
Decentralized Asynchronous Crash-Resilient Runtime
Verification∗

BORZOO BONAKDARPOUR
†
,Michigan State University, U.S.A.

PIERRE FRAIGNIAUD
‡
, Université de Paris and CNRS, France

SERGIO RAJSBAUM
§
, Universidad Nacional Autónoma de México, México

DAVID A. ROSENBLUETH, Universidad Nacional Autónoma de México, México
CORENTIN TRAVERS

¶
, University of Bordeaux and CNRS, France

Runtime verification is a lightweight method for monitoring the formal specification of a system during its
execution. It has recently been shown that a given state predicate can be monitored consistently by a set of
crash-prone asynchronous distributed monitors observing the system, only if each monitor can emit verdicts
taken from a large enough finite set. We revisit this impossibility result in the concrete context of linear-time
logic (ltl) semantics for runtime verification, that is, when the correctness of the system is specified by an
ltl formula on its execution traces. First, we show that monitors synthesized based on the 4-valued semantics
of ltl (rv-ltl) may result in inconsistent distributed monitoring, even for some simple ltl formulas. More
generally, given any ltl formula 𝜑 , we relate the number of different verdicts required by the monitors
for consistently monitoring 𝜑 , with a specific structural characteristic of 𝜑 called its alternation number.
Specifically, we show that, for every 𝑘 ≥ 0, there is an ltl formula 𝜑 with alternation number 𝑘 that cannot
be verified at runtime by distributed monitors emitting verdicts from a set of cardinality smaller than 𝑘 + 1.
On the positive side, we define a family of logics, called distributed ltl (abbreviated as dltl), parameterized
by 𝑘 ≥ 0, which refines rv-ltl by incorporating 2𝑘 + 4 truth values. Our main contribution is to show that,
for every 𝑘 ≥ 0, every ltl formula 𝜑 with alternation number 𝑘 can be consistently monitored by distributed
monitors, each running an automaton based on a (2⌈𝑘/2⌉ + 4)-valued logic taken from the dltl family.
CCS Concepts: • Theory of computation→ Verification by model checking; Distributed computing

models; • Computing methodologies→ Distributed algorithms.

Additional Key Words and Phrases: Runtime verification, Distributed computing, Fault-tolerant verification,
Wait-free tasks, Distributed monitoring, Model checking, Temporal logic, Linear-time logic
ACM Reference Format:

Borzoo Bonakdarpour, Pierre Fraigniaud, Sergio Rajsbaum, David A. Rosenblueth, and Corentin Travers.
0. Decentralized Asynchronous Crash-Resilient Runtime Verification. J. ACM 0, 0, Article 0 (0), 31 pages.
https://doi.org/0
∗An extended abstract of a preliminary version of this paper appeared in the proceedings of the 27th International Conference
on Concurrency Theory (CONCUR), August 23–26, 2016, Québec City, Canada.
†Supported by NSF FMitF Award 2102106 and SHF Award 2118356.
‡Supported by the ANR projects DESCARTES and FREDDA, and by the INRIA project GANG.
§Supported by the UNAM-PAPIIT IN106520 grant.
¶Supported by the ANR projects DESCARTES and FREDDA.

Authors’ addresses: Borzoo Bonakdarpour, Michigan State University, U.S.A.; Pierre Fraigniaud, Université de Paris and
CNRS, France; Sergio Rajsbaum, Universidad Nacional Autónoma de México, México; David A. Rosenblueth, Universidad
Nacional Autónoma de México, México; Corentin Travers, University of Bordeaux and CNRS, France.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 0 Association for Computing Machinery.
0004-5411/0/0-ART0 $15.00
https://doi.org/0

J. ACM, Vol. 0, No. 0, Article 0. Publication date: 0.

https://doi.org/0
https://doi.org/0

0:2 Bonakdarpour, et al.

1 INTRODUCTION
1.1 Context
Runtime verification is a technique where a monitor process determines whether or not the current
execution of a system under inspection complies with its formal specification. The state-of-the-art
runtime verification methods exhibit the following shortcomings. Either they classically employ
a central monitor, or they employ several monitors but assume a fault-free setting, where each
individual monitor is resilient to failures [9, 13, 14, 21, 25–27, 31]. Relaxing the latter assumption,
that is, handling several monitors subject to failures, poses significant challenges as these monitors
would become unable to agree on the same perspective of the execution, due to the impossibility of
consensus [17]. Thus, it is unavoidable that these monitors emit different individual verdicts about
the current execution, so that a consistent global verdict with respect to a correctness property
can be constructed from these verdicts. Concretely, the two truth values of Boolean logic may be
insufficient for allowing each monitor to express a wide spectrum of individual verdicts.

The necessity of using more than just the two truth values of Boolean logic is actually a known
fact in the context of runtime verification, even with a single monitor. For instance, the linear
temporal logic (ltl) [28] has been one of the most widely used specification languages to express
the requirements of computing systems1. While ltl is a widely accepted language to reason
about infinite execution traces, its three-valued semantics (denoted by ltl3) [8] is a logic on finite
execution traces with three truth values in:

B3 = {⊤,⊥, ?}.

These truth values respectively express whether, given the finite trace observed so far, an ltl formula
is permanently satisfied, or permanently violated, or whether the observation is inconclusive.
Likewise, rv-ltl [7] has four truth values in

B4 = {⊤,⊥,⊤𝑝 ,⊥𝑝 }.

These values respectively identify cases where a finite execution permanently satisfies, permanently
violates, presumably satisfies, or presumably violates a given ltl formula. For example, consider a
request/acknowledge property, where a request 𝑟 should be eventually responded to by acknowl-
edgment 𝑎, and 𝑎 should not occur before 𝑟 . Formally, an ltl formula for the request/acknowledge
property is

𝜑ra = (¬𝑎 ∧ ¬𝑟) ∨ [(¬𝑎 U 𝑟) ∧ 𝑎] . (1)
This formula holds if either (¬𝑎 ∧ ¬𝑟) holds (i.e., there is no request and no acknowledgment), or
(¬𝑎U𝑟)∧(𝑎) holds (i.e., a request is made at present or some future state and an acknowledgment
is made after this request in the future). In rv-ltl, a finite execution containing 𝑟 , and ending
in 𝑎 (i.e., the request has been acknowledged) yields the truth value “permanently satisfied”,
whereas an execution containing only 𝑟 (i.e., the request has not yet been acknowledged) yields
“presumably violated”. Although rv-ltl can monitor 𝜑ra in a centralized setting (see Fig. 1 for its
monitor automaton), it is not powerful enough to monitor a conjunction of two such formulas in a
framework of two asynchronous unreliable monitors:

𝜑ra2 =
(
(¬𝑎1 ∧ ¬𝑟1) ∨ [(¬𝑎1 U 𝑟1) ∧ 𝑎1]

)
∧

(
(¬𝑎2 ∧ ¬𝑟2) ∨ [(¬𝑎2 U 𝑟2) ∧ 𝑎2]

)
.

1We refer the reader to [16], where the author formalized 54 commonly used requirements as ltl formulas. We also note
that the area of runtime verification mainly focuses on specification languages that are trace-based. This is due to the fact
that at runtime, monitors can realistically observe only a finite execution trace. The semantics of temporal logics such as
CTL is based on computation trees and is not suitable for runtime monitoring.

J. ACM, Vol. 0, No. 0, Article 0. Publication date: 0.

Decentralized Asynchronous Crash-Resilient Runtime Verification 0:3

Indeed, the set of verdicts emitted by the monitors is not sufficient to distinguish executions that
satisfy the formula from those that violate it. Intuitively (we will formally establish this result
further in the text), this is because each monitor has only a partial view of the system under scrutiny,
and after a finite number of rounds of communication among monitors, still too many different
perspectives of the global system state remain. For instance, the case where a monitor 𝑀1 has
observed a partial trace containing only 𝑟1 (for which it should output ⊥𝑝 ∈ B4) is distinct from the
case where𝑀1 has observed a partial trace containing only 𝑎1. However,𝑀1 should not output ⊥ in
this latter case (of course, it should not output either ⊤ or ⊤𝑝) because it may well be the case that
another monitor𝑀2 has observed 𝑟1, yet𝑀1 is not aware of this observation, because of asynchrony
and unreliability.

⊤𝑝⊥𝑝

⊤ ⊥

{𝑟 }

{𝑎}

{}

{𝑎, 𝑟 }

{𝑟 }

{𝑎}

truetrue

Fig. 1. rv-ltl monitor of 𝜑ra.

In fact, it was recently proved in [20] that even deciding whether a single system state satisfies
some given Boolean predicate, using a distributed set of asynchronous crash-prone monitors,
requires that the individual verdicts be taken from a set whose size depends on the predicate under
scrutiny. Although this size cannot exceed the number 𝑛 of monitors, it is proved that, for any
𝑘 ∈ [0, 𝑛], there are Boolean predicates on system states that require verdicts taken from a set
of size at least 𝑘 + 1. A matching upper bound is also presented in [20]. In this paper, we extend
the preliminary results in [20] to the setting of distributed monitoring execution traces whose
correctness is expressed by ltl formulas, and we provide distributed monitors defined in terms of
finite automata corresponding to multi-valued logics.

1.2 Our Results
In this paper, we propose a framework for distributed fault-tolerant runtime verification, where
the monitors are asynchronous and subject to crash. A monitor that crashes stops executing its
code and does nothing afterwards. To this end, we introduce a multi-valued temporal logic. This
new logic is a refinement of rv-ltl. More specifically, we propose a family of (2𝑘 + 4)-valued
logics, denoted by dltl, for distributed ltl. In particular, dltl with 𝑘 = 0 coincides with rv-ltl.
The syntax of dltl is identical to the one of ltl, and its semantics is based, as rv-ltl, on both
fltl [24] and ltl3 [8], which are two ltl-based finite trace semantics for runtime monitoring. For
each 𝑘 ≥ 0, the 𝑘th instance of the family dltl has 2𝑘 + 4 truth values

B2𝑘+4 = {⊤,⊥,⊤0,⊥0,⊤1,⊥1, . . . ,⊤𝑘 ,⊥𝑘 }.
The index 𝑖 of a logical value intuitively represents a degree of certainty that the formula is satis-
fied (⊤𝑖) or not (⊥𝑖). In a nutshell, we characterize the formulas that can be monitored at runtime
by a in dltl𝑘 , but cannot be distributedly monitored in dltl𝑘−1.

J. ACM, Vol. 0, No. 0, Article 0. Publication date: 0.

0:4 Bonakdarpour, et al.

More specifically, our first contribution (Theorem 5.2) is a lower bound on the cardinality of the
set of values used by each monitor for expressing its local verdict. We revisit the result in [20],
and show that this lower bound can be expressed in terms of a particular characteristic of the ltl
formula under consideration, called its alternation number. Roughly, the alternation number of
an ltl formula 𝜑 is the maximum, taken over all finite traces 𝛼 = 𝛼0𝛼1 · · ·𝛼𝑛 , that the valuation
of 𝜑 can alternate in the finite semantics of ltl. In other words, the alternation number of 𝜑 is
the maximum number of times 𝜑 can change its truth value in fltl by gaining more and more
information about the truth values of the atomic propositions characterizing the current system’s
global state 𝛼𝑛 . As opposed to [20], this number of changes depends not only on the current state 𝛼𝑛
of the system, but also on the sequence of preceding states (i.e., those in 𝛼). We show that, for every
𝑘 ≥ 0, there is an ltl formula 𝜑 with alternation number 𝑘 that cannot be distributedly monitored
by monitors emitting verdicts from a set of cardinality smaller than 𝑘 + 1.
Our second contribution (Theorem 6.5) is a concrete mechanism for fault-tolerant distributed

runtime verification. Each monitor gets a partial view of the system’s global state, communicates
with the other monitors, and then emits a verdict in dltl using 2⌈𝑘/2⌉ + 4 truth values, where
𝑘 is the alternation number of the ltl formula under scrutiny. The sets of verdicts collectively
provided by the monitors are in one-to-one correspondence with the rv-ltl verdicts that would
be computed by a centralized monitor with a full view of the system. In view of our lower bound,
our algorithm is essentially optimal in terms of the number of verdicts emitted by the distributed
monitors (up to a small additive constant). Our mechanism is concrete in the sense that we present
a monitor construction algorithm that generates a finite-state Moore machine which, for any ltl
formula 𝜑 , computes the alternation number 𝑘 of 𝜑 , and constructs the dltl automaton enabling
to distributedly monitor 𝜑 using 2⌈𝑘/2⌉ + 4 logical values.
We emphasize that we do not make an assumption on whether the system under scrutiny is

centralized or distributed. In fact, this has no impact on our results and, hence, the type of the
system is abstracted away.

We note that there is long literature on what is monitorable. The classic definition [29] is that an
ltl formula is monitorable if any prefix can be extended to some other finite prefix which evaluates
to a permanently false or true verdict. In this sense, all safety and co-safety formulas are monitorable.
However, not all monitorable formulas are either safety or co-safety. On the other hand, a liveness
formula such as 𝑝 is not monitorable, intuitively because one cannot observe 𝑝 infinitely often
within a finite prefix at run time. Having said this, the above notion of monitorability is not relevant
to our results in this paper. First, observe that the request/acknowledgment formula is neither
safety no co-safety but is monitorable. The issue here is that even for such a formula rv-ltl is not
sufficient to consistently monitor the formula due to the partial observability of the monitors.

1.3 Related Work
While there has been significant progress in sequential monitoring in the past decade, there has
been less work devoted to distributed monitoring. Lattice-theoretic centralized and decentralized
online predicate detection in distributed systems has been studied in [13, 25]. This line of work
does not address monitoring properties with temporal requirements. This shortcoming is partially
addressed in [27, 30], but for offline monitoring. In [31], the authors design a method for monitoring
safety properties in distributed systems using the past-time linear temporal logic (pltl). In such a
work, however, the valuation of some predicates and properties may be overlooked. This is because
monitors gain knowledge about the state of the system by piggybacking on the existing communi-
cation among processes. That is, if processes rarely communicate, then monitors exchange little
information and, hence, some violations of properties may remain undetected. These techniques,
however, assume perfect monitors that are not subject to faults.

J. ACM, Vol. 0, No. 0, Article 0. Publication date: 0.

Decentralized Asynchronous Crash-Resilient Runtime Verification 0:5

Runtime monitoring of ltl formulas for synchronous distributed systems where processes share
a single global clock has been studied in [9, 14]. In [10], the authors introduce parallel algorithms
for runtime verification of sequential programs. Our work is inspired by the research line initiated
in [18–20]. The paper [19] pioneered the investigation of distributed decision in the context of
asynchronous fault-tolerant distributed computing, and characterized the Boolean predicates on
system states that can be distributedly monitored with verdicts chosen from sets of two or three
values. The follow up contribution [20] extended this characterization to verdicts chosen from a set
of 𝑘 values, for any 𝑘 ≥ 2, and [18] analyzed the specific case of monitoring the Boolean predicates
on system states corresponding to checking the correctness of 𝑘-set agreement tasks.

1.4 Organization
The rest of the paper is organized as follows. Section 2 presents the preliminary concepts. We
introduce our model of computation for distributed monitoring in Section 3. Then, in Section 4, we
show why the power of rv-ltl is insufficient to deal with fault-tolerant distributed monitoring.
The notion of alternation number is presented in Section 5, while its impact on the design of dltl is
discussed in Section 6. Finally, we make concluding remarks and discuss future work in Section 7.

2 BACKGROUND
We recall basic concepts related to ltl and its finite semantics for runtime verification.

2.1 Linear Temporal Logic (LTL)
Let AP be a set of atomic propositions and Σ = 2AP be the set of all possible states. A trace is a
sequence 𝑠0𝑠1 · · · , where 𝑠𝑖 ∈ Σ for every 𝑖 ≥ 0. We denote by Σ∗ (resp., Σ𝜔) the set of all finite
(resp., infinite) traces. We denote the empty trace by 𝜖 . For a finite trace 𝛼 = 𝑠0𝑠1 · · · 𝑠𝑘 , |𝛼 | denotes
its length, that is, its number of states, i.e., 𝑘 + 1. Also, for 𝛼 = 𝑠0𝑠1 · · · 𝑠𝑘 , by 𝛼𝑖 , we mean trace
𝑠𝑖𝑠𝑖+1 · · · 𝑠𝑘 of 𝛼 .

The syntax and semantics of linear temporal logic (ltl) [28] are defined for infinite traces. The
syntax is defined by the following grammar:

𝜑 ::= p | ¬𝜑 | 𝜑 ∨ 𝜑 | 𝜑 | 𝜑 U 𝜑

where p ∈ AP, and where andU are the ‘next’ and ‘until’ temporal operators. We view other
propositional and temporal operators as abbreviations, that is, true = 𝑝 ∨ ¬𝑝 , false = ¬true,
𝜑 → 𝜓 = ¬𝜑 ∨𝜓 , 𝜑 ∧𝜓 = ¬(¬𝜑 ∨¬𝜓), 𝜑 = true U 𝜑 (finally 𝜑), and 𝜑 = ¬ ¬𝜑 (globally 𝜑).

The infinite-trace semantics of ltl is defined as follows. Let 𝜎 = 𝑠0𝑠1𝑠2 · · · ∈ Σ𝜔 , let 𝑖 ≥ 0, and let
|= denote the satisfaction.

𝜎, 𝑖 |= p ⇐⇒ p ∈ 𝑠𝑖
𝜎, 𝑖 |= ¬𝜑 ⇐⇒ 𝜎, 𝑖 ̸ |= 𝜑

𝜎, 𝑖 |= 𝜑1 ∨ 𝜑2 ⇐⇒ 𝜎, 𝑖 |= 𝜑1 or 𝜎, 𝑖 |= 𝜑2
𝜎, 𝑖 |= 𝜑 ⇐⇒ 𝜎, 𝑖 + 1 |= 𝜑

𝜎, 𝑖 |= 𝜑1 U 𝜑2 ⇐⇒ ∃𝑘 ≥ 𝑖 : 𝜎, 𝑘 |= 𝜑2 and ∀𝑗 ∈ [𝑖, 𝑘) : 𝜎, 𝑗 |= 𝜑1

Also, 𝜎 |= 𝜑 holds if and only if 𝜎, 0 |= 𝜑 holds. For instance, the request/acknowledgment ltl
formula in Eq. (1) specifies that, first, if a request 𝑟 is emitted, then such a request should eventually
be acknowledged by 𝑎, and, second, an acknowledgment happens only in response to a request.

