreement task. With more details, as consensus fulfills the specification
of adopt-commit, any lower bound result on the complexity of adopt-commit objects directly applies
to consensus as well [5]. This paper establishes several tight results on the write complexity of
adopt-commit objects. Table 1 summarizes our contributions.

− We first show that two writes are necessary and sufficient in the case where the input set is
bounded or n identities are available. Moreover, if the system consists of only two processes and
the same conditions hold, a single write is possible.

− Then, we present an adopt-commit object that executes three write operations, a value we prove
to be optimal in the general case.

− Our previous algorithm has a step complexity of O(m) operations and uses O(m) registers. As
the set of proposed values can be arbitrarily large, such a solution might not always be practical.
To sidestep this problem, we propose Janus, an adopt-commit algorithm that executes O(n)
shared memory operations. Janus accommodates with any set of input values and any number
of identities. It exhibits a write complexity of O(

√
n) operations. When processes do not have

identities, both values are asymptotically tight.

− Our last result combines the two previous solutions to leverage efficiently the presence of process
identities. In detail, we design a solution that first solves conflicts between processes having the
same identity, then moves to an agreement among processes with distinct identities. A process
executing this algorithm writes to O(

√
n− c+ 1) registers. We also prove a lower bound of

Ω(min(log(m)
log(log(m)) ,

√
n− c+ 1)) write operations for adopt-commit objects that employ a bounded

amount of registers. This shows that our algorithm is (asymptotically) optimal in the case where
the input set is not bounded.

Roadmap. We survey the literature in Section 2. Section 3 presents our model of distributed
system and the related assumptions. We detail three algorithms with constant solo-write complexity
in Section 4. The Janus algorithm is introduced in Section 5. Section 6 details the case of systems
where multiple distinct identities co-exist. Section 7 closes this paper.

2

Solo-write complexity Space bounded

(n = 2) ∧ ((c = 2) ∨ (m <∞)) 1 yes

Section 4(c = n) ∨ (m <∞) 2 yes

Any n, c and m.
3 no

Θ(
√
n− c+ 1) yes Section 6

Table 1: The solo-write complexity of adopt-commit objects (n ≥ 2 is the number of processes,
c ∈ [1, n] the number of their identities, and m ≥ 2 the size of the input set.)

2 Related work

Anonymous and homonymous systems. In the common case, the processes that compose a
distributed system have unique identities and may differentiate one from another. In an anonymous
system, they instead execute the very same code. When provided with the same input, they are
consequently indistinguishable. Anonymity is sometimes unavoidable in practice [26], as for instance
with tiny devices [3], or file sharing applications [21]. Dealing with anonymity adds a new challenging
dimension to distributed computing. It questions the benefits of having identities while relieving
from the burden of managing them.

Under partial anonymity, some processes may share the same identifier. This notion was first
introduced by Yamashita and Kameda [53] in the context of the leader election problem. The term
homonyms was coined by Delporte-Gallet et al. [23] in their study of byzantine systems.

Multiple papers [5, 6, 14, 22, 36, 37, 50] try to circumvent the computational power of anonymous
systems. Guerraoui and Ruppert [37] study shared memory distributed systems in the presence of
both anonymity and failures. They propose several constructions for fundamental abstractions such
as timestamping, snapshots and obstruction-free consensus. Attiya et al. [6] characterize failure-free
tasks that are solvable using registers when the processes in the system are unknown. Using bivalence
and covering arguments, they prove that consensus in such environments requires more than Ω(log n)
atomic registers, and at least Ω(log n) total work.

Aspnes and Ellen [5] prove that in the presence of anonymous processes the solo time complexity
of adopt-commit objects belongs to Θ(min(logm

log logm), n). This paper pursues this line of research,
showing several tight results on the write complexity of adopt-commit objects. Our results not only
depend on the number of proposals (m) and of processes (n), but also on the number of identities
(c) available in the system.

Anonymous memory extend anonymity to the case of registers. In this distributed computing
model, processes do not share a common knowledge of the registers. This means that a shared
register named x by a process might be called y by another process. Some recent works (e.g., [33])
study how to deanonymize memory, for instance by electing a distinguished leader process to execute
such a task.

The consensus problem. Consensus is a fundamental abstraction in fault-tolerant distributed
computing. Informally, the processes, each starting with a private value, are required to agree on one
of these initial values. For shared memory systems, it is well known that asynchronous fault-tolerant
consensus is impossible as soon as at least one process may fail by crashing [46]. Trivially, consensus

3

is thus impossible in homonymous, asynchronous and failure-prone shared memory systems. The
same impossibility holds for message passing asynchronous systems [28].

Since the publication of the above result, several approaches have been identified to overcome this
impossibility, including randomization (e.g., [9]), strengthening the model with timing assumptions
(e.g., [25]) or failure detectors (e.g., [18]) and strong synchronization primitives [39]. For anonymous
systems, randomization [15], failure detectors [10, 12, 22], as well as additional synchrony assumptions
[22] have been investigated to solve consensus.

Most consensus algorithms employ a round-based pattern to reach an agreement among the
processes. In a nutshell, this pattern works as follows: When it enters a round r, a process p fetches
the values which were proposed at round r − 1. Process p picks one of these values (say v) as its
proposal for round r. Then, p decides v if either (1) it reaches alone round r [18, 29, 35, 45], or (2)
no value other than v was proposed at rounds r− 1 and r− 2 [22, 37]. In the converse case, p moves
to the next round.

On the write complexity of consensus. For each process, the Paxos consensus algorithm [45]
employs two single-writer multiple-readers registers: one to indicate the current round of the process,
and another for its associated proposal. The solo path of Paxos contains two write operations [35].
We show in Section 4 that this value cannot be improved.

In the binary consensus problem, only 0 and 1 can be proposed. Abrahamson [1] studies this
problem in the probabilistic-write model, where processes have distinct identities to label the registers.
When processes are anonymous, Attiya et al. [8] show that Ω(log(n)) steps are necessary in solo
runs. Delporte-Gallet and Fauconnier [22] propose an algorithm that accommodates any number of
anonymous processes and executes two write operations in a solo run. This construction relies on
the notion of weak (add-only) set, and is similar to the “two-track race” algorithm depicted in [37].
As we shall see hereafter, a single write operation is achievable when n = 2, but in the general case,
anonymous processes need at least two write operations to reach an agreement over two values.

By translating an optimal binary consensus algorithm into a multi-valued one (see [49] for this
reduction), we obtain a general solution that executes O(logm) write operations. The algorithm of
[47] accesses a splitter object then a decision register in its fast path. As a splitter object requires
two writes operations when processes have distinct identities, this approach executes a total of three
writes. Theorem 3 in Section 4.1 proves that this value is optimal for the general case, that is when
we have no assumption on m, n or c. In Section 4.2, we present the first algorithm that matches this
lower bound.

Aspnes and Ellen [5] propose two asymptotically time-optimal implementations of adopt-commit
objects, one that requires the knowledge of m and another which needs the value of n. In a solo
execution, the former solution writes to O(logm

log logm) registers and the latter to O(n). This last
solution is algorithmically close to the leaky repository introduced by Delporte-Gallet et al. [24].

Building upon the above results, Capdevielle et al. [16] studies the solo-write complexity of
k-set-agreement. For consensus (k = 1), and either space-bounded or input-oblivious algorithms, the
authors prove that the solo-write complexity belongs to Θ(min(log(m)

log(log(m)) ,
√
n)).1 To state this tight

bound, the authors use a fast path consisting of an algorithmic similar to [13, 31], before calling
a compare-and-swap object. In Section 6, we generalize this result to the case of homonymous
systems, obtaining the tight bound Θ(min(log(m)

log(log(m)) ,
√
n− c+ 1)). The construction that matches

1An algorithm is input oblivious when it always accesses the same sequence of base objects (here the registers)
during a solo run whatever is its input.

4

this bound is built above the Janus algorithm, an efficient anonymous adopt-commit algorithm that
we cover in Section 5. This paper also considers the case of countable yet unbounded input sets.
Section 4 shows that, quite surprisingly, it is possible to achieve a constant solo-write complexity in
this situation.

3 Preliminaries

This section presents our system model then the two distributed tasks we are mostly interested with,
namely consensus and adopt-commit.

3.1 Model

In this paper, we focus on the usual shared memory model, where processes are asynchronous,
crash-prone, and communicate with the help of linearizable registers. We recall the elements of this
model below.

Shared memory model. We assume a system Π of n ≥ 2 deterministic processes. Processes
are aware that c ∈ [1, n] identities are used in the system and that such identities range in [1, c].
Processes that share the same identity are said to be homonyms [23]. If a single identity is available
in the system, processes are anonymous and in which case they follow the exact same code. In the
opposite case (c = n), we say that processes are onymous. For some process p, a clone of p is a
process homonymous to p that executes in lock-step with p until a certain point [27]. Notice that
processes might know initially the value of n. This is mentionned where appropriate.

Processes communicate via a shared memory of multi-writer multi-reader (MWMR) linearizable
registers. During a computing step, a process reads/writes either a shared, or local, register. A step
is a tuple (p, o) where p is the process taking the step, and o its operation. In our algorithms, we use
upper-case identifiers for shared registers and lower-case identifiers for local ones. The universal set
of steps together with the concatenation operator “.” and the empty execution ε forms the infinitary
free monoid. This monoid (E, .) consists in all the finite (or infinite) sequences of steps [30]. Every
sequence of steps in this monoid is called a run, or an execution. We say that an execution is solo
when a single process takes steps in it. An execution is admissible for some distributed algorithm A
when it applies to some initial state of A. We note v the partial order induced by “.”, i.e., λ v λ′
means that λ prefixes λ′.

On the course of an execution, a process may unexpectedly halt, or crash, and in such case it
ceases taking steps. A process that does not crash is said to be correct. We consider that up to n− 1
processes may fail during an execution. An execution is fair when all the correct processes take an
unbounded amount of steps. All the fair executions that are admissible for some algorithm A define
the executions of A.

Time complexity. We measure the time complexity of a distributed algorithm during solo
executions [2, 16]. More precisely, the solo-step complexity is the worst case number of non-local
steps during solo admissible executions, and the solo-write complexity is the worst-case number
of non-local write steps in these executions. For some distributed algorithm A, TIME (A) and
WTIME (A) are respectively the solo-step and solo-write complexity of A.

