
Synchronous -Resilient
Consensus in

Arbitrary Graphs

t

A. Castaneda, P. Fraigniaud, A. Paz,
S. Rajsbaum, M. Roy and C. Travers

Consensus

• Agreement:
 Decide the same value
• Validity:

Decided values are input values
• Termination:

Non-faulty processes decide

1 2

0

1

1

0

0

22

How fast consensus can be reached in arbitrary failure-prone networks?

Consensus

• Agreement:
 Decide the same value
• Validity:

Decided values are input values
• Termination:

Non-faulty processes decide

1 2

0

1

1

0

0

222 2

2 2

2

2

2

2

2

How fast consensus can be reached in arbitrary failure-prone networks?

Synchronous Failure-prone
Networks

 Synchronous rounds:
each node sends to/receive from neighbors

Synchronous Failure-prone
Networks

 Synchronous rounds:
each node sends to/receive from neighbors

Synchronous Failure-prone
Networks

 Synchronous rounds:
each node sends to/receive from neighbors

Synchronous Failure-prone
Networks

At most nodes may crash t

 Synchronous rounds:
each node sends to/receive from neighbors

Synchronous Failure-prone
Networks

At most nodes may crash t

 Synchronous rounds:
each node sends to/receive from neighbors

clean: no message sent
dirty: messages sent to some neighbors

Synchronous Failure-prone
Networks

At most nodes may crash t

 Synchronous rounds:
each node sends to/receive from neighbors

clean: no message sent
dirty: messages sent to some neighbors

Synchronous Failure-prone
Networks

At most nodes may crash t

 Synchronous rounds:
each node sends to/receive from neighbors

clean: no message sent
dirty: messages sent to some neighbors

Synchronous Failure-prone
Networks

At most nodes may crash t

 Synchronous rounds:
each node sends to/receive from neighbors

clean: no message sent
dirty: messages sent to some neighbors

Know-All model

• Each node has a unique id

• Graph and ids assignment are known G

• Only node knows its input i vi

5 2

9

4

7

3 8

6

1

1

0 0

0

2

2

1

1

2

How many rounds are necessary to solve resilient consensus ?t
Given and id assignment, design a consensus algorithm G 𝒜G,id,t

• At most nodes failt

Synchronous Consensus in
Complete Graphs

1

5 2

34

Distributed Computing 101
[Lamport Fischer 82]

[Aguilera Toueg 99]
[Charron-Bost Schiper 00]

[Lamport 00]
[Moses Rajsbaum 02]
[Keidar Rajsbaum 03]

[Wang Teo Cao 05]
…

[Castaneda Gonczarowski Moses 14]
 rounds for to flood
in the worst case

(t + 1) v G

v -resilient consensus in the clique:
 rounds necessary and sufficient
t
(t + 1)

Theorem

Synchronous Consensus in
Arbitrary Graphs

-resilient consensus solvable
iff

 is -vertex connected

t

G (t + 1)

Solvability

[Folklore]

??
≥ t + 1

Round complexity

Our Results

Dynamic notion of radius taking into account failures𝖱𝖺𝖽𝗂𝗎𝗌(G, t)

Consensus is solvable in rounds 𝖱𝖺𝖽𝗂𝗎𝗌(G, t)

Upper bound

Definition

Lower bound

For symmetric graph, consensus cannot be solved in rounds 𝖱𝖺𝖽𝗂𝗎𝗌(G, t) − 1

Roadmap

1. Failure-sensitive eccentricity and radius

2. A naive algorithm

3. An adaptive algorithm

4. Optimality for symmetric graphs

Failure Pattern

Failure pattern
• Which node fails, and when?
• Which neighbors received messages
 in the failing round

φ

f

b

dv

c

e

u

a r = 1

φ = {(u,1,{b, c}), (v,3,∅)}

Faulty node

round of the failure

receiving neighbors

Failure Pattern

Failure pattern
• Which node fails, and when?
• Which neighbors received messages
 in the failing round

