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Abstract A shared-memory counter is a widely-used

and well-studied concurrent object. It supports two op-

erations: An Inc operation that increases its value by

1 and a Read operation that returns its current value.

In [JTT00], Jayanti, Tan and Toueg proved a linear

lower bound on the worst-case step complexity of ob-

struction-free implementations, from read-write regis-

ters, of a large class of shared objects that includes

counters. The lower bound leaves open the question of

finding counter implementations with sub-linear amor-

tized step complexity.

In this work, we address this gap. We show that

n-process, wait-free and linearizable counters can be

implemented from read-write registers with O(log2 n)

amortized step complexity. This is the first counter al-

gorithm from read-write registers that provides sub-

linear amortized step complexity in executions of ar-

bitrary length. Since a logarithmic lower bound on the

amortized step complexity of obstruction-free counter
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implementations exists, our upper bound is within a

logarithmic factor of the optimal. The worst-case step

complexity of the construction remains linear, which is

optimal.

This is obtained thanks to a new max register con-

struction with O(log n) amortized step complexity in

executions of arbitrary length in which the value stored

in the register does not grow too quickly. We then lever-

age an existing counter algorithm by Aspnes, Attiya

and Censor-Hillel [AAC12] in which we “plug” our max

register implementation to show that it remains lin-

earizable while achieving O(log2 n) amortized step com-

plexity.

Keywords Shared Memory ·Wait-freedom · Counter ·
Amortized Complexity · Concurrent Objects

1 Introduction

A shared-memory counter [MTY96] is a well-studied

[AC10,AH90,AKK+14,BG11,MT97] and widely-used

concurrent object. A counter stores a non-negative in-

teger and supports two operations: An Inc operation

that increases its value by 1 and a Read operation that

returns its current value.

A wait-free counter can be constructed easily by us-

ing a single-writer atomic snapshot [And93,AAD+93,

AH90] object. Such an object allows each process to

update its own component (by invoking an Update op-

eration) and to obtain an atomic view of all compo-

nents (by invoking a Scan operation). To increment the

counter, a process p simply increments its component.

To read the counter’s value, p invokes Scan and returns

the sum of all components in the view it obtains. Since

wait-free atomic snapshots can be implemented from
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read-write registers with step complexity linear in the

number of processes n [AF01,IC94], so can counters.

A well-known result [JTT00] by Jayanti, Tan and

Toueg showed this is tight. They prove a linear lower

bound on the worst-case step complexity of obstruction-

free implementations of a large class of shared objects,

including counters, from operations in a set that in-

cludes (among some other operations) read and write.

In [AAC12], Aspnes, Attiya and Censor-Hillel observed

that the lower bound holds only when numerous oper-

ations are applied to the object and does not rule out

the existence of algorithms whose step complexity is

sub-linear when the number of operations is bounded.

Leveraging this observation, they presented construc-

tions of several data structures for which operations’

step complexity is polylogarithmic in n as long as the

object’s value is polynomial in n, where n is the number

of processes. More precisely, they presented a wait-free

counter for which the step complexity of Inc operation

is O
(
min(log n log v, n)

)
and O

(
min(log v, n)

)
for Read

operations, where v is the object’s current value. How-

ever, the worst-case and amortized step complexities

of the counter algorithm of [AAC12] deteriorate as the

number of Inc operations increases. For executions in

which the number of Inc operations is exponential in

n, both the worst-case and the amortized step complex-

ities become the same as those of the snapshot-based

algorithm, that is, linear in n.

Our contribution. The lower bound of [JTT00] leaves

open the question of whether there exists a counter al-

gorithm with sub-linear amortized step complexity. In

this paper, we answer this question in the affirmative,

by showing that linearizable and wait-free counters for

n processes can be implemented from read-write reg-

isters with polylogarithmic amortized step complexity.

Intuitively, an implementation is wait-free if every pro-

cess can complete its operation in finitely many steps,

regardless of the behavior of the other processes. This

is the first wait-free counter from read-write registers

that provides sub-linear amortized step complexity in

executions of arbitrary length. We reuse the counter

algorithm presented in [AAC12]. Their counter algo-

rithm uses max registers, an object type they intro-

duced and implemented. A max register r supports a

WriteMax(r,v) operation that writes a non-negative in-

teger v to r and a ReadMax(r) operation that returns

the maximum value previously written to r.

We present a novel wait-free deterministic imple-

mentation of an unbounded max register and “plug

it” into the counter algorithm of [AAC12]. We show

that the resulting counter remains linearizable, is wait-

free and has O(log2 n) amortized step complexity. The

worst-case step complexity is O(n), which is optimal

[JTT00]. Aspnes et al. also presented an unbounded

max register, however the step complexities of both

ReadMax and WriteMax operations in their algorithm

are O
(
min(log v, n)

)
, where v is the object’s current

value. Thus, executions of arbitrary length can have

linear amortized step complexity. Aspnes and Censor-

Hiller [AC13] presented an unbounded max register im-

plementation for which every operation terminates in a

constant number of steps with high probability, under

the assumption that the max register’s value does not

grow too quickly. Our implementation of unbounded

max register makes a similar assumption. The max reg-

ister algorithm of [AC13] is randomized, whereas ours is

deterministic. The space complexity of our implemen-

tation is unbounded.

Using information-theoretic arguments, Jayanti es-

tablished a logarithmic lower bound on the worst-case

operation step complexity for obstruction-free imple-

mentations of a set of one-time objects that includes a

fetch&increment object, from operations such as load-

linked/store-condition, move and swap [Jay98]. Attiya

and Hendler [AH10] presented lower bounds on the time

and space complexities of obstruction-free implementa-

tions of several objects from k-word compare-and-swap

operations. Using as well an information-theoretic ar-

gument as well, they proved [AH10, Theorem 9] a loga-

rithmic lower bound on the amortized step complexity

of implementing a one-time fetch&increment object in

an obstruction-free manner. Their proof can be modi-

fied in a straightforward manner to establish the same

result for counters, implying that the amortized step

complexity of our algorithm is at most within a loga-

rithmic factor of the optimal.

Related work. Counting networks [AHS94], presented

by Aspnes, Herlihy and Shavit, allow processes to as-

sign themselves successive values in a given range. They

are similar to Batcher’s sorting networks [Bat68], ex-

cept that instead of comparators, they are constructed

by interconnecting simple objects called balancers. A

balancer has several input and output wires and bal-

ances tokens received on its input wires to its output

wires. Balancers are typically implemented from reg-

isters supporting read-modify-write operations. To ob-

tain a number, processes shepherd tokens from an in-

put wire of the network to an output wire. The step

complexity thus depends on the number of traversed

balancers, which can be as low as O(log n) [DS00] for

n processes. Counting networks are however, in gen-

eral, not linearizable. Herlihy, Shavit and Waarts have

shown a lower bound of Ω(n) [HSW96] on the depth of

n-processes counting networks that are linearizable.
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A fetch&increment object stores a non negative in-

teger and supports a single operation that increments

the value stored into the object and returns the previ-

ous value. It cannot be implemented deterministically

in a wait-free manner from read-write registers since

its consensus number is 2 [Her91]. Optimal implemen-

tations for n processes from load-link/store conditional

objects are presented in [EW13] by Ellen and Woelfel,

in which each fetch&increment operation has O(log n)

step complexity. A fast implementation of a counter

from compare-and-swap is presented by Khanchandani

and Wattenhofer in [KW17]. The step complexity of

Inc is O(log n) and constant for Read. Our counter

implementation requires only read/write registers but

has O(log2 n) amortized step complexity for each oper-

ation. The algorithms presented in [EW13,KW17] have

bounded space complexity: The number of base objects

they use is bounded by a polynomial function of n. Un-

like theirs, our algorithm has unbounded space com-

plexity.

Randomized is another approach to beat the lower

bound of [JTT00]. A randomized approximate counter

from read-write registers is presented by Aspnes and

Censor [AC10] with step complexity O(( 1
δ log n)O( 1

ε ))

for Inc and O(n4/5+ε(( 1
δ log n)O( 1

ε ))) for Read, where

ε > 0 is a small constant, n is the number of increments

and δ is the approximation ratio the counter achieves

with high probability.

As mentioned previously, a deterministic implemen-

tation of a counter for n processes from read-write reg-

isters is presented in [AAC12]. The step complexities

are O(min(log n log v, n)) and O(min(log v, n)) and for

Inc and Read operations and for operations respec-

tively. Here, v is the current value of the counter. The

algorithm of [AAC12] uses max registers as building

blocks. A linearizable implementation of a max regis-

ter from read-write registers with O(min(log v, n)) step

complexity for reading or writing a value v is also given

in [AAC12]. In Section 3, we present a novel implemen-

tation of a max register from read-write registers and

show that it achieves for ReadMax and WriteMax opera-

tions O(log n) amortized step complexity in executions

in which the value stored in the register does not grow

too quickly.

