
Approximation Algorithm for Estimating Distances in
Distributed Virtual Environments

Olivier Beaumont1,2, Tobias Castanet1, Nicolas Hanusse1,3, and Corentin Travers1,4

1 LaBRI, 351, cours de la Libération F-33405 Talence cedex France
2 Inria Bordeaux - Sud-Ouest, 200, avenue de la Vieille Tour 33405 Talence cedex, France

3 CNRS
4 Bordeaux INP

Abstract. This article deals with the issue of guaranteeing properties in Dis-
tributed Virtual Environments (DVEs) without a server. This issue is particularly
relevant in the case of online games, that operate in a fully distributed framework
and for which network resources such as bandwidth are the critical resources.
Players typically need to know the distance between their character and other
characters, at least approximately. They all share the same position estimation
algorithm but, in general, do not know the current positions of others. We pro-
vide a synchronized distributed algorithm Alc to guarantee, at any time, that the
estimated distance dest between any pair of characters A and B is always a 1 + ε

approximation of the current distance dact, regardless of movement pattern, and
then prove that if characters move randomly on a d-dimensional grid, or follow
a random continuous movement on up to three dimensions, the number of mes-
sages ofAlc is optimal up to a constant factor. In a more practical setting, we also
show that the number of messages ofAlc for actual game traces is much less than
the standard algorithm sending actual positions at a given frequency.

Keywords: Distributed Virtual Environments · Online games · Random walks ·
Distributed approximation algorithms · Peer-to-peer algorithms

1 Introduction

1.1 Context

The term Distributed Virtual Environment (DVE) refers to systems where geographi-
cally distant users, or players, participate in a highly interactive virtual world. The main
examples of DVEs are online games, where players control characters that interact with
each other, and may modify the shared environment. Usually, interactions between char-
acters and/or objects of the environment are enabled when they are sufficiently close in
the virtual world. For simplicity, in the rest of the paper, we will use player to denote
both the player and the character.

The main difference between a DVE and a classical distributed system like a data-
base, is that the states of objects in the virtual environment evolve even without changes
issued by the users [14] since non-player characters go about their programmed activi-
ties, and objects must respect the physics of the game. Moreover, the amount of inputs
per time unit is generally high, as players interact a lot with the environment.

2 O. Beaumont, T. Castanet, N. Hanusse, and C. Travers

DVE participants need to know the state of the virtual world, in order to display
it correctly and to be able to interact with it. The two central aspects that need to be
optimized in a DVE are consistency and responsiveness. Inconsistencies arise when
two users see different versions of the virtual world. On the other hand, responsiveness,
the time interval between when a user executes an action and when the effects of this
action is perceived by the player is unsatisfactory when this time delay is noticeable.

One difficulty is related to the number of exchanged messages. In general, increas-
ing the number of communications between players contributes both to responsiveness
(changes are transmitted earlier) and consistency (more messages allow a more accurate
knowledge of the game’s state). On the other hand, it has been shown in [13] that too
many messages degrade network performance, leading to inconsistencies.

In practice, many games rely on a simple strategy, where players send updates at
a regular rate to other players. The main flaw of this technique is a poor scalability in
terms of bandwidth, as the number of messages increases quadratically with the number
of players. Scalability is a concern for DVEs: some games are intended to be played by
a large number of participants at the same time (e.g. MMORPGs). In addition, many
online games are based on a client-server architecture. This has many disadvantages,
as maintaining a server is often expensive, and exposes a single point of failure [16].
This leads to the incentive to study peer-to-peer solutions, where players share the role
of the server among themselves, but in this context, bandwidth becomes crucial, as the
network capacities of peers are usually lower than those of powerful servers. This article
focuses on reducing bandwidth usage by limiting the number of exchanged messages.
Several versatile techniques have been proposed to achieve this goal.

Data compression regroups techniques that can reduce bandwidth usage, but that
are dependent on the application. For example Delta encoding [16], is an implementa-
tion trick where only differences between states are sent.

Dead-reckoning is a widely used tool, standardized in the Appendix E of [3]. Each
player predicts the positions of the other players, extrapolating their movements after
each update, typically based on their speed and acceleration.

Error induced by dead-reckoning can be measured by different means [4, 17], but
Dead-reckoning aims at bounding the additive error on the players positions. The play-
ers know their own actual positions at any time, and for the other players, they only
know estimated positions. Since all the players share the same estimation algorithm,
each player is able to detect if the error on his/her own position as seen by another
player is above a given threshold. When this happens, the player sends a message to
this player to correct the outdated estimated position. Research on dead-reckoning im-
proved bandwidth usage mainly in two ways : get the best prediction possible [10], or
improve the update policies (a survey on different update policies is given in [15]).

Interest Management consists in filtering updates in order to send them only to
players who might be interested. Different types of interest management are identified in
[7,12]. Some application-specific approaches may also use the fact that human attention
is limited, as in [6], where a set of five interesting players is defined at any given time,
in order to send frequent updates to those players, but much less to other players.

Combinations of all these techniques can be used. In [8], an area of interest, similar
to aura interest management, is used to modify the Dead-reckoning threshold.