φ

f

b

dv

c

e

u

a r = 1

r = 3

φ = {(u,1,{b, c}), (v,3,∅)}

Faulty node

round of the failure

receiving neighbors

Failure Sensitive
Eccentricity

#round for to flood 𝖾𝖼𝖼G(v, φ) = v G

u6

u2u1

u5 u4

y u3

#rounds for every correct to receive input of v

Failure Sensitive
Eccentricity

#round for to flood 𝖾𝖼𝖼G(v, φ) = v G

u6

u2u1

u5 u4

y u3

 𝖾𝖼𝖼(y, φ∅) = 1

#rounds for every correct to receive input of v

Failure Sensitive
Eccentricity

#round for to flood 𝖾𝖼𝖼G(v, φ) = v G

u6

u2u1

u5 u4

y u3

 𝖾𝖼𝖼(y, φ∅) = 1

#rounds for every correct to receive input of v

Failure Sensitive
Eccentricity

#round for to flood 𝖾𝖼𝖼G(v, φ) = v G

u6

u2u1

u5 u4

y u3

 𝖾𝖼𝖼(y, φ∅) = 1

r = 1

#rounds for every correct to receive input of v

Failure Sensitive
Eccentricity

#round for to flood 𝖾𝖼𝖼G(v, φ) = v G

u6

u2u1

u5 u4

y u3

 𝖾𝖼𝖼(y, φ∅) = 1

r = 1

r = 2
#rounds for every correct to receive input of v

Failure Sensitive
Eccentricity

#round for to flood 𝖾𝖼𝖼G(v, φ) = v G

u6

u2u1

u5 u4

y u3

 𝖾𝖼𝖼(y, φ∅) = 1

 𝖾𝖼𝖼(y, φ1) = + ∞

r = 1

r = 2
#rounds for every correct to receive input of v

Failure Sensitive
Eccentricity

#round for to flood 𝖾𝖼𝖼G(v, φ) = v G

u6

u2u1

u5 u4

y u3

 𝖾𝖼𝖼(y, φ∅) = 1

 𝖾𝖼𝖼(y, φ1) = + ∞

#rounds for every correct to receive input of v

Failure Sensitive
Eccentricity

#round for to flood 𝖾𝖼𝖼G(v, φ) = v G

u6

u2u1

u5 u4

y u3

 𝖾𝖼𝖼(y, φ∅) = 1

 𝖾𝖼𝖼(y, φ1) = + ∞

r = 1

#rounds for every correct to receive input of v

Failure Sensitive
Eccentricity

#round for to flood 𝖾𝖼𝖼G(v, φ) = v G

u6

u2u1

u5 u4

y u3

 𝖾𝖼𝖼(y, φ∅) = 1

 𝖾𝖼𝖼(y, φ1) = + ∞

r = 1

r = 2
#rounds for every correct to receive input of v

Failure Sensitive
Eccentricity

#round for to flood 𝖾𝖼𝖼G(v, φ) = v G

u6

u2u1

u5 u4

y u3

 𝖾𝖼𝖼(y, φ∅) = 1

 𝖾𝖼𝖼(y, φ1) = + ∞

r = 1𝖾𝖼𝖼(y, φ2) = 6

r = 2
#rounds for every correct to receive input of v

Radius
 𝖱𝖺𝖽𝗂𝗎𝗌(G, Φ) = min

v∈V
𝖾𝖼𝖼G(v, Φ)

set of failure patterns
max
φ∈Φ

{𝖾𝖼𝖼G(v, φ) : 𝖾𝖼𝖼G(v, φ) is finite}

u6

u2u1

u5 u4

y u3
r = 1

r = 2
 𝖾𝖼𝖼(y, Φ2

all) = 6

 𝖾𝖼𝖼(ui, Φ2
all) = 6

𝖱𝖺𝖽𝗂𝗎𝗌(G, Φ2
all) = 6

A Naive Algorithm

1. Order node according to their eccentricity

𝖾𝖼𝖼G(v1, Φt
all) ≤ 𝖾𝖼𝖼G(v2, Φt

all) ≤ ⋯ ≤ 𝖾𝖼𝖼G(vt+1, Φt
all)