Our max register construction shares some simi-

larities with the one of [AAC12]. Both constructions

might be seen as binary trees in which internal nodes

are switches (a bit stored in a read-write register) and

leaves are bounded max register. Specifically, leaves are

trivial 0-bounded max-registers in the case of [AAC12]

and m-bounded in our case, with m a function of n.

Unlike the implementation of [AAC12], our algorithm

handles an unbounded number of operations in a wait-

free manner without resorting to a snapshot-based im-

plementation. The linearizability proof in [AAC12] is

recursive. Such a proof cannot be applied to our al-

gorithm, because, unlike [AAC12], our construction is

non-recursive. Also, differently from [AAC12], in our al-

gorithm a process writing a value to the max register

accesses only a constant number of nodes. Another dif-

ference is that our algorithm employs a helping mecha-

nism so that the max register can be read in a wait-free

manner with linear worst-case step complexity.

Unlike [AAC12], correctness and logarithmic amor-

tized step complexity are only guaranteed in executions

in which there is a bound on the increments of the

value of the max register. We establish in Section 4

that the way values change in the max registers used

in the counter construction of [AAC12] satisfies this re-

striction. Hence, by plugging our max register imple-

mentation into the construction of [AAC12], we obtain

a counter supporting an unbounded number of opera-

tions and whose amortized step complexity is polylog-

arithmic in the number of processes.

Moran, Taubenfeld and Yadin [MTY96] defined the

notion of a concurrent counter that may assume val-

ues from {0, . . . ,m − 1}, for some positive integer m,

for which increment operations are modulo m. They

define and investigate two notions of counters. A static

counter guarantees the correctness of increment oper-

ations but allows a read operation1 that is concurrent

to an increment operation to return an arbitrary value.

The second, stronger, notion is a dynamic counter, for

which read operations must be linearizable regardless

of whether or not they are concurrent to increment op-

erations. He processes are anonymous in their model.

They investigate the space complexity of implementing
both static and dynamic counters from binary registers

that support either reads and writes only, or stronger

read-modify-write operations. Among other results, a

wait-free static counter algorithm that uses logm bits

and a wait-free dynamic counter algorithm that uses m

bits are presented. For both these algorithms, the num-

ber of processes that may invoke the increment opera-

tion is unbounded. They also present a lower bound on

the space complexity of dynamic counters. The coun-

ters investigated by our work (as well as by the works

we previously described) are dynamic and may assume

unbounded values. Unlike [MTY96], our model also as-

sumes that processes have unique identifiers.

Organisation. The rest of this article is organized as

follows. We present the system model we assume and

additional required definitions in Section 2. In Section

1 They use the name look rather than read.
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3, we present our key technical contribution – an un-

bounded max register algorithm that guarantees lin-

earizability and logarithmic amortized step complexity

when its value is not increased “too quickly”. In Section

4, we prove that by “plugging” our unbounded max reg-

ister into the counter algorithm of [AAC12] (instead of

using the max register algorithm of [AAC12]) we obtain

a linearizable counter with polylogarithmic amortized

step complexity. The article is concluded with a discus-

sion in Section 5.

2 Model and Preliminaries

Shared memory. We consider a standard asynchronous

shared memory system in which a set P of n processes

that communicate by accessing shared registers. A reg-

ister r stores a value from some set and supports two

operations: Read(r) which returns the value of the reg-

ister and Write(r,v) which writes the value v to r.

An implementation of a concurrent object speci-

fies the object’s state representation and which algo-

rithms processes follow when they perform operations

supported by the object. An execution is a sequence of

steps performed by the processes as they follow their

algorithms, in each of which a process invokes an oper-

ation, returns an operation response, or applies at most

a single Read or Write operation to a register (possibly

in addition to some local computation). An execution

is well-behaved if no process invokes an operation on an

object before having received a response from its previ-

ous invocation on the same object. In what follows, we

consider only well-behaved executions.

The execution interval of an operation starts with

the operation’s invocation and ends when a response

is returned. An operation op precedes another opera-

tion op′ if the execution interval of op ends before the

execution interval of op′ starts. op and op′ are concur-

rent if their execution interval intersect. An operation

is complete in an execution if it returned a response in

the execution. An execution e is linearizable [HW90] if,

for all completed operations in e and some of the un-

completed operations in e, there is a point in the exe-

cution interval of the operation, called its linearization

point, such that the responses returned are the same

as the responses returned if all these operations were

executed sequentially following the order of their lin-

earization points. An implementation is linearizable if

all its executions are linearizable; it is wait-free [Her91]

if, in every execution, each process completes its oper-

ation within a finite number of steps; it is lock-free if,

in every execution, at least one process completes its

operation after performing a finite number of steps. An

implementation is obstruction-free [HLM03] if after any

finite execution, any process can complete its operation

by taking a bounded number of steps when no other

process takes a step.

Complexity measure. The amortized step complexity is

defined as the worst-case (taken over all possible finite

executions) average number of steps performed by op-

erations. It measures the performance of an implemen-

tation as a whole rather than the performances of indi-

vidual operations. Indeed, in an execution of a lock-free

implementation, some operations may never terminate

and the worst-case operation step complexity may thus

be unbounded. Amortized step complexity is formally

defined as follows. We denote by nsteps(op, e) the num-

ber of steps performed by an operation op in e and by

OP(e) the set of operations that are invoked in e. The

amortized step complexity of an implementation A is

then:

AmtSteps(A) =

max
e: finite execution of A

∑
op∈OP(e) nsteps(op, e)

|OP(e)|
.

Max registers. A max register MaxReg supports two op-

erations: WriteMax(MaxReg,v) writes v to MaxReg where

v is a non-negative integer. ReadMax(MaxReg) returns

the maximum value previously written. If no value has

been previously written, it returns 0 which is the ini-

tial value of the max register. For an integer m > 0, a

bounded max register MaxRegm is a max register for

which the input v of any WriteMax operation is re-

stricted to the set {0, . . . ,m − 1}. An unbounded max

register UnboundedMaxReg can store any non-negative

integer.

3 Polylogarithmic Amortized Step Complexity

Max Register

The pseudo-code of our unbounded max register is pre-

sented in Algorithm 1. Lines in black font constitute a

lock-free version of the algorithm, which we describe

and analyze in this section. Lines in lighter (metal)

color add a helping mechanism that makes the algo-

rithm wait-free. For presentation simplicity, we defer

the description of this mechanism to Subsection 3.3.

We proceed with a description of Algorithm 1. An

UnboundedMaxRegm object M consists of an infinite

number of shared bounded MaxRegm max registers, de-

noted maxj , for all j ∈ N0. Register maxj will be used

for representing values in the range [m ·j,m ·(j+1)−1].

Hence, the subscript m in the type UnboundedMaxRegm
refers to the bound m of the bounded max registers
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used by objects of this type. Each bounded max regis-

ter maxj is associated with a shared switchj bit which

is stored in a read/write register. All max registers and

their corresponding switches are initialized to 0. Each

process i has a local variable lasti, storing the index j

of the bounded register maxj that will be accessed next

by i’s Read operation. lasti is initialized to 0 for each

process i.

The Write function. To write value v, process i first

computes the index k of the bounded max register to

write to and the residue v′ to be written to it (Lines 2-

3). Here and in what follows, the residue v′ of v is the re-

mainder of the division of v by m. Next, i checks in Line

4 whether maxk is obsolete. We say that a (bounded)

max register is obsolete if its corresponding switch is

set, indicating that values were already written to max

registers with higher indexes and thus maxk should no

longer be accessed. If maxk is obsolete, i does not need

to write to it, so it proceeds to Line 12 for increasing its

last index, if required, and returns. Otherwise, maxk is

not obsolete, so i writes to it the residue v′ (Line 5). If

the max object written to is not the first (Line 6), then i

ensures that the previous max object is obsolete (Lines

Algorithm 1 Unbounded Max Register

UnboundedMaxRegm, code for process i.