The solo-write complexity is our main complexity measure. The rationale behind this choice is
threefold. First, since there is no deterministic wait-free solution to consensus in an asynchronous

5

read/write shared memory system [40], the worst-case number of steps is arbitrary large. As a
consequence, we need to consider “good runs”. Second, it is observed in practice that processes
rarely contend in parallel systems [43]. As a consequence, solo executions are the common case
when calling a one-shot task such as consensus. Thirdly, there are performance benefits in executing
(inexpensive) read and write operations in the fast path, and resorting to a strong read-modify-write
primitive only if contention occurs [47]. This argument is especially true for read operations, as
reads are commonly faster than writes (e.g., with caching).

Distributed task. A distributed task T is defined with a set I of input n-vectors, a set O of
output n-vectors and a map ∆ from I to 2O. If the input value of a process p in I ∈ I equals
⊥, then p does not participate to the input vector I. Similarly if O[p] equals ⊥, p does not decide
in O. For any distributed task T = (∆, I,O), we require that (i) a process may not decide
((∀p : O′[p] ∈ {O[p],⊥} ∧ (I,O) ∈ ∆) → (I,O′) ∈ ∆), as well as (ii) a process that does not
participate, does not decide ((I[p] = ⊥ ∧ (I,O) ∈ ∆)→ O[p] = ⊥).

Let Values be the universal set of (non-⊥) values taken by the input and output n-vectors. As
we consider distributed deterministic Turing machines, Values is recursively enumerable. We note
m ≥ 2 the cardinality of Values, that is either some natural, or ℵ0, the cardinality of N. Hereafter,
and without lack of generality, we shall be considering that Values = {0, 1, . . .}.

An algorithm A solves a distributed task T when starting from some input n-vector u ∈ I, it
constructs a valid output n-vector v ∈ ∆(u). In this paper, we restrict our attention to wait-free
solutions [42]. Such solutions ensure that in every execution a correct process outputs some value
after a bounded amount of steps.

Reduction. We say that a distributed task T reduces to task T ′ when from some algorithmic
solution of T ′, we may construct a solution to T that differs only by a constant number of write steps
during solo executions. In which case, we shall note it T < T ′. If both T < T ′ and T ′ < T hold,
tasks T and T ′ are equivalent from the perspective of the solo-write complexity, denoted hereafter
T ≡ T ′.

3.2 Distributed agreement

In what follows, we define the distributed tasks we are interested with. These tasks might also be
specified as concurrent objects using interval-linearizability [17].

Consensus. Consensus (CONS) is a distributed task defined by the unique operation propose(u).
A process p that invokes propose(u) is proposing u to consensus. When propose(u) returns a value v
to p, we say that p decides v. Consensus requires that in every run: (Agreement) Two processes
never decide different values; and (Validity) If a process decides some value v, then v is proposed
before.

Adopt-commit. The usual approach to solve consensus is to execute successive rounds during
which processes try to agree on some of the proposed values (see, e.g. [18, 25, 45]). The notion
of adopt-commit (AC) object [29] models an attempt of the processes to agree. More precisely,
starting from v ∈ Values a process that executes adoptCommit(v) should return a response of
the form (b, v′), where b ∈ {commit, adopt} and v′ ∈ Values. In addition, the following properties
must hold: (Validity) If (−, v) is returned, then some process previously invoked adoptCommit(v);
(Agreement) If (commit, v) is returned, then every decision has the form (−, v); and (Convergence) If

6

every process proposes the same value v, then (commit, v) is the only possible decision. In particular,
if a process executes adoptCommit(v) solo, it must return (commit, v).

Reducing consensus to adopt-commit. We can solve consensus by successively entering adopt-
commit objects, proposing to the next object the value that was returned (adopted or committed)
by the previous one [54]. The alpha of consensus [34] and the notion of ratifier [4] also capture this
algorithmic idea. We recall such a construction in Algorithm 1.

Algorithm 1 Reducing Consensus to Adopt-Commit – code at process p
1: Shared Variables:
2: R // An unbounded array of adopt-commit objects
3:
4: Procedure propose(u)
5: i← 0
6: while true do
7: (f, u)← R[i].adoptCommit(u)
8: if f = commit then
9: return u
10: i← i+ 1

In detail, Algorithm 1 employs an unbounded array of adopt-commit tasks R. When a process p
proposes a value to consensus, it enters the first task R[0]. If the task R[0] returns a committed
value, process p decides it. Otherwise, process p adopts this value as its new proposal, and proposes
it to R[1], etc.

In Algorithm 1, the implementations of adopt-commit objects may vary between two entries of
array R. For instance, R[0] can rely only on registers while R[1] uses compare-and-swap.

From the above construction, we know that consensus reduces to the adopt-commit abstraction.
The reduction also holds in the converse way: when a process execute adoptCommit(u), we simply
propose u to consensus and return (commit, v), where v is the value decided in consensus. This yields
to the following theorem:

Theorem 1 ([29]). WTIME (CONS) = WTIME (AC)

At the light of this result, we may simply focus on the adopt-commit abstraction to solve
efficiently consensus. This is the approach we follow in the reminder of this paper. With more
details, we first explain how to solve adopt-commit in three write operations. Then, we prove that
this value is optimal when there is no storage constraint. Further, we depict Janus, a solution that
executes Θ(n) solo work and Θ(

√
n) write operations, while using O(

√
n) registers. Combining the

previous algorithms, we then detail how to leverage the presence of identities to solve the problem in
Θ(
√
n− c+ 1) write operations.

4 Implementing adopt-commit with optimal write complexity

In what follows, we prove that adopt-commit requires three write operations and present a matching
algorithm. We also consider two corner cases of interest that allow to reach a faster agreement. First,
in the case where (n = 2) ∧ (c = 2 ∨m < ℵ0) we show that writing to a single register is possible.
Second, when (c = n ∨m < ℵ0), we argue that two writes are necessary and sufficient.

7

4.1 Lower bound results

For starters, we observe that if solely the values 0 and 1 are proposed, we can implement adopt-
commit in a few writes. For instance, the algorithm of Aspnes and Ellen [5] requires two writes in
that case. As we shall see shortly, we may even attain a single write operation under those very
circumstances.

Additional notations. Given some set P ⊆ Π and two executions λ and λ′, we say that λ is
indistinguishable from λ′ to P , written λ P∼ λ′, when every process p ∈ P executes the same steps
during the two executions. At the light of this definition, if λ is admissible for some algorithm A
and λ Π∼ λ′, then λ′ is also admissible for A.

We note λ ` (commit, u) (respectively, λ ` (adopt, u)), when some process commits (resp. adopts)
value u during the execution λ. In what follows, the notation pu refers to some process starting
with input u, and σu is its associated solo execution. The sets ws(u) and rs(u) are respectively the
registers read and written during σu.

From the specification of an adopt-commit object, every process that invokes adoptCommit(u)
solo should return (commit, u). The indistinguishably result below is a straightforward consequence
of this observation.

Proposition 1. For any two distinct input values u and v, rs(u) ∩ ws(v) 6= ∅.

Proof. By contradiction. If rs(u) ∩ ws(v) = ∅, then σv.σu
pu∼ σu. Thus the execution σv.σu is

admissible. However, the conjunction of σu ` (commit, u) and σv.σu ` (commit, v) leads to the
contradicting fact that σv.σu does not satisfy agreement.

Below, we establish that every adopt-commit implementation executes at least two write opera-
tions. We also show that this boils down to one in the case where the system consists of a pair of
processes with distinct identities. To some extent, our proof is a formal treatment of the intuition
given by Lamport [44] in his seminal work on fast mutual exclusion algorithms.

Theorem 2. If (n = 2)∧((c = 2)∨(m < ℵ0)) then WTIME (AC) = 1; otherwise WTIME (AC) ≥ 2.

Proof. Let us consider a system made up of two processes Π = {p0, p1}. The fact that we need at
least one write follows from Proposition 1. Then, let us consider that one of the following assumptions
holds.

(m < ℵ0) To obtain a matching algorithm when Values is bounded, we map each value u to a
register R[u]. Initially, all the registers contains ⊥ /∈ Values. A process that proposes value u
writes u to R[u]. Then, it reads all the registers R[v] with v 6= u. If some value v appears in a
register, the process adopts it. (Notice that since n = 2 at most a single value v may be in that
case.) Otherwise, the process commits value u.

(c = 2) In the case where c = 2, we employ the exact same idea. The process identities are used in
lieu of the values, a process with identity i writing initially its proposal to register R[i].

Next, we prove the second part of the theorem, that is if (n > 2) or (c = 1 ∧m = ℵ0) holds, we
need at least two writes to the registers. We proceed by contradiction, assuming that at most one
write is executed.

8

(n > 2) Fix two values u and v. Execution σu (respectively, σv) is of the form φ0
u.w

0
u.φ

1
u (resp.,

φ0
v.w

0
v.φ

1
v), where φ0

u and φ1
u (resp., φ0

v and φ1
v) are sequences of read operations, and w0

u (resp.,
w0
v) is the unique write operation. (Case ws(u) = ws(v)) Let us note λ the execution φ0

vσu.w
0
v.φ

1
v.

This execution is clearly admissible. In addition, we have λ pv∼ σv and λ
pu∼ σu. This leads to

λ ` (commit, u) and λ ` (commit, v); a contradiction. (Case ws(u) 6= ws(v)) Defining λ = φ0
u.σv.w

0
u

and λ′ = φ0
v.σu.w

0
v , we know that λ ` (commit, v), while λ′ ` (commit, u). Let us then observe that

the registers end-up in the same state in λ and λ′. Hence, for some process p /∈ {pu, pv} we have
λ

p∼ λ′; a contradiction.

(c = 1 ∧m = ℵ0) Recall that since c = 1, the input value determines the solo execution. Fix some
value w. The run σw is bounded. On the other hand for any value u ∈ Values , Proposition 1 tells
us that rs(w) ∩ ws(u) 6= ∅. Hence, by the pigeonhole principle, there exists two values u and v
such that ws(u) = ws(v) holds. As a consequence, we may apply the same reasoning as above.