2.2 Logics for Runtime Verification
In the context of runtime verification, the semantics of ltl is not fully appropriate as it is defined
over infinite traces. Before we delve into the details, we note that many distributed programs are

J. ACM, Vol. 0, No. 0, Article 0. Publication date: 0.

0:6 Bonakdarpour, et al.

not-terminating (e.g., databases, internet services, blockchains, web servers, content delivery, etc).
However, the goal of runtime monitoring is to evaluate the health of a system by only observing
finite behaviors of the system. In some cases, the monitor is able to issue a verdict that generalizes
to any infinite extension (e.g., permanently false and true verdicts). In this sense, the monitor can
inspect the health of a program regardless of whether it is terminating or non-terminating.

2.2.1 Finite LTL. Finite ltl (fltl for short) [24] allows us to reason about finite traces for verifying
properties at runtime. The syntax of fltl is identical to that of ltl. The semantics of fltl for both
atomic propositions and Boolean operators are identical to those of ltl. fltl employs two truth
values to evaluate a formula with respect to a finite trace, denoted by B2 = {⊥,⊤}. We now recall
the semantics of fltl for the temporal operators. Let 𝜑 , 𝜑1, and 𝜑2 be ltl formulas, let 𝛼 = 𝑠0𝑠1 · · · 𝑠𝑛
be a non-empty finite trace, and let |=𝐹 denote satisfaction in fltl. We have:

[𝛼 |=𝐹 𝜑] =
{
[𝛼1 |=𝐹 𝜑] if 𝛼1 ≠ 𝜖

⊥ otherwise,

and

[𝛼 |=𝐹 𝜑1 U 𝜑2] =
{
⊤ if ∃𝑘 ∈ [0, 𝑛] : ([𝛼𝑘 |=𝐹 𝜑2] = ⊤) ∧ (∀ℓ ∈ [0, 𝑘), [𝛼 ℓ |=𝐹 𝜑1] = ⊤)
⊥ otherwise.

To illustrate the difference between ltl and fltl, consider formula 𝜑 = p and finite trace
𝛼 = 𝑠0𝑠1 · · · 𝑠𝑛 . If p ∈ 𝑠𝑖 for some 𝑖 ∈ [0, 𝑛], then we have [𝛼 |=𝐹 𝜑] = ⊤. However, if p ∉ 𝑠𝑖 for
every 𝑖 ∈ [0, 𝑛], then [𝛼 |=𝐹 𝜑] = ⊥, and this holds even if 𝛼 is extended to another finite sequence
including a state where p holds.

2.2.2 Three-Valued Semantics for LTL. As illustrated in the previous subsection, fltl ignores the
possible future extensions of finite traces when evaluating a formula. Three-valued ltl (Ltl3) [8]
also evaluates ltl formulas for finite traces, but with an eye on possible extensions. In ltl3, the
set of truth values is B3 = {⊤,⊥, ?}, where ⊤ (resp., ⊥) denotes that the formula is permanently
satisfied (resp., violated), no matter how the current trace extends, and ‘?’ denotes an unknown
verdict — i.e., there exists an extension that can falsify the formula, and another extension that can
truthify the formula. Let 𝛼 ∈ Σ∗ be a non-empty finite trace. The truth value of an ltl3 formula 𝜑
with respect to 𝛼 , denoted by [𝛼 |=3 𝜑], is defined as follows:

[𝛼 |=3 𝜑] =

⊤ if ∀𝜎 ∈ Σ𝜔 : 𝛼𝜎 |= 𝜑

⊥ if ∀𝜎 ∈ Σ𝜔 : 𝛼𝜎 ̸ |= 𝜑

? otherwise.
For example, consider formula 𝜑 = 𝑝 and a finite trace 𝛼 = 𝑠0𝑠1 · · · 𝑠𝑛 . If p ∉ 𝑠𝑖 for some

𝑖 ∈ [0, 𝑛], then [𝛼 |=3 𝜑] = ⊥. That is, the formula is permanently violated. Now, consider formula
𝜑 = 𝑝 and a finite trace 𝛼 = 𝑠0𝑠1 · · · 𝑠𝑛 . If p ∉ 𝑠𝑖 for all 𝑖 ∈ [0, 𝑛], then [𝛼 |=3 𝜑] =?. This is because
there exist infinite extensions to 𝛼 that can satisfy or violate 𝜑 in the infinite semantics of ltl.

Definition 2.1. The Ltl3 monitor for a formula 𝜑 is the unique deterministic finite-state machine
M = (Σ, 𝑄, 𝑞0, 𝛿, _),

where 𝑄 is the set of states, 𝑞0 is the initial state, 𝛿 : 𝑄 × Σ → 𝑄 is the transition function, and
_ : 𝑄 → B3 is a function such that

_
(
𝛿 (𝑞0, 𝛼)

)
= [𝛼 |=3 𝜑]

for every finite trace 𝛼 ∈ Σ∗.

J. ACM, Vol. 0, No. 0, Article 0. Publication date: 0.

Decentralized Asynchronous Crash-Resilient Runtime Verification 0:7

For example, Fig. 2 shows the monitor automaton for formula 𝜑 = 𝑎 U 𝑏. The function _ for
this automaton is as follows : _(𝑞0) = ?, _(𝑞⊥) = ⊥, and _(𝑞⊤) = ⊤.

𝑞⊥

𝑞0

𝑞⊤

{𝑎}

{} {𝑎, 𝑏}, {𝑏}

true true

Fig. 2. Ltl3 monitor for 𝜑 = 𝑎 U 𝑏.

2.2.3 Four-Valued Semantics for LTL (RV-LTL). The four-valued logic rv-ltl [7] refines the truth
value ‘?’ into ⊥𝑝 and ⊤𝑝 . That is, its set of verdicts is B4 = {⊤,⊤𝑝 ,⊥𝑝 ,⊥}. More specifically,
evaluation of a formula in rv-ltl agrees with ltl3 if the verdict is ⊥ or ⊤. Otherwise, (i.e., when
the verdict in ltl3 is ?), rv-ltl utilizes fltl to compute a more refined truth value. Let 𝛼 ∈ Σ∗ be
a finite trace. The truth value of an rv-ltl formula 𝜑 with respect to 𝛼 , denoted by [𝛼 |=4 𝜑], is
defined as follows:

[𝛼 |=4 𝜑] =

⊤ if [𝛼 |=3 𝜑] = ⊤
⊥ if [𝛼 |=3 𝜑] = ⊥
⊤𝑝 if [𝛼 |=3 𝜑] = ? ∧ [𝛼 |=𝐹 𝜑] = ⊤
⊥𝑝 if [𝛼 |=3 𝜑] = ? ∧ [𝛼 |=𝐹 𝜑] = ⊥

Definition 2.2. The rv-ltlmonitor of a formula 𝜑 is the unique deterministic finite-state machine
M = (Σ, 𝑄, 𝑞0, 𝛿, _),

where 𝑄 is the set of states, 𝑞0 is the initial state, 𝛿 : 𝑄 × Σ → 𝑄 is the transition function, and
_ : 𝑄 → B4 is a function such that

_(𝛿 (𝑞0, 𝛼)) = [𝛼 |=4 𝜑]
for every finite trace 𝛼 ∈ Σ∗.

An algorithm that takes as input an ltl formula and constructs as output the rv-ltl monitor is
described in [8]. For example, Fig. 1 shows the rv-ltl monitor for the request/acknowledgment
formula in Eq. (1).

Remark. We note that the sizes of rv-ltl and Ltl3 monitors are exponential in the size of the
input ltl formula. However, since the size of formulas is typically small, the size of corresponding
monitors after determinization and minimization is not expected to be large (usually a handful of
states).

3 DISTRIBUTED FAULT-TOLERANT MONITORING
In this section, we present a general computation model for asynchronous distributed fault-tolerant
monitoring.

J. ACM, Vol. 0, No. 0, Article 0. Publication date: 0.

0:8 Bonakdarpour, et al.

3.1 General Objective
Throughout the rest of the paper, the system under inspection produces a finite trace 𝛼 = 𝑠0𝑠1 · · · 𝑠𝑘 ,
and is inspected with respect to an ltl formula 𝜑 by a setM = {𝑀1, 𝑀2, . . . , 𝑀𝑛} of monitors.
The monitors run asynchronously and are subject to crash failures. When a monitor crashes, it
stops functioning, i.e., does not perform any computation step, and will never recover. For the sake
of simplifying the presentation, we assume that the monitors exchange information by atomic
read/write accesses to a shared memory. Indeed, our focus is to measure the impact of distributed
monitoring, not to deal with the subtleties of complex communication media, and hence we choose
the wait-free distributed computing model which is well understood [6]. Moreover, this model is
known to be equivalent, with respect to task computability, to the message-passing model, under
the weak assumption that fewer than half the monitors can crash [3].

In order to compare the power and limitations of distributed monitoring with those of centralized
monitoring, we assume that themonitors perform their observation of the system, their computation,
and their emission of verdicts reflecting their vision of the current trace 𝛼 = 𝑠0𝑠1 · · · 𝑠𝑘 w.r.t. some
ltl formula 𝜑 , before the trace is extended to 𝛼𝑠𝑘+1. In other words, the distributed monitors have
time to observe, compute, and output in between any two global steps of the system execution. This
allows us to compare the behavior of the distributed monitor with the behavior of a centralized
event-triggered monitor observing the global execution of the system.

Informally, we aim at designing distributed monitors whose outputs enable to infer the verdicts
that would be produced by a centralized monitor on the same execution trace. Specifically, we will
compare our distributed monitors with a centralized monitor producing verdicts in rv-ltl. That
is, assuming that the distributed monitors choose their verdicts from a set 𝑉 , they must be able
to map the sets of verdicts produced by the monitors to the truth values in B4 = {⊤,⊤𝑝 ,⊥𝑝 ,⊥}
produced by a (centralized) rv-ltl automaton monitoring the system, and this mapping

` : 2𝑉 → B4

must guarantee the soundness condition that, for every finite trace 𝛼 , if the distributed monitors
produce a set𝑚 ∈ 2𝑉 of verdicts for 𝛼 , then

` (𝑚) = [𝛼 |=4 𝜑] . (2)

Note that𝑚 is a set of verdicts. Indeed, each monitor observes and maintains only a partial view of
the system, and so two monitors may have different perspectives on the correctness of the system.
Moreover, since the monitors run asynchronously, different read/write interleavings are possible,
where each interleaving may lead to a different collective set𝑚 of verdicts emitted by the monitors
for the same system state.

In the remaining of the section, we formally specify distributed fault-tolerant monitoring.

3.2 LTL on Partial Traces
In the centralized setting, recall from Section 2 that a state of the system is an element of 2AP. We
will use the notation {true, false} |AP | , specifying which atomic propositions are satisfied, and which
ones are not satisfied in a given state. However, in a distributed setting, each monitor inM has only
a partial view of the system under inspection, and it may be able to observe the truthfulness of only
a subset of atomic propositions, so that the value of the remaining propositions are unknown to the
monitor. This leads us to the definition of partial states, and partial traces (see also [11, 12]). We fix
the notation 𝑠 [𝑝] to denote the “value” of proposition 𝑝 in state 𝑠 (i.e., from the set {true, false}).
We use the same notation for partial states and propositions.

J. ACM, Vol. 0, No. 0, Article 0. Publication date: 0.

Decentralized Asynchronous Crash-Resilient Runtime Verification 0:9

Definition 3.1. Let Σ̂ = {true, false, ♮} |AP | where ♮ denotes an unknown value. A partial state is
an element of Σ̂, and a partial trace is an element of Σ̂∗ ∪ Σ̂𝜔 . Given a partial state 𝑠 , a state 𝑠 is a
completion of 𝑠 if, for every p ∈ AP, 𝑠 [p] ∈ {true, false}, and

(𝑠 [𝑝] ≠ ♮) ⇒ (𝑠 [𝑝] = 𝑠 [𝑝]) .

A trace 𝛼 is a completion of a partial trace 𝛼 if |𝛼 | = |𝛼 | and, for every 𝑖 ≥ 0, the 𝑖th state of 𝛼 is a
completion of the 𝑖th partial state of 𝛼 .

We denote by cmpl(𝛼) the set of all traces 𝛼 completing the partial trace 𝛼 . Then, for every finite
partial trace 𝛼 , we set

[𝛼 |=3 𝜑] =

⊤ if ∀𝛼 ∈ cmpl(𝛼),∀𝜎 ∈ Σ𝜔 : 𝛼𝜎 |= 𝜑

⊥ if ∀𝛼 ∈ cmpl(𝛼),∀𝜎 ∈ Σ𝜔 : 𝛼𝜎 ̸ |= 𝜑

? otherwise.
(3)

When a state 𝑠 is reached in a finite trace, each monitor inM takes a sample from 𝑠 , which
results in obtaining a partial state. In a sample, if the value of an atomic proposition is known, then
the sampled value is consistent with state 𝑠 , so that the actual state is a completion of any of its
samples.

Definition 3.2. A sample of a state 𝑠 ∈ Σ is a partial state 𝑠 ∈ Σ̂ such that, for every p ∈ AP,

(𝑠 [p] ≠ ♮) ⇒ (𝑠 [p] = 𝑠 [p]).

We assume that two monitors 𝑀 and 𝑀 ′ cannot take inconsistent samples. That is, if 𝑠 and 𝑠 ′
are two samples of a state 𝑠 by monitors𝑀 and𝑀 ′, respectively, then we assume that, for every
p ∈ AP,

(𝑠 [𝑝] ≠ 𝑠 ′[𝑝]) ⇒ (𝑠 [𝑝] = ♮ ∨ 𝑠 ′[𝑝] = ♮).
We say that a set of monitors covers a state if the collection of partial views of these monitors
covers the value of the all atomic propositions in 𝑠 . A setM of monitors satisfies state coverage for
a state 𝑠 if, for every p ∈ AP, there exists𝑀 ∈ M whose sample 𝑠 satisfies 𝑠 [𝑝] ≠ ♮. Unfortunately,
distributed monitoring with monitors subject to crash failures is subject to an important limitation:
state coverage cannot be guaranteed. Indeed, even if it is guaranteed thatM initially satisfies state
coverage, the presence of crashes may result in this property no longer being true during the course
of execution of the system. This follows from the fact thatM ′ = {𝑀𝑖 | 𝑖 ∈ 𝐼 } may not satisfy state
coverage for 𝐼 ⊂ [1, 𝑛], even ifM = {𝑀𝑖 | 𝑖 ∈ [1, 𝑛]} satisfies state coverage, because the monitors
𝑀𝑖 , where 𝑖 ∈ [1, 𝑛] \ 𝐼 , have crashed.

Since state coverage cannot be guaranteed, one must also specify the correctness of partial traces
in fltl so that monitors can emit non-trivial verdicts even on partial traces. In this paper, we do so
via an extrapolation function allowing to associate a Boolean value with each atomic proposition,
even if its truth value is unknown.

Definition 3.3. An extrapolation function is a function x = (xp)p∈AP, where

x𝑝 : {true, false, ♮} → {true, false}

satisfies x𝑝 (true) = true and x𝑝 (false) = false.

Given an extrapolation function x, for every finite (partial) trace 𝛼 = 𝑠0𝑠1 · · · 𝑠𝑘 , we define

[𝛼 |=𝐹,x 𝜑] := [x(𝑠0)x(𝑠1) · · · x(𝑠𝑘) |=𝐹 𝜑] . (4)

J. ACM, Vol. 0, No. 0, Article 0. Publication date: 0.

0:10 Bonakdarpour, et al.

In the following, we assume that all the monitors inM are using the same extrapolation function
x. Note that, once ltl3 and fltl have been both extended to partial traces, the extension of rv-ltl
to partial traces directly follows:

[𝛼 |=4 𝜑] =

⊤ if [𝛼 |=3 𝜑] = ⊤
⊥ if [𝛼 |=3 𝜑] = ⊥
⊤𝑝 if [𝛼 |=3 𝜑] = ? ∧ [𝛼 |=𝐹,x 𝜑] = ⊤
⊥𝑝 if [𝛼 |=3 𝜑] = ? ∧ [𝛼 |=𝐹,x 𝜑] = ⊥

Having extended ltl3 and fltl to partial traces, we can therefore refine our objective by revisiting
Eq. (2), rephrased as

` (𝑚) = [𝛼 |=4 𝜑]
where 𝛼 is the partial trace of an actual trace 𝛼 = 𝑠0𝑠1𝑠2 · · · 𝑠𝑘 , defined as the sequence of partial
states 𝑠𝑖 of 𝑠𝑖 resulting from the unions of all the samples of 𝑠𝑖 taken by the monitors, M =

{𝑀1, 𝑀2, . . . , 𝑀𝑛}, and𝑚 is the set of verdicts returned by the monitors after having observed 𝑠𝑘 .

Remark. The choice of the extrapolation function x used to extend fltl to partial traces has no
impact on our setting. Therefore, in the following, for simplifying the notations, and for the sake of
improving readability, we shall no longer use the “ ˆ ” symbol for distinguishing traces from partial
traces, and we shall no longer specify extrapolation using x. The reader must solely remember that,
from this point on, any mention of ltl3 refers to the semantics of Eq. (3), and any mention of fltl
refers to the semantics of Eq. (4).