Approximation Algorithm for Estimating Distances in DVEs 3

In the context of interest management, estimating distances between players is very
useful, as a player is rarely interested in knowing the exact state of far away objects.
In addition, in some application-specific cases, distance may be important, for example
when implementing a spell that heals all allies within a certain range. To the best of
our knowledge, no distributed algorithm has been proposed to solve the problem of
estimating the distance between users of a DVE. The objective of this paper is to provide
a solution allowing players to estimate the distances between them, with a condition on
the relative error, while guaranteeing that the use of bandwidth is as small as possible.
In particular, it has to be bounded against an ideal algorithm that would send a minimum
number of messages, based on a perfect knowledge of the game’s state.

We identify two main articles related to this objective:
Timewarp. In [14], two techniques are proposed. First, local-lag reduces short-term in-
consistencies, at the cost of less responsiveness: a delay between the time an operation is
issued and the time when the operation becomes effective is added. Secondly, timewarp
is proposed, an algorithm to ensure consistency. In this algorithm, each player remem-
bers all previous operations and the time at which they were issued. If an operation is
received by a player too late, the player rewinds the state of the world, immediately
recomputing the current state, using all needed operations.
Compensatory Dead-Reckoning. In [11], Dead-Reckoning is used to compensate for
latencies and message losses on the network. TATSI, the average spatial error on play-
ers’ positions over a time interval, is estimated with no latency or loss of message. Then,
under the assumption of a constant acceleration, latencies and message losses are added
to the model, and it is shown that the same TATSI can be obtained by lowering the dead-
reckoning threshold (thus making DVE nodes send more messages than without latency
and message losses).

To summarize, solutions from the literature are very consuming in term of messages
and target an additive bound on the error. By contrast, this paper focuses on bounding
the relative error on distances and keeping the number of message exchanges low.

1.2 Contribution

In terms of optimality in number of messages, Dead-reckoning is optimal for position
estimation. Indeed, when using Dead-reckoning, players know where other players see
them. Thus, a player sends updates if and only if the tolerated error between his/her
actual position and his/her estimated position is exceeded, making it an optimal band-
width strategy. On the other hand, since no two players know the actual distance be-
tween them, none of them can determine the exact error over the estimated distance,
making distance estimation a much harder problem.

We consider deterministic algorithms that allow each player to estimate, at any time,
the distances between him/her and the other players, while having a guarantee on the
error. Initially, each player knows the exact position of every other player. The metric
we use is the relative error given in Equation 1, where, at each instant t, dact(t) denotes
the actual distance between two players, and dest(t) denotes their estimated distance,

error measurement = |dact(t) − dest(t)|/dest(t). (1)

4 O. Beaumont, T. Castanet, N. Hanusse, and C. Travers

We make sure this error measurement never exceeds ε, the maximum tolerated rela-
tive error for any pair of players, while minimizing the number of exchanged messages.

That is, Equation 2 must always hold, for every pair of players,

(1 − ε)dest(t) < dact(t) < (1 + ε)dest(t). (2)

We propose an algorithm, called local change and denoted by Alc. It relies on the
same underlying principle as Dead-reckoning, where position estimations are deter-
ministic and each player computes his/her own position as seen by other players, using
the same deterministic algorithm. In Alc, player Bob sends his actual position pactB to
another player Alice as soon as the estimate pestB of the position of Bob as seen by
Alice deviates too much from his actual position, more precisely as soon as Equation
3 is violated, where d denotes the distance between two points. In addition, Alice will
immediately respond to Bob by also sending her actual position.

d (pactB(t), pestB(t)) < dest(t) × ε/2. (3)

When there is no latency, with Alc, without any assumption on how players move, the
maximal error is never overcome: Equation 2 is always satisfied (Theorem 1).

To quantify the performance of our algorithm, we compare it against an oracle with
a full knowledge of the current state of the game, called ideal algorithm and denoted
by Aid. In Aid, an exchange of messages happens only when, and as soon Equation 2
is violated.

We focus in this paper on the case where movement is limited to the random part
based on players’ actions, which cannot be anticipated by the deterministic prediction
algorithm. Thus, we first conduct theoretical analyses in which players move randomly.
The best possible estimation of the position of other players is to assume they remain
still, so that a player will estimate that the other players are at their last known position.

Our analyses are for two types of movement patterns. With both, players will take
turns (with a simple round-robin policy) to move on discrete time: at each instant t ∈ N,
the player which it is the turn chooses randomly a direction to move.

Random Walk is a discrete movement taking place on a d-dimensional grid. Thus,
positions can be represented as values from Zd. If at instant t, a player following such
movement is at position p = (p1, p2, . . . , pd) he/she has 2d neighbors: (p1−1, p2, . . . , pd),
(p1 + 1, p2, . . . , pd), (p1, p2−1, . . . , pd), etc. The movement consists, at integer instants,
to chose one of the neighbors, each one having probability 1

2d to be chosen.
Continuous Movement consists at each turn to select a value smaller than one, and

to add a vector of norm equal to this value, and with a direction randomly chosen. In
1D, a moving player adds at his turn a random number following a uniform distribution
on [−1, 1] to their position. In 2D, at each instant t, the moving player X chooses ρt and
θt following uniform distributions respectively on [0, 1] and [0, 2π], so that pactX(t+1) =

pactX(t) + (ρt, θt), where (ρt, θt) is the vector with polar coordinates ρt and θt. In 3D, at
each instant t, the moving player chooses ρt, θt, and ϕt following uniform distributions
respectively on [0, 1], [0, 2π] and [0, π].