We now focus our attention to the case where Values is unbounded (or unknown to the processes)
and prove a larger lower bound. More precisely, we show that every adopt-commit solution executes
at least three write operations in the general case.

Proposition 2. If n > 2, then there do not exist u and v such that (i) pu and pv are distinct, and
(ii) σu and σv write only to two registers in the same order.

Proof. By contradiction. First of all, let us observe that for some value u, we may write σu =
φ0
u.w

0
u.φ

1
u.w

1
u.φ

2
u. Then, fix u, v matching the premises of the proposition. We define λu = φ0

v.σu.w
0
v

and λv = φ0
v.(φ

0
u.w

0
u.φ

1
u).(w0

v.φ
1
v.w

1
v.φ

2
v).w

1
u Both of these runs are clearly admissible. Since σu

pu∼ λu,
we have that λu ` (commit, u). It follows that for any λ, with λu v λ, λ ` (−, u) holds. On the other
hand, σv

pv∼ λv, from which it follows λv ` (commit, v). As a consequence, for any λ, with λv v λ,
λ ` (−, v) holds. Then, choose some process q /∈ {pu, pv}; this is possible as n > 2. We observe that
λu

q∼ λv. A contradiction.

From Proposition 2, we deduce the following result:

Proposition 3. Consider that n > 2 and c < n, and let A be some implementation of adopt-commit
with WTIME (A) = 2. For any subset U ⊆ Values, if |U | = ℵ0 then |

⋃
u∈U ws(u)| = ℵ0.

Proof. Consider for the sake of contradiction that
⋃
u∈U ws(u) is bounded. Applying the pigeonhole

principle to U , we may deduce that for two values u and v, σu and σv write to the two same registers
in the same order. If pu = pv, since c < n we may replace pu with a clone. As a consequence, the
premises of Proposition 2 holds. A contradiction.

We are now ready to prove that three writes are necessary in the general case.

Theorem 3. If n > 2, c < n and |Values| = ℵ0 then WTIME (AC) > 2.

Proof. By contradiction. Choose some u ∈ Values. Since pu returns after a finite number of steps,
rs(u) is bounded. From Proposition 1, for every v ∈ Values \ {u}, rs(u) ∩ ws(v) 6= ∅. As a
consequence, we can apply the pigeonhole principle to rs(u) and {ws(v) : v ∈ Values ∧ v 6= u}. It
follows that for there exists R ∈ rs(u) and some unbounded set U ⊆ Values with {R} ⊆

⋂
v∈U ws(v).

9

Consider
⋃
v∈U ws(v), the set of registers written in (σv)v∈U . Since U is unbounded, we deduce

from Proposition 3 that (σv)v∈U write to an unbounded amount of registers that are not R. We may
thus define U ′ ⊆ U unbounded such that:

∀v, w ∈ U ′ : ws(v) ∩ ws(w) = {R} (1)

From which we construct a series (uk)k∈N ⊆ U ′ satisfying:

∀k ∈ N : rs(uk) ∩ (
⋃
k′>k

ws(uk′)) ⊆ {R} (2)

This construction goes as follows: Pick some u0 ∈ U ′. As rs(u0) is bounded, U ′ is unbounded and
(1) holds, we may find U0 ⊆ U ′ \ {u0} unbounded satisfying (2). Repeat the previous steps starting
from some u1 ∈ U0.

Our next step is to show that for every k ≥ 0, the register written first in σuk , i.e., w
0
uk

following
the notation introduced above, is not register R. For the sake of contradiction, assume that this
holds for some uk and consider λ = φ0

uk
.σuk+1

.w0
uk
. Applying (2), λ

puk∼ φ0
uk
.w0
uk

and thus execution
λ′ = λ.φ1

uk
.w1
uk
.φ2
uk

is admissible. However, λ ` (commit, uk+1), λ v λ′ and λ′ ` (commit, uk); a
contradiction.

Now fix some l ∈ N. Define λ = φ0
ul+1

.w0
ul+1

.φ1
ul+1

.σul .w
1
ul+1

as well as λ′ = φ0
ul
.σul+1

.w0
ul
. Both

runs are admissible due to equations (1) and (2), as well as the fact that R is not the first written
register. We have λ ` (commit, ul), while λ′ ` (commit, ul+1). Moreover, all the registers end-up in
the same state in both λ and λ′. Hence, for any process p /∈ {pl, pl+1}, it is true that λ p∼ λ′. Since
such a process might exist (as n > 2), we reach the desired contradiction.

4.2 Matching algorithm for the general case

We now present an adopt-commit object that executes only three write operations. Our construction
is based on the notion of conflict detector introduced in [5]. We first present this abstraction then
detail our approach and prove its correctness.

4.2.1 Conflict detector

Aspnes and Ellen [5] introduce the notion of conflict detector to further decompose an adopt-commit
object. An m-valued conflict detector (CD) supports a single operation, check(u), with u ∈ Values .
This object returns true to indicate a conflict, that is when another value than u was checked, or
false if no conflict occurs. More precisely, the following two properties hold: (Convergence) In any
execution in which all check() operations have the same input value, they all return false; and
(Conflict Detection) In any execution that contains a check(u) operation and a check(v) operation,
if v 6= u then at least one of these two operations returns true.

We now recall the implementation of an adopt-commit object with the help of a conflict detector,
as proposed in [5]. Algorithm 2 lists the pseudo-code of the approach. To execute propose(u), a
process p first inquiries the conflict detector, raising the shared flag F if a conflict occurs. Then, p
fetches the content of the decision register D in variable d. If the retrieved value is null , process p
stores its proposal in both registers D and variable d. In the next step of Algorithm 2, p checks the
content of flag F . If the flag indicates that no conflict occurs, the content of d is committed and
otherwise it is adopted.

10

Algorithm 2 Reducing Adopt-Commit to Conflict Detector [5] – code at process p
1: Shared Variables:
2: C // A conflict detector
3: D // Initially, ⊥
4: F // Initially, false
5:
6: Procedure adoptCommit(u)
7: if C.check(u) then
8: F ← true
9: d← D
10: if d = ⊥ then
11: D ← u
12: d← u
13: if F = true then
14: return (adopt, d)

15: return (commit, d)

Algorithm 3 Conflict detector in two writes – code at process p
1: Shared Variables:
2: ∀r ∈ [0,m] : R[r] = ⊥ // An array of m+ 1 MWMR atomic registers
3:
4: Procedure check(u)
5: R[u+ 1]← u
6: for all i ∈ [0, u] do
7: if R[i] /∈ {u,⊥} then
8: return true
9: if i = 0 then
10: R[0]← u

11: return false

At the light of Algorithm 2, we know that WTIME (AC) ≤WTIME (CD)+1. Notice that as the
converse reduction obviously holds without any additional operation, we have the following result:

Theorem 4 ([5]). AC ≡ CD

4.2.2 The construction

Algorithm 3 presents a conflict detector that executes two write operations during a solo execution.
Similarly to the algorithm proposed in [5], this algorithm employs the idea that processes with
distinct inputs access registers in distinct orders. Differently from [5], Algorithm 3 does not write to
all the registers it encounters.

In detail, our algorithm works as follows: We consider an array of m+ 1 registers R[0], . . . , R[m].
Upon a call to check(u), a process p first writes value u to register R[u+ 1], then it reads all the
registers from R[0] to R[u]. If at some point in time, process p reads a non-null value that differs
from u, p immediately returns true (line 8). Otherwise, p does not detect a conflict and returns false
(line 11). To signal its presence, p writes u in register R[0] over the course of the execution (line 10).

Theorem 5. Algorithm 3 implements a wait-free CD object, with WTIME (Algorithm 3) = 2 and
TIME (Algorithm 3) ∈ O(m).

Proof. We first show that Algorithm 3 satisfies the two properties of a conflict detector.

− (Convergence) During an execution of Algorithm 3, if all the check() operations have the same
argument, say u, then no other value than u is ever written to the registers. Hence, the test

11

Algorithm 4 Detecting a conflict in a single write – code at process p
1: Shared Variables:
2: ∀r ∈ [0,m− 1] : R[r] = false // An array of m MWMR atomic registers.
3:
4: Procedure check(u)
5: R[u]← true
6: for all i ∈ [0,m− 1] \ {u} do
7: if R[i] = true} then
8: return true
9: return false

at line 7 is never true, and line 8 never occurs. Therefore, every correct process that executes
check(u) eventually reaches line 11 and returns false

− (Conflict Detection) By contradiction. Consider some run λ during which check(u) and check(v)
return both false, with u 6= v. These two operations are executed by two processes pu and pv, and
we note respectively λu and λv the sequence of steps made by each process in λ. Furthermore,
and without lack of generality, we assume that u < v.

Given some register R[i], let us note ri a read from R[i] and wi a write to R[i]. At the light of
Algorithm 3, λu contains operations wu+1 and r0, while λv includes ru+1 and w0. In both λv
and λu, the test at line 7 does not trigger. Since pv never writes to register R[u+ 1], it follows
that ru+1 <λ wu+1. As process pu reads register R[0] before writing it, we deduce r0 <λ w0. On
the other hand, the pseudo-code of Algorithm 3 tells us that wu+1 <λu r0 and w0 <λv ru+1. We
deduce that <λ is not an order; a contradiction.

At the light of its pseudo-code, Algorithm 3 is wait-free and contains two write operations. For
some value u ∈ Values, Algorithm 3 executes u read operations, Hence, the solo step complexity of
Algorithm 3 belongs to O(m).

The solo step complexity of Algorithm 3 is independent from n, but when m = ℵ0 it is not
bounded. Such a result is unavoidable since Aspnes and Ellen [5] prove that Ω(min(log(m)

log(log(m)) , n)) is
a lower bound .

Algorithm 3 executes a total of two write operations. From the construction presented in
Algorithm 2, we obtain an adopt-commit object exhibiting a solo-write complexity of three operations.
Theorem 3 proves that this result is optimal in the general case.

4.2.3 A corner case

When Values is bounded, or n identities are available in the system, we can leverage the fact that a
process can read all the registers in Algorithm 3 before returning. If no previous value outside of the
proposal of the process exists, it returns false. Every process writing to R will later detect a conflict.