2. Perform flooding for rounds 𝖾𝖼𝖼G(vt+1, Φt
all)

3. Decide input of node with smallest ID in v1, …, vt+1

A Naive Algorithm

1. Order node according to their eccentricity

𝖾𝖼𝖼G(v1, Φt
all) ≤ 𝖾𝖼𝖼G(v2, Φt

all) ≤ ⋯ ≤ 𝖾𝖼𝖼G(vt+1, Φt
all)

max
φ∈Φ

{𝖾𝖼𝖼G(v2, φ) : 𝖾𝖼𝖼G(v2, φ) is finite}

2. Perform flooding for rounds 𝖾𝖼𝖼G(vt+1, Φt
all)

3. Decide input of node with smallest ID in v1, …, vt+1

A Naive Algorithm

1. Order node according to their eccentricity

𝖾𝖼𝖼G(v1, Φt
all) ≤ 𝖾𝖼𝖼G(v2, Φt

all) ≤ ⋯ ≤ 𝖾𝖼𝖼G(vt+1, Φt
all)

max
φ∈Φ

{𝖾𝖼𝖼G(v2, φ) : 𝖾𝖼𝖼G(v2, φ) is finite}

2. Perform flooding for rounds 𝖾𝖼𝖼G(vt+1, Φt
all)

3. Decide input of node with smallest ID in v1, …, vt+1

Example

y

x1 x3x2 x4 x5 x6 x7

 𝖾𝖼𝖼(x5, Φ1
all) = 4 𝖾𝖼𝖼(x4, Φ1

all) = 3 <

Given , after 4 rounds:
• input received by every correct, or by none
• input received by every correct or by none
• Every correct has received the input of or , or both

φ ∈ Φ1
all

x4
x5

x4 x5

t = 1

Non-optimality

y

x1 x3x2 x4 x5 x6 x7

 𝖾𝖼𝖼(x5, Φ1
all) = 4 𝖾𝖼𝖼(x4, Φ1

all) = 3 < < 𝖾𝖼𝖼(y, Φ1
all) = 7

t = 1

Non-optimality

y

x1 x3x2 x4 x5 x6 x7

 𝖾𝖼𝖼(x5, Φ1
all) = 4 𝖾𝖼𝖼(x4, Φ1

all) = 3 < < 𝖾𝖼𝖼(y, Φ1
all) = 7

let fails Φx4
= {φ : x4 }

t = 1

Non-optimality

y

x1 x3x2 x4 x5 x6 x7

 𝖾𝖼𝖼(x5, Φ1
all) = 4 𝖾𝖼𝖼(x4, Φ1

all) = 3 < < 𝖾𝖼𝖼(y, Φ1
all) = 7

let fails Φx4
= {φ : x4 }

𝖾𝖼𝖼(y, Φx4
) = 1

t = 1

Non-optimality

y

x1 x3x2 x4 x5 x6 x7

 𝖾𝖼𝖼(x5, Φ1
all) = 4 𝖾𝖼𝖼(x4, Φ1

all) = 3 < < 𝖾𝖼𝖼(y, Φ1
all) = 7

let fails Φx4
= {φ : x4 }

𝖾𝖼𝖼(y, Φx4
) = 1

Given , after 3 rounds:
• input received by every correct, or by none
• if no correct has rcved input, every correct has received input

φ ∈ Φ1
all

x4
x4 y

t = 1

Consensus in
 Rounds 𝖱𝖺𝖽𝗂𝗎𝗌(G, Φt

all)

Φt
all

Φℕ
v = {φ ∈ Φt

all : 𝖾𝖼𝖼G(v, φ) < + ∞}
Φ∞

v = {φ ∈ Φt
all : 𝖾𝖼𝖼G(v, φ) = + ∞}

Every correct gets inputv
No correct gets inputv

t = 2

Consensus in
 Rounds 𝖱𝖺𝖽𝗂𝗎𝗌(G, Φt

all)

Φt
all

Φℕ
v = {φ ∈ Φt

all : 𝖾𝖼𝖼G(v, φ) < + ∞}
Φ∞

v = {φ ∈ Φt
all : 𝖾𝖼𝖼G(v, φ) = + ∞}

Every correct gets inputv
No correct gets inputv

Φℕ
v1

Φ∞
v1

t = 2

Consensus in
 Rounds 𝖱𝖺𝖽𝗂𝗎𝗌(G, Φt

all)

Φt
all

Φℕ
v = {φ ∈ Φt

all : 𝖾𝖼𝖼G(v, φ) < + ∞}
Φ∞

v = {φ ∈ Φt
all : 𝖾𝖼𝖼G(v, φ) = + ∞}

Every correct gets inputv
No correct gets inputv

Φℕ
v1

Φ∞
v1

Φℕ
v2 Φ∞

v2

t = 2

Consensus in
 Rounds 𝖱𝖺𝖽𝗂𝗎𝗌(G, Φt

all)