For these movement patterns, we prove that Alc is optimal in terms of number of
message exchanges up to a constant factor depending only on ε (and not in particular
on the initial distance between the players).

Approximation Algorithm for Estimating Distances in DVEs 5

This theoretical analysis is then complemented by experiments. We first performed
experiments on synthetic traces in which players follow random walks or continuous
movements in 1D, 2D or 3D, and then performed experiments on actual traces from
Heroes of Newerth [1], where we compare Alc with a fixed frequency algorithm, de-
noted by A f f . A f f is commonly used in practice in online games, and sends updates
periodically, by waiting w time units between updates. We show that overall, Alc be-
haves better while never exceeding the maximal tolerated error.

In summary, the performance (without latency) ofAid,Alc,A f f and timewarp [14]
are shown in the following table:

number of messages maximal error number of violations
Aid mid ≤ Tn(n − 1) ≤ ε 0
Alc O(mid) ≤ ε 0

A f f
T
w n(n − 1)

0 if w = 1
Θ(Tn2)unbounded otherwise

timewarp O(Tn2) 0 0

T denotes the duration of the experiment, and n the number of participants in the
DVE. We consider as a reference mid, the (perfect knowledge based) number of mes-
sages sent by Aid. In the worst case, Aid would make players send one message each
instant (when movement is large compared to the distance), thus mid ≤ Tn(n− 1). Also,
timewarp functions slightly differently than the others: it is intended to ensure strict
consistency, messages are sent when users initiate a change in the game’s state; thus,
the number of messages is proportional to the number of players, and to the length of
time. The number of violations counts, over T time units, the number of distance pairs
for which the error is above ε.

Organisation: in Section 2, we describeAlc, and the model used for the theoretical
analysis. In Section 3 and Section 4, we prove that with the two movement patterns,
Alc is optimal up to a constant factor (due to space limitations, 1D and 2D-cases are
left for the interested reader in [5]). Experimental results are presented in Section 5, and
conclusions and perspectives are given in Section 6.

2 Model and Algorithms

Model: Let us first assume that ε ∈]0; 1[. Indeed, ε = 0 means that no error is tol-
erated, while ε = 1 would accept any estimate on the distance, provided it is larger
than half the actual distance, which is not very informative. Since Alc must enforce
that Equation 3 holds true for any pair of players, we focus on two players Alice and
Bob. We assume that the communication channel connecting them is without message
loss nor latency, that local computations do not take time and that all players share a
synchronized clock. At any instant t (t ∈ N), let us denote the positions of both players
as pactA(t) and pactB(t). A position is a vector whose dimension depends on the virtual
world (for example, for a 3D world, a position is described by a vector in N3, or R3 in
the case of continuous moves). Each player knows his/her own actual position, but may
not know exactly where the other player is. These positions can change unpredictably,
through the actions of users.

6 O. Beaumont, T. Castanet, N. Hanusse, and C. Travers

×pactA

©pestA

× pactB

© pestB

Fig. 1: Knowledge of Alice (dashed blue lines) and Bob (continuous red lines)

Algorithm 1 Local change (Alc), from the point of view of Alice
1: pact A ← Alice’s initial position . Actual position of Alice. This is a read-only input to the

algorithm
2: pestA ← Alice’s initial position . Position of Alice, as estimated by Bob, the other player
3: pestB ← Bob’s initial position . Estimated position of Bob
4: dest ← d(pestA, pestB) . Estimated distance. Will always be equal to d(pestA, pestB)
5: procedure check_for_update . to be called at each t ∈ N, after movement
6: if d(pact A, pestA) ≥ ε

2 dest then
7: pestA ← pact A
8: dest ← d(pestA, pestB)
9: send message (pact A, begin_update) to Bob

10: end if
11: procedure receive_message(position, type) from Bob . to be called when receiving a

message
12: pestB ← position
13: dest ← d(pestA, pestB)
14: if type = begin_update then . type distinction is to avoid infinite messages
15: send message (pact A, update_reply) to Bob
16: end if

Algorithm: As explained in Section 1.2, players will estimate their distance to each
other. To do this, each player will compute a deterministic estimation of the other
player’s position, in order to get dest(t), i.e. Bob computes pestA(t), the estimate of the
position of Alice, and Alice computes pestB(t). As they use the same deterministic algo-
rithm, these computations can be replicated, and pestA(t) and pestB(t) become a shared
knowledge, as seen on Figure 1 (even without communication). Thus, we will use the
distance between those two (estimated but shared) positions as distance estimate, dest(t).
In practice, pestA(t) is generally based on an extrapolation of Alice’s position, speed and
acceleration, from the time of the last message exchanged between Alice and Bob.

In Theorem 1, we prove that Alc satisfies Equation 2, provided that Alc sends an
update of the actual position as soon as Equation 3 is not satisfied, as depicted in Algo-
rithm 1. Thus, the correctness ofAlc is established.

Theorem 1. UsingAlc, Equation 2 holds true at any instant (regardless of movement).