3.3 A Generic Algorithm for Distributed Monitoring
3.3.1 Wait-free Computing. Each monitor is a process, and the monitors run in the standard
asynchronous read/write shared memory model [6]. Each monitor runs at its own speed, that may
vary along with time, and may fail by crashing (i.e., halt and never recover). We assume no bound
on the number of monitors that can crash, and thus a monitor never “waits” for another monitor
since this may cause a livelock (a process waiting for an event that will never occur). This model of
computation is thus often referred to as wait-free shared memory computing. Every monitor that
does not crash is required to output, i.e., in the context of this paper, to emit a monitoring verdict. A
distributed algorithm in this setting consists, for each process, of a bounded sequence of read/write
accesses to the shared memory, at the end of which an output is produced, i.e., a verdict is emitted.
If the number of possible inputs is bounded (which is the case in the setting of monitoring an ltl
formula as every state is of bounded size), the lengths of such read/write sequences are bounded.
We thus assume, without loss of generality, that each monitor accesses the shared memory a fixed
arbitrarily large number of times before emitting a verdict (see [22] for more details).

3.3.2 Wait-free Snapshots. Consider an array SM of single-writer/multi-reader registers, where
process (monitor)𝑀𝑖 can write to SM[𝑖], and can read the register SM[𝑗] of any other processes𝑀 𝑗 .
Programming using such an array can be significantly simplified, using instead snapshot operations.
A process 𝑀𝑖 can still write only to SM[𝑖], but it can read all the array SM in a single atomic
snapshot operation. If it would be possible to stop all other processes temporarily, to allow𝑀𝑖 to
read one-by-one all registers, then𝑀𝑖 could obtain a snapshot SM. However, in a wait-free system,
this is not allowed.
Remarkably, it is possible to implement a snapshot operation wait-free, allowing all other

processes to continue executing their operations, possibly even writing and reading concurrently.
Manywait-free atomic snapshot implementations have been proposed, on top of read/write registers,
e.g. [1, 2, 5, 23]. Furthermore, implementations of snapshots on top of a message passing system

J. ACM, Vol. 0, No. 0, Article 0. Publication date: 0.

Decentralized Asynchronous Crash-Resilient Runtime Verification 0:11

have also been proposed [4, 15]. Such implementations have a computationally cost, but the main
purpose of this paper is to study feasibility, not efficiency. Our algorithms could be implemented by
simply replacing the snapshot operation by the read/write algorithm implementing the snapshots
(or potentially even the implementation on top of a message passing system as mentioned above),
without compromising the correctness of the results in the rest of the paper.

Thus, for the sake of simplifying the presentation, all our algorithms use atomic snapshot
operations. That is, we assume that a monitor can acquire the entire memory SM in a single atomic
“global read” instruction. A view of the shared memory SM is merely the result of a snapshot.

Using snapshots does not artificially strengthen the power of distributed monitoring, but con-
siderably simplifies the presentation of the algorithms and their analysis. Indeed, snapshots are
ordered by inclusion, because they return the contents of the shared memory that existed at some
point in time, between the invocation of the snapshot operation, and the moment the operation
returns. Thus, two snapshot operations may return the same view, if they took effect simultaneously.
Otherwise, one returns a view at some point in time, and the other a view of the contents of the
shared memory at a later time. In this sense, we have the following statement.

Lemma 3.4 (Attiya et al. [5]). The snapshots are ordered by inclusion, i.e., for any two monitors
𝑀𝑖 and 𝑀 𝑗 , and any two snapshots of these monitors returning two views 𝑤𝑖 and 𝑤 𝑗 of the shared
memory, we have either𝑤𝑖 ⊆ 𝑤 𝑗 or𝑤𝑖 ⊇ 𝑤 𝑗 .

3.3.3 A Generic RV Algorithm. As mentioned earlier, RV is concerned with verifying finite traces.
Distributedmonitoring works as follows. Let 𝑠0𝑠1𝑠2 · · · 𝑠𝑘 be a finite trace under scrutiny.We perform
a sequence of phases, where each phase 𝑗 ∈ [0, 𝑘] consists in evaluating the correctness of the trace
𝑠0𝑠1 . . . 𝑠 𝑗 . That is, at phase 𝑗 , each monitor receives a sample from state 𝑠 𝑗 , which forms its input,
then performs a fixed number 𝑅 of access to the shared memory, after which it produces its verdict
regarding the trace 𝑠0𝑠1 · · · 𝑠 𝑗 . We now describe this process in more detail.
Each monitor 𝑀𝑖 ∈ M, where 𝑖 ∈ [1, 𝑛], is provided with a local memory, lm𝑖 . The shared

memory is denoted by SM. For the sake of establishing a strong lower bound, we consider protocols
that are not subject to any constraints in terms of how much data can be stored, and how much
data can be transferred at once during a read (snapshot) or a write. In other words, we consider full
knowledge protocols [22]. (Note, however, that our upper bound will be shown efficient in terms of
both memory storage and bandwidth utilization.)
Both the shared memory and the local memories are organized in levels, where, for every

𝑗 ∈ [0, 𝑘], both the 𝑗th level SM[𝑗] and lm𝑖 [𝑗], 𝑖 ∈ [1, 𝑛] store data used when considering state 𝑠 𝑗
of the monitored trace. Moreover, the 𝑗 th level of the shared memory is organized in 𝑅 · 𝑛 registers,
where 𝑛 is the number of monitors, and 𝑅 denotes the number of rounds of read/write instructions.
Specifically, SM[𝑗] [𝑟, 𝑖] stores data written by𝑀𝑖 during its 𝑟 th write. Similarly, the local memory
of𝑀𝑖 is organized in 𝑅+2 registers, where lm[𝑗] [0] stores the sample of 𝑠 𝑗 by𝑀𝑖 , and, for 1 ≤ 𝑟 ≤ 𝑅,
lm[𝑗] [𝑟] stores data extracted by𝑀𝑖 from the shared memory during its 𝑟 th read. (An extra level
lm[𝑗] [𝑅 + 1] is used for synchronization, as explained below.) We assume that all variables are
initialized to ♮.

Each monitor𝑀𝑖 ∈ M, 𝑖 ∈ [1, 𝑛], runs Algorithm 1 that we detail next. First, before sampling 𝑠 𝑗 ,
each monitor takes a snapshot of the shared memory. This is to make sure that all the monitors share
the same information about the partial trace resulting from the global observation of 𝑠0𝑠1 · · · 𝑠 𝑗−1.
Indeed, recall that it is assumed that all non-faulty monitors sample, compute, and emit their verdict
in between every two consecutive steps of the system. Thus, when 𝑀𝑖 starts considering 𝑠 𝑗 , all
non-faulty monitors have emitted their verdict about 𝑠0𝑠1 . . . 𝑠 𝑗−1. In particular, the values of all the
atomic propositions of 𝑠 𝑗−1 that are covered by the set of non-faulty monitors have been written in

J. ACM, Vol. 0, No. 0, Article 0. Publication date: 0.

0:12 Bonakdarpour, et al.

Data: ltl formula 𝜑 and state 𝑠 𝑗 , 𝑗 ≥ 0
Result: a verdict from some fixed set 𝑉

1 if 𝑗 > 0 then
2 lm𝑖 [𝑗 − 1] [𝑅 + 1] ← SM[𝑗 − 1]; /* 𝑀𝑖 snapshots the (𝑗 − 1)th level of shared memory */

3 lm𝑖 [𝑗] [0] ← sample𝑖 (𝑠 𝑗); /* 𝑀𝑖 takes sample from state 𝑠 𝑗 */
4 for 𝑟 = 1 to 𝑅 do

5 SM[𝑗] [𝑟, 𝑖] ← lm𝑖 [𝑗] [𝑟 − 1]; /* 𝑀𝑖 writes its current knowledge in shared memory */
6 lm𝑖 [𝑗] [𝑟] ← SM[𝑗]; /* 𝑀𝑖 takes a snapshot of the shared memory */

7 emit a verdict in 𝑉 ; /* 𝑀𝑖 decides based on the knowledge accumulated in lm𝑖 */

Algorithm 1: Generic behavior of Monitor𝑀𝑖 , for 𝑖 ∈ [1, 𝑛].

shared memory when𝑀𝑖 samples 𝑠 𝑗 . The instructions performed in Lines 1 and 2 allow𝑀𝑖 to get
all such values. As a consequence, for any two monitors𝑀𝑖 and𝑀𝑖′ monitoring 𝑠0𝑠1 . . . 𝑠 𝑗 , it holds

∀𝑝 ∈ [0, 𝑗 − 1], lm𝑖 [𝑝] [𝑅 + 1] = lm𝑖′ [𝑝] [𝑅 + 1] .

That is, they agree on 𝑠0𝑠1 · · · 𝑠 𝑗−1.
For any given new state 𝑠 𝑗 , monitor𝑀𝑖 takes a sample from state 𝑠 𝑗 (cf. Line 3), which is stored in

local memory lm𝑖 [𝑗] [0], at the 0th level. (Recall that the value of an atomic proposition in a sample
is either true, false, or ♮.) After sampling, each monitor𝑀𝑖 executes a sequence of write/snapshot
actions (cf. Lines 5 and 6) for some a priori known number of times 𝑅. More precisely, in Line 5, at
the 𝑟 th iteration, 𝑀𝑖 atomically writes all its knowledge accumulated so far, i.e., during the 𝑟 − 1
previous rounds of read/write instructions. This knowledge is stored at the 𝑟 th level of the shared
memory, in the register dedicated to data from monitor𝑀𝑖 . In Line 6,𝑀𝑖 reads all the registers in
SM[𝑗], and copies them into lm𝑖 [𝑗] [𝑟], in a single atomic step.

The 𝑅 iterations of the for-loop allow𝑀𝑖 to collect information about the current state 𝑠 𝑗 . After
𝑅 iterations, the for-loop ends, and𝑀𝑖 emits a verdict based all the knowledge accumulated in its
local memory. For our lower bound, we impose no restriction on the way this verdict is computed.
However, for our upper bound, this verdict will be computed solely based on evaluating 𝜑 on the
partial trace accumulated by 𝑀𝑖 . Note that, even for a large 𝑅, 𝑀𝑖 may still not be aware of all
the atomic propositions of 𝑠 𝑗 , simply because the monitors which were covering these atomic
propositions may be slow, and may have not yet reported their samples in the shared memory. Also
note that there is no point in waiting for the slow monitors, since it may well be the case that they
have actually crashed, and waiting for them would yield a livelock.
A distributed-monitoring algorithm is an instantiation of the generic algorithm depicted in

Algorithm 1. A concrete example of such an instantiation is provided in Section 4. Note that the
generic Algorithm 1 takes full advantage of the total power of distributed wait-free computing.

3.4 Statement of the Problem
For any state 𝑠 𝑗 , when a set of monitors execute Algorithm 1, different interleavings, and hence
different sets of verdicts, are possible. Global consistency is the property enabling to map the set
of verdicts of the distributed monitors to the verdict of a centralized monitor that has the view of
states identical to the cumulated views of the monitors. More specifically, given a state 𝑠 𝑗 , the cover of
𝑠 𝑗 is the partial state 𝑠 𝑗 such that, for every p ∈ AP, 𝑠 [p] ≠ ♮ if and only if p is in the sample of 𝑠 𝑗 by
some non-faulty monitor𝑀𝑖 . From this point on, any reference to an execution trace 𝛼 = 𝑠0𝑠1 · · · 𝑠 𝑗
actually refers to the sequence of states covered by the monitors.

J. ACM, Vol. 0, No. 0, Article 0. Publication date: 0.

Decentralized Asynchronous Crash-Resilient Runtime Verification 0:13

A monitor trace for an execution trace 𝛼 = 𝑠0𝑠1 · · · 𝑠𝑘 is a sequence𝑚 =𝑚0𝑚1 · · ·𝑚𝑘 , where, for
every 𝑗 ∈ [0, 𝑘],𝑚 𝑗 ⊆ 𝑉 for some verdict set 𝑉 , and each element of each𝑚 𝑗 is the verdict of some
monitor𝑀𝑖 ∈ M emitted when considering state 𝑠 𝑗 . Let 𝜑 be an ltl formula, and let 𝛼 = 𝑠0𝑠1 · · · 𝑠𝑘
be a finite (partial) trace corresponding to the sequence of (partial) states covered by the monitors.

Definition 3.5. A monitor trace𝑚 =𝑚0𝑚1 . . .𝑚𝑘 with verdict set 𝑉 satisfies global consistency
for 𝛼 with interpretation

` : 2𝑉 → B4
if, for every 0 ≤ 𝑗 ≤ 𝑘 , if no monitors crash between the time when the system enters state 𝑠 𝑗 and
the time when the system leaves state 𝑠 𝑗 , then

` (𝑚 𝑗) = [𝑠0𝑠1 · · · 𝑠 𝑗 |=4 𝜑] .

Note that p ∈ AP might be in the sample of a monitor observing the system in state 𝑠 𝑗 , but this
monitor may crash before reporting this sample to the shared memory, or may report this sample
in the shared memory before crashing, but does it so late that no other monitors can see this sample
(because asynchrony and failures prevent any monitor from waiting for any other monitor). This is
why global consistency is required to hold only if no monitors crash when monitoring state 𝑠 𝑗 .

Definition 3.6. Let A be an instantiation of Algorithm 1 for an ltl formula 𝜑 with verdict set 𝑉 .
Algorithm A is sound for rv-ltl, if there exists a function ` : 2𝑉 → B4 such that, for every finite
(partial) trace 𝛼 ∈ Σ∗ covered by the monitors, and for every monitor trace𝑚 produced byA for 𝛼 ,
𝑚 satisfies global consistency for 𝛼 with interpretation `.

The problem: Given an ltl formula 𝜑 , design an instantiation A of Algorithm 1 that correctly
monitors 𝜑 , with monitors emitting verdicts picked from a small set 𝑉 of values.

In particular, is any ltl formula 𝜑 correctly distributedly monitorable using B4 as verdict set for
the monitors? The next section shows that the answer to this question is negative. However, further
ahead in the text, it will be shown that, for every ltl formula 𝜑 , there is a distributed algorithm
that correctly monitors 𝜑 with verdicts picked from the set of logical values of a multi-valued
logic extending rv-ltl, whose cardinality is related neither to |AP| nor to |M|, but to a specific
characteristic of the formula 𝜑 .

4 DISTRIBUTED MONITORING USING RV-LTL
In this section, we pursue two goals. First, in Section 4.1, we modify Algorithm 1, so each monitor
emits a verdict in B4, that is, truth values of rv-ltl. This constructs Algorithm 2, that we describe
in detail. Then, in Section 4.2, we provide a concrete example of how distributed monitors can
successfully monitor an ltl formula using Algorithm 2. In Section 4.3, we discuss our second goal
and show that Algorithm 2 cannot monitor any ltl formula while ensuring soundness. In Section 5,
we generalize this negative result to an impossibility result for fault-tolerant monitoring.

4.1 Distributed Monitoring with Verdicts in RV-LTL

As in the generic case, the local memory lm𝑖 of monitor𝑀𝑖 is organized in levels, one for each state
of the monitored trace. The same holds for the shared memory. For every 𝑘 ≥ 0, lm𝑖 [𝑘] stores a
partial state, i.e., an |AP|-dimensional vector with values in {true, false, ♮}. For every 𝑘 ≥ 0, and
every 𝑖 ∈ [1, 𝑛], SM[𝑘] [𝑖] stores a partial state, i.e., SM[𝑘] [𝑖] [p] ∈ {true, false, ♮} stores the value
in 𝑠𝑘 of the atomic proposition p ∈ AP, as written by monitor𝑀𝑖 . Every monitor𝑀𝑖 also uses an
auxiliary storage variable lm′𝑖 for local computation, which has the same format as one level of the
shared memory, i.e., lm′𝑖 stores one partial state for each monitor 𝑀𝑖 . Again, we assume that all
variables are initialized to ♮.

J. ACM, Vol. 0, No. 0, Article 0. Publication date: 0.

0:14 Bonakdarpour, et al.

Data: ltl formula 𝜑 and state 𝑠𝑘 , 𝑘 ≥ 0
Result: a verdict from B4

1 if 𝑘 > 0 then
2 lm

′
𝑖 ← SM[𝑘 − 1]; /* 𝑀𝑖 snapshots the (𝑘 − 1)th level of shared memory */

3 for every p ∈ AP do

4 if (lm𝑖 [𝑘 − 1] [p] = ♮) ∧ (∃ 𝑗 ∈ [1, 𝑛] : lm′𝑖 [𝑗] [p] ≠ ♮) then
5 lm𝑖 [𝑘 − 1] [p] := lm

′
𝑖 [𝑗] [p]; /* 𝑀𝑖 completes its view of 𝑠𝑘−1 */

6 lm𝑖 [𝑘] ← sample𝑖 (𝑠𝑘); /* 𝑀𝑖 takes sample, and gets some p ∈ AP for 𝑠𝑘 */
7 SM[𝑘] [𝑖] ← lm𝑖 [𝑘]; /* 𝑀𝑖 writes its current view of 𝑠𝑘 in shared memory */
8 lm

′
𝑖 ← SM[𝑘]; /* 𝑀𝑖 takes a snapshot of the shared memory */

9 for every p ∈ AP do

10 if (lm𝑖 [𝑘] [p] = ♮) ∧ (∃ 𝑗 ∈ [1, 𝑛] : lm′𝑖 [𝑗] [p] ≠ ♮) then
11 lm𝑖 [𝑘] [p] := lm

′
𝑖 [𝑗] [p]; /* 𝑀𝑖 gets propositions that were not in its sample */

12 emit
[
lm𝑖 [0]lm𝑖 [1] · · · lm𝑖 [𝑘] |=4 𝜑

]
; /* 𝑀𝑖 evaluates trace lm𝑖 [0] · · · lm𝑖 [𝑘] in rv-ltl */

Algorithm 2: Behavior of monitor𝑀𝑖 , 𝑖 ∈ [1, 𝑛], using rv-ltl.