Shared variables:

switchj ∈ {0, 1} : a 1-bit register for each j ∈ N0, initially
all 0

maxj : a MaxRegm object for each j ∈ N0, initially all 0
lasti ∈ N0 : smallest index j such that process i has not

yet accessed maxj , initially 0
H[n] initially all (−1, 0,−1): helping array of integer-

triplets, entry i written by process i
hCount initially 0: an integer storing the number of times

i wrote to H[i]

1: function Write(UnboundedMaxRegm, v)
2: v′ ← v mod m
3: k ← b v

m
c

4: if switchk = 0 then

5: WriteMax(maxk, v′)
6: if k > 0 then

7: curMax ← ReadMax(maxk−1) + (k − 1) ·m
8: if switchk−1 = 0 then
9: hCount← hCount + 1

10: H[i]← (k − 1, hCount, curMax)
11: switchk−1 ← 1

12: lasti ← max(k, lasti)

13: function Read(UnboundedMaxRegm)
14: local c initially 0
15: while switchlasti 6= 0 do

16: lasti ← lasti + 1, c← c + 1
17: if (c mod (n + 2)) = 0 then
18: if (hval ← GetHelp(c)) > 0 then return hval

19: v ← ReadMax(maxlasti)
20: return v + (lasti ·m)

8-11), updates its last index (Line 12), if required, and

returns.

The Read function. Process i scans the switches in in-

creasing order in Lines 15-16, increasing the value of

its last index in the process, until it finds the first

non-obsolete bounded max register (this might never

happen.). If it does, it reads the maximum residue pre-

viously written to that max object (Line 19), adds to

the residue a multiple of m corresponding to the index

of that max register and returns the sum (Line 20).

3.1 Linearizability

The correctness of Algorithm 1 is guaranteed only in

executions in which the max register’s value is increased

in bounded increments. This requirement is formalized

by the following definition.

Definition 1 (`-Bounded-Increment Execution)

Let M be an UnboundedMaxReg object and let e be an

execution. e is an `-bounded-increment execution for M

if for each write operation op = Write(M, v) in e, with

v > `, there exists a write operation op′ = Write(M,v′)

in e that precedes op, such that v − ` ≤ v′ < v.

Section 4 presents an n-process unbounded counter im-

plementation that uses UnboundedMaxReg objects. As

we prove, all the executions of that implementation are

n-bounded-increment executions for all the underlying

unbounded max registers.

Let m ≥ n, M be an UnboundedMaxRegm object,

implemented by Algorithm 1, and let e be a finite and

n-bounded-increment execution forM . The next lemma

is a direct consequence of Definition 1.

Lemma 1 Let op be a Write operation on M with

input v. If b vmc > 0, there exists a Write operation

op′ that precedes op and whose input v′ is such that

b v
′

mc = b vmc − 1.

Proof Let op0 be a Write operation on M and let v0
be its input value. Let us assume that b v0m c = k > 0.

Since e is an n-bounded increment operation for M ,

there exists a Write operation op1 on M whose input

v1 satisfies v0 − n ≤ v1 < v0 that precedes op0 (Def-

inition 1). In particular, this means that v0 > v1 and

b v1m c ∈ {b
v0
m c − 1, b v0m c} = {k − 1, k} since n ≤ m. If

b v1m c 6= k − 1, we repeat the same argument to identify

a finite sequence of Write operations op2, . . . , op` on

M with respective inputs v2, . . . , v` satisfying, for each

i, 2 ≤ i ≤ `, that opi precedes opi−1, vi < vi−1, and

b vimc ∈ {b
vi−1

m c, b
vi−1

m c − 1}. Hence, there must exist a

Write operation op′ that precedes op and whose input
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v′ is such that b v
′

mc = k − 1 (for example, op′ can be

taken as the operation with the smallest index i in the

sequence such that b vimc < b
vi+1

m c).

If a switch is set in e, let K be the largest index of

the switches that are set in e. Since e is finite, there

are finitely many operations that are invoked in e. As

each operation on M sets at most one switch, K is well-

defined. Otherwise, let K = −1. For each k, 0 ≤ k ≤ K,

let sk denote the step in which 1 is written to switchk
(at Line 11) for the first time. We observe that switches

are set in order:

Lemma 2 For each integer k, 0 < k ≤ K, sk−1 occurs

before sk in e.

Proof Let k > 0. By the code, the value of switchk
is changed to 1 by a Write operation op (at Line 11)

on the unbounded max register M whose input v is

such that b vmc = k + 1. By Lemma 1, op is preceded

by a Write operation op′ with input value v′ satisfying

b v
′

mc = k. Since op′ precedes op and switchk is set for

the first time during the execution of op, the value of

switchk is 0 when it is read by op′ (at Line 4). As

k > 0, Lines 6-11 are performed by op′. In particular, if

the value of switchk−1 is not already 1, it is changed to

1 by op′ at Line 11. It thus follows that sk−1 precedes

sk.

We observe that when a Write operation on M

whose input v is such that b vmc = k > 0, the max

register maxk−1 becomes obsolete before the operation

terminates.

Observation 1 Let op be a completed Write operation

on M with input v. If b vmc > 0, sb vm c−1 occurs before

op terminates.

Proof Let op be a completed Write operation on M

and let v be its input. Let us assume that k = b vmc > 0.

Since k = b vmc, switchk is read by op on Line 4. If this

read returns 1, the observation follows by Lemma 2.

Otherwise, since k > 0, Lines 6-11 are executed dur-

ing op. In particular, if switchk−1 is not already set

(Line 8), 1 is written to it by op in Line 11. Hence

switchk−1 is set before the end of op.

We say that a bounded max register maxk is ac-

tive during the interval in which its associated register

switchk is not set, but switchk−1 is. We define inter-

vals I0, . . . , IK+1 in which the bounded max registers

max0, . . . , maxK+1 are active:

– Interval I0 starts with the beginning of e and ends

immediately before s0.

– For k, 1 ≤ k ≤ K, interval Ik begins with sk−1 and

ends immediately before sk.

– Interval IK+1 begins with sK and ends with the last

step of e.

By Lemma 2, these intervals are well defined, in the

sense that their beginning precedes their end. Note also

that I0, . . . , IK+1 form a partition of e.

We observe that each Read or Write operation on

M accesses at most one of the bounded max register

max0, max1, . . . (in Line 5 for a Write operation, and in

Line 19 for a Read operation). For k ≥ 0, let Ak be the

set of operations on M in e that access the bounded

max register maxk (by performing a WriteMax in Line 5

in the case of a Write operation or a ReadMax in Line 19

in case of a Read). Let also B be the set of Write op-

erations in e that perform a read of switchk at Line 4,

for some k ≥ 0 and that read returns 1.

As e is a finite n-bounded increment execution for

M , the sets Ak are empty for large enough values of k:

Lemma 3 Let k ≥ K + 3. Ak = ∅.

Proof The proof is similar to the proof of Lemma 2. Let

k ≥ K + 3 and let us assume towards a contradiction

that there is an operation op ∈ Ak. Since the largest in-

dex of a switch that is set is K, and for a Read operation

to access the bounded max register maxk, switchk−1
has to be set, op is not a read operation. Hence, op

is a Write operation, and as it accesses the bounded

max register maxk, its input value v satisfies b vmc = k.

By Lemma 1, op is preceded by a Write operation op′

whose input v′ satisfies b v
′

mc = k − 1. When op′ termi-

nates, it follows from Observation 1 that switchk−2 is

set. Since k − 2 ≥ K + 1, a switch with index strictly

larger than K is set in e, contradicting the definition of

K.

Before defining linearization points, we show that

each operation in Ak performs (at least) some of its

steps when the bounded max register maxk is active.

In what follows, Iop denotes the execution interval of

operation op.

Lemma 4 For every k, 0 ≤ k ≤ K + 1 and for every

operation op ∈ Ak, Ik ∩ Iop 6= ∅.

Proof Let k, 0 ≤ k ≤ K + 1 and let op be an operation

in Ak. The proof is divided into three cases according

to the value of k:

– k = 0. For op to access the bounded max register

max0, it has to read 0 from switch0 (at Line 4 for

a Write operation or at Line 15 for a Read opera-

tion.). This steps occurs after the beginning of e and

before switch0 is set, as once the value of a switch is

changed to 1, it never changes. It thus follows that

Iop ∩ I0 6= ∅.
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– 0 < k ≤ K. If op is a Read operation, it accesses

the bounded max register maxk (at Line 19) only if

it has read 1 from switchk−1 before reading 0 from

switchk. From the definition of interval Ik, this lat-

ter read occurs in Ik. If op is a Write operation,

its read of switchk (at Line 4) returns 0. The exe-

cution interval of op thus contains a step performed

before sk. If op does not terminate (i.e., its execution

interval ends with the end of e.), Iop ∩ Ik 6= ∅. Oth-

erwise, op terminates and when it does, switchk−1
is set (Observation 1). Hence the execution interval

of op contains the step sk−1 or a step performed

after sk−1 and a a step performed before sk. Thus

Iop ∩ Ik 6= ∅.
– k = K+1. For Read operation op in AK+1, the proof

is similar to the previous case. op has to read 1 from

switchK and 0 from switchK+1 in order to access

the bounded max register maxK+1. This latter read

occurs between sK and the end of e.