Φt
all

Φℕ
v = {φ ∈ Φt

all : 𝖾𝖼𝖼G(v, φ) < + ∞}
Φ∞

v = {φ ∈ Φt
all : 𝖾𝖼𝖼G(v, φ) = + ∞}

Every correct gets inputv
No correct gets inputv

Φℕ
v1

Φ∞
v1

Φℕ
v2 Φ∞

v2

t = 2 Φℕ
v3

Consensus in
 Rounds 𝖱𝖺𝖽𝗂𝗎𝗌(G, Φt

all)

Φt
all

Φℕ
v = {φ ∈ Φt

all : 𝖾𝖼𝖼G(v, φ) < + ∞}
Φ∞

v = {φ ∈ Φt
all : 𝖾𝖼𝖼G(v, φ) = + ∞}

Every correct gets inputv
No correct gets inputv

Φℕ
v1

Φ∞
v1

Φℕ
v2 Φ∞

v2

t = 2 Φℕ
v3

𝖾𝖼𝖼G(v1) = R1

𝖾𝖼𝖼G(v2) = R2

𝖾𝖼𝖼G(v3) = R3

Consensus in roundsmax{R1, R2, R3}

Consensus in
 Rounds 𝖱𝖺𝖽𝗂𝗎𝗌(G, Φt

all)

Core sequence of nodes t + 1 v1, v2, …, vt+1

No correct gets inputv1, …, vi−1

Φi−1 = Φ∞
vi−1

∩ ⋯ ∩ Φ∞
v1

 : vi 𝖾𝖼𝖼G(vi, Φℕ
vi

∩ Φi−1) ≤ 𝖾𝖼𝖼G(v, Φℕ
v ∩ Φi−1)∀v ≠ v1, …, vi−1

Every correct gets inputvi

Key Lemma
𝖾𝖼𝖼G(vi, Φℕ

vi
∩ Φi−1) > 𝖾𝖼𝖼G(vi+1, Φℕ

vi+1
∩ Φi)

 : v1 𝖾𝖼𝖼G(v1, Φℕ
v1

) = 𝖱𝖺𝖽𝗂𝗎𝗌(G, Φt
all)

Algorithm
Perform flooding for rounds𝖱𝖺𝖽𝗂𝗎𝗌(G, Φt

all)
Decide input of the core node with smallest index

Proof of Lemma
 : v1 𝖾𝖼𝖼G(v1, Φℕ

v1
) = 𝖱𝖺𝖽𝗂𝗎𝗌(G, Φt

all) Φ1 = Φ∞
v1

 : v2 𝖾𝖼𝖼G(v2, Φℕ
v2

∩ Φ1) ≤ 𝖾𝖼𝖼G(v, Φℕ
v ∩ Φ1)∀v ≠ v1 Φ2 = Φ∞

v2
∩ Φ∞

v1

∃u ≠ v1, v2 : 𝖾𝖼𝖼G(u, Φℕ
u ∩ Φ2) < 𝖾𝖼𝖼G(v2, Φℕ

v2
∩ Φ1)

u v2 v1φ ∈ Φℕ
u ∩ Φ2

u′�

𝖾𝖼
𝖼 G

(u
,φ

)
r = 1

w

r = k

∈ correct(φ)

Proof of Lemma
 : v1 𝖾𝖼𝖼G(v1, Φℕ

v1
) = 𝖱𝖺𝖽𝗂𝗎𝗌(G, Φt

all) Φ1 = Φ∞
v1

 : v2 𝖾𝖼𝖼G(v2, Φℕ
v2

∩ Φ1) ≤ 𝖾𝖼𝖼G(v, Φℕ
v ∩ Φ1)∀v ≠ v1 Φ2 = Φ∞

v2
∩ Φ∞

v1

∃u ≠ v1, v2 : 𝖾𝖼𝖼G(u, Φℕ
u ∩ Φ2) < 𝖾𝖼𝖼G(v2, Φℕ

v2
∩ Φ1)

u v2 v1φ ∈ Φℕ
u ∩ Φ2

u′�

𝖾𝖼
𝖼 G

(u
,φ

)
r = 1

w

r = kφ′�

∈ correct(φ)