We detail the variation for the case |Values| < ℵ0 in Algorithm 4. When c = n, the algorithm is
similar. The correctness of this algorithm follows from a reasoning close to the one we conducted
above for Algorithm 3. It is left to the reader.

12

5 The Janus2 Algorithm

The construction we previously presented can accommodate with any number of processes. On
the other hand, its complexity depends on m. As we frequently encounter m� n in practice, an
algorithm whose complexity depends on n might be of more interest.

In this section, we present the Janus algorithm, a wait-free adopt-commit algorithm for anonymous
shared-memory distributed systems. Janus executes O(n) operations in a solo run, including O(

√
n)

writes. We shall see later that these two values are optimal.

5.1 Description of Janus

Algorithm 5 depicts the pseudo-code of Janus. This adopt-commit algorithm works with anonymous
processes, and the knowledge of the input values is not required beforehand. In particular, this set
may be unbounded (m = ℵ0). On the other hand, the total number of processes in the system (n),
must be known in advance. Janus employs K ∈ N shared registers, denoted hereafter R[1], . . . , R[K].
The execution proceeds in K asynchronous rounds, and each register R[r] is used only in rounds
r ≤ r′ ≤ K. A process p starts the algorithm when it invokes adoptCommit(u), with u ∈ Values.
Process p stores the current round to which it participates in variable rnd . It also maintains the
proposal it currently favors, or estimate, in the local variable est .

During round r, process p writes its estimate to register R[r], then it looks back to see if another
estimate appears in some register R[r′ < r]. If this is the case, p raises flag C. Then, process p
moves to a higher round. Once p has executed K such rounds, it commits est if C equals false, and
adopts it otherwise.

Algorithm 5 The Janus Algorithm – code at process p
1: Shared Variables:
2: ∀r ∈ [1,K], R[r] = ⊥ // A set of multivalued MWMR atomic register.
3: C ∈ [true, false] // Initially, false
4:
5: adoptCommit(u) :=
6: rnd ← 1
7: while rnd ≤ K do
8: if (R[rnd] 6= ⊥) then // Existence of an estimate with higher priority.
9: r ← max({j ≥ rnd : R[j] 6= ⊥})
10: est ← R[r]
11: rnd ← r
12: else
13: R[rnd]← est

14: if rnd > 1 ∧ ∃r ∈ [1, rnd − 1] : R[r] 6= est then // Look for conflicts.
15: C ← true
16: rnd ← rnd + 1 // Move to the next round.
17: if C then
18: return (adopt, est)
19: return (commit, est)

With more details, process p executes the following steps in Janus.
2In Roman religion and mythology, Janus is the god of gates. Most often he is depicted as having two heads, facing

opposite directions (Wikipedia). The choice of the name is explained by the fact that each process in our algorithm
has to look in two directions: forward, to check if a process has already started a new round, and backward to see if
some process entered a previous round.

13

− (lines 8 to 13) Process p first checks if a value has been already written to R[rnd] (line 8). If this
occurs, p immediately enters round r ≥ rnd , where r is the greatest round for which a value has
been written to the associated register R[r], thus possibly skipping rounds rnd , . . . , r − 1 (line 9).
In addition, p adopts the value currently stored in R[r] as its new estimate. Otherwise, i.e., when
R[rnd] = ⊥, p writes its estimate to that register (line 13).

− (lines 14 to 16) Writing/reading some value v to/from register R[rnd] is however not sufficient to
commit est . Indeed, several processes may be performing operations to the registers at the same
time. Thus assuming that est is committed, a process entering later round rnd might adopt a
value est ′ 6= est , and commits this value.

As a consequence of the above, before going to the next round, process p checks that no conflict is
detected so far. This means that registers R[1], . . . , R[rnd − 1] still store est (line 14). For large
enough values of K, this condition prevents any other value than est from being written to R[rnd].
We show in the proof (Lemma 5) that for K ≥ 2 · d

√
ne+ 1 such a property holds.

In the case where process p observes an estimate different than est , it raises the conflict flag C
(line 15). Process p then moves to round rnd + 1.

− (lines 17 to 19) When process p has executed K such rounds, it checks flag C. If no conflict
occurs, that is C = false, p returns (commit, est); otherwise p returns (adopt, est);

5.2 Correctness

Fix some execution λ of Janus. Recall that since we consider linearizable registers, λ is a sequence
of read/write operations on the shared registers and the local variables. Accordingly, we shall say
that an operation op in λ occurs at time τ if op is at position τ in the execution λ. In what follows,
we shall note varp the local variable var of process p. The execution of the (asynchronous) round r
by p consists of the sequence of steps taken by p during which rndp = r holds.

A process executing round r writes its estimate est to register R[r], provided it observes that
no other value has been previously written to R[r] (line 8). The following Lemma implies that if p
performs such a write, then est has been previously written to R[1], . . . , R[r − 1].

Lemma 1. Consider r > 1. Suppose that a write operation op with parameter v is performed on
R[r]. Then, a write operation op′ with value v occurs on R[r − 1] before op.

Proof. Suppose that op is performed by some process p. Observe that when this occurs (line 13),
rndp = r and estp = v, that is v is the estimate of p at the beginning of round r. Since r > 1, the
previous value of rndp is r − 1 (line 16). We consider two cases according to the line at which p sets
rndp to r − 1.

− Process p sets rndp to r − 1 at line 11. Thus, p executes line 10 and picks v′ as its new estimate,
where v′ is the value p read from R[r−1]. As p does not modify again estp in round r−1, v′ is the
value of estp when p enters round r. Therefore, v′ = v and thus v was written before to R[r − 1].

− Process p sets rndp to r− 1 at line 16. As p does not change the values of rndp at line 11, p reads
⊥ from R[r− 1] and thus writes its current estimate v′ in R[r− 1] (line 13). From the pseudo-code
of Janus, v′ is the estimate of p when p enters round r. Therefore, v′ = v and again, v was written
to R[r − 1] before op.

14

It follows from the previous result that Janus satisfies the validity requirement of adopt-commit
(AC) objects. We prove precisely this property in the lemma that follows.

Lemma 2 (Validity). Every adopted or committed value is a proposed value.

Proof. Consider that a process p adopts or commits some value estp = v in Janus (lines 18 to 19).
Clearly, rndp = K + 1 at that time. At the beginning of round K, p writes v to R[K] (line 13), or v
is the value p read from R[K] (lines 10 and 11). Hence, in both cases, value v was written to R[K].
It follows from Lemma 1 that v was written in each register R[i], 1 ≤ i ≤ K. In particular, v was
written in R[1]. The validity clause of AC follows from the fact that the values written in R[1] are
the processes’ proposals.

The above lemma directly implies that Janus satisfies the convergence property of AC .

Lemma 3 (Convergence). If every process proposes the same value v, then (commit, v) is the only
possible output.

Proof. If some value v is adopted or committed, then from Lemma 2, value v is proposed. Hence,
a register R[r] may only contain either v or ⊥, its initial value. Now, let us observe that (i) from
Lemma 1, if R[r > 1] = v holds then necessarily v was written by some process in R[r−1] previously,
and (ii) if some process enters a round r > 1, necessarily R[r− 1] 6= ⊥ (lines 10 to 13). This implies
that line 14 never triggers, and that C always equals false. As a consequence, we may conclude that
(commit, v) is the unique return value.

From the pseudo-code of Janus every correct process eventually decides. Hence, the following lemma:

Lemma 4 (Wait-freedom). Janus is wait-free.

Proof of agreement.. We now turn our attention to the agreement property To this end, we divide
every execution λ in epochs as follows. Epoch ei≥1 is the interval that starts with the first write
to register R[i] in λ, or if i = 1 the first operation in λ, and that ends immediately before the first
write (if any) performed to register R[i + 1]. Given some operation op, we say that op occurs at
epoch ei when op is in the interval ei. Obviously, there is a single epoch during which an operation
takes place. Moreover, if a write to R[j] occurs at ei, then j ≤ i.

The following lemma is central to the proof of the agreement property. Informally, this lemma
states that if a process writes v in R[K], then no other value than v can be written to R[K].

Lemma 5. Let v be an adopted or committed value. It is true that (i) value v is written to R[K],
and (ii) if value v is committed, for every value v′ written to R[K], it holds that v′ = v.

The agreement property follows immediately:

Lemma 6 (Agreement). If (commit, v) is returned, then every decision has the form (−, v);

Proof. Consider some committed value v, and a value v′ such that some process returns (−, v′).
From (i) in Lemma 5, we know that both v and v′ are written to register R[K]. Then, item (ii) tells
us that, since v is committed, v = v′ holds.

15

We devote the remaining of this section to the proof of Lemma 5. As we pointed out previously,
if some process p commits a value v necessarily estp = v when p returns (commit, v). Moreover, at
the time p executes the last iteration of the while loop, we have rndp = K. Thus, the pseudo-code
from lines 8 to 13 implies that R[K] = v at some point in time before process p returns. This shows
that item (i) in Lemma 5 holds.

To prove that (ii) is true as well, we proceed by contradiction. Let us name H the negation of
item (ii) in Lemma 5; namely:

Two distinct values u and v are written to R[K]. (H)

In the following, we show that to satisfy (H), the system must consist of at least n+ 1 processes.
For i, j ∈ [1,K], let us note W i

j the set of processes that perform a write operation to register
R[j] during epoch ei. This means that a process p belongs to W i

j if and only if there exists a write
operation to R[j] by p that occurs at epoch ei. From the definition of an epoch, we know that if
j > i, then W i

j = ∅.
We first state two technical lemmas.

Lemma 7. Suppose that p performs a write operation op on R[i]. The last operation preceding op
performed by p is a read on R[i], and the value returned by that operation is ⊥.

Proof. Immediate from the code of Janus at lines 8 to 13.

Lemma 8. Denote by op and op′ two write operations performed by the same process p. Suppose
that: (1) op occurs at epoch ei, (2) op′ is a write to register R[j] with j 6= i, and (3) op precedes op′.
Then, j > i and op′ occurs at some epoch ej′>i.