Proof. The following inequalities hold true:

dact(t) − dest(t) ≤ d(pactA(t), pestA(t)) + d(pactB(t), pestB(t)) (triangle inequality)
dest(t) − dact(t) ≤ d(pactA(t), pestA(t)) + d(pactB(t), pestB(t)) (triangle inequality)

Approximation Algorithm for Estimating Distances in DVEs 7

d(pactB(t), pestB(t)) <
ε

2
dest(t) (by construction)

d(pactA(t), pestA(t)) <
ε

2
dest(t) (by construction)

so that |dact(t) − dest(t)| < εdest(t), which is equivalent to Equation 2. ut

3 Random Walk

The performance of Alc is measured by M, the number of message exchanges (a mes-
sage and its response counting as one) between two players using Alc, before the first
message sent with Aid. We prove in this section that with random walks, M is upper
bounded by a constant value depending only on ε. This is formally stated in Theorem 2:

Theorem 2. Let ∆r =

⌈
log(1+ε)−log(1−ε)

log(1+ ε
2)

⌉
, with ε ∈]0; 1[. For any two players following a

random walk on Zd (with d ≤ 3), E[M] ≤ ∆r×
(
2d+1

)∆r
. Moreover, if only one of the play-

ers moves on Z, with ∆l =

⌈
log(1−ε)−log(1+ε)

log(1− ε
2)

⌉
, then E[M] ≤ min

(
∆l × 2∆l ;

⌈
4
π
∆l

2
⌉
× 8

)
.

Due to space limitations, only the 2D-case with two players moving will be proved
in this Section. 1D and 3D cases can be found in [5].

As seen in Section 1.2, a 2D random walk consists, at each instant t ∈ N, for a
moving player to add one of the following vector to their position: (−1, 0), (1, 0), (0,−1),
or (0, 1). With two players, one does this for t even, while the other when t is odd. For
our analysis, we will use the L1 distance (Manhattan distance).

Let us denote by dest and pest the estimates for Alc. Algorithm Alc generates a
message exchange as soon as for a player X, pactX leaves BlcX , where BlcX is the L1-
ball of radius dest

(
1 − ε

2

)
, and of center pestX (see Figure 2a). As seen in Section 1.2

AlgorithmAid generates a message exchange as soon as Equation 2 becomes false (this
is the definition ofAid). Equivalently,Aid generates a message exchange as soon as dact

leaves Iid, where Iid is defined by Iid =]d0 (1 − ε) ; d0 (1 + ε)[, with d0 = dact(0).
Let us consider ti (with i ≥ 1), defined as the instant at which the i-th round trip of

the messages is sent with Alc. With topt = min{t : dact(t) < Iid}, the time of the first
message sent by Aid, we have M = max{i, ti ≤ topt}. We may then define the auxiliary
random variable M′ : min{i, dest(ti) < Iid}. M′ represents the index of the first message
of Alc so that dact is outside Iid. At this instant, by construction, Aid already sent a
message, thus M′ ≥ M.

As players take turns in moving, they cannot simultaneously go out of their BlcX .
Thus, let us assume without loss of generality, that Bob is the player that triggers the
(i + 1)-th message, by getting out the first of BlcB at instant ti+1. Similarly, as we are
interested only in the positions of Alice and Bob relatively to each other, we can always
put the center of the coordinates on pestA; thus, at each instant, pestA(t) = 0.

Each time ti Bob gets out of BlcB, we will have a new estimated distance dest(ti).
Before being able to identify the effect a message has on the estimated distance (Lemma
4), we have to look, in Lemma 1 at the change in positions.

8 O. Beaumont, T. Castanet, N. Hanusse, and C. Travers

BlcB

BlcA

R

Π

×

pestA(ti)

×
pestB(ti)

×
pestB(ti+1)

γ

δ

(a) When Bob gets on R, half of the possible
positions of Alice are further away.

R

pestA(ti)

pestB(ti)

β

α

⌈
ε
2 dest(ti)

⌉cone
containing

pestA(ti)

cone
opposing
the one

containing
pestA(ti)

(b) One of the outer bounds of B+
lc is al-

ways sufficiently far away from pestA(ti).

Fig. 2: Random walk, two-dimensional situation

Lemma 1. With Alc, the (i + 1)-th message is sent when Bob is on the border of the
L1-ball of center pestB(ti), and of radius

⌈
ε
2 dest(ti)

⌉
.

Proof. WithAlc, the (i + 1)-th message is sent when Bob gets out of BlcB, which has a
radius of ε

2 dest(ti), but as movement is on integer positions, the first positions outside of
BlcB are all on the L1-ball of center pestB(ti), and of radius

⌈
ε
2 dest(ti)

⌉
. ut

This ball has 4 faces. We may draw cones over each of these faces, with pestB(ti)
as the apex: all points of the space will be in only one of the cones, except for points
on the borders (see Figure 2b, where the borders of the cones are the dashed lines). Let
us call R the face that is included in the cone opposing the cone (or one of the cones)
containing pestA(ti).

Lemma 2. If pestB(ti) , pestA(ti), P
(
d(pestA(ti), pestB(ti+1)) ≥

⌈
dest(ti)

(
1 + ε

2

)⌉)
≥ 1

4

Proof. All points of R are at distance
⌈
dest(ti)

(
1 + ε

2

)⌉
of pestA(ti). As the random walk

is symmetric, and by Lemma 1, we have a probability of at least 1
4 that Bob sends the

(i + 1)-th message by going on face R. ut

In Lemma 2, the movement of Alice is not taken into account. Let us call Π the line
parallel to R and containing pestA(ti) (see Figure 2a).