If op is a Write operation that accesses maxK+1 and

does not terminate, its execution interval intersects

IK+1. Otherwise, as seen in the previous case, when

op terminates switchK has been set (by op itself or

by another operation). Hence, Iop contains sK or a

step performed after sK and thus Iop ∩ IK 6= ∅.

To show that M is linearizable in e, we rely on a

linearization µ of the ReadMax and WriteMax opera-

tions performed on the bounded max registers max0, . . . ,

maxK+1. As linearizability is composable and a lineariz-

able bounded max register can be implemented from

read-write registers [AAC12], µ exists.

We next define the linearization points of the oper-

ations in
⋃

0≤k≤K+1Ak ∪B:

– The linearization points of the operations in Ak
are chosen as follows: each operation op ∈ Ak is

given a linearization point λop in the interval Ik ∩
Iop preserving the order in which the correspond-

ing ReadMax/WriteMax operations on maxk are lin-

earized in µ. That is, for any two operation op, op′ ∈
Ak, if the ReadMax or WriteMax performed by op on

maxk is linearized before the one performed by op′

in µ, λop is before λop′ .

– An operation op in B is linearized with the read of

switchk performed by that operation (on Line 4).

By Lemma 4, the linearization points of all operations

op in Ak, for k, 0 ≤ k ≤ K+1, are well defined since the

intersection between the execution interval of op and Ik
is not empty. Hence, each operation in

⋃
0≤k≤K+1Ak ∪

B is linearized within its execution interval.

Lemma 5 The set
⋃

0≤k≤K+1Ak ∪ B contains every

completed operation in e.

Proof If all operations invoked in e are in
⋃

0≤k≤K+1Ak
∪B, then clearly the lemma is true. Assume, then, that

there are operations that complete in e and are not

in the set
⋃

0≤k≤K+1Ak ∪ B. Let op be such an op-

eration. If op accesses a bounded max register, it be-

longs to AK+2 by Lemma 3. op cannot be a Read op-

eration, as a Read that accesses maxK+2 must read 1

from switchK+1 (Line 15), but this switch is never set

in e. op is thus a Write operation. By Observation 1,

when a Write operation accessing maxK+2 terminates,

switchK+1 has been set. As switchK+1 is never set in

e, op does not terminate.

It remains to examine the case in which op does not

access any bounded max register. If op is a Write oper-

ation, since it is not in set B, it has not read a switch

in e, or has read 0 from some switch but has not yet

performed a WriteMax to the corresponding bounded

max register when e ends. In both cases, op does not

terminate in e. If op is a Read operation, it has only

read 1 from the switches it has accessed in e, or it has

read 0 from some switch but has not yet performed

a ReadMax to the corresponding bounded max register

when e ends. Hence op does not terminate in e.

Finally, we show that the linearization is consistent

with the sequential specification of a max register.

Lemma 6 Let op ∈
⋃

0≤k≤K+1Ak be a Read operation

that returns a value v.

– If v = 0, there is no Write operation with an input

6= 0 that is linearized before op.

– If v 6= 0, the largest input value of the Write oper-

ations linearized before op is v.

Proof Let op be a Read operation that returns v. Let

u, k be integers such that v = k ·m + u and 0 ≤ u <

m. Since op returns v, it follows from the code that it

has performed a ReadMax on the bounded max register

maxk that returned u (Line 19 and Line 20). Hence, op

belongs to Ak, for some k ∈ {0, . . . ,K + 1}.
If v = 0, we have k = u = 0. Let us assume that

there is a Write operation op′ linearized before op. Let

v′ be the input of that operation. We first note that

op′ cannot belong to B. Indeed, any operation op′′ ∈ B
reads 1 from a register switchk, for some k ≥ 0. op′′ is

thus linearized after this switch has been set to 1, which

occurred after I0 by Lemma 2 (recall that as op ∈ A0,

its linearization point is in the interval I0). Hence any

operation in B is linearized after op.

op′ thus belongs to Ak for some k ≥ 0. Since every

operation in Ak, for every k > 0, is linearized after the

operations in A0, op′ must be in A0. As op′ is linearized

before op, its associated WriteMax operation on max0 is

linearized in µ before the ReadMax performed by op.
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Since op reads u = 0 from the max register max0, the

value written by the WriteMax of op′ is also 0. It thus

follows that the input value v′ of op′ is v′ = 0·m+0 = 0.

We now consider the case v 6= 0. We first show that

there is a Write operation op′ with input v that is lin-

earized before op. We then establish that any Write

operation with input strictly greater than v (if any) is

linearized after op.

1. The first part is divided into two cases, depending

of the value of u = v mod m.

– u = 0. Note that, as v 6= 0, k > 0. Thus op per-

forms a ReadMax on the bounded max register

maxk which returns 0. By the code, this happens

after op has read 1 from the register switchk−1.

Let op′ be the Write operation that sets this

switch to 1, and let v′ be its input value. Be-

fore writing 1 to switchk−1, op′ has performed

a WriteMax on the bounded max register maxk
(Line 5) with some input value u′. Since the

ReadMax on maxk performed by op returns 0 and

follows this WriteMax, u′ = 0. Therefore the in-

put value v′ of op′ is v′ = k ·m+ u′ = k ·m = v.

Since both op and op′ perform an operation on

maxk, they belong to Ak. As the WriteMax by

op′ precedes the ReadMax by op, op′ is linearized

before op.

– u 6= 0. Recall that u is the value read from the

bounded max register maxk by op. Hence, there

is a WriteMax operation on maxk with input u

that is linearized before this ReadMax in µ. By

the code (Line 5), the WriteMax operation with

input u is performed within a Write operation

with input v′ = k · m + u = v. Let op′ be this

operation. Since op′ accesses maxk, it belongs to

Ak. Since its WriteMax is linearized in µ before

the ReadMax of op, op′ is linearized before op.

2. Let op′ be a Write operation with input v′ > v. Note

that k′ = b v
′

mc ≥ b
v
mc. If op′ ∈ B, it is linearized

after switchk′ has been set to 1. By Lemma 2, this

occurs after the interval Ik in which op is linearized.

Otherwise op′ ∈ Ak′ . If k′ > k, op′ is linearized after

op. If k′ = k, both op′ and op access the bounded

max register maxk, and are thus linearized in the

interval Ik. As v′ > v, the input u′ = v′ mod m

written to maxk by op′ is strictly larger that the

value u = v mod m read by op. Hence the ReadMax

to maxk by op must be linearized in µ before the

WriteMax performed by op′. Thus op is linearized

before op′.

Lemma 7 Algorithm 1 without the helping mechanism

is lock-free and Write operations are wait-free.

Proof Write operations perform a single invocation of

the wait-free WriteMax operation and a constant num-

ber of additional steps, hence they are wait-free. A Read

operation may loop forever in Lines 15-16, searching for

a non-obsolete max register, but only if Write opera-

tions keep making additional max registers obsolete (in

Line 11), hence more and more Write operations com-

plete. If no more Write operations complete, each Read

operation is guaranteed to complete.

3.2 Step Complexity Analysis

The step complexity analysis provided in this section

relates to the implementation of Algorithm 1 without

the helping mechanism. Recall that OP(e) denotes the

set of all operations that are invoked in e. Let OPR(e)

(resp. OPW (e)) denote the set of all Read operations

(resp. all Write operations) that are invoked in e. For

an operation op, we let nsteps(op, e) denote the number

of steps performed by op in e.

Lemma 8 If m ≥ n2, then the UnboundedMaxRegm
implementation of Algorithm 1 has amortized step com-

plexity of O(logm) in any n-bounded-increment execu-

tion.

Proof Let e be an n-bounded-increment execution. We

wish to bound:

AmtSteps(e) =

∑
op∈OP(e)

nsteps(op, e)

|OP(e)|
.

Let r be the number of Read operations and w be the

number of Write operations in OP(e). WriteMax and

ReadMax operations on an m-bounded max register per-

form O(logm) steps each. Clearly from the pseudo-code

of Algorithm 1, each Write operation performs a con-

stant number of steps in addition to possibly invoking

a single WriteMax operation, thus the step complexity

of each Write operation is O(logm).