Algorithm 2 proceeds as follows. As in Algorithm 1, Lines 1–5 allow all non-faulty monitors
observing 𝑠𝑘 to share the same information about the partial trace resulting from the global
observation of 𝑠0𝑠1 · · · 𝑠𝑘−1. That is, for any monitor𝑀𝑖 and sampling 𝑠𝑘 in Line 6, it holds

lm𝑖 [0]lm𝑖 [1] · · · lm𝑖 [𝑘 − 1] = 𝑠0𝑠1 · · · 𝑠𝑘−1 .
Let us now focus on the core of the algorithm. In Line 6, the monitor takes a sample of the
current state 𝑠𝑘 . This sample gives 𝑀𝑖 the value of some atomic propositions p ∈ AP, in which
case lm𝑖 [𝑘] [p] ∈ {true, false}, but𝑀𝑖 may not become aware of some other atomic propositions
p′ ∈ AP, in which case lm𝑖 [𝑘] [p′] = ♮. Then, only one round of the generic algorithm is run. That
is,𝑀𝑖 writes its partial view of 𝑠𝑘 (Line 7), and takes a snapshot of the shared memory (Line 8) with
the objective of getting the values of atomic propositions of 𝑠𝑘 that it is missing in its view. If there
is indeed such a proposition p in its snapshot, then𝑀𝑖 adds this value in its partial view of 𝑠𝑘 , in
Line 11.

For emitting its verdict, monitor𝑀𝑖 evaluates trace lm𝑖 [0] · · · lm𝑖 [𝑘] in rv-ltl, that is, its verdict
is the truth value in B4 equal to: [

lm𝑖 [0]lm𝑖 [1] · · · lm𝑖 [𝑘] |=4 𝜑
]
.

Algorithm 2 is probably the most natural way of providing fault-tolerant distributed monitoring.
However, as we show in the next subsection, rv-ltl is far from being sufficient, and even simple
ltl formulas cannot be evaluated using distributed monitors using rv-ltl.

4.2 A Positive Example for Distributed Monitoring using RV-LTL
LetM = {𝑀1, 𝑀2}, and let us consider monitoring the aforementioned request-acknowledgment
formula

𝜑ra = (¬𝑎 ∧ ¬𝑟) ∨ ((¬𝑎 U 𝑟) ∧ 𝑎).
We represent a (partial) state in a finite trace for 𝜑ra as a vector

𝑠 =

(
𝑟

𝑎

)
J. ACM, Vol. 0, No. 0, Article 0. Publication date: 0.

Decentralized Asynchronous Crash-Resilient Runtime Verification 0:15

where the propositions range over {true, false, ♮}. Let us assume that atomic proposition ♮ is
extrapolated to false (we will show that the choice of extrapolation does not matter). Using a central
monitor, evaluation in rv-ltl should return the following verdicts:(

𝑟

𝑎

) (
false

false

) (
true

false

) (
false

true

) (
true

true

)
verdict ⊤𝑝 ⊥𝑝 ⊥ ⊤

where each column represents a trace of length one (i.e., a single state). In a distributed setting, a
monitor may observe the following corresponding partial states and return verdicts in rv-ltl:(

𝑟

𝑎

) (
♮

♮

) (
♮

false

) (
♮

true

) (
false

♮

) (
false

false

) (
false

true

) (
true

♮

) (
true

false

) (
true

true

)
verdict ⊤𝑝 ⊤𝑝 ⊥ ⊤𝑝 ⊤𝑝 ⊥ ⊥𝑝 ⊥𝑝 ⊤

Thanks to Lemma 3.4, the sets of possible verdicts returned by a collection of distributed monitors
observing the system are, for the four possible scenarios:(

𝑟

𝑎

) (
false

false

) (
true

false

) (
false

true

) (
true

true

)
verdict sets {⊤𝑝 } {⊥𝑝 } or {⊤𝑝 ,⊥𝑝 } {⊥} or {⊤𝑝 ,⊥} {⊤} or {⊤,⊤𝑝 } or {⊤,⊥𝑝 } or {⊤,⊥}

Let us define the following interpretation function. For every non-empty𝑚 ⊆ B4 = {⊤,⊥,⊤𝑝 ,⊥𝑝 },

` (𝑚) =

⊤ if ⊤ ∈𝑚
⊥ if ⊤ ∉𝑚 and ⊥ ∈𝑚
⊥𝑝 if𝑚 ∩ {⊤,⊥} = ∅ and ⊥𝑝 ∈𝑚
⊤𝑝 otherwise.

With such an interpretation function, we do have

` (𝑚) = [𝑠 |=4 𝜑ra],

as desired. This analysis can be extended to traces, and to monitor traces, establishing that Algo-
rithm 2 correctly monitors 𝜑ra in rv-ltl.

4.3 A Counterexample to Distributed Monitoring Using RV-LTL
LetM = {𝑀1, 𝑀2} and let us consider the ltl formula for two requests and two acknowledgments:

𝜑ra2 =
(
(¬𝑎1 ∧ ¬𝑟1) ∨ [(¬𝑎1 U 𝑟1) ∧ 𝑎1]

)
∧

(
(¬𝑎2 ∧ ¬𝑟2) ∨ [(¬𝑎2 U 𝑟2) ∧ 𝑎2]

)
.

4.3.1 Negative Example of Monitoring 𝜑ra2. Figure 3 shows a concrete finite trace 𝛼 and its cor-
responding monitor trace resulting from running Algorithm 2, where 𝑓 stands for false, and 𝑡

stands for true (in this example too, ♮ is extrapolated to false). It also shows the content of the local
memories of two monitors𝑀1 and𝑀2 monitoring 𝛼 , as well as their individual evaluations of 𝜑ra2
with respect to the observed trace. For instance, for 𝑠0, let:

sample1 (𝑠0) =
©«
true

♮

false

false

ª®®®¬ sample2 (𝑠0) =
©«
true

true

♮

false

ª®®®¬ .
where each vector shows the value of propositions 𝑟1, 𝑎1, 𝑟2, and 𝑎2. Then, when𝑀1 and𝑀2 perform
the write-snapshot instructions of Lines 7 and 8 of Algorithm 2, Fig. 3 illustrates an execution in

J. ACM, Vol. 0, No. 0, Article 0. Publication date: 0.

0:16 Bonakdarpour, et al.

𝑠0 = {𝑟1, 𝑎1 }
[𝑠0 |=𝐹 𝜑ra2] = ⊤

lm1 [0]
𝑀1 𝑀2

𝑟1 𝑡 ♮

𝑎1 ♮ ♮

𝑟2 𝑓 ♮

𝑎2 𝑓 ♮

⊥𝒑

lm2 [0]
𝑀1 𝑀2
𝑡 𝑡

♮ 𝑡

𝑓 ♮

𝑓 𝑓

⊤𝒑

𝑚0 = {⊥𝑝 ,⊤𝑝 }

𝑠1 = {𝑟1 }
[𝑠0𝑠1 |=𝐹 𝜑ra2] = ⊤

lm1 [1]
𝑀1 𝑀2
𝑡 ♮

♮ ♮

𝑓 𝑓

𝑓 ♮

⊤𝒑

lm2 [1]
𝑀1 𝑀2
♮ ♮

♮ ♮

♮ 𝑓

♮ ♮

⊤𝒑

𝑚1 = {⊤𝑝 }

𝑠2 = {𝑟1, 𝑎1, 𝑟2 }
[𝑠0𝑠1𝑠2 |=𝐹 𝜑ra2] = ⊥

lm1 [2]
𝑀1 𝑀2
♮ 𝑡

♮ 𝑡

𝑡 ♮

𝑓 ♮

⊥𝒑

lm2 [2]
𝑀1 𝑀2
♮ 𝑡

♮ 𝑡

♮ ♮

♮ ♮

⊤𝒑

𝑚2 = {⊥𝑝 ,⊤𝑝 }

𝑠3 = {𝑟1, 𝑟2, 𝑎1, 𝑎2 }
[𝑠0𝑠1𝑠2𝑠3 |=𝐹 𝜑ra2] = ⊤

lm1 [3]
𝑀1 𝑀2
𝑡 ♮

𝑡 𝑡

♮ 𝑡

♮ 𝑡

⊤

lm2 [3]
𝑀1 𝑀2
♮ ♮

♮ 𝑡

♮ 𝑡

♮ 𝑡

⊤

𝑚3 = {⊤}

𝛼 = 𝑠0𝑠1𝑠2𝑠3

𝑚 =𝑚0𝑚1𝑚2𝑚3

Fig. 3. A monitor trace as computed by Algorithm 2.

which 𝑀1 does not get any new information (𝑀1 took the snapshot before 𝑀2 wrote), while 𝑀2
gets the partial trace sampled by𝑀1. As a result,

lm1 [0] =
©«
true

♮

false

false

ª®®®¬ lm2 [0] =
©«
true

true

false

false

ª®®®¬ .
It follows that𝑀1 emits

⊥𝑝 =
[
lm1 [0] |=4 𝜑ra2

]
,

while𝑀2 emits
⊤𝑝 =

[
lm2 [0] |=4 𝜑ra2

]
.

Since [𝑠0 |=4 𝜑ra2] = ⊤𝑝 , it must be case that the set of verdicts𝑚0 = {⊤𝑝 ,⊥𝑝 } is interpreted as ⊤𝑝 ,
i.e.,

` (𝑚0) = ⊤𝑝 .
A contradiction can be observed when considering 𝑀1 and 𝑀2 observing 𝑠0𝑠1𝑠2. Indeed, in

this case too, the set of verdicts emitted by the monitors can be𝑚2 = 𝑚0 = {⊤𝑝 ,⊥𝑝 } for some
interleaving of the write-snapshot instruction. However, [𝑠0𝑠1𝑠2 |=4 𝜑ra2] = ⊥𝑝 . Therefore, we get

` (𝑚2) ≠ [𝑠0𝑠1𝑠2 |=4 𝜑ra2] .

That is, Algorithm 2 does not correctly monitor 𝜑ra2.

4.3.2 Negative Result on Monitoring a Single State for 𝜑ra2. We show that Algorithm 2 does not
even correctly monitor 𝜑ra2 on a single state. Figure 4 shows different execution interleavings of
monitors𝑀1 and𝑀2 when running Algorithm 2 from two different states

𝑠0 = {𝑟1, 𝑎1},

and
𝑠 ′0 = {𝑟1, 𝑎1, 𝑟2}.

J. ACM, Vol. 0, No. 0, Article 0. Publication date: 0.

Decentralized Asynchronous Crash-Resilient Runtime Verification 0:17

Again, let us represent a state in a partial trace for 𝜑ra2 as a vector

𝑠 =

©«
𝑟1
𝑎1
𝑟2
𝑎2

ª®®®¬
with entries in {true, false, ♮}. In case of 𝑠0, after executing Line 6 of Algorithm 2, monitors’ samples
consist of

lm1 [0] =
©«
true

♮

false

false

ª®®®¬ , and lm2 [0] =
©«
true

true

♮

false

ª®®®¬ .
Likewise, for state 𝑠 ′0, Fig. 4 shows different local snapshots by𝑀1 and𝑀2. The verdict depends on
the different interleavings of write/snapshot. In Fig. 4,𝑀1, 𝑀2 (resp.,𝑀2, 𝑀1) denotes the case where
monitor𝑀1 (resp., 𝑀2) executes a write-snapshot instructions (Lines 7–8 of Algorithm 2) before
monitor𝑀2 (resp.,𝑀1) does, and𝑀1 | |𝑀2 denotes the case where monitors𝑀1 and𝑀2 execute their
write-snapshot actions concurrently.

Figure 4 shows that rv-ltl is unable to consistently monitor 𝜑ra2. More precisely, observe that,
in the figure, the shaded collective verdicts𝑚0 and𝑚′0, for trace 𝑠0 and trace 𝑠 ′0, respectively, are
identical, both equal to {⊥𝑝 ,⊤𝑝 }, while [𝑠0 |=4 𝜑ra2] ≠ [𝑠 ′0 |=4 𝜑ra2]. Specifically, let us consider the
following scenarios.

Scenario 1: Starting from state 𝑠0 with 𝑀1, 𝑀2 interleaving, we have [lm1 [0] |=4 𝜑ra2] = ⊥𝑝
and [lm2 [0] |=4 𝜑ra2] = ⊤𝑝 . That is, the collective set of local verdicts is𝑚0 = {⊥𝑝 ,⊤𝑝 }.

Scenario 2: Starting from state 𝑠 ′0, with 𝑀2, 𝑀1 interleaving, we have [lm′1 [0] |=4 𝜑ra2] = ⊥𝑝
and [lm′2 [1] |=4 𝜑ra2] = ⊤𝑝 . That is, the collective set of local verdicts is𝑚′0 = {⊥𝑝 ,⊤𝑝 }.

Therefore, although the valuations of 𝜑ra2 for two finite traces 𝑠0 and 𝑠 ′0 are different in rv-ltl (i.e.,
⊤𝑝 and ⊥𝑝 , respectively), the collective set of verdicts emitted by monitors𝑀1 and𝑀2 in the above
two scenarios are identical (i.e., {⊥𝑝 ,⊤𝑝 }). That is,

[𝑠0 |=4 𝜑ra2] ≠ [𝑠 ′0 |=4 𝜑ra2],
but ` (𝑚0) = ` (𝑚′0) for any `, and, thus, 𝜑ra2 is not correctly monitored, even on traces consisting
in a single state.

We summarize the discussions in this section by the following:

Property 4.1. Not all ltl formulas can be consistently monitored by a 1-round distributed monitor
with traces in rv-ltl. In particular, the ltl formula 𝜑ra2 cannot be monitored by a 1-round distributed
monitor with traces in rv-ltl, even on traces consisting of a single state, even if monitors satisfy state
coverage, and even if no monitors crash during the execution.

The above results yield several questions. Do they hold only because Algorithm 2 does not
perform sufficiently many communication rounds? Do they hold because the monitors exchange
only partial states? Do they hold because the four possible individual verdicts are interpreted
as logical values in B4? In the next section, we answer all these questions negatively: even the
full-information Algorithm 1 cannot distributedly monitor ltl formula 𝜑ra2 with a verdict set of
cardinality 4, independently from its number of rounds 𝑅 ≥ 1.

5 DISTRIBUTED MONITORING REQUIRES LARGE VERDICT SETS
In this section, we introduce a parameter that will be shown to have a strong impact on distributed
monitoring, namely the alternation number of an ltl formula. In particular, in this section, we show

J. ACM, Vol. 0, No. 0, Article 0. Publication date: 0.

0:18 Bonakdarpour, et al.

𝑀1
𝑀1 𝑀2

𝑟1 𝑡 ♮

𝑎1 ♮ ♮

𝑟2 𝑓 ♮

𝑎2 𝑓 ♮

𝑀2
𝑀1 𝑀2

𝑟1 ♮ 𝑡

𝑎1 ♮ 𝑡

𝑟2 ♮ ♮

𝑎2 ♮ 𝑓

lm1 [0]

lm2 [0]

samples

𝑀1
𝑀1 𝑀2

𝑟1 𝑡 ♮

𝑎1 ♮ ♮

𝑟2 𝑓 ♮

𝑎2 𝑓 ♮

⊥𝒑

𝑀2
𝑀1 𝑀2

𝑟1 𝑡 𝑡

𝑎1 ♮ 𝑡

𝑟2 𝑓 ♮

𝑎2 𝑓 𝑓

⊤𝒑

𝑀1
𝑀1 𝑀2
𝑡 𝑡

♮ 𝑡

𝑓 ♮

𝑓 𝑓

⊤𝒑

𝑀2
𝑀1 𝑀2
𝑡 𝑡

♮ 𝑡

𝑓 ♮

𝑓 𝑓

⊤𝒑

𝑀1
𝑀1 𝑀2
𝑡 𝑡

♮ 𝑡

𝑓 ♮

𝑓 𝑓

⊤𝒑

𝑀2
𝑀1 𝑀2
♮ 𝑡

♮ 𝑡

♮ ♮

♮ 𝑓

⊤𝒑

𝑠0 = {𝑟1, 𝑎1 }
[𝑠0 |=𝐹 𝜑ra2] = ⊤

write/snapshot

interleavings
𝑀1, 𝑀2

𝑀1 | |𝑀2

𝑀2, 𝑀1

lm1 [0]

lm2 [0]

𝑚0 = {⊤𝑝 ,⊥𝑝 } 𝑚0 = {⊤𝑝 } 𝑚0 = {⊤𝑝 }

𝑀1
𝑀1 𝑀2

𝑟1 ♮ ♮

𝑎1 ♮ ♮

𝑟2 𝑡 ♮

𝑎2 𝑓 ♮

𝑀2
𝑀1 𝑀2

𝑟1 ♮ 𝑡

𝑎1 ♮ 𝑡

𝑟2 ♮ ♮

𝑎2 ♮ 𝑓

lm

′
1 [0]

lm

′
2 [0]

𝑀2, 𝑀1

𝑀1 | |𝑀2

𝑀1, 𝑀2

𝑀1
𝑀1 𝑀2

𝑟1 ♮ 𝑡

𝑎1 ♮ 𝑡

𝑟2 𝑡 ♮

𝑎2 𝑓 𝑓

⊥𝒑

𝑀2
𝑀1 𝑀2

𝑟1 ♮ 𝑡

𝑎1 ♮ 𝑡

𝑟2 ♮ ♮

𝑎2 ♮ 𝑓

⊤𝒑

𝑀1
𝑀1 𝑀2
♮ 𝑡

♮ 𝑡

𝑡 ♮

𝑓 𝑓

⊥𝒑

𝑀2
𝑀1 𝑀2
♮ 𝑡

♮ 𝑡

𝑡 ♮

𝑓 𝑓

⊥𝒑

𝑀1
𝑀1 𝑀2
♮ ♮

♮ ♮

𝑡 ♮

𝑓 ♮

⊥𝒑

𝑀2
𝑀1 𝑀2
♮ 𝑡

♮ 𝑡

𝑡 ♮

𝑓 𝑓

⊥𝒑

𝑠′0 = {𝑟1, 𝑎1, 𝑟2 }
[𝑠′0 |=𝐹 𝜑ra2] = ⊥

lm

′
1 [0]

lm

′
2 [0]

𝑚′0 = {⊤𝑝 ,⊥𝑝 } 𝑚′0 = {⊥𝑝 } 𝑚′0 = {⊥𝑝 }

Inconsistency

Fig. 4. Monitors𝑀1 and𝑀2 monitoring formula 𝜑ra2 from two different states 𝑠0 and 𝑠 ′0.