Proof of Lemma
 : v1 𝖾𝖼𝖼G(v1, Φℕ

v1
) = 𝖱𝖺𝖽𝗂𝗎𝗌(G, Φt

all) Φ1 = Φ∞
v1

 : v2 𝖾𝖼𝖼G(v2, Φℕ
v2

∩ Φ1) ≤ 𝖾𝖼𝖼G(v, Φℕ
v ∩ Φ1)∀v ≠ v1 Φ2 = Φ∞

v2
∩ Φ∞

v1

∃u ≠ v1, v2 : 𝖾𝖼𝖼G(u, Φℕ
u ∩ Φ2) < 𝖾𝖼𝖼G(v2, Φℕ

v2
∩ Φ1)

u v2 v1φ ∈ Φℕ
u ∩ Φ2

u′�

𝖾𝖼
𝖼 G

(u
,φ

)
r = 1

w

r = kφ′�

r = 1

∈ correct(φ)

Proof of Lemma
 : v1 𝖾𝖼𝖼G(v1, Φℕ

v1
) = 𝖱𝖺𝖽𝗂𝗎𝗌(G, Φt

all) Φ1 = Φ∞
v1

 : v2 𝖾𝖼𝖼G(v2, Φℕ
v2

∩ Φ1) ≤ 𝖾𝖼𝖼G(v, Φℕ
v ∩ Φ1)∀v ≠ v1 Φ2 = Φ∞

v2
∩ Φ∞

v1

∃u ≠ v1, v2 : 𝖾𝖼𝖼G(u, Φℕ
u ∩ Φ2) < 𝖾𝖼𝖼G(v2, Φℕ

v2
∩ Φ1)

u v2 v1φ ∈ Φℕ
u ∩ Φ2

u′�

𝖾𝖼
𝖼 G

(u
,φ

)
r = 1

w

r = kφ′�

r = 1

r = k + 1

∈ correct(φ)

Proof of Lemma
 : v1 𝖾𝖼𝖼G(v1, Φℕ

v1
) = 𝖱𝖺𝖽𝗂𝗎𝗌(G, Φt

all) Φ1 = Φ∞
v1

 : v2 𝖾𝖼𝖼G(v2, Φℕ
v2

∩ Φ1) ≤ 𝖾𝖼𝖼G(v, Φℕ
v ∩ Φ1)∀v ≠ v1 Φ2 = Φ∞

v2
∩ Φ∞

v1

∃u ≠ v1, v2 : 𝖾𝖼𝖼G(u, Φℕ
u ∩ Φ2) < 𝖾𝖼𝖼G(v2, Φℕ

v2
∩ Φ1)

u v2 v1φ ∈ Φℕ
u ∩ Φ2

u′�

𝖾𝖼
𝖼 G

(u
,φ

)
r = 1

w

r = kφ′�

r = 1

r = k + 1

∈ correct(φ)
∈ correct(φ′�)

∈ Φℕ
v2

∩ Φ1

Proof of Lemma
 : v1 𝖾𝖼𝖼G(v1, Φℕ

v1
) = 𝖱𝖺𝖽𝗂𝗎𝗌(G, Φt

all) Φ1 = Φ∞
v1

 : v2 𝖾𝖼𝖼G(v2, Φℕ
v2

∩ Φ1) ≤ 𝖾𝖼𝖼G(v, Φℕ
v ∩ Φ1)∀v ≠ v1 Φ2 = Φ∞

v2
∩ Φ∞

v1

∃u ≠ v1, v2 : 𝖾𝖼𝖼G(u, Φℕ
u ∩ Φ2) < 𝖾𝖼𝖼G(v2, Φℕ

v2
∩ Φ1)

u v2 v1φ ∈ Φℕ
u ∩ Φ2

u′�

𝖾𝖼
𝖼 G

(u
,φ

)
r = 1

w

r = kφ′�

r = 1

r = k + 1

∈ correct(φ)
∈ correct(φ′�)