A Read operation op performs loopop + O(logm)

steps, where loopop is the number of steps performed in

the while loop of Lines 15-16 and O(logm) is the num-

ber of steps performed by the invocation of ReadMax in

Line 19. We get:

AmtSteps(e) =

O

(∑
op∈OPW (e)logm+

∑
op∈OPR(e) logm+ loopop

w + r

)
If r = 0, then clearly AmtSteps(e) =O(logm). So as-

sume that r > 0. From Lines 12 and 16, for every pro-

cess i, lasti never decreases and is incremented once in
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every iteration of the while loop of Lines 15-16. There-

fore:

∑
op ∈ OPR(e)

loopop = O
(
r +

∑
i∈P

lasti

)
.

Consequently,

AmtSteps(e)

= O

(
w · logm+ r · logm+ (r +

∑
i∈P lasti)

w + r

)
.

Assume that max register maxk, for k > 0, is accessed

in e. Since e is an n-bounded-increment execution and

all maxj registers are m-bounded, at least
m · k
n

Write

operations have been linearized prior to this access.

Letting L = max
i∈P

lasti denote the maximum value of

all lasti variables at the end of e, we get that w ≥
(L − 1) ·m/n. Furthermore,

∑
i∈P

lasti ≤ n · L. Thus,

AmtSteps(e) = O

(
w logm+ r logm+ (r + n · L)

w + r

)
= O

(
(w + r) logm

w + r
+

r

w + r
+

n · L
w + r

)

= O

logm+
n · L

m

n
(L − 1) + r



= O

logm+

n2

m
L

(L − 1) +
n

m
r

 .

The lemma now follows, since r > 0 and m ≥ n2 hold.

Theorem 1 Algorithm 1 is a linearizable implementa-

tion of an unbounded max register with amortized step

complexity of O(logm) in any n-bounded-increment ex-

ecution, if m ≥ n2. The algorithm (without the helping

mechanism) is lock-free.

Proof For any finite execution e, we define lineariza-

tion points for a subset (namely,
⋃

0≤k≤K+1Ak ∪B) of

the operations on M invoked in e. By Lemma 5, this

set includes every operation on M that completes in

e. By definition, each linearization point is within the

execution interval of the corresponding operation. The

values returned in a sequential execution in which the

linearized operations are performed in the order of their

linearization point is consistent with the semantics of

max registers (Lemma 6). Algorithm 1 is thus a lineariz-

able implementation of a max register. By Lemma 7, it

is lock-free, and by Lemma 8, its amortized step com-

plexity in n-bounded executions is O(logm), provided

that m ≥ n2.

3.3 The Helping Mechanism

We now explain the helping mechanism that makes

Algorithm 1 wait-free (presented in the metal-colored

lines of that algorithm). In Algorithm 1 (without metal-

colored lines), a Read operation may not terminate be-

cause there are concurrent Write operations that keep

making new bounded max registers obsolete. To avoid

this, before making a max register obsolete (by setting

the corresponding switch), a process announces the cur-

rent value v of the max register to a shared helping ar-

ray H. Entry H[i] is used by Write operations by process

i and stores a triplet of values. The first value is the in-

dex of the max register that i is about to make obsolete

(in Line 11) immediately after its write to entry H[i]

(in Line 10). The second value is a sequence number

that counts the number of writes done by the helping

process to H[i] so far. The third value is a (maximum)

value of M that process i’s Write operation was able

to compute (in Line 7). Each entry H[i] is initialized to

(−1, 0,−1). The value −1 in the third component of the

triplet means here that process i has not yet written to

H.

Every Θ(n) steps, a Read operation op reads the

array H looking for a value of M that can be safely

returned. Sequence numbers allow to determine such

values, that is, values of M at some point in the ex-

ecution interval of op. If no suitable value is found in

H, the first element of each triplet is used to determine

the index of a bounded max register that has not yet

been made obsolete by Write operations. The cost of

looking for help is O(n) since it consists essentially in

reading the n entries of the array. As looking for help is

performed every Θ(n) steps, helping does not increase

the amortized step complexity of Read operations.

A more detailed explanation follows. Helping is at-

tempted by process i inside Write operations, just be-

fore i is about to make another max register obsolete.

Specifically, if i just wrote to a max register k > 0

(Lines 5-6), it reads the maximum residue written so

far to maxk−1, computes the corresponding value of M

based on it and stores it to a local variable curMax

(Line 7). If switchk−1 is 0 (Line 8), then maxk−1 must

be made obsolete. As we prove, in this case, curMax was

indeed a value of M at some point during the execution

interval of this Write operation. Process i increments

hCount in Line 9, helps by writing the triplet of values

to H[i] (Line 10), and then sets switchk−1 in Line 11.

The goal of the helping mechanism is to ensure that

every Read operation eventually completes. Every n+2

iterations of the while loop of Lines 15-18, the GetHelp

utility function is called, receiving an integer that is a

multiple of n + 2, indicating whether or not this is its
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Algorithm 2 The GetHelp utility function, code for

process i.
Shared variables:

Hi[n]: an array accessed only by process i, to which the H

array is copied

21: function GetHelp(c)
22: if c = (n + 2) then
23: for j ∈ {0, . . . , n− 1} do

24: Hi[j]← H[j]

25: else
26: for j ∈ {0, . . . , n− 1} do

27: if H[j].second − Hi[j].second ≥ 2 then return
H[j].third

28: for j ∈ {0, . . . , n− 1} do

29: lasti ← max(H[j].first , lasti)

30: return 0

first invocation by the current Read operation (Line 14,

Lines 17-18). If GetHelp returns a positive value then,

as we prove, this value was indeed M ’s value at some

point during the execution interval of this Read opera-

tion, so it returns this value in Line 18. Otherwise, the

search for a non-obsolete max register is resumed. The

number of iterations n+2 to be performed before look-

ing for help is chosen so that (as we prove) the worst

case complexity of Read operations is Θ(n).

The pseudo-code of GetHelp is presented by Algo-

rithm 2, described next. In its first invocation by a Read

operation op (performed by some process i), initializa-

tion is done by copying the H array to an array Hi which

is used only by process i (Lines 22-24). In the first invo-

cation, 0 is returned (Line 30), indicating that a maxi-

mum value is not yet available. Before returning 0, the

loop of Lines 28-29 is performed. In each iteration of

this loop, process i increases lasti (in Line 29) if the

first triplet-value it reads is larger than its current value

of lasti, establishing that the current value is of an ob-

solete max register. This is required for bounding the

worst-case step complexity of the algorithm.

In each subsequent invocation of GetHelp (Lines 25-

27), if any, i checks, for each j, if j updated the second

triplet-value of H[j] at least twice since op was invoked.

If this is the case then, as we prove, the last maximum

value written by j was indeed M ’s value at some point

during op’s execution interval, so GetHelp returns it in

Line 27 and then op returns this value in Line 18 of

Algorithm 1. If the condition of Line 27 is not satisfied

in any iteration, op updates lasti (if required) in the

loop of Lines 28-29 and returns 0 in Line 30, signifying

that i was not helped.

3.4 Linearizability and Complexity of the Full

Algorithm

In this section we prove that the algorithm with the

helping mechanism (henceforth the full algorithm) is

linearizable. Let e be a finite execution. We partition

Read and Write operations of e as we did in Section

3.1, except that now a Read operation may complete

without accessing a bounded max register. Indeed, a

Read operation may return in Line 18 of Algorithm 1

after being helped. Let us denote the set of such oper-

ations by H.

Let opr be a Read operation in H by process i that

returns value u and let k′ = b umc, then there is a Write

operation by a process j 6= i, concurrent with opr, that

wrote u to H[j] (in Line 10 of Algorithm 1) after per-

forming a ReadMax operation on maxk′ (in Line 7 of

Algorithm 1) and opr returns value u after reading it

from H[j] (in Line 27 of GetHelp). We say that opr is

associated with that ReadMax operation.

Sets B and Ak, k ≥ 0 are defined as in Section 3.1,

except that for each k ≥ 0, set Ak contains in addi-

tion the operations in H whose associated ReadMax is

performed on maxk.

Linearization points are defined in the same way

as in Section 3.1. Let µ be a linearization of the op-

erations performed in e on the bounded max registers

maxk, k ≥ 0. Each Write operation op ∈ Ak performs a

WriteMax on the bounded max register maxk at Line 5.