J. ACM, Vol. 0, No. 0, Article 0. Publication date: 0.

Decentralized Asynchronous Crash-Resilient Runtime Verification 0:19

that, for every𝑘 ≥ 0, there is an ltl formula𝜑 with alternation number𝑘 that cannot be distributedly
monitored by monitors emitting verdicts from a set of cardinality smaller than 𝑘 + 1. This lower
bound is an adaption of the lower bound in [20], which deals with states whose correctness is
specified by Boolean logic, to execution traces whose correctness is specified by linear temporal
logic. In the next section, we shall show that the alternation number also essentially determines an
upper bound on the number of truth values needed to ensure consistency in distributed monitoring,
using truth values from a properly defined multi-valued logic.

5.1 Alternation Number
Let 𝛼 ∈ Σ∗ be a finite trace, and let 𝛼 ′ be the longest proper prefix of 𝛼 , i.e., 𝛼 = 𝛼 ′𝑠 , where 𝛼 ′ ∈ Σ∗
and 𝑠 ∈ Σ. Let 𝜑 be an ltl formula. We set the alternation number of 𝜑 with respect to 𝛼 , denoted
by altern(𝜑, 𝛼), as follows. First, for full generality, we do not define the alternation number of 𝜑
solely for traces, but also for partial traces. That is, in state 𝑠 , proposition p ∈ AP can be true, false,
or unknown (♮). Given two partial states 𝑠 and 𝑠 ′, we set

𝑠 ′ ≺ 𝑠

if the following two conditions hold:
• ∀p ∈ AP : (𝑠 ′[p] ∈ {true, false} ⇒ 𝑠 [p] = 𝑠 ′[p]);
• ∃p ∈ AP : (𝑠 ′[p] = ♮ ∧ 𝑠 [p] ∈ {true, false}).

We denote by 𝑠♮ the partial state in which all atomic propositions are unknown.

Definition 5.1. The alternation number of an ltl formula 𝜑 with respect to a finite partial
trace 𝛼 = 𝛼 ′𝑠 with 𝛼 ′ ∈ Σ∗ and 𝑠 ∈ Σ, denoted by altern(𝜑, 𝛼), is the maximum integer ℓ ≥ 0,
such that there exists a sequence of partial states 𝑠0𝑠1 · · · 𝑠ℓ with 𝑠0 = 𝑠♮ , 𝑠ℓ = 𝑠 , and, for every
𝑖 ∈ {0, 1, . . . , ℓ − 1}, (

𝑠𝑖 ≺ 𝑠𝑖+1
)
∧

(
[𝛼 ′𝑠𝑖 |=𝐹 𝜑] ≠ [𝛼 ′𝑠𝑖+1 |=𝐹 𝜑]

)
.

The alternation number of an ltl formula 𝜑 is altern(𝜑) = max
{
altern(𝜑, 𝛼) | 𝛼 ∈ Σ∗

}
.

It directly follows from this definition that, for any ltl formula 𝜑 , its alternation number is
bounded by its number of atomic propositions, i.e.,

altern(𝜑) ≤ |AP|.
On the other hand, the alternation number can be much smaller than the number of atomic
propositions. For instance

𝜑 = 𝑥1 ∧ 𝑥2 ∧ · · · ∧ 𝑥𝑡
satisfies |AP| = 𝑡 and altern(𝜑) = 1 (assuming that the evaluation of a partial trace is performed by
replacing all ♮ by false). Let us consider a few examples.
• altern(𝑝) = 1, since once 𝑝 is false, the formula can never evaluate to ⊤.
• altern((𝑟 → 𝑎)) = 2, as witnessed by the partial states(

𝑟

𝑎

)
=

(
♮

♮

) (
true

♮

) (
true

true

)
which evaluate to ⊤,⊥,⊤, respectively, in fltl, when we extrapolate all ♮ to false.
• altern(𝜑ra) = altern

(
(¬𝑎 ∧ ¬𝑟) ∨ [(¬𝑎 U 𝑟) ∧ 𝑎]

)
= 2 with(

𝑟

𝑎

)
=

(
♮

♮

) (
♮

true

) (
true

true

)
which evaluate to ⊤,⊥,⊤, respectively, in fltl, when we extrapolate all ♮ to false.

J. ACM, Vol. 0, No. 0, Article 0. Publication date: 0.

0:20 Bonakdarpour, et al.

• altern(𝜑ra2) = 4 with

©«
𝑟1
𝑎1
𝑟2
𝑎2

ª®®®¬ =
©«
♮

♮

♮

♮

ª®®®¬
©«
true

♮

♮

♮

ª®®®¬
©«
true

true

♮

♮

ª®®®¬
©«
true

true

true

♮

ª®®®¬
©«
true

true

true

true

ª®®®¬
which evaluates to ⊤,⊥,⊤,⊥,⊤, respectively, in fltl, when we extrapolate all ♮ to false.

5.2 The Impact of Alternation Number on Distributed Monitoring
The following result extends Property 4.1 to any distributed monitoring algorithm. It also extends
the lower bound in [20] to execution traces whose correctness is specified by means of linear
temporal logic.

Theorem 5.2. For every 𝑘 ≥ 0, there is an ltl formula 𝜑 with altern(𝜑) = 2𝑘 that cannot be
correctly monitored by 𝑛 > 2𝑘 distributed monitors using verdict set 𝑉 if |𝑉 | ≤ altern(𝜑).

Proof. For the purpose of proving this lower bound, we concentrate on the following variant of
the request/acknowledge property. For every integer 𝑘 ≥ 1, let𝜓𝑘 be defined over the set of atomic
propositions {𝑟1, . . . , 𝑟𝑘+1, 𝑎1, . . . , 𝑎𝑘+1}. As in 𝜑ra, an acknowledgment must not appear before the
corresponding request. However, it is no longer required that every request be acknowledged, but
instead that at least one, and at most 𝑘 requests be acknowledged. That is,

𝜓𝑘 =
∨

𝑆⊊[1,𝑘+1],𝑆≠∅

©«
∧
𝑖∈𝑆

(
(¬𝑎𝑖 U 𝑟𝑖) ∧ 𝑎𝑖

)
∧

∧
𝑖∈[𝑘+1]\𝑆

¬𝑎𝑖
ª®¬

Lemma 5.3. altern(𝜓𝑘) = 2𝑘 .

For establishing the lemma, let 𝑅 𝑗 , 𝐴 𝑗 be the following sequences of vectors in {true, false, ♮}𝑘+1,
with 0 ≤ 𝑗 ≤ 2𝑘 + 2. For every 𝑗 ∈ [0, 2𝑘 + 2] and 𝑖 ∈ [1, 𝑘 + 1], we set

𝑅 𝑗 [𝑖] =
{
true if 𝑖 ≤ ⌊ 𝑗/2⌋;
♮ otherwise. 𝐴 𝑗 [𝑖] =

{
true if 𝑖 ≤ ⌈ 𝑗/2⌉;
♮ otherwise.

That is, 𝐴0 = (♮, . . . , ♮) = 𝑅0 = 𝑅1, and for 1 ≤ 𝑗 ≤ 𝑘 + 1,
𝐴2𝑗−1 = 𝐴2𝑗 = (true, . . . , true︸ ︷︷ ︸

𝑗

, ♮, . . . , ♮)

and
𝑅2𝑗 = 𝑅2𝑗+1 = 𝐴2𝑗−1.

A pair 𝑠 𝑗 = (𝑅 𝑗 , 𝐴 𝑗) defines a partial states as follows. For each 𝑖 ∈ [1, 𝑘 + 1], the value of the
atomic proposition 𝑟𝑖 is 𝑅 𝑗 [𝑖], and the value of the atomic proposition 𝑎𝑖 is 𝐴 𝑗 [𝑖]. Observe that
𝑠0 ≺ 𝑠1 ≺ . . . ≺ 𝑠2𝑗+2. For every 𝑗 ∈ [1, 2𝑘 + 2], the following holds.

[𝑠 𝑗 |=𝐹 𝜓𝑘] =

⊥ if 𝑗 = 0
⊥ if 𝑗 is odd and 1 ≤ 𝑗 ≤ 2𝑘 + 1
⊤ if 𝑗 is even and 2 ≤ 𝑗 ≤ 2𝑘
⊥ if 𝑗 is even and 𝑗 = 2𝑘 + 2

This is because:
• If 𝑗 = 0, no request is acknowledged in 𝑠0.

J. ACM, Vol. 0, No. 0, Article 0. Publication date: 0.

Decentralized Asynchronous Crash-Resilient Runtime Verification 0:21

• For 𝑗 = 2 𝑗 ′ + 1, 0 ≤ 𝑗 ′ ≤ 𝑘 , 𝑎1, . . . , 𝑎 𝑗 ′ are true but 𝑟 𝑗 ′ is false in 𝑠 𝑗 . Hence, there is an
acknowledgment without the matching request. Hence [𝑠 𝑗 |=𝐹 𝜓𝑘] = ⊥.
• For 𝑗 = 2 𝑗 ′, 1 ≤ 𝑗 ′ ≤ 𝑘 , every request 𝑟1, . . . , 𝑟 𝑗 ′ is acknowledged, and there is no acknowl-
edgment missing its matching request. Hence [𝑠 𝑗 |=𝐹 𝜓𝑘] = ⊤.
• Finally, in 𝑠2𝑘+2 (as in 𝑠2𝑘+1), there are 𝑘 + 1 acknowledgments, and thus [𝑠2𝑘+1 |=𝐹 𝜓𝑘] =
[𝑠2𝑘+2 |=𝐹 𝜓𝑘] = ⊥.

It follows that the alternation number altern(𝜓𝑘 , 𝑠0𝑠2 · · · 𝑠2𝑘+1) ≥ 2𝑘 . Therefore, altern(𝜓𝑘) ≥ 2𝑘 .
Now, we prove the second part of Lemma 5.3, that is, altern(𝜓𝑘) ≤ 2𝑘 . Let 𝛼𝑠 ′ be a partial trace,

such that
altern(𝜓𝑘 , 𝛼𝑠

′) = 𝑥 .

That is, there exist partial states 𝑠 ′0 = 𝑠♮ ≺ 𝑠 ′1 ≺ . . . ≺ 𝑠 ′𝑥 such that, for every 𝑗 = 0, . . . , 2𝑘,

[𝛼𝑠 ′𝑗 |= 𝜓𝑘] ≠ [𝛼𝑠 ′𝑗+1 |= 𝜓𝑘] .
As above, each partial state 𝑠 ′𝑗 can be represented by a pair of vectors

(𝐴′𝑗 , 𝑅′𝑗) ∈ {true, false, ♮}𝑘+1 × {true, false, ♮}𝑘+1.

Let 𝑎𝑐𝑘 (𝑗) denote the number of atomic propositions 𝑎𝑖 whose value is true in the partial trace 𝛼𝑠 ′𝑗 ,
i.e.,

𝑎𝑐𝑘 (𝑗) = |{𝑖 : ∃𝑠 ∈ 𝛼𝑠 ′𝑗 such that 𝑎𝑖 = true in 𝑠}|
Denote by ℓ and𝑚 the smallest (respectively, the largest) 𝑗, 0 ≤ 𝑗 ≤ 𝑥 , such that𝜓𝑘 is satisfied in
𝛼𝑠 ′𝑗 . That is,

ℓ = min
0≤ 𝑗≤𝑥

[𝛼𝑠 ′𝑗 |= 𝜓𝑘] = ⊤

𝑚 = max
0≤ 𝑗≤𝑥

[𝛼𝑠 ′𝑗 |= 𝜓𝑘] = ⊤

Note that ℓ ∈ {0, 1} and𝑚 ∈ {𝑥 − 1, 𝑥}.
Since, for satisfying𝜓𝑘 , it is required that the number of acknowledged requests is at least one,

and at most 𝑘 , we have 1 ≤ 𝑎𝑐𝑘 (ℓ) and 𝑎𝑐𝑘 (𝑚) ≤ 𝑘 . Now, observe that if [𝛼𝑠 ′𝑗 |= 𝜓𝑘] = ⊤ and
[𝛼𝑠 ′𝑗+1 |= 𝜓𝑘] = ⊥, then 𝑎𝑐𝑘 (𝑗) < 𝑎𝑐𝑘 (𝑗 + 1). Indeed, in 𝛼𝑠 ′𝑗 , for each acknowledgment, there is
a matching request, and the number of acknowledgments is at most 𝑘 . Hence, in order to have
[𝛼𝑠 ′𝑗+1 |= 𝜓𝑘] = ⊥, it must be the case that 𝐴′𝑗 [𝑖] = ♮ and 𝐴′𝑗+1 [𝑖] = true for some 𝑖, 1 ≤ 𝑖 ≤ 𝑘 + 1.
It follows that 𝑎𝑐𝑘 (𝑠ℓ) + ⌈𝑚−12 ⌉ ≤ 𝑎𝑐𝑘 (𝑚 − 1). Since 𝑎𝑐𝑘 (𝑚 − 1) ≤ 𝑎𝑐𝑘 (𝑚) ≤ 𝑘 , and 𝑠 (ℓ) ≠ 0, we
derive ⌈𝑚−12 ⌉ ≤ 𝑘 − 1, from which it follows that𝑚 ≤ 2𝑘 − 1. As𝑚 ∈ {𝑥 − 1, 𝑥}, we have 𝑥 ≤ 2𝑘 ,
and thus altern(𝜓𝑘 , 𝛼 (𝑠 ′) ≤ 2𝑘 .
We conclude that altern(𝜓𝑘) = 2𝑘 , which completes the proof of Lemma 5.3. □

In [18], the authors study a collection of distributed tasks T (𝑛, 𝑘, ℓ) defined for 𝑛 processes,
where 𝑘, ℓ are integers. In each task in T (𝑛, 𝑘, ℓ), the possible inputs for each process 𝑝𝑖 are the
pairs (𝑐, 𝑑) ∈ {1, . . . , 𝑘 + 1} × {1, . . . , 𝑘 + 1}. The possible outputs form a set 𝑈 of size ℓ , called
the opinion set. Any partition (Y,N) of the multisets of at most 𝑛 elements of 𝑈 defines a task
𝑇Y,N ∈ T (𝑛, 𝑘,𝑈) as follows. In a distributed shared memory execution, we say that a process
participates if it writes to the shared memory. For any set 𝑃 ⊆ {1, . . . , 𝑛} of participating processes,
let ` denote the multiset of the output values of these processes. The task 𝑇Y,N is then specified as
follows.
• If 1 ≤ |{𝑑𝑖 : 𝑖 ∈ 𝑃}| ≤ 𝑘 and {𝑑𝑖 : 𝑖 ∈ 𝑃} ⊆ {𝑐𝑖 : 𝑖 ∈ 𝑃}, it is required that ` ∈ Y;
• Otherwise, it is required that ` ∈ N.

J. ACM, Vol. 0, No. 0, Article 0. Publication date: 0.

0:22 Bonakdarpour, et al.

A wait-free protocol solves tasks 𝑇Y,N ∈ T (𝑛, 𝑘,𝑈) whenever there is a constant 𝐵 such that, for
every participating set 𝑃 ⊆ {1, . . . , 𝑛}, and for every execution 𝑒 with participating set 𝑃 , if every
process 𝑖 ∈ 𝑃 has taken at least 𝐵 steps in 𝑒 , then every process produces an output value, and the
outputs satisfy the requirement above.

Intuitively, the input of each process 𝑝𝑖 represents the view of 𝑝𝑖 as the outcome of an election:
𝑐𝑖 is a candidate ID, and 𝑑𝑖 is an elected ID. Election is valid if all elected IDs are candidates (i.e.,
{𝑑𝑖 : 𝑖 ∈ 𝑃} ⊆ {𝑐𝑖 : 𝑖 ∈ 𝑃}), and at least 1 and no more than 𝑘 IDs are elected (i.e., |{𝑑𝑖 : 𝑖 ∈ 𝑃}| ≤ 𝑘).
By outputting a value 𝑢𝑖 ∈ 𝑈 , process 𝑝𝑖 expresses its opinion regarding whether or not the election
is globally valid. The processes must collectively be able to distinguish between valid and invalid
elections. Indeed, when the inputs of the participating processes represent a valid election, it is
required that the multiset of opinions belong to Y, and, otherwise, that multiset must belong to N.

The main result in [18] is a characterization of the wait-free solvability of the tasks T (𝑛, 𝑘, ℓ).

Lemma 5.4 ([18]). For any integers 𝑛, 𝑘 , with 1 ≤ 𝑘 < 𝑛, no task in T (𝑛, 𝑘, ℓ) is wait-free solvable
if ℓ ≤ min(2𝑘, 𝑛).

To complete the lower bound, we show that monitoring𝜓𝑘 with a verdict set of size ℓ implies
that some tasks in T (𝑛, 𝑘, ℓ) are wait-free solvable. Suppose that𝜓𝑘 can be monitored with a set
of verdicts 𝑉 of size ℓ . Let 𝑀 be such a monitor and let ` : 2𝑉 → B4 be its interpretation (cf.
Definition 3.6). We show how𝑀 can be used to solve a task 𝑇 ∈ T (𝑛, 𝑘, ℓ). The opinion set of 𝑇 is
𝑉 . The partition (Y,N) is induced by `. Given a multiset 𝑥 , let 𝑥 denote its underlying set. We set:

𝑥 ∈ Y ⇐⇒ ` (𝑥) ∈ {⊤𝑝 ,⊤}

Algorithm 3 solves wait-free the task 𝑇Y,N ∈ T𝑛,𝑘,ℓ .