Proof. By Lemma 7, p reads from R[j] immediately before executing op′, and this read operation
returns ⊥. Let op′′ denote that operation. It follows from the third condition of the Lemma that
op′′ occurs after op, which in turn occurs after some non-⊥ value has been written to R[i′] for each
i′ ≤ i (from Lemma 1). Since the read operation op′′ performed on R[j] returns ⊥, we conclude that
j > i. Hence, by definition of an epoch, op′ takes place in ej′≥j .

The lemmas below precise how the sizes of (W i
j)i,j and the round numbers are related. They are

instrumental in showing that (H) does not hold.

Lemma 9. Under (H), it is true that: ∀i ∈ [1,K − 1] : |W i
i | ≥ 2.

Proof. From (H), at least two values u and v are written to R[K]. Lemma 1 tells us that in such a
case both u and v are written to R[i] for every i ∈ [1,K − 1]. For some R[i], we show that two such
writes occurs precisely at epoch ei. Consider the first write of value v to R[i]. By definition, this
operation occurs at epoch ei′ for some i′ ≥ i.

For the sake of contradiction, suppose that i′ > i. By applying inductively Lemma 1, when v is
written to R[i] for the first time, register R[i + 1] does not contain ⊥. Let p be the process that
performs the first write of v to R[i+ 1] and note wi+1

p this operation.
According to the code of Janus we know that (1) Process p performs wi+1

p while executing round
i+ 1; (2) Operation wi+1

p is preceded by a read operation on R[i+ 1] at line 8 by p that returns
⊥, an operation we denote ri+1

p ; and (3) During round i, there is a read operation from R[i] that
returns value v, or a write of v by p to R[i]. This last operation is denoted opip.

16

Operations opip, ri+1
p and wi+1

p occur in that order. Since the first write of v to R[i] occurs at ei′ ,
opip occurs at some epoch ei′′ with i′′ ≥ i′, Therefore, operation ri+1

p occurs after a write to R[i+ 1],
from which we conclude that ri+1

p returns a non-⊥ value. The pseudo-code at lines 8 to 11 tells us
that in such a case p does not write to R[i+ 1]; a contradiction.

We just show that a write of v to R[i] occurs at epoch ei. A symmetrical argument can be
applied to value u. For some process p, rndp is strictly growing. Hence, for each i ∈ [1,K − 1], a
process performs at most one write operation to R[i]. This shows that |W i

i | ≥ 2.

Lemma 10. If (H) holds, then: ∀i, j ∈ [1,K − 1]× [1, i− 1] : |W i
j | ≥ 1.

Proof. Choose some i in [1,K − 1]. As a starter, we establish that two read operations that return
respectively v and u occur at epoch ei.

Since value v is written in R[K], v is also written to R[i + 1] (Lemma 1). Let p the process
that performs the first write of v to R[i + 1]. From the code of Janus, p executes round i before
performing that write operation, and v is the estimate of p at the end of that round. Hence, at the
beginning of round i, p either reads v in R[i] or writes v in R[i]. Moreover, the read operation on
R[i+ 1] performed by p at the beginning of round i+ 1 returns ⊥ (Otherwise p does not perform
a write to R[i+ 1]). Therefore, every operation performed by p while executing round i occurs at
epoch ei. In particular, for every j ∈ [1, i− 1], the read of R[j] performed by p at line 14 occurs at
ei. This read must return v. Otherwise, p raises flag C, and value v is not committed.

Similarly, by considering the process that performs the first write of u in R[i+ 1], we obtain that
a read operation on R[j] returning u occurs at ei.

As two read operations on R[j] return two different values occur in ei, there must exist a write
operation on R[j] that occurs at ei. We thus conclude that W i

j 6= ∅.

Lemma 11. Suppose that (H) holds. Choose i, j ∈ [1,K−1]×[1, i−1] and i′, j′ ∈ [1,K−1]×[1, i′−1].
It is true that: (i ≤ i′ ∧W i

j ∩W i′
j′ 6= ∅)→ (i = i′ ∧ j = j′) ∨ (i < j′)

Proof. Pick p ∈ W i
j ∩W i′

j′ . By definition, a write operation by p occurs at ei and ei′ . Assume first
that i = i′. Lemma 8 tells us that two consecutive write operations by the same process should
occur in distinct epoch. Hence, j = j′ holds. Otherwise, i < i′ and applying again Lemma 8, we
obtain i < j′.

We are now ready to prove Lemma 5.

Proof of Lemma 5. Assume for the sake of contradiction that (H) is satisfied, and consider the
following set:

S =

{
(i, j) :

⌈
K − 1

2

⌉
≤ i ≤ K − 1 ∧ 1 ≤ j ≤

⌈
K − 1

2

⌉}
In what follows, we count the distinct processes that appear in the union of the sets W i

j with
(i, j) ∈ S. We show that there are at least n+ 1, reaching a contradiction.

Let (i, j) 6= (i′, j′) ∈ S such that i ≤ i′. By definition of S, i ≥ j′ and thus it follows from
Lemma 11 that W i

j ∩W i′
j′ = ∅. Hence,∣∣∣∣∣∣

⋃
(i,j)∈S

W i
j

∣∣∣∣∣∣ =
∑

(i,j)∈S

|W i
j |

17

From Lemmas 9 and 10, we have |W i
j | ≥ 1 for each (i, j) ∈ S and |W i

i | ≥ 2 for each (i, i) ∈ S.
Therefore, ∣∣∣∣∣∣

⋃
(i,j)∈S

W i
j

∣∣∣∣∣∣ ≥
⌈
K − 1

2

⌉
·
⌊
K − 1

2

⌋
+ 1

Finally, as K = 2 · d
√
ne+ 1, we get ∣∣∣∣∣∣

⋃
(i,j)∈S

W i
j

∣∣∣∣∣∣ ≥ n+ 1

From Lemma 5, we know that no two distinct value are written to R[K]. Consequently, the agreement
property holds, closing the proof of the agreement property.

Theorem 6. Janus implements a wait-free adopt-commit object.

Proof. Follows from Lemmas 2, 3, 4 and 6.

5.3 Time Complexity

The theorem below proves that the solo step complexity of Janus is O(n); this is optimal [5]. It also
establishes that the solo-write complexity of this algorithm is O(

√
n). As we shall see in Section 6,

this last value is tight.

Theorem 7. TIME (Janus) ∈ O(n) and WTIME (Janus) ∈ O(
√
n).

Proof. Consider a solo execution of some process p. During this execution, p executes K = 2d
√
ne+ 1

rounds, then decides. Name {1, . . . ,K} the rounds executed by p, and consider some round i.
According to the pseudo-code of Janus, during round i process p executes a single write (line 13),
and reads i shared registers (lines 8 and 14). As a consequence, the step complexity of the algorithm
is O(n) and its write complexity belongs to O(

√
n).

6 When identities help

In this section, we combine Janus and Algorithm 3 to efficiently leverage the presence of identities.
When c identities are available, our solution has a solo-write complexity of Ω(

√
n− c+ 1) operations.

Before delving into its algorithmic details, we first establish that this value is optimal when m is
unknown and the memory footprint is bounded.

6.1 A lower bound result

For some process p, recall that a clone of p refers to a process homonymous to p that executes in
lock-step with p. This process is indistinguishable from p to other processes. In particular, for any
process p and any execution λ during which less than n processes take steps, we may always consider
an execution λ′ indistinguishable from λ to all processes and that includes a clone of p.

18

Let A be some implementation of an adopt-commit object. For some input value v, we note Av
the permutation over ws(v) following the order in which a process in σv first writes to a register in
ws(v).

Proposition 4. (∃u, v ∈ Values : Au = Av)→WTIME (A) ∈ Ω(
√
n− c+ 1)

Proof. Choose two values u and v that satisfy Au = Av. In what follows, we construct with the help
of clones an execution λ that is indistinguishable from σu for process pu and from σv for process pv.

The construction. Let us define Au = Av = 〈R1, . . . , Rk〉. Given a register Ri ∈ Au, note wi,u the
first write to Ri during σu. We define symmetrically operation wi,v. For each register Ri∈[1,k], we
schedule iteratively the operations in σu and σv in λ as follows: We schedule in λ the operation
wi−1,u (if such an operation exists) in σu, then every operation that follows wi−1,u and precedes
wi,u. By definition of Au, observe that none of these operations is a write to some register Rj≥i.
Similarly, we then schedule wi−1,v and all the operations in σv between wi−1,v and wi,v. The previous
construction is iterated until we have scheduled all the operations of σu and σv. Then, we add clones
of pu and pv as follows: For some register Ri, let wi,u,j be the last write to register Rj<i by pu prior
to wi,u. We add an operation wi,u,j by a clone of pu right after wi,u. After this block write, the clone
stops. Similarly for v, we add a write wi,v,j over Rj<i right after wi,v by a clone of pv for every j < i.

Correctness. In order to prove that λ is an admissible run, we first consider some read of a register
Ri by pu, and examine the following cases: (Case Ri ∈ Au) Every read from Ri is either (i) before
wi,u and thus it sees the initial state because no operation of pu, nor of pv, has written Ri yet, or (ii)
after some wj≥i,u and it sees the result either of (ii-a) the operation wj,u,i by a clone of pu, or (ii-b)
the result of some write of pu after wj,u,i. Hence, in all the situations above, the read of pu in λ sees
the same result as in σu. (Case Ri /∈ Au) In such a case pv never writes Ri. As a consequence, all
such reads by pu in σu are the same as in λ. It follows from the previous reasoning that λ pu∼ σv. A
symmetrical argument leads to λ pv∼ σv. Hence, λ is an admissible run.

Execution λ makes use of 2 + 2
∑k

i=1(i− 1) = k2 − k + 2 processes. In an homonymous system
with c identities, we may split processors in a group of c − 1 processes having c − 1 identities,
and a group of n − c + 1 processes with the same identity. Hence, λ is not constructible when
k2 − k + 2 > n − c + 1. On the other hand, we have WTIME (A) ≥ k. This leads to the fact
WTIME (A) ∈ Ω(

√
n− c+ 1).

Proposition 4 implies the following result:

Theorem 8. WTIME (AC) ∈ Ω(min(log(m)
log(log(m)) ,

√
n− c+ 1)).