𝖾𝖼
𝖼 G

(u
,φ

) +
1∈ Φℕ

v2
∩ Φ1

Proof of Lemma
 : v1 𝖾𝖼𝖼G(v1, Φℕ

v1
) = 𝖱𝖺𝖽𝗂𝗎𝗌(G, Φt

all) Φ1 = Φ∞
v1

 : v2 𝖾𝖼𝖼G(v2, Φℕ
v2

∩ Φ1) ≤ 𝖾𝖼𝖼G(v, Φℕ
v ∩ Φ1)∀v ≠ v1 Φ2 = Φ∞

v2
∩ Φ∞

v1

∃u ≠ v1, v2 : 𝖾𝖼𝖼G(u, Φℕ
u ∩ Φ2) < 𝖾𝖼𝖼G(v2, Φℕ

v2
∩ Φ1)

u v2 v1φ ∈ Φℕ
u ∩ Φ2

u′�

𝖾𝖼
𝖼 G

(u
,φ

)
r = 1

w

r = kφ′�

r = 1

r = k + 1

∈ correct(φ)
∈ correct(φ′�)

𝖾𝖼
𝖼 G

(u
,φ

) +
1∈ Φℕ

v2
∩ Φ1

𝖾𝖼𝖼G(u, φ) + 1 ≤ 𝖾𝖼𝖼G(v2, φ′�)

Lower Bound

• Symmetric graphs

• Oblivious algorithms
Perform R rounds of flooding
Decide: {(id1, val1), …, (idk, valk)} → val

Lower Bound

Theorem

For any symmetric graph , there is no oblivious algorithm
that solves consensus in less than rounds

G
𝖱𝖺𝖽𝗂𝗎𝗌(G, Φt

all)

Information Flow Graph

Synchronous t-Resilient Consensus in Arbitrary Graphs 9

Note that it may be the case that (u, viewG(u,', r)) = (u, viewG(u, , r)), for
', 2 � with ' 6= , in which case these pairs correspond to the same vertex
of IFG,�,r. On the other hand, if u 6= v are two distinct nodes of G, we have
(u, viewG(u,', r)) 6= (v, viewG(v,', r)) for every ' 2 �, even if viewG(u,', r)) =
viewG(v,', r).

The set execG(', r) = {(v, viewG(v,', r)) : v 2 V is active in round r in '}
is called the r-round execution for failure pattern '. See Figure 2 for the infor-
mation flow graph of the triangle K3, with one failure, and one communication
round.

execK3('u clean, 1)

execK3('u dirty, 1)

execK3(';, 1)

(u, {u, v, w})

(v, {u, v, w})(w, {u, v, w})

(u, {u, v})

(v, {u, v})

(u, {u,w})

(w, {u,w})

(w, {v, w})(v, {v, w})

Fig. 2: IF
K3,�

(1)
all ,1

, with the execK3(', 1) sets marked, for some ' 2 �(1)
all .

Lemma 4. For every failure pattern ' 2 �, and every r � 0, the set execG(', r)
induces a connected subgraph of IFG,�,r.

Note that there is an edge from (u, viewG(u,', r)) to (v, viewG(v, , r)) in
IFG,�,r if there exists % 2 � such that u and v are active in round r in %,
and viewG(u,', r) = viewG(u, %, r), viewG(v, , r) = viewG(v, %, r) and u 2
viewG(v, %, r).

Note that if there are two failure patterns ' and yielding the same view
for a node v but two di↵erent views for a node u, then either the edges from the
two views of u to the view of v both exist, or none exist. This is specified in the
following lemma.

Lemma 5. Consider ', 2 � and u, v 2 V such that u and v are active in

round r in both ' and . If viewG(v,', r) = viewG(v, , r), and
�
(u, viewG(u,', r)), (v, viewG(v,', r))

�
2 E(IFG,�,r),

u v

w

G

t = 1

1 round information flow 𝕀𝔽(G,1)

Consensus and Domination

Theorem

There is an oblivious consensus algorithm in rounds
in under failure patterns iff

each connected component of is dominated

r
G Φ

𝕀𝔽G(Φ, r)

Definition

Node dominates a connected component of
iff

 s.t. dominates

v ∈ V(G) C 𝕀𝔽G(Φ, r)

∃φ ∈ Φ (v, 𝗏𝗂𝖾𝗐G(v, φ, r)) C

Consensus and Domination

Synchronous t-Resilient Consensus in Arbitrary Graphs 9

Note that it may be the case that (u, viewG(u,', r)) = (u, viewG(u, , r)), for
', 2 � with ' 6= , in which case these pairs correspond to the same vertex
of IFG,�,r. On the other hand, if u 6= v are two distinct nodes of G, we have
(u, viewG(u,', r)) 6= (v, viewG(v,', r)) for every ' 2 �, even if viewG(u,', r)) =
viewG(v,', r).