Data: (𝑐𝑖 , 𝑑𝑖) ∈ {1, . . . , 𝑘 + 1} × {1, . . . , 𝑘 + 1}
Result: an opinion from set 𝑉

1 𝐴𝑖 ← ♮𝑘+1;𝑅𝑖 ← ♮𝑘+1 ; /* Construct a partial state according to the input (𝑐𝑖 , 𝑑𝑖) */
2 for 𝑗 = 1 to 𝑘 + 1 do
3 if 𝑐𝑖 = 𝑗 then

4 𝑅𝑖 [𝑗] ← true

5 if 𝑑𝑖 = 𝑗 then

6 𝐴𝑖 [𝑗] ← true

7 𝑠𝑖 ← (𝐴𝑖 , 𝑅𝑖); 𝑣𝑖 ← 𝑀 (𝑠𝑖) ; /* gets a verdict from the monitor algorithm */
8 return 𝑣𝑖

Algorithm 3: Solving a task 𝑇 ∈ T (𝑛, 𝑘, ℓ) using a monitor with verdict set of size ℓ .

Algorithm 3 is wait-free since the underlying monitor 𝑀 is wait-free. Consider an execution
with participating set 𝑃 in which every participating process produces an output (at line 8). Let 𝑥
denote the multiset formed by the outputs, and let 𝑥 its underlying set. Let 𝑠 = (𝐴, 𝑅) denote the
partial state covered by the partial states computed by the participating processes, that is, for every
1 ≤ 𝑗 ≤ 𝑘 + 1,

𝐴[𝑗] =
{
true if ∃𝑖 ∈ 𝑃,𝐴𝑖 [𝑗] = true

♮ otherwise and 𝑅 [𝑗] =
{
true if ∃𝑖 ∈ 𝑃, 𝑅𝑖 [𝑗] = true

♮ otherwise

We consider two cases according to the inputs of the participating processes:

J. ACM, Vol. 0, No. 0, Article 0. Publication date: 0.

Decentralized Asynchronous Crash-Resilient Runtime Verification 0:23

• The inputs of the participating processes represent a valid election. That is,

1 ≤ |{𝑑𝑖 : 𝑖 ∈ 𝑃}| ≤ 𝑘, and {𝑑𝑖 : 𝑖 ∈ 𝑃} ⊆ {𝑐𝑖 : 𝑖 ∈ 𝑃}.
Hence, in 𝑠 = (𝐴, 𝑅), there are at most 𝑘 acknowledgments, and each of them has a matching
request. Recall that the extrapolation function sets the value of each undefined atomic
proposition in 𝑠 to false. Therefore [𝑠 |=4 𝜓𝑘] = ⊤𝑝 (as the trace can extend with 𝑘 + 1
acknowledgments in total). Hence ` (𝑥) = ⊤𝑝 , from which we derive 𝑥 ∈ Y.
• The inputs of the participating processes represent a invalid election. That is,

|{𝑑𝑖 : 𝑖 ∈ 𝑃}| ∈ {0, 𝑘 + 1}, or there exists 𝑘 ∈ 𝑃 s.t. 𝑑𝑘 ∉ {𝑐𝑖 : 𝑖 ∈ 𝑃}.
In 𝑠 = (𝐴, 𝑅), there are no acknowledgments, or 𝑘 + 1 acknowledgments, or some ac-
knowledgments without any matching requests. Therefore [𝑠 |=4 𝜓𝑘] ∈ {⊥𝑝 ,⊥}, and thus
` (𝑥) ∈ {⊥𝑝 ,⊥}, from which we derive 𝑥 ∈ N.

We conclude that Algorithm 3 solves the task 𝑇Y,N wait-free. As 𝑇Y,N ∈ T (𝑛, 𝑘, ℓ), it follows
from Lemma 5.4 that ℓ > min(𝑛, 2𝑘). By Lemma 5.3, altern(𝜓𝑘) = 2𝑘 . Therefore, if the number of
monitors is larger than altern(𝜓𝑘), any correct monitor algorithm for𝜓𝑘 will require a verdict set
of size larger than altern(𝜓𝑘). □

6 MULTI-VALUED LTL FOR CONSISTENT DISTRIBUTED MONITORING
In this section, we introduce a novel multi-valued logic, called dltl for distributed ltl, and we
relate this logic to the notion of alternation number. We establish our main result in this section.
That is, we show that, for every ℓ ≥ 0, and for every ltl formula 𝜑 with alternation number ℓ ,
there are distributed monitors using a verdict set of cardinality 2⌈ℓ/2⌉ + 4 that correctly monitor 𝜑 ,
where each monitor uses an automaton for evaluating 𝜑 in dltl, i.e., dltl with all truth values in

B2 ⌈ℓ/2⌉+4 = {⊤,⊥,⊤0,⊥0, . . . ,⊤ ⌈ℓ/2⌉,⊥ ⌈ℓ/2⌉},
which can be automatically synthesized from 𝜑 .

6.1 Semantics of DLTL
6.1.1 Definition. dltl is directly motivated by distributed monitoring. In some sense, dltl extends
rv-ltl to more than four logical values with an eye on the alternation number. However, as opposed
to rv-ltl, which is motivated by refining the uncertainty regarding what could occur in the future,
dltl is motivated by refining the uncertainty caused by asynchrony and failures.
For instance, let us consider a monitor𝑀 running Algorithm 2, and assume that𝑀 eventually

collected a partial state 𝑠 after having sampled a trace 𝛼 with |𝛼 | = 1, and after having exchanged
information with other monitors. Let us assume that [𝑠 |=3 𝜑] = ? and [𝑠 |=𝐹 𝜑] = ⊤. In rv-ltl,
such a monitor 𝑀 would output ⊤𝑝 as verdict, by Line 12 of Algorithm 2. The objective of dltl
is to refine such a verdict by providing a level of certainty. Indeed, it may well be the case that
some other monitor 𝑀 ′ collected a partial state 𝑠 ′ ≺ 𝑠 , with [𝑠 ′ |=3 𝜑] = ? and [𝑠 ′ |=𝐹 𝜑] = ⊥,
yielding a verdict ⊥𝑝 from that monitor. With rv-ltl verdicts, i.e., verdicts in {⊤,⊤𝑝 ,⊥𝑝 ,⊥}, the
set of verdicts emitted by these two monitors𝑀 and𝑀 ′ would be {⊤𝑝 ,⊥𝑝 }, while the ⊤𝑝 verdict
emitted by𝑀 is somehow more relevant than the verdict ⊥𝑝 emitted by𝑀 ′, because𝑀 has more
information about the system than 𝑀 ′. The objective of dltl is that 𝑀 emits a verdict ⊤𝑖 while
𝑀 ′ emits a verdict ⊥𝑗 , with 𝑖 > 𝑗 , where 𝑖 and 𝑗 are non-negative integers reflecting the degree of
certainty of the verdicts. That is, a verdict ⊤𝑖 is viewed as more certain than a verdict ⊥𝑗 whenever
𝑖 > 𝑗 .

Choosing the right level of certainty at which a verdict must be emitted is at the core of the
definition of dltl below.

J. ACM, Vol. 0, No. 0, Article 0. Publication date: 0.

0:24 Bonakdarpour, et al.

Definition 6.1. Let 𝛼 = 𝛼 ′𝑠 be a finite partial trace in Σ∗, i.e., 𝑠 ∈ Σ = {true, false, ♮}, and 𝛼 ′ ∈ Σ∗.
The truth value in dltl of an ltl formula 𝜑 with respect to 𝛼 , denoted by [𝛼 |=𝐷 𝜑], is defined as
follows:

[𝛼 |=𝐷 𝜑] =

⊤ if [𝛼 |=4 𝜑] = ⊤
⊥ if [𝛼 |=4 𝜑] = ⊥
⊤0 if [𝛼 |=4 𝜑] = ⊤𝑝 ∧ (∀𝑠 ′ ≺ 𝑠 : [𝛼 ′𝑠 ′ |=𝐷 𝜑] = ⊤0)
⊥0 if [𝛼 |=4 𝜑] = ⊥𝑝 ∧ (∀𝑠 ′ ≺ 𝑠 : [𝛼 ′𝑠 ′ |=𝐷 𝜑] = ⊥0)
⊤𝑖 𝑖 > 0 if [𝛼 |=4 𝜑] = ⊤𝑝 ∧ (∃𝑠 ′ ≺ 𝑠 : [𝛼 ′𝑠 ′ |=𝐷 𝜑] = ⊥𝑖−1)

∧ (∀𝑠 ′ ≺ 𝑠, ∃ 𝑗 < 𝑖 : [𝛼 ′𝑠 ′ |=𝐷 𝜑] ∈ {⊤𝑗 ,⊥𝑗 } ∪ {⊤𝑖 })
⊥𝑖 𝑖 > 0 if [𝛼 |=4 𝜑] = ⊥𝑝 ∧ (∃𝑠 ′ ≺ 𝑠 : [𝛼 ′𝑠 ′ |=𝐷 𝜑] = ⊤𝑖−1)

∧ (∀𝑠 ′ ≺ 𝑠, ∃ 𝑗 < 𝑖 : [𝛼 ′𝑠 ′ |=𝐷 𝜑] ∈ {⊤𝑗 ,⊥𝑗 } ∪ {⊥𝑖 })

For ℓ ≥ 0, dltlℓ is the restriction of dltl, with all truth values in Bℓ = {⊤,⊥,⊤0,⊥0, . . . ,⊤ℓ ,⊥ℓ }.

Hence, in the case discussed above of two monitors𝑀 and𝑀 ′ having collected the partial states
𝑠 and 𝑠 ′, respectively, with 𝑠 ′ ≺ 𝑠 ,𝑀 can evaluate 𝑠 in dltl instead of rv-ltl, leading it to output
a verdict ⊤𝑖 , while evaluating 𝑠 ′ in dltl leads 𝑀 ′ to output a verdict ⊥𝑗 , with 𝑖 > 𝑗 . Indeed, the
existence of 𝑠 ′ demonstrates that there exists a partial state 𝑠 ′ ≺ 𝑠 such that [𝑠 ′ |=𝐹 𝜑] ≠ [𝑠 |=𝐹 𝜑],
so𝑀 emits a verdict with more certainty than𝑀 ′. The level 𝑖 is actually the length of the longest
sequence 𝑠0 ≺ 𝑠1 ≺ · · · ≺ 𝑠𝑖 where 𝑠𝑖 = 𝑠 , such that, for every 𝑗 ∈ {0, . . . , 𝑖 − 1}, we have
[𝑠 𝑗 |=𝐹 𝜑] ≠ [𝑠 𝑗+1 |=𝐹 𝜑]. Formally, we have the following:

Lemma 6.2. Let 𝛼 ≠ 𝜖 be a finite partial trace. The alternation number of an ltl formula 𝜑 with
respect to 𝛼 satisfies

altern(𝜑, 𝛼) =
{
0 if [𝛼 |=𝐷 𝜑] ∈ {⊤,⊥}
ℓ if [𝛼 |=𝐷 𝜑] ∈ {⊥ℓ ,⊤ℓ } for some ℓ ≥ 0

Proof. Let 𝜑 be an ltl formula, and let 𝛼 ≠ 𝜖 be a finite partial trace. Also, let 𝛼 = 𝛼 ′𝑠 with
𝛼 ′ ∈ Σ∗ and 𝑠 ∈ Σ. If [𝛼 |=𝐷 𝜑] ∈ {⊤,⊥,⊤0,⊥0}, then altern(𝜑, 𝛼) = 0 because the value of
[𝛼 ′𝑠 ′ |=𝐹 𝜑] is the same for all 𝑠 ′ ⪯ 𝑠 , and thus there are no alternances. The rest of the proof
is by induction on ℓ . Let ℓ > 0, assume that the lemma holds for ℓ − 1, and let us show that
it holds for ℓ . If [𝛼 |=𝐷 𝜑] = ⊤ℓ , then let 𝑠 ′ ≺ 𝑠 such that [𝛼 ′𝑠 ′ |=𝐷 𝜑] = ⊥ℓ−1. By induction,
we get that altern(𝜑, 𝛼 ′𝑠 ′) = ℓ − 1. Moreover, [𝛼 ′𝑠 ′ |=𝐹 𝜑] = ⊥, and [𝛼 ′𝑠 |=𝐹 𝜑] = ⊤, with
𝑠 ′ ≺ 𝑠 . It follows that altern(𝜑, 𝛼 ′𝑠) ≥ ℓ . Moreover, altern(𝜑, 𝛼 ′𝑠) ≤ ℓ because for every 𝑠 ′ ≺ 𝑠 ,
[𝛼 ′𝑠 ′ |=𝐷 𝜑] ∈ {⊤𝑗 ,⊥𝑗 } for some 𝑗 < ℓ , which implies by induction that altern(𝜑, 𝛼 ′𝑠 ′) = 𝑗 < ℓ . It
follows that altern(𝜑, 𝛼 ′𝑠) = ℓ , as claimed. The proof for the case [𝛼 |=𝐷 𝜑] = ⊥ℓ is analogous. □

6.1.2 Reducing the number of logical values in DLTL. Lemma 6.2 provides the intuition that, using
dltl, distributed monitoring an ltl formula with alternation number ℓ ≥ 0 could be done using
verdicts in Bℓ = {⊤,⊥,⊤0,⊥0, . . . ,⊤ℓ ,⊥ℓ }, i.e., using 2ℓ + 4 logical values. While we shall prove
in the next section that this is indeed the case, one can reduce the number of logical values by a
factor of 2. Indeed, let us revisit the case of request-acknowledgment. As we have seen in Section 5,
altern(𝜑ra) = 2, and, as we have seen in Section 4.2, monitoring 𝜑ra using rv-ltl can be done using
verdicts in B4 = {⊤,⊥,⊤𝑝 ,⊥𝑝 }. Instead, Lemma 6.2 suggests that using dltl would require eight
values. This is because dltl defines the relative certainty of verdicts ⊥𝑖 and ⊤𝑗 only for 𝑖 > 𝑗 or
𝑗 < 𝑖 . One can halve the number of logical values in dltl by imposing an arbitrary order also
between the certainties of ⊥𝑖 and ⊤𝑖 . This yields two variants of dltl, respectively called dltl+

J. ACM, Vol. 0, No. 0, Article 0. Publication date: 0.

Decentralized Asynchronous Crash-Resilient Runtime Verification 0:25

and dltl−, depending on whether one imposes ⊤𝑖 more certainty than ⊥𝑖 , or ⊤𝑖 less certainty than
⊥𝑖 , respectively. More formally, these logics are defined as follows.

Definition 6.3. Let 𝛼 = 𝛼 ′𝑠 be a finite partial trace in Σ∗, i.e., 𝑠 ∈ Σ = {true, false, ♮}, and 𝛼 ′ ∈ Σ∗.
The truth value in dltl+ of an ltl formula 𝜑 with respect to 𝛼 , denoted by [𝛼 |=𝐷+ 𝜑], is defined
as follows:

[𝛼 |=𝐷+ 𝜑] =

⊤ if [𝛼 |=4 𝜑] = ⊤
⊥ if [𝛼 |=4 𝜑] = ⊥
⊤0 if [𝛼 |=4 𝜑] = ⊤𝑝 ∧ (∀𝑠 ′ ≺ 𝑠 : [𝛼 ′𝑠 ′ |=𝐷+ 𝜑] ∈ {⊤0,⊥0})
⊥0 if [𝛼 |=4 𝜑] = ⊥𝑝 ∧ (∀𝑠 ′ ≺ 𝑠 : [𝛼 ′𝑠 ′ |=𝐷+ 𝜑] = ⊥0)
⊤𝑖 𝑖 > 0 if [𝛼 |=4 𝜑] = ⊤𝑝 ∧ (∃𝑠 ′ ≺ 𝑠 : [𝛼 ′𝑠 ′ |=𝐷+ 𝜑] ∈ {⊤𝑖 ,⊥𝑖 })

∧ (∀𝑠 ′ ≺ 𝑠, ∃ 𝑗 ≤ 𝑖 : [𝛼 ′𝑠 ′ |=𝐷+ 𝜑] ∈ {⊤𝑗 ,⊥𝑗 })
⊥𝑖 𝑖 > 0 if [𝛼 |=4 𝜑] = ⊥𝑝 ∧ (∃𝑠 ′ ≺ 𝑠 : [𝛼 ′𝑠 ′ |=𝐷+ 𝜑] = ⊤𝑖−1)

∧ (∀𝑠 ′ ≺ 𝑠, ∃ 𝑗 < 𝑖 : [𝛼 ′𝑠 ′ |=𝐷+ 𝜑] ∈ {⊤𝑗 ,⊥𝑗 } ∪ {⊥𝑖 })

Similarly, the truth value in dltl− of an ltl formula 𝜑 with respect to 𝛼 , denoted by [𝛼 |=𝐷− 𝜑], is
defined as follows:

[𝛼 |=𝐷− 𝜑] =

⊤ if [𝛼 |=4 𝜑] = ⊤
⊥ if [𝛼 |=4 𝜑] = ⊥
⊤0 if [𝛼 |=4 𝜑] = ⊤𝑝 ∧ (∀𝑠 ′ ≺ 𝑠 : [𝛼 ′𝑠 ′ |=𝐷− 𝜑]) = ⊤0
⊥0 if [𝛼 |=4 𝜑] = ⊥𝑝 ∧ (∀𝑠 ′ ≺ 𝑠 : [𝛼 ′𝑠 ′ |=𝐷− 𝜑] ∈ {⊤0,⊥0})
⊤𝑖 𝑖 > 0 if [𝛼 |=4 𝜑] = ⊤𝑝 ∧ (∃𝑠 ′ ≺ 𝑠 : [𝛼 ′𝑠 ′ |=𝐷− 𝜑] = ⊥𝑖−1

∧ (∀𝑠 ′ ≺ 𝑠, ∃ 𝑗 < 𝑖 : [𝛼 ′𝑠 ′ |=𝐷− 𝜑] ∈ {⊤𝑗 ,⊥𝑗 } ∪ {⊤𝑖 })
⊥𝑖 𝑖 > 0 if [𝛼 |=4 𝜑] = ⊥p ∧ (∃𝑠 ′ ≺ 𝑠 : [𝛼 ′𝑠 ′ |=𝐷− 𝜑] ∈ {⊤𝑖 ,⊥𝑖 }))

∧ (∀𝑠 ′ ≺ 𝑠, ∃ 𝑗 ≤ 𝑖 : [𝛼 ′𝑠 ′ |=𝐷− 𝜑] ∈ {⊤𝑗 ,⊥𝑗 })

It follows from these definitions that dltl+ induces the following order between the logical
values:

⊥0 < ⊤0 < ⊥1 < ⊤1 < · · · < ⊤𝑖−1 < ⊥𝑖 < ⊤𝑖 < ⊥𝑖+1 < . . .

while dltl− induces

⊤0 < ⊥0 < ⊤1 < ⊥1 < · · · < ⊥𝑖−1 < ⊤𝑖 < ⊥𝑖 < ⊤𝑖+1 < . . .