Proof. Consider an AC implementation A that uses a bounded amount of registers, say k. Without
lack of generality, we assume that some solo execution σu of A writes to the k registers, that is
WTIME (A) = k. There are

∑k
i=0C

k
i set of registers to write, and for each such set of size i, i!

possible ways to write the registers first in some execution σu. This leads to
∑k

i=0 P
k
i ≤ k! × e

possible choices of writing first the (at most) k registers. As a consequence, the pigeon hole principle
tells us that if m ≥ k! × e, for some pair u, v ∈ Values, the premises of Proposition 4 apply,
i.e., Au = Av, leading to WTIME (A) ∈ Ω(

√
n− c+ 1). On the other hand, if m < k! × e then

WTIME (A) ∈ Ω(log(m)
log(log(m))). Hence, WTIME (AC) ∈ Ω(min(log(m)

log(log(m)) ,
√
n− c+ 1)).

In [5], Aspnes and Ellen present a wait-free implementation of an m-valued adopt-commit objects
from multi-reader multi-writer registers that works in anonymous systems. This algorithm makes

19

Algorithm 6 Adopt-Commit for Homonymous Systems – code at process p
1: Shared Variables:
2: I[c] // An array of c instances of Janus with K = 2

⌈√
n− c+ 1

⌉
+ 1.

3: D[c] // An array of c registers; initially ∀i ∈ [1, c] : D[i] = ⊥.
4: C // Algorithm 2 using Algorithm 3 with m = c
5: J // Janus with K = 2.

⌈√
n
⌉

+ 1.
6:
7: Procedure adoptCommit(u)
8: D[p]← I[p].adoptCommit(u)
9: (g, q)← C.adoptCommit(p)
10: (f, est)← D[q]
11: if f = adopt ∨ g = adopt then
12: (f, est)← J.adoptCommit(est)

13: return (f, est)

use of a bounded amount of registers and executes O(logm
log logm) write operations, reaching the left

part of the above lower bound. The section that follows details an implementation of adopt-commit
that satisfies a solo-write complexity of O(

√
n− c+ 1) operations.

6.2 An asymptotically optimal solution

To match the above lower bound, we proceed as follows: First, processes having the same identity
agree on a common proposed value. To this end, we employ c instances of Janus, with K set to
2
⌈√

n− c+ 1
⌉

+ 1, one per identity. Then, processes execute the constant write time algorithm
presented in Section 4, agreeing on an identity (and thus some associated proposed value). This
defines the fast path of our algorithm. However, it might happen that, despite proposing all the
same value, processes do not reach agreement at the end of this path. To solve such an issue and
attain convergence, a process which returns (adopt,−) in the fast path executes an instance of Janus
with K set to 2 d

√
ne+ 1,

6.2.1 Algorithmic details

We depict our solution in Algorithm 6. This algorithm makes use of the following four variables:
c instances of Janus (variables I[1..c]), an array of c registers (variables D[1..c]), an instance of
Algorithm 2 using Algorithm 3 (variable C), and an additional instance of Janus (variable J).

These variables are employed as follows. In a first step, processes having the same identity agree
on a common value (line 8). To this end, a process p accesses instance I[p], proposing its input. Since
c identities are available in the system, at most n− c+ 1 processes may access some instance I[p].
Hence, for each instance I[p], we set K to 2

⌈√
n− c+ 1

⌉
+ 1. In a second step, processes compete

to pick an identity and the proposed value that was chosen during the first step (lines 9 to 10).
This tentative operation to commit a value employs variable C. If a process does not succeed in
committing a value after the above two steps, it executes an additional instance of Janus accessible
through variable J .

6.2.2 Correctness

Theorem 9 proves that Algorithm 6 is a correct implementation of AC in a distributed homonymous
system where c identities available.

Theorem 9. Algorithm 6 implements a wait-free adopt-commit object.

20

Proof. In what follows, we prove that Algorithm 6 precisely implements a wait-free adopt-commit
object:

(Wait-freedom) Variables I[1..c], C and J are all wait-free AC implementations. As a consequence,
at the light of the pseudo-code of Algorithm 6, this algorithm is also wait-free.

(Validity) Consider that a value u is adopted or committed at line 13. Value u is either retrieved
from the array D at line 10, or it results from the call at line 12. In the former case, from the
validity property of an adopt-commit object, we observe that value u is necessarily proposed at
line 8 to some instance I[k], with k ∈ [1, c] . Hence, value u is the input value of some process.
In the latter case, u is the output of instance J . From the validity property of an adopt-commit
object, u is fetched from array D at line 10. Hence this case boils down to the previous one.

(Agreement) Let us consider that some process p commits a value u, while a process q adopts or
commits some value v. As a starter, we observe that every value decided at line 13 in Algorithm 6
is necessarily retrieved either at line 10, or at line 12. Assume first that u is computed at line 10.
We observe that both flags f and g equals commit when p tests them at line 11. It follow that
(i) p fetches (commit, u) from some register D[p̂] at line 10, for some p̂ ∈ [1, c], and (ii) C returns
(commit, p̂) at line 9. Only processes having identity p̂ might write to D[p̂] at line 8, and precisely,
they write down the result of the call to object I[p̂]. From item (i), solely a tuple of the form
(−, u) can be written to D[p̂]. From item (ii), we deduce that q returns (−, p̂) at line 9. Hence,
q reads from D[p̂] as well at line 10. It follow that q reads (−, u) from register D[p̂]. Thus, u is
the sole value that can be proposed at line 12. From the convergence property of object J , u is
committed by q. If v is computed at line 10, a similar argument holds. In the last case where both
values u and v are retrieved at line 12, the agreement property of object J implies that u = v.

(Convergence) Consider that all the processes propose the same value, say u. Since the validity
property holds, (−, u) is the sole decision a process may take. As detailed above, Algorithm 6
consists of two paths. The fast path spans lines 8 to 10. If a process p fails to commit a value in
this path, i.e., in the advent where f or g equals adopt at line 11, p falls back to the slow path
and executes line 12. Now, as u is the sole proposed value, process p necessarily retrieves u from
variables D[1..c] at line 10. It follows that every process accessing variable J proposes value u. By
the convergence property of object J , p commits value u at line 12.

Below, we establish that Algorithm 6 reaches the optimal solo-write complexity.

Theorem 10. WTIME (Algorithm 6) ∈ O(
√
n− c+ 1)

Proof. If some process p calls solo an adopt-commit object with value u, the convergence property
implies that p commits u. As a consequence, a process that executes solo Algorithm 6 only takes the
fast path, skipping line 12. This fast path consists in a call to an instance of Janus, with K set to
2
⌈√

n− c+ 1 + 1
⌉
, then a call to an instance of Algorithm 3. From Theorems 5 and 7, we obtain

that WTIME (Algorithm 6) belongs to O(
√
n− c+ 1).

21

7 Conclusion

This paper focuses on the minimal number of write operations a process should execute to reach an
agreement with its peers in a distributed system. To that regard, we contribute several tight lower
bound results on the solo-write complexity of adopt-commit objects, a pivotal abstraction at core of
every consensus algorithm.

In detail, we first present an algorithm that executes three write operations, a value we show
optimal in the general case. We show that this number reduces to 2 when m is bounded and known,
or when n identities are available in the system. We also prove that a single write is necessary and
sufficient in the corner case when (n = 2) ∧ ((c = 2) ∨ (m < ℵ0)). Further, we introduce Janus
an efficient implementation for the anonymous case that executes O(n) shared memory operations,
including O(

√
n) writes. The lower bound result of Aspnes and Ellen [5] implies that the time

complexity of Janus is optimal.
Building upon Janus, we then address the question of leveraging the presence of c identities in the

system. We design a solution that implements an adopt-commit object in solely O(
√
n− c+ 1) write

operations, and we prove that, when m is not known and the number of registers in use bounded,
this value is optimal.

References

[1] K. Abrahamson. On achieving consensus using a shared memory. In Proceedings of the Seventh
Annual ACM Symposium on Principles of Distributed Computing, PODC ’88, pages 291–302,
New York, NY, USA, 1988. ACM. ISBN 0-89791-277-2. doi: 10.1145/62546.62594. URL
http://doi.acm.org/10.1145/62546.62594.

[2] D. Alistarh, R. Gelashvili, and G. Nadiradze. Lower bounds for shared-memory leader election
under bounded write contention. CoRR, abs/2108.02802, 2021. URL https://arxiv.org/abs/

2108.02802.

[3] D. Angluin, J. Aspnes, Z. Diamadi, M. J. Fischer, and R. Peralta. Computation in networks
of passively mobile finite-state sensors. In Proceedings of the Twenty-third Annual ACM
Symposium on Principles of Distributed Computing, PODC ’04, pages 290–299, New York,
NY, USA, 2004. ACM. ISBN 1-58113-802-4. doi: 10.1145/1011767.1011810. URL http:

//doi.acm.org/10.1145/1011767.1011810.

[4] J. Aspnes. A modular approach to shared-memory consensus, with applications to the
probabilistic-write model. In Proceedings of the 29th ACM SIGACT-SIGOPS Symposium
on Principles of Distributed Computing, PODC ’10, pages 460–467, New York, NY, USA, 2010.
ACM. ISBN 978-1-60558-888-9. doi: 10.1145/1835698.1835802. URL http://doi.acm.org/10.

1145/1835698.1835802.

[5] J. Aspnes and F. Ellen. Tight bounds for adopt-commit objects. Theory of Computing
Systems, 55(3):451–474, 2014. ISSN 1432-4350. doi: 10.1007/s00224-013-9448-1. URL http:

//dx.doi.org/10.1007/s00224-013-9448-1.

[6] H. Attiya, A. Gorbach, and S. Moran. Computing in totally anonymous asynchronous shared
memory systems. Inf. Comput., 173(2):162–183, Mar. 2002. ISSN 0890-5401. doi: 10.1006/inco.
2001.3119. URL http://dx.doi.org/10.1006/inco.2001.3119.