The set execG(', r) = {(v, viewG(v,', r)) : v 2 V is active in round r in '}
is called the r-round execution for failure pattern '. See Figure 2 for the infor-
mation flow graph of the triangle K3, with one failure, and one communication
round.

execK3('u clean, 1)

execK3('u dirty, 1)

execK3(';, 1)

(u, {u, v, w})

(v, {u, v, w})(w, {u, v, w})

(u, {u, v})

(v, {u, v})

(u, {u,w})

(w, {u,w})

(w, {v, w})(v, {v, w})

Fig. 2: IF
K3,�

(1)
all ,1

, with the execK3(', 1) sets marked, for some ' 2 �(1)
all .

Lemma 4. For every failure pattern ' 2 �, and every r � 0, the set execG(', r)
induces a connected subgraph of IFG,�,r.

Note that there is an edge from (u, viewG(u,', r)) to (v, viewG(v, , r)) in
IFG,�,r if there exists % 2 � such that u and v are active in round r in %,
and viewG(u,', r) = viewG(u, %, r), viewG(v, , r) = viewG(v, %, r) and u 2
viewG(v, %, r).

Note that if there are two failure patterns ' and yielding the same view
for a node v but two di↵erent views for a node u, then either the edges from the
two views of u to the view of v both exist, or none exist. This is specified in the
following lemma.

Lemma 5. Consider ', 2 � and u, v 2 V such that u and v are active in

round r in both ' and . If viewG(v,', r) = viewG(v, , r), and
�
(u, viewG(u,', r)), (v, viewG(v,', r))

�
2 E(IFG,�,r),

Suppose consensus solvable in roundsr
and there is a non-dominated CC in 𝕀𝔽G(Φ, r)

decide val(u)

decide ≠ val(u)

Consensus and Domination

Synchronous t-Resilient Consensus in Arbitrary Graphs 9

Note that it may be the case that (u, viewG(u,', r)) = (u, viewG(u, , r)), for
', 2 � with ' 6= , in which case these pairs correspond to the same vertex
of IFG,�,r. On the other hand, if u 6= v are two distinct nodes of G, we have
(u, viewG(u,', r)) 6= (v, viewG(v,', r)) for every ' 2 �, even if viewG(u,', r)) =
viewG(v,', r).

The set execG(', r) = {(v, viewG(v,', r)) : v 2 V is active in round r in '}
is called the r-round execution for failure pattern '. See Figure 2 for the infor-
mation flow graph of the triangle K3, with one failure, and one communication
round.

execK3('u clean, 1)

execK3('u dirty, 1)

execK3(';, 1)

(u, {u, v, w})

(v, {u, v, w})(w, {u, v, w})

(u, {u, v})

(v, {u, v})

(u, {u,w})

(w, {u,w})

(w, {v, w})(v, {v, w})

Fig. 2: IF
K3,�

(1)
all ,1

, with the execK3(', 1) sets marked, for some ' 2 �(1)
all .

Lemma 4. For every failure pattern ' 2 �, and every r � 0, the set execG(', r)
induces a connected subgraph of IFG,�,r.

Note that there is an edge from (u, viewG(u,', r)) to (v, viewG(v, , r)) in
IFG,�,r if there exists % 2 � such that u and v are active in round r in %,
and viewG(u,', r) = viewG(u, %, r), viewG(v, , r) = viewG(v, %, r) and u 2
viewG(v, %, r).

Note that if there are two failure patterns ' and yielding the same view
for a node v but two di↵erent views for a node u, then either the edges from the
two views of u to the view of v both exist, or none exist. This is specified in the
following lemma.