We say that op is associated with this WriteMax. Sim-

ilarly, each Read operation op ∈ (Ak \ H) performs a

ReadMax on maxk at Line 19. We say that op is asso-

ciated with this ReadMax. Each operation op ∈ Ak is

thus associated with an operation performed on maxk.

The linearization point λop of each operation op ∈ Ak is

chosen in the interval Ik ∩ Iop. Furthermore, as for the

lock-free algorithm, for any two operations op, op′ ∈ Ak,

if in µ the operation op is associated with is linearized

before the one op′ is associated with, we choose λop and

λop′ such that λop precedes λop′ .

It is easily verified that Lemma 1, Lemma 2, and

Observation 1 hold also for the full algorithm. Recall

that K is the largest index of the switches that are

set in e. The following lemmas extend Lemma 3 and

Lemma 4 to take into account the operations in H.

Lemma 9 For every k ≥ K + 1, H ∩Ak = ∅.

Proof Let opr be a Read operation in H and let v be

the value it returned. Let k = b vmc. opr is thus associ-

ated with a ReadMax operation oprm performed on the

bounded max register maxk. This latter operation is exe-

cuted by some process j while it is performing a Write

operation on M with some input w. From the code



Long-Lived Counters with Polylogarithmic Amortized Step Complexity 11

(Line 7), we have b wmc = k+1. By Lemma 1, this Write

operation is preceded by another Write operation op′w
on M whose input w′ satisfies bw

′

m c = k + 1 − 1 = k.

Moreover, when op′w terminates, we have switchk−1 =

1 (observation 1). Hence k − 1 ≤ K and the lemma

follows.

Lemma 10 Let op ∈ H and let k be the index of the

bounded max register maxk on which the ReadMax oper-

ation it is associated with is performed. Ik ∩ Iop 6= ∅.

Proof Let opr be a Read operation on M that returns

a value v on Line 18 after having received help. Let i

be the process that performs op. i has thus read value

v from some entry H[j] of the shared array H. v is

computed from the value u obtained by process j af-

ter performing a ReadMax on a bounded max register

maxk (Line 7). More precisely, we have v = u + k ·m,

and the ReadMax by j that returns u is the operation

opr is associated with. We denote by oprm this ReadMax

operation. By the condition on Line 27, j has updated

H[j] at least once since the beginning of opr and be-

fore writing v to H[j]. By the code, oprm thus takes

place between j’s previous update of H[j] and before

it writes v to H[j]. Hence, oprm is performed in its en-

tirety within the execution interval of opr.

Since before writing v to H[j] and after performing

oprm , j checks if switchk is still not set (Lines 8-10),

oprm completes before sk. If k = 0, oprm takes place in

I0 and hence Iopr ∩ I0 6= ∅, as required. Let us assume

that k > 0. oprm is executed while j is performing a

Write opw on M with some input w, with b wmc = k+1.

By Lemma 1, this Write is preceded by another Write

on M with input w′ such that bw
′

m c = k > 0. Hence, by

Observation 1, sk−1 occurs before opw starts. Therefore,

oprm is performed between sk−1 and before sk. It thus

follows that Iopr ∩ Ik 6= ∅.

In the full algorithm, operations terminate either af-

ter completing Line 12 in the case of a Write operation,

Line 20 in the case of a Read operation that does not

receive help, or Line 18 in the case of a Read operation

that receives help. For the first two cases, Lemma 5

shows that these operations are contained in the set⋃
0≤k≤K+1Ak ∪ B. By definition, H is the set of the

Read operations that terminate after having received

help. Each operation op in H is also contained in some

set Ak (k is the index of the bounded max register on

which the MaxRead op is associated with is performed).

By Lemma 9, for every k ≥ K + 1, no operation in H
is contained in Ak. Therefore, Lemma 5 holds also for

the full algorithm and after operations in H have been

included in the sets Ak, k ≥ 0.

We now extend Lemma 6 to Read operations that

complete after having been helped.

Lemma 11 Let op be Read operation contained in H,

and let v be the value it returns.

– If v = 0, there is no Write operation with an input

6= 0 that is linearized before op.

– If v 6= 0, the largest input value of the Write oper-

ations linearized before op is v.

Proof Let oprm be the ReadMax operation op is associ-

ated with. oprm is performed on the bounded max reg-

ister maxk, where k = b vmc and returns u = v mod m.

The proof is essentially the same as in Lemma 6.

If v = 0, k = u = 0. Hence, any Write operation opw
linearized before op is contained in A0, and the input

of the WriteMax performed on max0 by opw must be 0.

It thus follows that the input of opw is 0 ·m+ 0 = 0.

Otherwise, v 6= 0. We show (1) that there is a Write

operation with input v that is linearized before op, and

(2) that any Write operation with input v′ > v (if any)

is linearized after op.

1. We consider two cases depending on the value of

u = v mod m.

– u = 0. As v 6= 0, k > 0. By the code, oprm is

performed by a Write operation op′ whose in-

put v′ is such that b v
′

mc = k + 1. It follows from

Lemma 1 that op′ is preceded by a Write oper-

ation op′′ whose input v′′ satisfies b v
′′

m c = k > 0.

By Observation 1, switchk−1 has been set be-

fore op′′ terminates, and thus also before oprm
is performed. Let op′′′ be the Write operation

that sets switchk−1 to 1 and let v′′′ its input

value. Note that b v
′′′

m c = k, and by the code,

op′′′ writes u′′′ = v′′′ mod m to maxk (Line 5)

before setting switchk−1 to 1 (on Line 11). op′′′

is thus contained in Ak and as the WriteMax it

performs on maxk precedes oprm , it is linearized

before op. Moreover, as oprm returns 0, u′′′ = 0.

Hence, the input of op′′′ is v′′′ = k · m = v, as

required.

– u 6= 0. Since oprm returns u, and the initial value

of maxk is 0, there is a WriteMax operation opwm
on maxk with input u that is linearized before

oprm . By the code opwm is performed within a

Write operation op′ (on Line 5) whose input is

v′ = k · m + u = v. op′ is thus contained in

Ak and as opwm is linearized before oprm , op′ is

linearized before op.

2. Let op′ be a Write operation with input v′ > v,

and let k′ = b v
′

mc. Note that k′ ≥ k. If op′ is con-

tained in B, it is linearized after switchk′ is set.

This occurs after Ik (Lemma 2) which is the in-

terval that contains the linearization point of op.

Otherwise op′ ∈ Ak′ . If k′ > k, op′ is linearized af-

ter op. If k = k′, op′ performs a WriteMax on maxk
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with input u′ = v′ mod m. As v′ > v, u′ > u. As

oprm is performed on the same bounded max reg-

ister maxk and returns u, oprm is linearized before

that WriteMax. Therefore op′ is linearized after op.

Claim 1 If an infinite and monotonically increasing

sequence of values is written to M , then some process

performs Line 10 of Algorithm 1 infinitely often.

Proof If an infinite and monotonically-increasing se-

quence of values is written to M , then max registers

are made obsolete infinitely often. Since a max register

is only made obsolete in Line 11 of Algorithm 1, it is im-

mediate from the code that Line 10 of that algorithm is

performed infinitely often as well. Since the number of

processes is finite, it follows that some process performs

that line infinitely often.

Lemma 12 The full Algorithm 1 is wait-free.

Proof As proven in Lemma 7, the algorithm is lock-free

and Write operations are wait-free. It remains to show

that Read operations are wait-free as well. Assume for

contradiction that there is an infinite execution e in

which a Read operation op takes infinitely many steps.

If there is no infinite monotonically-increasing sequence

of values that is written to M then, starting from some

point in e, M ’s value does not increase. The set of ob-

solete max object stops growing, hence op eventually

reaches a non-obsolete max register and completes.

Otherwise, there is such a sequence of monotonically

increasing values. From Claim 1, there is some process

j that performs Line 10 of Algorithm 1 infinitely often.

Thus, op eventually evaluates the condition on Line 27

of Algorithm 2 as true and is therefore able to termi-

nate.

Claim 2 Let e be an execution in which max register

maxk becomes obsolete. Then, after sk, the array H con-

tains a triplet whose first value is at least k.

Proof Immediate from Lemma 2 and from the fact that

each process i writes to H[i] (in Line 10) a triplet of

values whose first component is k just before writing 1

to switchk−1 (in Line 11).

Claim 3 Let e be an execution, and let s and s′ be two

steps in e between which at least j switches are made

obsolete. Then at least j − 1 different writes to the H

array (in Line 10) are performed between the steps s

and s′.