22

http://doi.acm.org/10.1145/62546.62594
https://arxiv.org/abs/2108.02802
https://arxiv.org/abs/2108.02802
http://doi.acm.org/10.1145/1011767.1011810
http://doi.acm.org/10.1145/1011767.1011810
http://doi.acm.org/10.1145/1835698.1835802
http://doi.acm.org/10.1145/1835698.1835802
http://dx.doi.org/10.1007/s00224-013-9448-1
http://dx.doi.org/10.1007/s00224-013-9448-1
http://dx.doi.org/10.1006/inco.2001.3119

[7] H. Attiya, R. Guerraoui, and P. Kouznetsov. Computing with reads and writes in the absence of
step contention. In P. Fraigniaud, editor, Distributed Computing: 19th International Conference,
DISC 2005, Cracow, Poland, September 26-29, 2005. Proceedings, pages 122–136, Berlin,
Heidelberg, 2005. Springer Berlin Heidelberg. ISBN 978-3-540-32075-3. doi: 10.1007/11561927_
11. URL http://dx.doi.org/10.1007/11561927_11.

[8] H. Attiya, O. Ben-Baruch, and D. Hendler. Lower bound on the step complexity of anonymous
binary consensus. In C. Gavoille and D. Ilcinkas, editors, Distributed Computing, pages 257–268,
Berlin, Heidelberg, 2016. Springer Berlin Heidelberg. ISBN 978-3-662-53426-7.

[9] M. Ben-Or. Another advantage of free choice (extended abstract): Completely asynchronous
agreement protocols. In Proceedings of the Second Annual ACM Symposium on Principles
of Distributed Computing, PODC ’83, pages 27–30, New York, NY, USA, 1983. ACM. ISBN
0-89791-110-5. doi: 10.1145/800221.806707. URL http://doi.acm.org/10.1145/800221.806707.

[10] F. Bonnet and M. Raynal. Brief announcement: The price of anonymity: Optimal consensus
despite asynchrony, crash and anonymity. In Proceedings of the 28th ACM Symposium on
Principles of Distributed Computing, PODC ’09, pages 294–295, New York, NY, USA, 2009.
ACM. ISBN 978-1-60558-396-9. doi: 10.1145/1582716.1582773. URL http://doi.acm.org/10.

1145/1582716.1582773.

[11] E. Borowsky and E. Gafni. Generalized flp impossibility result for t-resilient asynchronous
computations. In Proceedings of the Twenty-fifth Annual ACM Symposium on Theory of
Computing, STOC ’93, pages 91–100, New York, NY, USA, 1993. ACM. ISBN 0-89791-591-7.
doi: 10.1145/167088.167119. URL http://doi.acm.org/10.1145/167088.167119.

[12] Z. Bouzid and C. Travers. Anonymity-preserving failure detectors. In C. Gavoille and D. Ilcinkas,
editors, Distributed Computing, pages 173–186, Berlin, Heidelberg, 2016. Springer Berlin
Heidelberg. ISBN 978-3-662-53426-7.

[13] Z. Bouzid, P. Sutra, and C. Travers. Anonymous agreement: The janus algorithm. In Proceedings
of the 15th International Conference on Principles of Distributed Systems, OPODIS’11, page
175–190, Berlin, Heidelberg, 2011. Springer-Verlag. ISBN 9783642258725. doi: 10.1007/
978-3-642-25873-2_13. URL https://doi.org/10.1007/978-3-642-25873-2_13.

[14] Z. Bouzid, M. Raynal, and P. Sutra. Anonymous obstruction-free (n, k)-set agreement with
n-k+1 atomic read/write registers. Distributed Comput., 31(2):99–117, 2018. doi: 10.1007/
s00446-017-0301-7. URL https://doi.org/10.1007/s00446-017-0301-7.

[15] H. Buhrman, A. Panconesi, R. Silvestri, and P. M. B. Vitányi. On the importance of having an
identity or is consensus really universal? In Proceedings of the 14th International Conference
on Distributed Computing, DISC ’00, pages 134–148, London, UK, UK, 2000. Springer-Verlag.
ISBN 3-540-41143-7. URL http://dl.acm.org/citation.cfm?id=645957.756683.

[16] C. Capdevielle, C. Johnen, P. Kuznetsov, and A. Milani. On the uncontended complexity
of anonymous agreement. Distrib. Comput., 30(6):459–468, Dec. 2017. ISSN 0178-2770. doi:
10.1007/s00446-017-0297-z. URL https://doi.org/10.1007/s00446-017-0297-z.

[17] A. Castañeda, S. Rajsbaum, and M. Raynal. Unifying concurrent objects and distributed tasks:
Interval-linearizability. J. ACM, 65(6), nov 2018. ISSN 0004-5411.

23

http://dx.doi.org/10.1007/11561927_11
http://doi.acm.org/10.1145/800221.806707
http://doi.acm.org/10.1145/1582716.1582773
http://doi.acm.org/10.1145/1582716.1582773
http://doi.acm.org/10.1145/167088.167119
https://doi.org/10.1007/978-3-642-25873-2_13
https://doi.org/10.1007/s00446-017-0301-7
http://dl.acm.org/citation.cfm?id=645957.756683
https://doi.org/10.1007/s00446-017-0297-z

[18] T. D. Chandra and S. Toueg. Unreliable failure detectors for reliable distributed systems.
J. ACM, 43(2):225–267, Mar. 1996. ISSN 0004-5411. doi: 10.1145/226643.226647. URL
http://doi.acm.org/10.1145/226643.226647.

[19] T. D. Chandra, V. Hadzilacos, and S. Toueg. The weakest failure detector for solving consensus.
J. ACM, 43(4):685–722, July 1996. ISSN 0004-5411. doi: 10.1145/234533.234549. URL
http://doi.acm.org/10.1145/234533.234549.

[20] S. Chaudhuri. Agreement is harder than consensus: Set consensus problems in totally asyn-
chronous systems. In Proceedings of the Ninth Annual ACM Symposium on Principles of
Distributed Computing, PODC ’90, pages 311–324, New York, NY, USA, 1990. ACM. ISBN
0-89791-404-X. doi: 10.1145/93385.93431. URL http://doi.acm.org/10.1145/93385.93431.

[21] T. Chothia and K. Chatzikokolakis. A survey of anonymous peer-to-peer file-sharing. In
Proceedings of the 2005 International Conference on Embedded and Ubiquitous Computing,
EUC’05, pages 744–755, Berlin, Heidelberg, 2005. Springer-Verlag. ISBN 3-540-30803-2, 978-3-
540-30803-4. doi: 10.1007/11596042_77. URL http://dx.doi.org/10.1007/11596042_77.

[22] C. Delporte-Gallet and H. Fauconnier. Two Consensus Algorithms with Atomic Registers
and Failure Detector Ω, pages 251–262. Springer Berlin Heidelberg, Berlin, Heidelberg, 2009.
ISBN 978-3-540-92295-7. doi: 10.1007/978-3-540-92295-7_31. URL http://dx.doi.org/10.1007/

978-3-540-92295-7_31.

[23] C. Delporte-Gallet, H. Fauconnier, R. Guerraoui, A.-M. Kermarrec, E. Ruppert, and H. Tran-
The. Byzantine agreement with homonyms. In Proceedings of the 30th Annual ACM SIGACT-
SIGOPS Symposium on Principles of Distributed Computing, PODC ’11, pages 21–30, New
York, NY, USA, 2011. ACM. ISBN 978-1-4503-0719-2. doi: 10.1145/1993806.1993810. URL
http://doi.acm.org/10.1145/1993806.1993810.

[24] C. Delporte-Gallet, H. Fauconnier, E. Gafni, and L. Lamport. Adaptive register allocation
with a linear number of registers. In Proceedings of the 27th International Symposium on
Distributed Computing - Volume 8205, DISC 2013, pages 269–283, New York, NY, USA, 2013.
Springer-Verlag New York, Inc. ISBN 978-3-642-41526-5. doi: 10.1007/978-3-642-41527-2_19.
URL http://dx.doi.org/10.1007/978-3-642-41527-2_19.

[25] C. Dwork, N. Lynch, and L. Stockmeyer. Consensus in the presence of partial synchrony.
J. ACM, 35(2):288–323, Apr. 1988. ISSN 0004-5411. doi: 10.1145/42282.42283. URL http:

//doi.acm.org/10.1145/42282.42283.

[26] H. Federrath, editor. International Workshop on Designing Privacy Enhancing Technologies:
Design Issues in Anonymity and Unobservability, New York, NY, USA, 2001. Springer-Verlag
New York, Inc. ISBN 3-540-41724-9.

[27] F. Fich, M. Herlihy, and N. Shavit. On the space complexity of randomized synchronization. In
Proceedings of the Twelfth Annual ACM Symposium on Principles of Distributed Computing,
PODC ’93, pages 241–249, New York, NY, USA, 1993. ACM. ISBN 0-89791-613-1. doi:
10.1145/164051.164078. URL http://doi.acm.org/10.1145/164051.164078.

24

http://doi.acm.org/10.1145/226643.226647
http://doi.acm.org/10.1145/234533.234549
http://doi.acm.org/10.1145/93385.93431
http://dx.doi.org/10.1007/11596042_77
http://dx.doi.org/10.1007/978-3-540-92295-7_31
http://dx.doi.org/10.1007/978-3-540-92295-7_31
http://doi.acm.org/10.1145/1993806.1993810
http://dx.doi.org/10.1007/978-3-642-41527-2_19
http://doi.acm.org/10.1145/42282.42283
http://doi.acm.org/10.1145/42282.42283
http://doi.acm.org/10.1145/164051.164078

[28] M. J. Fischer, N. A. Lynch, and M. S. Paterson. Impossibility of distributed consensus with one
faulty process. J. ACM, 32(2):374–382, Apr. 1985. ISSN 0004-5411. doi: 10.1145/3149.214121.
URL http://doi.acm.org/10.1145/3149.214121.

[29] E. Gafni. Round-by-round fault detectors (extended abstract): Unifying synchrony and asyn-
chrony. In Proceedings of the Seventeenth Annual ACM Symposium on Principles of Distributed
Computing, PODC ’98, pages 143–152, New York, NY, USA, 1998. ACM. ISBN 0-89791-977-7.
doi: 10.1145/277697.277724. URL http://doi.acm.org/10.1145/277697.277724.