Remark 1. As Π contains pestA(ti), the center of BlcA, Π divides BlcA into two halves of
same area.

Lemma 3. At least half of the p ∈ BlcA satisfy d(p, pestB(ti+1)) ≥ d(pestA(ti), pestB(ti+1)).

Approximation Algorithm for Estimating Distances in DVEs 9

Proof. By definition of the L1-norm, and because Π is parallel to R, if we draw, on
Π , the points γ and δ that are the projections of pestB(ti+1) parallel to the two axes
(see Figure 2a), then all points on the line segment [γδ] are at the same distance to
pestB(ti+1). Also, by definition of R, pestA(ti) ∈ [γδ]. Thus, all points of [γδ] are at a
distance to pestB(ti+1) equal to d(pestA(ti), pestB(ti+1)).

If we draw the L1-ball of center pestB(ti+1) and of radius d(pestA(ti), pestB(ti+1)), then
[γδ] is one of the faces of the ball. By Remark 1, we have that at least half of the points
from BlcA are outside this ball, with a distance to pestB(ti+1) higher than the radius. ut

Lemma 4. As long as pestB(ti) , pestA(ti), P
(
dest(ti+1) ≥

⌈
dest(ti)

(
1 + ε

2

)⌉)
≥ 1

8

Proof. As Alice does not get out of BlcA, we know that pestA(ti+1) ∈ BlcA. By Lemma 3,
and by symmetry of the random walk, d(pestA(ti+1), pestB(ti+1)) ≥ d(pestA(ti), pestB(ti+1))
with probability 1

2 . Combined with Lemma 2, we get the result. ut

Let rrw : x 7→
⌈

x
(
1 + ε

2

)⌉
. We can now prove Lemma 5 which states that, if there

are enough successive messages so that dest(ti+1) ≥ rrw(dest(ti)), then Bob will get out
of Iid, whatever his initial position in the interval Iid.

Lemma 5. For all x ∈ Iid, rrw
∆r (x) ≥ d0(1 + ε).

Proof. x ∈ Iid ⇒ x ≥ d0(1 − ε) ⇒ rrw
∆r (x) ≥ rrw

∆r (d0(1 − ε)) since rrw is increasing,
implying that rrw

∆r (x) ≥ d0(1 − ε)
(
1 + ε

2

)∆r
since ∀x, rrw(x) ≥ x

(
1 + ε

2

)
. Moreover,

since, ∆r ≥
log(1+ε)−log(1−ε)

log(1+ ε
2) , then (1 − ε)

(
1 + ε

2

)∆l
≥ (1 + ε) and x ∈ Iid ⇒ rrw

∆r (x) ≥
d0(1 + ε) ut

Proof. We can now prove the 2D-case of Theorem 2. Let us split the sequence of all
the instants ti into phases of length ∆r and let us denote by j the index of the phase
containing instants from t(j−1)∆r to t j∆r−1. Let us consider the following possible events
(i) S j: there is at least one i ∈ ~(j − 1)∆r; j∆r� such that dest(ti) < Iid and (ii) S′j: for
all i ∈ ~(j − 1)∆r; j∆r − 1�, dest(ti+1) ≥ rrw(dest(ti)). In turn, these events can be used to
define useful random variables: (i) X j = 1 if S j is true, 0 otherwise (ii) X′j = 1 if S′j is
true, 0 otherwise, (iii) Y = j if X j = 1 and Xk = 0 for every k < j and (iv) Y ′ = j if
X′j = 1 and X′k = 0 for every k < j. Thus, Y denotes the index of the first phase during
whichAid sends a message.

If S′j is true, then dest(t j∆r) = l∆r (dest(t(j−1)∆r)). Thus, by Lemma 5, S′j ⇒ S j, so that
X′j = 1⇒ X j = 1.

Therefore Y ′ = j⇒ X′j = 1⇒ X j = 1⇒ Y ≤ j and finally E[Y] ≤ E[Y ′] (4)

Moreover, we know that Y ′ follows a geometric distribution with parameter P(S′j) ≥
1

8∆r

(by Lemma 4, there is at least a probability 1
8 that dest(ti+1) ≥ rrw(dest(ti))), and E[Y ′] ≤

8∆r . Thus, by Equation 4, we have E[Y] ≤ 8∆r . Since Y denotes the index of the first
phase during which dact gets out of Iid, M′ ∈ ~(Y − 1)∆r; Y∆r�. In particular, M′ ≤ Y∆r

and E[M′] ≤ ∆r × 8∆r . Finally, as M′ > M, we have E[M] ≤ ∆r × 8∆r . ut

10 O. Beaumont, T. Castanet, N. Hanusse, and C. Travers

4 Continuous Movement

As in the previous section, we present bounds on M for continuous movements (Theo-
rem 3), but prove only the 2D-case.