Proof From Lines 10-11, each Write operation op by

a process i writes to H[i] (in Line 10) immediately be-

fore writing 1 to switchk−1 (in Line 11). Thus, between

two consecutive executions of Line 11 by any process i, i

writes to H[i]. Let k be the smallest index of a max regis-

ter that has not been made obsolete in step s or before.

From Lemma 2, the steps sk, . . . , sk+j−1 in which the

max registers k, . . . , k + j − 1 are made obsolete occur

in this order in e, and before s′. Moreover, any process

i that is about to perform Line 11 after s is about to

write to switchk or to a switch with a smaller index. It

follows that at least a single distinct write to an entry H

is done after sj′ and before sj′+1, for k ≤ j′ < k+j−1.

Hence there are at least j − 1 such writes.

Theorem 2 If m = n2, then the full algorithm is a

wait-free linearizable n-process implementation of an

unbounded max register with amortized step complex-

ity of O(logm) in any n-bounded-increment execution.

In any such execution, the worst-case step complexity of

Write operation is O(log n) and that of Read is O(n).

Proof For any execution e of the full algorithm, we de-

fined linearization points for a subset of the operations

that are invoked on M in e. This subset includes every

operation on M that completes in e (Lemma 5, which

holds for the full algorithm). Lemma 4 and Lemma 10

ensure that each linearization point is within the execu-

tion interval of the corresponding operation. The order

of the operations induced by their linearization is con-

sistent with the semantic of max registers (Lemma 6

and Lemma 11). The full algorithm is thus linearizable,

and wait-free by Lemma 12.

It remains to argue regarding its complexity. In Al-

gorithm 2, every iteration of the for loop at either

Line 23 or Line 26 incurs a constant number of steps.

Thus, every invocation of GetHelp incurs O(n) steps.

In Algorithm 1, a Write operation performs at most

one WriteMax and at most one ReadMax operation, in-

curring a total of O(logm) steps. We note that any

Read operation invokes GetHelp once every Θ(n) steps

when the condition of Line 17 of Algorithm 1 is satis-

fied. Thus, at any point in the course of the execution,

the number of steps taken by a Read operation op inside

GetHelp is O(loopop) (recall that loopop is the number

of steps performed in the while loop of Lines 15-16).

Consequently, as in the proof of Lemma 8, we get:

AmtSteps(e) =

O

(∑
op∈OPW (e) logm+

∑
op∈OPR(e) logm+ loopop

w + r

)
= O(logm).

The worst-case step complexity of a Write operation

is logarithmic in m, since it applies at most a single

WriteMax operation (in Line 5) and at most a single

ReadMax operation (in Line 7) plus a constant number
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of additional steps. As we choose m = n2, it is also

logarithmic in n. It remains to prove that the worst-

case complexity of Read operations is linear.

Let op be a Read operation by process i. We estab-

lish that GetHelp is invoked at most twice by op. We

do so by proving that after op invokes GetHelp twice,

it completes by returning in Line 18.

In the first invocation of GetHelp, let s be the last

step performed by i in the first loop (Lines 22-24). Let

α denote the smallest index of a bounded max register

that has not been set before s. Let α′ denote the value of

lasti when this first invocation returns. From Claim 2

and because in the first invocation of GetHelp lasti is

updated in the loop of Lines 28-29, after s, α′ ≥ α− 1.

After the first invocation returns, and before invok-

ing GetHelp for the second time, i reads 1 from the n+2

switches switchα′ , . . . , switchα′+n+1. Let s′ denote the

first step by i in the second invocation of GetHelp.

Because α′ ≥ α − 1, at least n + 1 bounded registers

maxα, . . . , maxα+n are made obsolete between s and s′.

It thus follows from Claim 3 that at least n different

writes are made to array H between s and s′.

Consequently, there exists a process ` 6= i that up-

dates H[`] (in Line 10) at least twice between s and s′. It

follows from the fact that process ` increments its sec-

ond triplet-value before each such update (in Line 9)

that, in iteration ` of the loop of Lines 26-27 of the sec-

ond iteration of GetHelp, the condition of Line 27 is

satisfied. Hence GetHelp returns a non-zero value and

op completes in Line 18.

To conclude, we observe that in each invocation of

GetHelp O(n) steps are performed. Moreover, between

two invocation of GetHelp or between its beginning and

its first first invocation of GetHelp (if any), a Read op-

erations performs O(n) steps. As GetHelp is invoked

at most twice by any Read operation, the worst-case

complexity of Read operations is O(n).

4 Wait-Free Counter with Polylogarithmic

Amortized Step Complexity

Algorithm 3 presents a wait-free recursive construction

of a linearizable counter that has polylogarithmic amor-

tized step complexity in all executions, regardless of

their length. The algorithm is essentially the same as

the (non-recursive) counter construction of Aspnes et

al. [AAC12], except that the latter uses the max reg-

isters of [AAC12], whose amortized step complexity is

linear in sufficiently long executions, whereas ours uses

our wait-free unbounded max registers.

Let Cj denote a counter, shared by n processes, im-

plemented by Algorithm 3. For simplicity and without

Algorithm 3 An n-process counter Cj , code for pro-

cess i.
Shared variables:

R: an n-process UnboundedMaxRegn2 object, initially 0
If j > 1: left: a Cdj/2e counter object, initially 0

right: a Cj−dj/2e counter object, initially 0

1: function Inc(Cj)
2: if j = 1 then

3: v ← ReadMax(R)
4: WriteMax(R, v + 1)
5: else

6: if i’s C1 leaf-counter is on the left sub-tree then

Inc(left) else Inc(right)
7: v0 ← read(left)
8: v1 ← read(right)
9: WriteMax(R, v0 + v1)

10: function Read(Cj)
11: return ReadMax(R)

loss of generality, assume in the following that each of

n and j is an integral power of 2. Cj ’s value is stored

in an n-process wait-free unbounded max register R,

which is of type UnboundedMaxRegn2 . If j > 1 holds,

then Cj also contains two Cj/2 child-counters – left

and right. A counter Cn serves as a root of a tree of

counters and all processes can invoke Inc operations on

Cn. At the bottom layer of the tree, each process i is

associated with a single C1 leaf-counter on which only

i can invoke Inc operations.

To read Cj , process i simply invokes a Read oper-

ation on Cj ’s R object and returns the response (Line

11). Incrementing a C1 object consists of simply reading

R and writing to it a value larger by one (Lines 3-4). To

increment a Cj counter, for j > 1, process i increments

either the left or the right child counter, depending

on whether its C1 leaf-counter is on the left or the right
subtree of Cj , reads the values of both child counters

and writes their sum to R (Lines 6-9). Observe that at

most j distinct processes can invoke Inc operations on

any specific Cj counter.

In the following proofs we let C denote a Cn object

implemented by Algorithm 3 and e be an execution of

C.

Lemma 13 The Cj counter implementation of Algo-

rithm 3 is linearizable.

Proof The proof is by induction on j.

Base Case. For j = 1, the UnboundedMaxReg object R

of a C1 counter may only be incremented by a single

process. Since R’s value is always increased by exactly

1, the execution is 1-bounded-increment for R, so the

correctness of R follows from Theorem 2. Increment op-

erations on C1 are linearized when the Write operation
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invoked in Line 4 is linearized and read operations on

C1 are linearized when the Read operation invoked in

Line 11 is linearized.

Induction Hypothesis. For all k < j, Ck is a lineariz-

able counter and the value of its max object R is never

increased by a Write operation by more than k.

Inductive Step.

Lemma 14 e is a j-bounded-increment execution for

Cj .R.

Proof The proof is divided into two parts. We first

prove the left-hand inequality of Definition 1. Let e′

be a prefix of e immediately after which process p is

about to invoke a Write() operation opv on Cj .R with

input v (in Line 9). Let I be the set of Inc operations

that have completed on Cj in e′. Observe that each op-

eration op ∈ I has performed one Inc operation on ei-

ther Cj .left or Cj .right. We partition I accordingly:

I = I0 ∪ I1, where for any op ∈ I, op ∈ I0 if op per-

formed an Inc operation on Cj .left and op ∈ I1 if op

performed an Inc operation on Cj .right.

By IH, both Cj .left and Cj .right are lineariz-

able counters. Let op0 ∈ I0 be the operation whose

Inc operation on Cj .left is linearized last among all

Inc operations on Cj .left performed by the opera-

tions in I0. Let c0 be the value of Cj .left immedi-

ately after the Inc operation on that object by op0.

op1 and c1 are defined similarly. From Lines 7-9, for

each r ∈ {0, 1}, after performing an Inc operation on

either Cj .left or Cj .right, opr performs read opera-

tions on both Cj .left and Cj .right before writing the

sum ur of the values read to Cj .R. We show that v′ =

max{u0, u1} ≥ c0 + c1. Indeed, assume that op0’s read

operation on Cj .right returns a value strictly smaller

than c1 (note that, otherwise, u0 ≥ c0 + c1). Then,

op1’s Inc operation on Cj .right is linearized after op0’s

Read operation on Cj .right. It thus follows that op1’s

read operation on Cj .left starts after op0’s Inc opera-

tion on Cj .left has completed. We thus conclude that

u1 ≥ c0 + c1 .