[30] P. Gastin. Recognizable and rational languages of finite and infinite traces. In C. Choffrut
and M. Jantzen, editors, STACS 91, pages 89–104, Berlin, Heidelberg, 1991. Springer Berlin
Heidelberg. ISBN 978-3-540-47002-1.

[31] G. Giakkoupis, M. Helmi, L. Higham, and P. Woelfel. An O
√
N Space Bound for Obstruction-

Free Leader Election. In Proceedings of the 27th International Symposium on Distributed
Computing - Volume 8205, DISC 2013, pages 46–60, New York, NY, USA, 2013. Springer-
Verlag New York, Inc. ISBN 978-3-642-41526-5. doi: 10.1007/978-3-642-41527-2_4. URL
http://dx.doi.org/10.1007/978-3-642-41527-2_4.

[32] P. B. Gibbons. How emerging memory technologies will have you rethinking algorithm design.
In Proceedings of the 2016 ACM Symposium on Principles of Distributed Computing, PODC
’16, pages 303–303, New York, NY, USA, 2016. ACM. ISBN 978-1-4503-3964-3. doi: 10.1145/
2933057.2933124. URL http://doi.acm.org/10.1145/2933057.2933124.

[33] E. Godard, D. Imbs, M. Raynal, and G. Taubenfeld. From bezout’s identity to space-optimal
election in anonymous memory systems. In Proceedings of the 39th Symposium on Principles
of Distributed Computing, PODC ’20, page 41–50, New York, NY, USA, 2020. Association for
Computing Machinery. ISBN 9781450375825.

[34] R. Guerraoui and M. Raynal. The information structure of indulgent consensus. IEEE Trans.
Comput., 53(4):453–466, Apr. 2004. ISSN 0018-9340. doi: 10.1109/TC.2004.1268403. URL
http://dx.doi.org/10.1109/TC.2004.1268403.

[35] R. Guerraoui and M. Raynal. The alpha of indulgent consensus. Comput. J., 50(1):53–67, Jan.
2007. ISSN 0010-4620. doi: 10.1093/comjnl/bxl046. URL http://dx.doi.org/10.1093/comjnl/

bxl046.

[36] R. Guerraoui and E. Ruppert. What Can Be Implemented Anonymously?, pages 244–259.
Springer Berlin Heidelberg, Berlin, Heidelberg, 2005. ISBN 978-3-540-32075-3. doi: 10.1007/
11561927_19. URL http://dx.doi.org/10.1007/11561927_19.

[37] R. Guerraoui and E. Ruppert. Anonymous and fault-tolerant shared-memory computing.
Distributed Computing, 20(3):165–177, 2007. ISSN 1432-0452. doi: 10.1007/s00446-007-0042-0.
URL http://dx.doi.org/10.1007/s00446-007-0042-0.

[38] J. L. Hennessy and D. A. Patterson. Computer Architecture, Fifth Edition: A Quantitative
Approach. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 5th edition, 2011. ISBN
012383872X, 9780123838728.

25

http://doi.acm.org/10.1145/3149.214121
http://doi.acm.org/10.1145/277697.277724
http://dx.doi.org/10.1007/978-3-642-41527-2_4
http://doi.acm.org/10.1145/2933057.2933124
http://dx.doi.org/10.1109/TC.2004.1268403
http://dx.doi.org/10.1093/comjnl/bxl046
http://dx.doi.org/10.1093/comjnl/bxl046
http://dx.doi.org/10.1007/11561927_19
http://dx.doi.org/10.1007/s00446-007-0042-0

[39] M. Herlihy. Wait-free synchronization. ACM Trans. Program. Lang. Syst., 13(1):124–149, Jan.
1991. ISSN 0164-0925. doi: 10.1145/114005.102808. URL http://doi.acm.org/10.1145/114005.

102808.

[40] M. Herlihy. Asynchronous Consensus Impossibility, pages 1–99. Springer US, Boston, MA, 2008.
ISBN 978-0-387-30162-4. doi: 10.1007/978-0-387-30162-4_36. URL http://dx.doi.org/10.1007/

978-0-387-30162-4_36.

[41] M. Herlihy and N. Shavit. The topological structure of asynchronous computability. J.
ACM, 46(6):858–923, Nov. 1999. ISSN 0004-5411. doi: 10.1145/331524.331529. URL http:

//doi.acm.org/10.1145/331524.331529.

[42] M. Herlihy and N. Shavit. On the nature of progress. In A. F. Anta, G. Lipari, and M. Roy,
editors, OPODIS, volume 7109 of Lecture Notes in Computer Science, pages 313–328. Springer,
2011. ISBN 978-3-642-25872-5.

[43] M. Herlihy, V. Luchangco, and M. Moir. Obstruction-free synchronization: Double-ended queues
as an example. In 23rd International Conference on Distributed Computing Systems (ICDCS
2003), 19-22 May 2003, Providence, RI, USA, pages 522–529, 2003. doi: 10.1109/ICDCS.2003.
1203503. URL http://dx.doi.org/10.1109/ICDCS.2003.1203503.

[44] L. Lamport. A fast mutual exclusion algorithm. ACM Trans. Comput. Syst., 5(1):1–11, Jan.
1987. ISSN 0734-2071. doi: 10.1145/7351.7352. URL http://doi.acm.org/10.1145/7351.7352.

[45] L. Lamport. The part-time parliament. ACM Trans. Comput. Syst., 16(2):133–169, 1998. ISSN
0734-2071.

[46] M. C. Loui and H. H. Abu-Amara. Memory requirements for agreement among unreliable
asynchronous processes, volume 4, pages 163–183. JAI press, 1987.

[47] V. Luchangco, M. Moir, and N. Shavit. On the Uncontended Complexity of Consensus, pages
45–59. Springer Berlin Heidelberg, Berlin, Heidelberg, 2003. ISBN 978-3-540-39989-6. doi:
10.1007/978-3-540-39989-6_4. URL http://dx.doi.org/10.1007/978-3-540-39989-6_4.

[48] M. Moir and J. H. Anderson. Fast, long-lived renaming (extended abstract). In G. Tel and
P. M. B. Vitányi, editors, Distributed Algorithms, 8th International Workshop, WDAG ’94,
Terschelling, The Netherlands, September 29 - October 1, 1994, Proceedings, volume 857 of
Lecture Notes in Computer Science, pages 141–155. Springer, 1994. ISBN 3-540-58449-8. doi:
10.1007/BFb0020430. URL http://dx.doi.org/10.1007/BFb0020430.

[49] A. Mostefaoui, M. Raynal, and F. Tronel. From binary consensus to multivalued consensus in
asynchronous message-passing systems. Inf. Process. Lett., 73(5-6):207–212, Mar. 2000. ISSN
0020-0190. doi: 10.1016/S0020-0190(00)00027-2. URL http://dx.doi.org/10.1016/S0020-0190(00)

00027-2.

[50] E. Ruppert. The anonymous consensus hierarchy and naming problems. In Proceedings of
the 11th International Conference on Principles of Distributed Systems, OPODIS’07, pages
386–400, Berlin, Heidelberg, 2007. Springer-Verlag. ISBN 3-540-77095-X, 978-3-540-77095-4.
URL http://dl.acm.org/citation.cfm?id=1782394.1782422.

26

http://doi.acm.org/10.1145/114005.102808
http://doi.acm.org/10.1145/114005.102808
http://dx.doi.org/10.1007/978-0-387-30162-4_36
http://dx.doi.org/10.1007/978-0-387-30162-4_36
http://doi.acm.org/10.1145/331524.331529
http://doi.acm.org/10.1145/331524.331529
http://dx.doi.org/10.1109/ICDCS.2003.1203503
http://doi.acm.org/10.1145/7351.7352
http://dx.doi.org/10.1007/978-3-540-39989-6_4
http://dx.doi.org/10.1007/BFb0020430
http://dx.doi.org/10.1016/S0020-0190(00)00027-2
http://dx.doi.org/10.1016/S0020-0190(00)00027-2
http://dl.acm.org/citation.cfm?id=1782394.1782422

[51] M. Saks and F. Zaharoglou. Wait-free k-set agreement is impossible: The topology of public
knowledge. SIAM J. Comput., 29(5):1449–1483, Mar. 2000. ISSN 0097-5397. doi: 10.1137/
S0097539796307698. URL http://dx.doi.org/10.1137/S0097539796307698.

[52] D. J. Sorin, M. D. Hill, and D. A. Wood. A Primer on Memory Consistency and Cache
Coherence. Morgan & Claypool Publishers, 1st edition, 2011. ISBN 1608455645, 9781608455645.

[53] M. Yamashita and T. Kameda. Leader election problem on networks in which processor identity
numbers are not distinct. IEEE Trans. Parallel Distrib. Syst., 10(9):878–887, Sept. 1999. ISSN
1045-9219. doi: 10.1109/71.798313. URL http://dx.doi.org/10.1109/71.798313.

[54] J. Yang, G. Neiger, and E. Gafni. Structured derivations of consensus algorithms for failure
detectors. In Proceedings of the Seventeenth Annual ACM Symposium on Principles of Distributed
Computing, PODC ’98, pages 297–306, New York, NY, USA, 1998. ACM. ISBN 0-89791-977-7.
doi: 10.1145/277697.277755. URL http://doi.acm.org/10.1145/277697.277755.

27

http://dx.doi.org/10.1137/S0097539796307698
http://dx.doi.org/10.1109/71.798313
http://doi.acm.org/10.1145/277697.277755

	Introduction
	Related work
	Preliminaries
	Model
	Distributed agreement

	Implementing adopt-commit with optimal write complexity
	Lower bound results
	Matching algorithm for the general case
	Conflict detector
	The construction
	A corner case

	The JanusIn Roman religion and mythology, Janus is the god of gates. Most often he is depicted as having two heads, facing opposite directions (Wikipedia). The choice of the name is explained by the fact that each process in our algorithm has to look in two directions: forward, to check if a process has already started a new round, and backward to see if some process entered a previous round. Algorithm
	Description of Janus
	Correctness
	Time Complexity

	When identities help
	A lower bound result
	An asymptotically optimal solution
	Algorithmic details
	Correctness

	Conclusion