Theorem 3. With ∆l =

⌈
log(1−ε)−log(1+ε)

log(1− ε
2)

⌉
, and with two players following a random con-

tinuous movement in 1D, then E[M] ≤ ∆l × 4∆l . Let Γ = 2 log(1+ε)−log(1−ε)

log
(
1+ ε

√
2
+ ε2

4

) . If two players

follow a random continuous movement in 2D, then E[M] ≤ Γ × 8Γ. With moves in 3D,
then E[M] ≤ Γ × 14Γ.

In two dimensions, at each instant t, a moving player X chooses θt and ρt following
continuous distributions respectively on [0, 2π] and [0, 1], so that pactX(t+1) = pactX(t)+
(ρt, θt), where (ρt, θt) are polar coordinates.

In 2D, Theorem 3 can be proved following the same general principle as with The-
orem 2, but using Lemma 8 and Lemma 9 instead of Lemma 4 and Lemma 5. Instead

of rrw, we will use rcm : x 7→ x
√(

1 + ε2/4 + ε/
√

2
)
.

Once again, Bob is the player who gets out the first of his set of authorized positions
withAlc, meaning that Bob is the player to initiate communication at instant ti+1. In this
setting, we will use the euclidian distance, thus BlcB(ti) takes the form of a disk of cen-
ter pestB(ti) and of radius ε

2 dest. In order to identify messages that makes a sufficient
increase on the estimated distance, we will look at the annulus of inner circle BlcB(ti),
and with an outer circle of radius ε

2 dest + 1. We will call R the portion of this annulus on
the opposite side of pestA(ti), (represented as a red hatched zone on Figure 3a), that devi-
ates not more than π

4 from the straight line between pestA(ti) and pestB(ti). More formally,
with t the intersection between BlcB and the line (pestA(ti)pestB(ti)), on the opposite side
of pestA(ti), thenR =

{
s, ̂spestB(ti)t ∈

[
− π4 ,

π
4

]
and d(s, pestB(ti) ∈

[
ε
2 dest(ti), ε2 dest(ti) + 1

]}
.

Lemma 6. In two dimensions, P(pestB(ti+1) ∈ R) = 1
4 .

Proof. As Bob does not move more than one distance unit per turn, the first turn where
he is outside of BlcB(ti), on pestB(ti+1), he will be in the annulus. R represents one fourth
of the total area of the annulus, and movement is symmetric with respect to the center
of the annulus, thus we have probability one fourth that pestB(ti+1) ∈ R. ut

Lemma 7. With two players moving, P
(
dest(ti+1) ≥ rcm

(
dest(ti)

)
| pestB(ti+1) ∈ R

)
≥ 1/2.

Proof. Let us assume pestB(ti+1) ∈ R. The two points of R that are closest to pestA(ti)
are the rightmost and leftmost points that are both on R and the border of BlcB(ti) (α
and β on Figure 3a). Thus, if we call d′ the distance between pestA(ti) and α, we have
d(pestA(ti), pestB(ti+1)) ≥ d′. As can be seen on Figure 3b, the value of d′ can be resolved
by the law of cosines, relatively to the value of dest(ti):

d′ =
√

dest(ti)2 + ε2/4dest(ti)2 − dest(ti)2ε cos (3π/4) = dest(ti)
√(

1 + ε2/4 + ε/
√

2
)

This corresponds to rcm, so P(d(pestA(ti), pestB(ti+1)) ≥ rcm(dest(ti))|pestB(ti+1) ∈ R) =

1. We may then notice that, as Alice remains insideBlcA(ti), the probability that pestA(ti+1)
is further away from pestB(ti+1) than pestA(ti) is at least one half. This ends the proof. ut

Approximation Algorithm for Estimating Distances in DVEs 11

×pestA(ti)

pestB(ti)

dest(ti)

t
π
4

R

α

β

ε
2 dest(ti)

1

(a) Representation of the points corre-
sponding to a growth in distance

×pestA(ti)

pestB(ti)

dest(ti)

3π
4

π
4 ε

2 dest(ti)

d′

α

β

(b) Representation of the different values
used to measure a growth in distance

Fig. 3: Continuous movement, two-dimensional situation

Lemma 8. With two players moving, P
(
dest(ti+1) ≥ rcm

(
dest(ti)

))
≥ 1

8

Proof. The result is immediate with lemmas 6 and 7, and the law of total probability.
ut

Lemma 9. With Γ =
log(1+ε)−log(1−ε)

log
(√

1+ ε2
4 + ε

√
2

) , for all x ∈ Iid, rcm
Γ(x) ≥ d0(1 + ε).

Proof. x ∈ Iid ⇒ x ≥ d0(1 − ε)⇒ rcm
Γ(x) ≥ rcm

Γ(d0(1 − ε)) since rcm is increasing, so
that rcm

Γ(x) ≥ d0(1 − ε)
(
1 + ε2/4 + ε/

√
2
)Γ/2

. Moreover, by definition of Γ,

(1−ε)
(
1 + ε2/4 + ε/

√
2
)Γ/2
≥ (1+ε), so that finally x ∈ Iid ⇒ rcm

Γ(x) ≥ d0(1+ε). ut

5 Experiments

In order to analyze in practice the performance ofAlc with respects toAid andA f f , we
propose simulation results of two types : with synthetic and with real traces.