Since both op0 and op1 have completed in e′, a

WriteMax operation on R of value v′ ≥ c0 + c1 has

completed in e′. If v ≤ v′ then v− j ≤ v′ and the claim

holds. Otherwise, again from Lines 7-9, the operand v

of the WriteMax operation opv is the sum of the val-

ues v0, v1 returned by the Read operations performed

on the counters Cj .left and Cj .right, respectively.

v0 = c0 + δ, for δ > 0, implies that there are δ Inc

operations on Cj .left that have been linearized after

the Inc operation on the same counter by op0. From the

definition of op0, these δ operations take place within δ

Inc operations on Cj that did not complete in e′. The

same argument applies for v1. Since there are at most

j processes that may invoke Inc operations on Cj and

thus at most j incomplete Inc operations on Cj after

e′, it follows that v = v0 +v1 ≤ j+c0 +c1. Hence, there

is a value v′ = max{u0, u1} such that v − v′ ≤ j and a

WriteMax(v′) on R has completed before the operation

opv = WriteMax(v) on R starts.

We next prove both inequalities of Definition 1. Let

op be a WriteMax operation on Cj .R with input v > j.

The first part above established that there exists a

WriteMax operation op′ on Cj .R with input v′ that fin-

ishes before op starts, such that v−j ≤ v′. Assume that

v′ ≥ v. Let O> be the set of WriteMax operations on

Cj .R that (1) precede op and (2) whose input is larger

than or equal to v. We define a partial order ≺ on the

operations in O> as follows:

∀W,W ′ ∈ O>,W ≺W ′ ⇐⇒ W precedes W ′ in e.

Let us observe that O> is non-empty and finite. The

latter is because e is finite and so only finitely many op-

erations precede op in e and the former follows from the

existence of op′. Consider any minimal element in the

partially ordered set O>, that is any operation W such

that for any operation W ′ ∈ O>, W ′ does not precede

W . Since O> is finite, there is at least one such opera-

tion W . Let inW denote its input. Since W ∈ O>, we

have inW ≥ v. Also, by applying the left-hand inequal-

ity (proved in the first part of the proof) to W , there

exists an operation W ′ with input inW ′ that precedes

W such that inW ′ ≥ inW − j ≥ v − j. As W ′ ≺ W ,

and W is chosen as a minimal element of O>, it follows

that W ′ /∈ O>. Since W ′ precedes both W and op, we

get that inW ′ < v, which concludes the proof.

From Lemma 14 and Theorem 2 we conclude that Cn.R

is linearizable in e. Based on this, the proof proceeds

similarly to the proof of [AAC12, Lemma 4].

From IH, the counters Cj .left and Cj .right are

linearizable. We associate with every increment oper-

ation op on Cj a value as follows. Let c0 and c1 re-

spectively denote the values of Cj .left and Cj .right

immediately after p’s increment of Cj ’s child (corre-

sponding to p’s identifer), in Line 6, is linearized. Then

we associate with op the value v = c0 + c1. We linearize

an Inc operation op, associated with value v, when a

value v′ ≥ v is first written to Cj .R in Line 9 (either by

p or by another process). We linearize a Read operation

on Cj when it reads Cj .R in Line 11.

We now prove that each linearization point is within

its operation execution interval. Consider an Inc op-

eration op associated with value v. A value v′ ≥ v

cannot be written to Cj .R before op starts, because,
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from the linearizability of Cj .left and Cj .right, be-

fore op starts, the sum of these two counters is less

than c0 + c1. Since op itself writes value v to Cj .R be-

fore it terminates, the linearization point occurs before

op terminates. The fact that the linearization point of

a Read operation on Cj lies within its execution in-

terval follows immediately from the linearizability of

Cj .R, established by Lemma 14. Finally, the lineariza-

tion points result in a valid sequential execution, be-

cause every Read operation on Cj that returns value v

is preceded by exactly v Inc operations on Cj .

Lemma 15 Algorithm 3 has O(log2 n) amortized step

complexity.

Proof From Algorithm 3 and the fact that C is shared

by n processes, every operation on C applies a constant

number of ReadMax/WriteMax operations to each of

O(log n) different UnboundedMaxReg objects, as the re-

cursive calls in Lines 7-9 and 11 unfold. Lettingncops(e)

denote the number of operations that are invoked on C
in e, the total number of ReadMax/WriteMax operations

on all the implementation’s UnboundedMaxReg objects

is therefore O
(

log n · ncops(e)
)
. From Theorem 2, let-

ting m = n2, it follows that the total number of steps

performed in e is O
(

log2 n · ncops(e)
)
.

Lemma 16 for both Inc and Read operations, Algo-

rithm 3 has O(n) worst-case step complexity.

Proof A Read operation on the counter invokes a sin-

gle Read on an UnboundedMaxRegn2 object hence, from

Theorem 2, its step complexity is O(n). It remains to

argue about the worst-case step complexity of Inc op-

erations.

Algorithm 3 uses at its root (layer 0 of the counters

tree) an unbounded max register for n processes. More

generally, each tree layer i ∈ {0, . . . , log n}, consists of

unbounded max registers for n
2i processes. Unfolding

the recursion of Algorithm 3, an Inc operation I on

the root results in the following operations.

– At each of the tree layers, a single Write operation is

applied to a single UnboundedMaxReg object. From

Theorem 2, the total worst-case step complexity of

all these Write operations is O(log2 n).

– At most two Read operations are applied to a single

UnboundedMaxReg object at each of the tree layers.

From Theorem 2, there is a constant c such that the

number of steps taken by a Read operation on an

UnboundedMaxReg object for j processes is at most

c · j. Thus the total number of steps incurred by

all the Read operations triggered by I is at most∑
j∈{0,...,logn} 2c · 2j = O(n).

Theorem 3 Algorithm 3 is a wait-free linearizable n-

process implementation of an unbounded counter with

amortized step complexity of O(log2 n) and worst-case

step complexity of O(n).

Proof From Lemma 13, the algorithm is linearizable.

By Lemma 12, all the UnboundedMaxReg objects used

by Algorithm 3 are wait-free. Therefore, clearly from

the pseudo-code, Algorithm 3 is wait-free as well. The

claimed amortized and worst-case complexities follow

from Lemma 15 and Lemma 16 respectively.

A logarithmic lower bound on the amortized step

complexity of implementing an obstruction-free one-

time fetch&increment object from read, write and k-

word compare-and-swap operations was proved by At-

tiya and Hendler in [AH10, Theorem 9]. Their proof

can be easily adapted to obtain the following result:

Lemma 17 Any n-process obstruction-free implemen-

tation from read/write registers of a counter object has

an execution that contains Ω(n log n) steps, in which

every process performs a single Inc operation followed

by a single Read operation.

Lemma 17 shows that every lock-free read/write

counter implementation has an execution whose amor-

tized step complexity is at least logarithmic in the num-

ber of processes, showing that our counter algorithm is

optimal in terms of amortized step complexity up to a

logarithmic factor.

5 Discussion

In this work, we presented the first lock-free read/write

counter algorithm that provides sub-linear amortized

step complexity in all executions, regardless of their

length. The amortized step complexity of our algorithm

is O(log2 n), where n is the number of processes sharing

the implementation. This is optimal up to a logarith-

mic factor, since there exists a logarithmic lower bound

on the amortized step complexity of n-process one-time

counters. In contrast, the amortized step complexity of

the counter algorithm of [AAC12] deteriorates as the

number of Inc operations increases and eventually be-

comes linear in n.

It is unclear whether there exists a wait-free (or even

lock-free or obstruction-free) read/write counter imple-

mentation with o(log2 n) amortized step complexity. In-

terestingly, a similar gap between an O(log2 n) upper

bound and anΩ(log n) lower bound exists for the worst-

case step complexity of counters [AAC12].

The space complexity of our counter is infinite, since

it uses our unbounded max registers, and each of these
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encapsulates an infinite number of bounded max regis-

ters. Finding a bounded-space read/write counter with

sub-linear amortized step complexity is another open

question. These questions are left for future work.
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