The following lemma illustrates the gain in terms of the number of logical values with respect to
the alternation number, in comparison with Lemma 6.2. Recall that 𝑠♮ denotes the partial state in
which none of the atomic propositions is known.

Lemma 6.4. Let 𝛼 = 𝛼 ′𝑠 , with 𝛼 ′ ∈ Σ∗ and 𝑠 ∈ Σ, be a finite partial trace. The alternation number
of an ltl formula 𝜑 with respect to 𝛼 satisfies the following two equalities:

altern(𝜑, 𝛼) =

0 if [𝛼 |=𝐷+ 𝜑] ∈ {⊤,⊥}
2ℓ + 1 if ([𝛼 |=𝐷+ 𝜑] = ⊤ℓ) ∧ ([𝛼 ′𝑠♮ |=𝐹 𝜑] = ⊥)
2ℓ if

(
([𝛼 |=𝐷+ 𝜑] = ⊤ℓ) ∧ ([𝛼 ′𝑠♮ |=𝐹 𝜑] = ⊤)

)
∨

(
([𝛼 |=𝐷+ 𝜑] = ⊥ℓ) ∧ ([𝛼 ′𝑠♮ |=𝐹 𝜑] = ⊥)

)
2ℓ − 1 if ([𝛼 |=𝐷+ 𝜑] = ⊥ℓ) ∧ ([𝛼 ′𝑠♮ |=𝐹 𝜑] = ⊤)

J. ACM, Vol. 0, No. 0, Article 0. Publication date: 0.

0:26 Bonakdarpour, et al.

altern(𝜑, 𝛼) =

0 if [𝛼 |=𝐷− 𝜑] ∈ {⊤,⊥}
2ℓ + 1 if ([𝛼 |=𝐷− 𝜑] = ⊥ℓ) ∧ ([𝛼 ′𝑠♮ |=𝐹 𝜑] = ⊤)
2ℓ if

(
([𝛼 |=𝐷− 𝜑] = ⊥ℓ) ∧ ([𝛼 ′𝑠♮ |=𝐹 𝜑] = ⊥)

)
∨

(
([𝛼 |=𝐷− 𝜑] = ⊤ℓ) ∧ ([𝛼 ′𝑠♮ |=𝐹 𝜑] = ⊤)

)
2ℓ − 1 if ([𝛼 |=𝐷− 𝜑] = ⊤ℓ) ∧ ([𝛼 ′𝑠♮ |=𝐹 𝜑] = ⊥)

Proof. Let 𝜑 be an ltl formula, and let 𝛼 = 𝛼 ′𝑠 be a finite partial trace. We first consider the
statement for dltl+. If [𝛼 |=𝐷+ 𝜑] ∈ {⊤,⊥}, then altern(𝜑, 𝛼) = 0 because the value of [𝛼 ′𝑠 ′ |=𝐹 𝜑]
is the same for all 𝑠 ′ ⪯ 𝑠 , and thus there are no alternances. From this point on, we assume that
[𝛼 |=𝐷+ 𝜑] ∉ {⊤,⊥}. The rest of the proof is by induction on ℓ , where the reasoning below applies
both to the base case ℓ = 0, and to the inductive case for ℓ ≥ 1. Let ℓ ≥ 0.
If [𝛼 |=𝐷+ 𝜑] = ⊤ℓ , then let 𝑠 ′ ≺ 𝑠 such that [𝛼 ′𝑠 ′ |=𝐷+ 𝜑] ∈ {⊤ℓ ,⊥ℓ }, and 𝑠 ′ is minimal for

this property, i.e., for every 𝑠 ′′ ≺ 𝑠 ′, we have [𝛼 ′𝑠 ′′ |=𝐷+ 𝜑] ∉ {⊤ℓ ,⊥ℓ }. Minimality implies that
[𝛼 ′𝑠 ′ |=𝐷 𝜑] = ⊥ℓ . Thus, let 𝑠 ′′ ≺ 𝑠 ′ such that [𝛼 ′𝑠 ′′ |=𝐷 𝜑] = ⊤ℓ−1. By induction, we get that
altern(𝜑, 𝛼 ′𝑠 ′′) = 2ℓ − 1 or 2ℓ − 2, depending on whether [𝛼 ′𝑠♮ |=𝐹 𝜑] = ⊥ or ⊤, respectively.
Moreover, [𝛼 ′𝑠 ′′ |=𝐹 𝜑] = ⊤, [𝛼 ′𝑠 ′ |=𝐹 𝜑] = ⊥, and [𝛼 ′𝑠 |=𝐹 𝜑] = ⊤, with 𝑠 ′′ ≺ 𝑠 ′ ≺ 𝑠 . It follows
that altern(𝜑, 𝛼 ′𝑠) ≥ 2ℓ + 1 if [𝛼 ′𝑠♮ |=𝐹 𝜑] = ⊥, and altern(𝜑, 𝛼 ′𝑠) ≥ 2ℓ if [𝛼 ′𝑠♮ |=𝐹 𝜑] = ⊤.
Moreover, altern(𝜑, 𝛼 ′𝑠) cannot be strictly greater than these respective bounds because, for every
𝑠 ′ ≺ 𝑠 , there exists 𝑗 ≤ ℓ such that [𝛼 ′𝑠 ′ |=𝐷+ 𝜑] ∈ {⊤𝑗 ,⊥𝑗 }, which implies that 𝜑 cannot alternate
more than 2ℓ + 1 (resp., 2ℓ) times with respect to 𝛼 when [𝛼 ′𝑠♮ |=𝐹 𝜑] = ⊥ (resp., [𝛼 ′𝑠♮ |=𝐹 𝜑] = ⊤).
If [𝛼 |=𝐷 𝜑] = ⊥ℓ , then let 𝑠 ′ ≺ 𝑠 such that [𝛼 ′𝑠 ′ |=𝐷+ 𝜑] = ⊤ℓ−1. By induction, we get that

altern(𝜑, 𝛼 ′𝑠 ′) = 2ℓ − 2 or 2ℓ − 3, depending on whether [𝛼 ′𝑠♮ |=𝐹 𝜑] = ⊤ or ⊥, respectively.
Moreover, [𝛼 ′𝑠 ′ |=𝐹 𝜑] = ⊤, and [𝛼 ′𝑠 |=𝐹 𝜑] = ⊥, with 𝑠 ′ ≺ 𝑠 . It follows that altern(𝜑, 𝛼 ′𝑠) ≥ 2ℓ if
[𝛼 ′𝑠♮ |=𝐹 𝜑] = ⊥, and altern(𝜑, 𝛼 ′𝑠) ≥ 2ℓ − 1 if [𝛼 ′𝑠♮ |=𝐹 𝜑] = ⊤. Moreover, since, for every 𝑠 ′ ≺ 𝑠 ,
there exists 𝑗 < ℓ such that [𝛼 ′𝑠 ′ |=𝐷+ 𝜑] ∈ {⊤𝑗 ,⊥𝑗 }, it follows that 𝜑 cannot alternate more than
2ℓ (resp., 2ℓ − 1) times with respect to 𝛼 when [𝛼 ′𝑠♮ |=𝐹 𝜑] = ⊥ (resp., [𝛼 ′𝑠♮ |=𝐹 𝜑] = ⊤).

This completes the proof for dltl+. The proof for dltl− is analogous, and thus omitted. □

As shown in Section 5.1, we have altern(𝜑ra) = 2 with the sequence(
𝑟

𝑎

)
=

(
♮

♮

)
,

(
♮

true

)
,

(
true

true

)
which evaluate to⊤,⊥,⊤, respectively, in fltl (assuming every atomic proposition ♮ is extrapolated
to false). Also, we have seen in Section 4.2 that 𝜑ra can be distributedly monitored using rv-ltl.
For this, we used an interpretation function ` that returns ⊥𝑝 when applied to the set {⊤𝑝 ,⊥𝑝 }.
This can be put in correspondence with using dltl−0 , with an interpretation function ` that simply
returns the logical value with highest certainty in dltl−, i.e., ⊥0 for the set {⊤0,⊥0}. We use such
type of interpretation functions in our main theorem, stated in the next section.

6.2 Monitorability and Monitor Synthesis for DLTL
We have now all the ingredients to present our main result.

Theorem 6.5. For every ℓ ≥ 0, and for every ltl formula 𝜑 with altern(𝜑) = ℓ , there are distributed
monitors using verdict set B2 ⌈ℓ/2⌉+4 = {⊥,⊤,⊥0,⊤0, . . . ,⊥ ⌈ℓ/2⌉,⊤ ⌈ℓ/2⌉} that correctly monitor 𝜑 . Each
monitor uses an automaton for evaluating 𝜑 in dltl+⌈ℓ/2⌉ , which can be automatically synthesized
from 𝜑 .

Proof. Let ℓ ≥ 0, and let 𝜑 be an ltl formula with altern(𝜑) = ℓ . We first show that 𝜑 can
be correctly monitored by a set of monitors using dltl. Later in the proof, we will show how to

J. ACM, Vol. 0, No. 0, Article 0. Publication date: 0.

Decentralized Asynchronous Crash-Resilient Runtime Verification 0:27

reduce the number of logical values, by using dltl+. (Using dltl− would also achieve this, and we
have chosen dltl+ arbitrarily — see discussion after the proof.) The algorithm performed by each
monitor is given in Algorithm 4. This algorithm performs the same instructions as Algorithm 2,
but evaluates the collected partial trace in dltl instead of rv-ltl.

Data: ltl formula 𝜑 with altern(𝜑) = ℓ , and state 𝑠𝑘 , 𝑘 ≥ 0
Result: a verdict from B2ℓ+4

1 perform instructions of Lines 1–11 in Algorithm 2 ; /* sample, write, read, and update */
2 emit [lm𝑖 [0]lm𝑖 [1] · · · lm𝑖 [𝑘] |=𝐷 𝜑] ; /* 𝑀𝑖 evaluates trace lm𝑖 [0] · · · lm𝑖 [𝑘] in dltl */

Algorithm 4: Behavior of Monitor𝑀𝑖 , 𝑖 ∈ [1, 𝑛], using dltl.

Let B∞ = {⊤,⊥} ∪ (∪𝑖≥0{⊤𝑖 ,⊥𝑖 }) . The interpretation function

` : 2B∞ → B4
interprets any finite set𝑚 ∈ 2B∞ of logical values in dltl returned by the monitors as the truth
value of rv-ltl corresponding to the highest index 𝑖 for which𝑚 ∩ {⊤𝑖 ,⊥𝑖 } ≠ ∅ — we will show
that, for every 𝑖 , ⊥𝑖 and ⊤𝑖 cannot be both in 𝑚, and that ⊥ and ⊤ cannot be both in 𝑚. More
specifically, for every finite set𝑚 ⊆ 2B∞ , we define

` (𝑚) =

⊤ if ⊤ ∈𝑚;
⊥ if ⊥ ∈𝑚;
⊤𝑝 if𝑚 ∩ {⊤,⊥} = ∅, and

(
∃𝑖 ≥ 0 : ⊤𝑖 ∈𝑚, and ∀𝑗 ≥ 0, ⊥𝑗 ∈𝑚 ⇒ 𝑗 < 𝑖

)
;

⊥𝑝 if𝑚 ∩ {⊤,⊥} = ∅, and
(
∃𝑖 ≥ 0 : ⊥𝑖 ∈𝑚, and ∀𝑗 ≥ 0, ⊤𝑗 ∈𝑚 ⇒ 𝑗 < 𝑖

)
.

Let us show that, for every finite partial trace 𝛼 = 𝑠0𝑠1 · · · 𝑠𝑘 with 𝑘 ≥ 0, if𝑚 is a set of values
returned by the monitors for 𝛼 , then

` (𝑚) = [𝛼 |=4 𝜑] .

Recall that every state 𝑠𝑖 in 𝛼 might be a partial state, defined as the partial state covered by all the
non-faulty monitors during the 𝑖th execution of Algorithm 4 (i.e., the execution of the algorithm on
𝑠0𝑠1 · · · 𝑠𝑖). Also recall that, at the beginning of each execution of Algorithm 4, say at phase 𝑖 , every
monitor takes a snapshot of the shared memory in order to get the entire partial state 𝑠𝑖−1. That is,
when the monitors start executing Algorithm 4 for state 𝑠𝑘 , they all agree on the trace 𝑠0𝑠1 · · · 𝑠𝑘−1.
On the other hand, the monitors may get different samples of 𝑠𝑘 , and, because of asynchrony, may
have to emit a verdict based on different perspectives on the state 𝑠𝑘 . To sum up, for every 𝑖 ≠ 𝑗 ,
we have

lm𝑖 [0]lm𝑖 [1] · · · lm𝑖 [𝑘 − 1] = lm𝑗 [0]lm𝑗 [1] · · · lm𝑗 [𝑘 − 1] = 𝑠0𝑠1 · · · 𝑠𝑘−1,

while it may be the case that
lm𝑖 [𝑘] ≠ lm𝑗 [𝑘] ≠ 𝑠𝑘 .

On the other hand, by Lemma 3.4, the monitor𝑀𝑖 that performs the snapshot last (i.e., the snapshot
in Line 8 of Algorithm 2) satisfies

lm𝑖 [𝑘] = 𝑠𝑘 .

The verdict of this monitor is [lm𝑖 [0]lm𝑖 [1] · · · lm𝑖 [𝑘] |=𝐷 𝜑], that is, precisely

[𝑠0𝑠1 · · · 𝑠𝑘 |=𝐷 𝜑] .

J. ACM, Vol. 0, No. 0, Article 0. Publication date: 0.

0:28 Bonakdarpour, et al.

By definition of dltl, this verdict agrees with rv-ltl, in the following sense:
[𝑠0𝑠1 · · · 𝑠𝑘 |=4 𝜑] = ⊤ ⇐⇒ [𝑠0𝑠1 · · · 𝑠𝑘 |=𝐷 𝜑] = ⊤
[𝑠0𝑠1 · · · 𝑠𝑘 |=4 𝜑] = ⊥ ⇐⇒ [𝑠0𝑠1 · · · 𝑠𝑘 |=𝐷 𝜑] = ⊥
[𝑠0𝑠1 · · · 𝑠𝑘 |=4 𝜑] = ⊤𝑝 ⇐⇒ [𝑠0𝑠1 · · · 𝑠𝑘 |=𝐷 𝜑] = ⊤𝑖 with 𝑖 ≥ 0
[𝑠0𝑠1 · · · 𝑠𝑘 |=4 𝜑] = ⊥𝑝 ⇐⇒ [𝑠0𝑠1 · · · 𝑠𝑘 |=𝐷 𝜑] = ⊥𝑖 with 𝑖 ≥ 0

Moreover, by the extensions of ltl3 and fltl to partial traces in Section 3.2, if
[𝑠0𝑠1 · · · 𝑠𝑘 |=𝐷 𝜑] = ⊤

then there are no 𝑠 ′
𝑘
≺ 𝑠𝑘 such that [𝑠0𝑠1 · · · 𝑠 ′𝑘 |=𝐷 𝜑] = ⊥. Similarly, if [𝑠0𝑠1 · · · 𝑠𝑘 |=𝐷 𝜑] = ⊥ then

there are no 𝑠 ′
𝑘
≺ 𝑠𝑘 such that [𝑠0𝑠1 · · · 𝑠 ′𝑘 |=𝐷 𝜑] = ⊤. Also, by definition of dltl, if

[𝑠0𝑠1 · · · 𝑠𝑘 |=𝐷 𝜑] = ⊤𝑖
then, for every 𝑠 ′

𝑘
≺ 𝑠𝑘 , we have either

[𝑠0𝑠1 · · · 𝑠 ′𝑘 |=𝐷 𝜑] = ⊤𝑖 or [𝑠0𝑠1 · · · 𝑠 ′𝑘 |=𝐷 𝜑] ∈ {⊥𝑗 ,⊤𝑗 }
for some 𝑗 < 𝑖 . Similarly, if [𝑠0𝑠1 · · · 𝑠𝑘 |=𝐷 𝜑] = ⊥𝑖 , then, for every 𝑠 ′

𝑘
≺ 𝑠𝑘 , we have either

[𝑠0𝑠1 · · · 𝑠 ′𝑘 |=𝐷 𝜑] = ⊥𝑖 or [𝑠0𝑠1 · · · 𝑠 ′𝑘 |=𝐷 𝜑] ∈ {⊥𝑗 ,⊤𝑗 } for some 𝑗 < 𝑖 . It follows that ` (𝑚) =
[𝛼 |=4 𝜑], as desired.
By Lemma 6.2, if 𝜑 satisfies altern(𝜑) = ℓ , then all verdicts are in B2ℓ+4. Reducing the number of

logical values, from 2 altern(𝜑)+4 to 2⌈altern(𝜑)/2⌉+4 is achieved by replacing the evaluation of the
trace in dltl at each monitor, by an evaluation in dltl+. By Lemma 6.4, if 𝜑 satisfies altern(𝜑) = ℓ ,
then all verdicts are in B2 ⌈ℓ/2⌉+4.