5.1 Synthetic Traces

The first set of simulations corresponds to random walks and continuous movements.
We execute both Alc and Aid with the same set of random movements (of one or two
players) and we display M, the number of message exchanges induced by Alc at the
time the first message is induced by Aid. Everywhere, we repeat the experiments 500
times to account for the stochastic nature of the movements, which are represented with
boxplots (with first and ninth decile and first ans third quartile). The blue lines indicate
the average value of M.

12 O. Beaumont, T. Castanet, N. Hanusse, and C. Travers

1 2 4 8 16 32 64 256 1024 4096 16384
0

5

10

initial distance

M

(a) M depending on initial distance, ε = 0.5

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0

10

20

30

ε

M

(b) M depending on ε, for d0 = 400

Fig. 4: Two players following a random walk in 2D: values of M.

In the case of a two-dimensional random walk, with two players moving, the evo-
lution of M with the initial distance is depicted in Figure 4a. As expected, we observe
that M remains bounded and does not depend much on the initial distance (except when
the distance is very small with respect to movement amplitudes). We also plot the evo-
lution of M with the given maximal tolerated error, ε in Figure 4b. We observe that M
increases when ε gets close to 1, which suggests that dependency on ε in our theoretical
bounds is unavoidable. The same set of experiments with random walks and continu-
ous movements in 1D, 2D, and 3D were also performed, and very similar results were
obtained (see the companion technical report [5]).

5.2 Actual Traces

Comparison of Alc with fixed frequency strategies. We compare Alc to a fixed fre-
quency strategy, denote by A f f , that is used in practice in actual games [2]. This al-
gorithm does not take a maximal error as parameter, but a fixed wait time w between
message exchange of any pair of players. In [9], traces containing the time-stamped po-
sitions of players in 98 games of Heroes of Newerth [1] are used.5 There are 10 players,
therefore, a wait time of w induces an average of 9∗10

w messages per time unit. Even if a
smaller w makes information more accurate,A f f comes without guarantee on maximal
error violations, contrarily to Alc. To evaluate the performance of A f f in terms of ac-
curacy, we simulated its behavior for several values of ε and w. We counted the number
of violations per time unit, that is, the number of distance estimates among the players
that violate Equation 2. As there are ten players, and each one has an estimate for all
nine others, the number of violations has a maximum of 90 for one time unit.

In order to perform a fair comparison betweenAlc andA f f , we used the following
protocol. First, we ran Alc for several values of ε, and measured the resulting average
number of messages per time unit. Then, we plugged the obtained value as w in A f f ,
so as to compare both algorithms in terms of accuracy (to estimate approximated dis-
tance) while they use the same average message frequency. The average proportion of

5The traces are available at https://doi.org/10.5281/zenodo.583600

https://doi.org/10.5281/zenodo.583600

Approximation Algorithm for Estimating Distances in DVEs 13

violations is shown in bold font in Table 1, along with the optimal number of messages,
that is, Aid, for different values of ε. We can observe that Alc is far better than A f f

for satisfying Equation 2. For instance, it sends only 10.44 messages per time unit for
ε = 0.1. With A f f , the only way to ensure Equation 2 is by having w = 1. This would
lead to 90 messages per time unit with w = 1, that is, about ten times more thanAlc.

Table 1: Comparison ofAlc andA f f , without Dead-reckoning (with Dead-reckoning)

Aid Alc A f f

ε msg/turn messages per turn violations w msg/turn violations
0.1 3.26 (2.23) 10.44 (4.71) 0.0 9 (19) 10.00 (4.73) 2.9% (5.13%)
0.2 1.49 (1.24) 5.41 (3.02) 0.0 17 (30) 5.30 (3.00) 2.74% (4.66%)
0.3 0.91 (0.84) 3.60 (2.26) 0.0 25 (40) 3.60 (2.25) 2.6% (4.26%)
0.4 0.63 (0.62) 2.65 (1.81) 0.0 34 (50) 2.65 (1.80) 2.53% (3.88%)
0.5 0.46 (0.46) 2.07 (1.50) 0.0 43 (60) 2.09 (1.50) 2.42% (3.51%)

Influence of better prediction strategies. As mentioned in Section 1.1, Dead-reck-
oning is a popular method for reducing the error on positions of elements of an online
game. This is why we added Dead-reckoning to our simulations to assess its benefits. To
do this, we rely on a speed based position prediction algorithm, where speed is calcu-
lated according to the two last known positions, and is used to extrapolate the previous
known position. The results of the same experiment as above, with this prediction al-
gorithm, are shown on Table 1, within parenthesis. We can observe that the number
of message exchanged in Alc decreases more significantly than Aid. Moreover, Dead-
reckoning seems more beneficial toAlc than toA f f , as the decrease in message number
is not compensated for in terms of violations by the improved prediction precision.

6 Conclusion and future work

In this paper, we propose a distributed algorithm Alc, for each player to estimate the
distance separating them from each other player, with a relative condition on the error.
This type of property is desirable in DVE such as online games. We prove that (in a
restricted setting), this algorithm is optimal in terms of number of message exchanges
up a to a constant factor. We also show through simulations, based on actual game
traces, that Alc performs significantly less communications than the fixed frequency
algorithm which is commonly used in online game, while bounding the error.

A summary of our bounds can be found in the following table:

random walk continuous movement
1D case min

(
∆l × 2∆l ;

⌈
4
π
∆l

2
⌉
× 8

)
∆l × 4∆l

2D case ∆r × 8∆r Γ × 8Γ

3D case ∆r × 16∆r Γ × 14Γ

This work opens several perspectives. The first one is to extend the theoretical re-
sults proved in this paper, either by improving the constants or by increasing the scope

14 O. Beaumont, T. Castanet, N. Hanusse, and C. Travers

of the results and to consider more sophisticated prediction algorithms. Another longer
term perspective is to extend the set of properties that can be maintained in DVEs at
the price of re-computations and a (constant) increase in exchanged messages. It was
known in the literature that maintaining the positions was possible with no increase in
the number of messages and the present paper shows that a constant increase is enough
to maintain relative distances. Extending the class of such properties is highly desirable,
both in theory and practice.

References

1. Heroes of Newerth - Home, http://www.heroesofnewerth.com/, accessed 27 August 2019
2. Source Multiplayer Networking - Valve Developer Community, https://developer.

valvesoftware.com/wiki/Source_Multiplayer_Networking, accessed 27 August 2019
3. IEEE standard for distributed interactive simulation–application protocols. IEEE

Std 1278.1-2012 (Revision of IEEE Std 1278.1-1995) pp. 1–747 (Dec 2012).
https://doi.org/10.1109/IEEESTD.2012.6387564

4. Aggarwal, S., Banavar, H., Khandelwal, A., Mukherjee, S., Rangarajan, S.: Accuracy in
dead-reckoning based distributed multi-player games. In: 3rd ACM SIGCOMM Workshop
on Network and System Support for Games. pp. 161–165. NetGames, ACM (2004)

5. Beaumont, O., Castanet, T., Hanusse, N., Travers, C.: Approximation Algorithm for Esti-
mating Distances in Distributed Virtual Environments. Research report (Feb 2020), https:
//hal.archives-ouvertes.fr/hal-02486218

6. Bharambe, A., Douceur, J., Lorch, J., Moscibroda, T., Pang, J., Seshan, S., Zhuang, X.: Don-
nybrook: Enabling large-scale, high-speed, peer-to-peer games. In: ACM SIGCOMM Con-
ference on Applications, Technologies, Architectures, and Protocols for Computer Commu-
nications. pp. 389–400. ACM (2008)

7. Boulanger, J.S., Kienzle, J., Verbrugge, C.: Comparing interest management algorithms for
massively multiplayer games. In: Proceedings of 5th ACM SIGCOMM Workshop on Net-
work and System Support for Games. NetGames ’06, ACM, New York, NY, USA (2006)

8. Cai, W., Lee, F.B.S., Chen, L.: An auto-adaptive dead reckoning algorithm for distributed
interactive simulation. In: Workshop on Parallel and Distributed Simulation (1999)

9. Carlini, E., Lulli, A.: A spatial analysis of multiplayer online battle arena mobility traces. In:
Euro-Par: Parallel Processing Workshops. pp. 496–506. Springer (2018)

10. Kharitonov, V.Y.: Motion-aware adaptive dead reckoning algorithm for collaborative virtual
environments. In: 11th ACM SIGGRAPH International Conference on Virtual-Reality Con-
tinuum and Its Applications in Industry. pp. 255–261. VRCAI ’12, ACM (2012)

11. Li, Z., Tang, X., Cai, W., Li, X.: Compensatory dead-reckoning-based update scheduling for
distributed virtual environments. SIMULATION 89(10), 1272–1287 (2013)

12. Liu, E.S., Theodoropoulos, G.K.: Interest management for distributed virtual environments:
A survey. ACM Comput. Surv. 46(4), 51:1–51:42 (Mar 2014)

13. Marshall, D., Mcloone, S., Ward, T., Delaney, D.: Does reducing packet transmission rates
help to improve consistency within distributed interactive applications? (01 2006)

14. Mauve, M., Vogel, J., Hilt, V., Effelsberg, W.: Local-lag and timewarp: Providing consistency
for replicated continuous applications. Multimedia, IEEE Transactions on 6, 47–57 (03 2004)

15. Millar, J.R., Hodson, D.D., Peterson, G.L., Ahner, D.K.: Consistency and fairness in real-
time distributed virtual environments: Paradigms and relationships. Journal of Simulation
11(3), 295–302 (Aug 2017)

http://www.heroesofnewerth.com/
https://developer.valvesoftware.com/wiki/Source_Multiplayer_Networking
https://developer.valvesoftware.com/wiki/Source_Multiplayer_Networking
https://doi.org/10.1109/IEEESTD.2012.6387564
https://hal.archives-ouvertes.fr/hal-02486218
https://hal.archives-ouvertes.fr/hal-02486218

Approximation Algorithm for Estimating Distances in DVEs 15

16. Ricci, L., Carlini, E.: Distributed virtual environments: From client server to cloud and P2P
architectures. In: 2012 International Conference on High Performance Computing Simula-
tion (HPCS). pp. 8–17 (July 2012)

17. Zhou, S., Cai, W., Lee, B.S., Turner, S.J.: Time-space consistency in large-scale distributed
virtual environments. ACM Trans. Model. Comput. Simul. 14(1), 31–47 (Jan 2004)

	Approximation Algorithm for Estimating Distances in Distributed Virtual Environments