To complete the proof, we show how, given any ltl formula, each monitor can evaluate a partial
finite trace 𝛼 = 𝑠0𝑠1 · · · , 𝑠𝑘 in dltl+. Let

M = (Σ, 𝑄, 𝑞0, 𝛿, _)
be the rv-ltl automaton for 𝜑 . We have

_(𝛿 (𝑞0, 𝛼)) = [𝛼 |=4 𝜑]
for every finite trace 𝛼 ∈ Σ∗ (see Fig. 1 for an example of such an automaton). In other words, the
prefix 𝛼 ′ = 𝑠0𝑠1 · · · , 𝑠𝑘−1 of the execution is fully encoded in the state 𝛿 (𝑞0, 𝛼 ′) reached inM after
having executed the 𝑘 transitions induced by 𝛼 ′. In particular, for any two 𝛽𝑖 ∈ Σ∗, 𝑖 ∈ {1, 2}, if
𝛿 (𝑞0, 𝛽1) = 𝛿 (𝑞0, 𝛽2) then, for any 𝑠 ∈ Σ,

altern(𝜑, 𝛽1𝑠) = altern(𝜑, 𝛽2𝑠).
Therefore, to let monitors evaluate [𝛼 ′𝑠𝑘 |=𝐷+ 𝜑], it is sufficient to provide each monitor with a
table Λ containing |𝑄 | × |Σ| entries in {0, 1, . . . , ⌈altern(𝜑)/2⌉}, where we define:

Λ[𝑞, 𝑠] = altern(𝜑, 𝛽𝑠)
for any 𝛽 ∈ Σ∗ satisfying 𝛿 (𝑞0, 𝛽) = 𝑞. Indeed, for 𝛼 = 𝑠0𝑠1 · · · 𝑠𝑘 and 𝛼 ′ = 𝑠0𝑠1 · · · 𝑠𝑘−1, let

𝑞 = 𝛿 (𝑞0, 𝛼) and 𝑞′ = 𝛿 (𝑞0, 𝛼 ′).
Then we have

[𝛼 |=𝐷+ 𝜑] =

_(𝑞) if _(𝑞) ∈ {⊤,⊥}
⊤ ⌈ℓ/2⌉ if _(𝑞) = ⊤𝑝 , where ℓ = Λ[𝑞′, 𝑠𝑘]
⊥ ⌈ℓ/2⌉ if _(𝑞) = ⊥𝑝 , where ℓ = Λ[𝑞′, 𝑠𝑘]

In other words, given the rv-ltl automaton for 𝜑 , and given the lookup table Λ, every monitor can
evaluate every trace 𝛼 in dltl+. □

J. ACM, Vol. 0, No. 0, Article 0. Publication date: 0.

Decentralized Asynchronous Crash-Resilient Runtime Verification 0:29

Remarks. It is worth pointing out that the number of logical values used by the monitors in
Theorem 6.5 can be further reduced, but by an additive factor only, under some specific conditions,
including the following scenarios. We also note that one significance of Theorem 6.5 is that safety
formulas can be efficiently monitored with only four truth values. In general, formulas with only
one temporal operator need this many truth values to be consistently monitored. We should also
mention that the size of a dltl monitor is the size of its corresponding rv-ltlmonitor times ℓ (one
rv-ltl monitor per alternation).
• Let us consider an ltl formula 𝜑 , with altern(𝜑) = ℓ odd. Let us also assume that, for every
finite trace 𝛼 such that there exists a sequence 𝑠0 ≺ 𝑠1 ≺ · · · ≺ 𝑠ℓ of partial states satisfying
[𝛼𝑠𝑖 |=𝐹 𝜑] ≠ [𝛼𝑠𝑖+1 |=𝐹 𝜑] for every 𝑖 ∈ {0, . . . , ℓ − 1}, we have [𝛼𝑠♮ |=𝐹 𝜑] = ⊥. Then
the number of truth values used by dltl+ is not 2⌈ℓ/2⌉ + 4 but only 2⌊ℓ/2⌋ + 4. Similarly, if
[𝛼𝑠♮ |=𝐹 𝜑] = ⊤ for every finite trace 𝛼 such that there exists a sequence 𝑠0 ≺ 𝑠1 ≺ · · · ≺ 𝑠ℓ
of partial states satisfying [𝛼𝑠𝑖 |=𝐹 𝜑] ≠ [𝛼𝑠𝑖+1 |=𝐹 𝜑] for every 𝑖 ∈ {0, . . . , ℓ − 1}, then, using
dltl− instead of dltl+ yields using only 2⌊ℓ/2⌋ + 4 truth values, instead of 2⌈ℓ/2⌉ + 4.
• Let us consider an ltl formula 𝜑 , with altern(𝜑) = ℓ even. Let us also assume that, for every
finite trace 𝛼 such that there exists a sequence 𝑠0 ≺ 𝑠1 ≺ · · · ≺ 𝑠ℓ of partial states satisfying
[𝛼𝑠𝑖 |=𝐹 𝜑] ≠ [𝛼𝑠𝑖+1 |=𝐹 𝜑] for every 𝑖 ∈ {0, . . . , ℓ − 1}, we have

[𝛼𝑠♮ |=𝐹 𝜑] = ⊥, and [𝛼𝑠ℓ |=3 𝜑] = ⊤

for all such sequences (note that the evaluation of 𝛼𝑠ℓ is performed in ltl3). An example of
such a situation is 𝜑ra. Its alternation number is 2, and every sequence 𝑠0 ≺ 𝑠1 ≺ 𝑠2 alternating
twice satisfies [𝛼𝑠0 |=𝐹 𝜑ra] = ⊥ with 𝑠0 =

(♮
♮

)
, and [𝛼𝑠2 |=3 𝜑ra] = ⊤ with 𝑠2 =

(
𝑡𝑟𝑢𝑒
𝑡𝑟𝑢𝑒

)
. In such

a scenario, the truth values of highest certainty, ⊤ℓ and ⊥ℓ , can be discarded whenever using
dltl− instead of dltl+, saving two truth values. That is, one can restrict the truth values to be
in Bℓ/2+2 = {⊤,⊥,⊤0,⊥0, . . . ,⊤ℓ/2−1,⊥ℓ/2−1}. In the particular case of 𝜑ra, one can therefore
restrict the truth values to be in B4 = {⊤,⊥,⊤0,⊥0}, as it was previously established in
Section 4.2.

7 CONCLUSION
We have established a tight (up to a small additive constant) bound on the cardinality of the set
of verdicts from which a collection of asynchronous crash-prone monitors pick their individual
verdicts for monitoring an ltl formula 𝜑 in a distributed manner. This cardinality is related
to the alternation number, altern(𝜑), of the formula. We showed that, for every ℓ ≥ 0, every
ltl formula 𝜑 with altern(𝜑) = ℓ can be monitored by distributed monitors with verdicts in
B2 ⌈ℓ/2⌉ = {⊥,⊤,⊥0,⊤0, . . . ,⊤2 ⌈ℓ/2⌉,⊥2 ⌈ℓ/2⌉}, and each verdict results from evaluating the observed
partial trace in the multi-valued logic dltl+. The bound on the size of the verdict set is (almost)
tight, in the sense that, for every ℓ ≥ 0, there exists an ltl formula 𝜑 with altern(𝜑) = ℓ such that,
for every set 𝑉 with |𝑉 | ≤ ℓ , 𝜑 cannot be monitored by distributed monitors with verdicts in 𝑉 .
For establishing these results, we impose two restrictions. First, we assume that all operations

performed by the distributed monitors (sampling the current state, exchanging information with
the other monitors, and producing the verdict) can be performed between two changes of states by
the monitored system. Second, we specify distributed monitoring by imposing global consistency
of the set𝑚𝑘 of verdicts with respect to the centralized evaluation of the actual trace 𝑠0𝑠1 · · · 𝑠𝑘 in
rv-ltl, by requiring equality ` (𝑚𝑘) = [𝑠0𝑠1 . . . 𝑠𝑘 |=4 𝜑] between the interpretation ` (𝑚𝑘) and the
evaluation of 𝑠0𝑠1 · · · 𝑠𝑘 in rv-ltl, only for verdicts produced in the absence of crashes during the
monitoring of 𝑠𝑘 . This latter restriction appears natural, and perhaps even unavoidable because,
otherwise, the distributed monitors and the centralized monitor deal with different traces, which

J. ACM, Vol. 0, No. 0, Article 0. Publication date: 0.

0:30 Bonakdarpour, et al.

are inherently incomparable. On the other hand, it might be desirable to relax the former restriction
because such an assumption might not always be satisfied in practice, in particular by rapidly
evolving systems. Getting rid of this assumption seems however challenging, as one would have to
deal not only with issues caused by asynchrony between monitors with different partial views of
a same state, but also with issues caused by asynchrony between monitors with partial views of
different states. Reconciliation of such views looks difficult. Nevertheless, this opens a challenging,
but rewarding direction for future work.

Another challenging problem in the context of fault-tolerant distributed monitoring is to consider
other types of faults, namely, Byzantine faults. These faults may arbitrarily change the output of
individual monitors, i.e., their verdicts. It is unclear how a collection of faulty monitors that may
misrepresent their partial view of the system can be transformed into a sound single verdict that a
correct centralized monitor would produce. This problem can also open an entirely new line of
research to deal with distributed monitoring in the presence of faults and security attacks.

REFERENCES
[1] Yehuda Afek, Hagit Attiya, Danny Dolev, Eli Gafni, Michael Merritt, and Nir Shavit. 1993. Atomic snapshots of shared

memory. J. ACM 40, 4 (1993), 873–890.
[2] James Aspnes, Hagit Attiya, Keren Censor-Hillel, and Faith Ellen. 2015. Limited-Use Atomic Snapshots with Polyloga-

rithmic Step Complexity. J. ACM 62, 1 (2015), 3:1–3:22. https://doi.org/10.1145/2732263
[3] Hagit Attiya, Amotz Bar-Noy, and Danny Dolev. 1995. Sharing Memory Robustly in Message-Passing Systems. J.

ACM 42, 1 (1995), 124–142. https://doi.org/10.1145/200836.200869
[4] Hagit Attiya, Sweta Kumari, Archit Somani, and Jennifer L. Welch. 2022. Store-collect in the presence of continuous

churn with application to snapshots and lattice agreement. Information and Computation (2022), 104869. https:
//doi.org/10.1016/j.ic.2022.104869

[5] Hagit Attiya and Ophir Rachman. 1998. Atomic Snapshots in𝑂 (𝑛 log𝑛) Operations. SIAM J. Comput. 27, 2 (1998),
319–340. https://doi.org/10.1137/S0097539795279463

[6] Hagit Attiya and Jennifer Welch. 2004. Distributed Computing: Fundamentals, Simulations, and Advanced Topics. Wiley.
[7] A. Bauer, M. Leucker, and C. Schallhart. 2010. Comparing LTL Semantics for Runtime Verification. Journal of Logic

and Computation 20, 3 (2010), 651–674.
[8] A. Bauer, M. Leucker, and C. Schallhart. 2011. Runtime Verification for LTL and TLTL. ACM Transactions on Software

Engineering and Methodology (TOSEM) 20, 4 (2011), 14.
[9] A. K. Bauer and Y. Falcone. 2012. Decentralised LTL Monitoring. In Proceedings of the 18th International Symposium on

Formal Methods (FM). 85–100.
[10] S. Berkovich, B. Bonakdarpour, and S. Fischmeister. 2013. GPU-based Runtime Verification. In Proceedings of the 27th

IEEE International Parallel and Distributed Processing Symposium (IPDPS). 1025–1036.
[11] Glenn Bruns and Patrice Godefroid. 1999. Model Checking Partial State Spaces with 3-Valued Temporal Logics. In 11th

International Conference on Computer Aided Verification (CAV). 274–287. https://doi.org/10.1007/3-540-48683-6_25
[12] Glenn Bruns and Patrice Godefroid. 2000. Generalized Model Checking: Reasoning about Partial State Spaces. In 11th

International Conference on Concurrency Theory (CONCUR). 168–182. https://doi.org/10.1007/3-540-44618-4_14
[13] H. Chauhan, V. K. Garg, A. Natarajan, and N. Mittal. 2013. A Distributed Abstraction Algorithm for Online Predicate

Detection. In Proceedings of the 32nd IEEE Symposium on Reliable Distributed Systems (SRDS). 101–110.
[14] C. Colombo and Y. Falcone. 2014. Organising LTLMonitors over Distributed Systems with a Global Clock. In Proceedings

of the 14th International Conference on Runtime Verification (RV). 140–155.
[15] Carole Delporte-Gallet, Hugues Fauconnier, Sergio Rajsbaum, and Michel Raynal. 2018. Implementing Snapshot

Objects on Top of Crash-Prone Asynchronous Message-Passing Systems. IEEE Transactions on Parallel and Distributed
Systems 29, 9 (2018), 2033–2045. https://doi.org/10.1109/TPDS.2018.2809551

[16] M. B. Dwyer, G. S. Avrunin, and J. C. Corbett. 1999. Patterns in property specifications for finite-state verification. In
International Conference on Software Engineering (ICSE). 411 –420.

[17] M. J. Fischer, N. .A. Lynch, and M. S. Peterson. 1985. Impossibility of distributed consensus with one faulty processor.
J. ACM 32, 2 (1985), 373–382.

[18] Pierre Fraigniaud, Sergio Rajsbaum, Matthieu Roy, and Corentin Travers. 2014. The Opinion Number of Set-Agreement.
In Proceedings of the 18th International Conference on Principles of Distributed Systems (OPODIS). 155–170.

[19] Pierre Fraigniaud, Sergio Rajsbaum, and Corentin Travers. 2013. Locality and checkability in wait-free computing.
Distributed Computing 26, 4 (2013), 223–242. https://doi.org/10.1007/s00446-013-0188-x

J. ACM, Vol. 0, No. 0, Article 0. Publication date: 0.

https://doi.org/10.1145/2732263
https://doi.org/10.1145/200836.200869
https://doi.org/10.1016/j.ic.2022.104869
https://doi.org/10.1016/j.ic.2022.104869
https://doi.org/10.1137/S0097539795279463
https://doi.org/10.1007/3-540-48683-6_25
https://doi.org/10.1007/3-540-44618-4_14
https://doi.org/10.1109/TPDS.2018.2809551
https://doi.org/10.1007/s00446-013-0188-x

Decentralized Asynchronous Crash-Resilient Runtime Verification 0:31

[20] P. Fraigniaud, S. Rajsbaum, and C. Travers. 2014. On the Number of Opinions Needed for Fault-Tolerant Run-Time
Monitoring in Distributed Systems. In Proceedings of the 5th International Conference on Runtime Verification (RV).
92–107.

[21] R. Ganguly, A. Momtaz, and B. Bonakdarpour. 2020. Distributed Runtime Verification under Partial Asynchrony. In
Proceedings of the 24nd International Conference on Principles of Distributed Systems (OPODIS). 20:1–20:17.

[22] M.H. Herlihy, D. Kozlov, and S. Rajsbaum. 2013. Distributed Computing Through Combinatorial Topology. Morgan
Kaufmann-Elsevier.

[23] Michiko Inoue andWei Chen. 1994. Linear-Time Snapshot UsingMulti-writerMulti-reader Registers. In 8th International
Workshop on Distributed Algorithms (WDAG). 130–140. https://doi.org/10.1007/BFb0020429

[24] Z. Manna and A. Pnueli. 1995. Temporal verification of reactive systems - safety. Springer.
[25] N. Mittal and V. K. Garg. 2005. Techniques and applications of computation slicing. Distributed Computing 17, 3 (2005),

251–277.
[26] M. Mostafa and B. Bonakdarpour. 2015. Decentralized Runtime Verification of LTL Specifications in Distributed

Systems. In Proceedings of the 29th International Parallel and Distributed Processing Symposium (IPDPS). 494–503.
[27] V. A. Ogale and V. K. Garg. 2007. Detecting Temporal Logic Predicates on Distributed Computations. In Proceedings of

the 21st International Symposium on Distributed Computing (DISC). 420–434.
[28] A. Pnueli. 1977. The Temporal Logic of Programs. In Symposium on Foundations of Computer Science (FOCS). 46–57.
[29] A. Pnueli and A. Zaks. 2006. PSL Model Checking and Run-Time Verification via Testers. In 14th Int. Symp. on Formal

Methods (FM). 573–586.
[30] A. Sen and V. K. Garg. 2004. Detecting Temporal Logic Predicates in Distributed Programs Using Computation Slicing.

In Principles of Distributed Systems. 171–183.
[31] K. Sen, A. Vardhan, G. Agha, and G. Rosu. 2004. Efficient Decentralized Monitoring of Safety in Distributed Systems.

In Proceedings of the 26th International Conference on Software Engineering (ICSE). 418–427.

J. ACM, Vol. 0, No. 0, Article 0. Publication date: 0.

https://doi.org/10.1007/BFb0020429

	Abstract
	1 Introduction
	1.1 Context
	1.2 Our Results
	1.3 Related Work
	1.4 Organization

	2 Background
	2.1 Linear Temporal Logic (LTL)
	2.2 Logics for Runtime Verification

	3 Distributed Fault-Tolerant Monitoring
	3.1 General Objective
	3.2 LTL on Partial Traces
	3.3 A Generic Algorithm for Distributed Monitoring
	3.4 Statement of the Problem

	4 Distributed Monitoring Using RV-LTL
	4.1 Distributed Monitoring with Verdicts in RV-LTL
	4.2 A Positive Example for Distributed Monitoring using RV-LTL
	4.3 A Counterexample to Distributed Monitoring Using RV-LTL

	5 Distributed Monitoring Requires Large Verdict Sets
	5.1 Alternation Number
	5.2 The Impact of Alternation Number on Distributed Monitoring

	6 Multi-Valued LTL for Consistent Distributed Monitoring
	6.1 Semantics of DLTL
	6.2 Monitorability and Monitor Synthesis for DLTL

	7 Conclusion
	References