Lemma 5. Consider ', 2 � and u, v 2 V such that u and v are active in

round r in both ' and . If viewG(v,', r) = viewG(v, , r), and
�
(u, viewG(u,', r)), (v, viewG(v,', r))

�
2 E(IFG,�,r),

Suppose consensus solvable in roundsr
and there is a non-dominated CC in 𝕀𝔽G(Φ, r)

decide val(u)

decide ≠ val(u)

Application: Symmetric
Graphs

Theorem

If is symmetric, there is no oblivious algorithm that solves
consensus in rounds

G
𝖱𝖺𝖽𝗂𝗎𝗌(G, Φt

all) − 1

Synchronous t-Resilient Consensus in Arbitrary Graphs 11

node that has the same view in both failure patterns, in round r. An algorithm
cannot existe because the decision in '1 has to be 0, while de decision in 'n

has to be 1 and, then there are 'i and 'i+1 with distinct decisions, which is a
contradiction. ut

4.3 Optimality of Padapt for Symmetric Graphs

To conclude, we use the characterization in Theorem 3 to show that Padapt is
time optimal for symmetric graphs, among oblivious algorithms.

Recall that an automorphism of G is a bijection ⇡ : V ! V such that, for
every two nodes u and v, {u, v} 2 E () {⇡(u),⇡(v)} 2 E. Also recall that
a graph G = (V,E) is vertex-transitive if, for every two nodes u and v, there
exists an automorphism ⇡ of G such that ⇡(u) = v. For instance, the complete
graphs Kn, the cycles Cn, the d-dimensional hypercubes Qd, the d-dimensional
toruses Cn1 ⇥ · · ·⇥Cnd , the Kneser graphs KGn,k, the Cayley graphs, etc., are
all vertex-transitive. The wheel, composed of a cycle and a central node, is not
vertex-transitive, since the center node has degree n � 1 while the cycle nodes
have degree 3.

Theorem 4. If G is vertex-transitive, then there is no oblivious algorithm that

solves consensus in less than radius(G,�(t)
all) rounds.

execK3('u dirty, 1)

execK3('w dirty, 1)

execK3('v dirty, 1)

execK3(';, 1)

Fig. 3: The information flow graph IFK3,�,1 appearing in the proof of Theorem 4,
for K3 and the failure pattern � defined there.

Proof. Clearly, the result holds if radius(G,�(t)
all) = 1, as consensus is trivially

not solvable in zero rounds in any graph with at least 2 nodes, even with no

failures. So we assume now that radius(G,�(t)
all) � 2.

𝕀𝔽(C3,1,Φ) is not dominated

Conclusion and Future
Work

• Tight complexity bound for oblivious, crash-tolerant
consensus in symmetric graph

• The information flow (a.k.a protocol complex) for study
computability/complexity in network

• Are there faster non-oblivious algorithms ?

• What is the lower bound for non-symmetric graphs ?

• What are the round complexity of other classical
agreement tasks in arbitrary graphs ?

Thanks!

Information Flow Graph

u v

w

G

t = 1

𝕀𝔽(G,1)1 round information flow

(w, {v, w})

(v, {v, w})

(v, {u, v, w})

𝖾𝗑𝖾𝖼G(φu clean,1)

𝖾𝗑𝖾𝖼G(φu dirty,1)

(w, {u, v, w})

Volvo vs Nascar
Unknown communication graph All-to-all communication

Asynchronous, failure prone

Decision tasks

Synchronous, no failure

Construction tasks

[Fraigniaud]

Related Work: Connectivity

-resilient consensus solvable
iff

 is -vertex connected

t

G (t + 1)

-resilient consensus in the clique:
 rounds necessary and sufficient

t
(t + 1)

Consensus in
 rounds 𝖱𝖺𝖽𝗂𝗎𝗌(G, Φt

all)

Φℕ
v = {φ ∈ Φt

all : 𝖾𝖼𝖼G(v, φ) < + ∞}

Φ∞
v = {φ ∈ Φt

all : 𝖾𝖼𝖼G(v, φ) = + ∞}

Every correct gets inputv
No correct gets inputv

Core set of nodes t + 1 v1, v2, …, vt+1

 : v1 𝖾𝖼𝖼G(v1, Φℕ
v1

) = 𝖱𝖺𝖽𝗂𝗎𝗌(G, Φt
all) Φ1 = Φ∞

v1

Consensus in
 rounds 𝖱𝖺𝖽𝗂𝗎𝗌(G, Φt

all)

Φℕ
v = {φ ∈ Φt

all : 𝖾𝖼𝖼G(v, φ) < + ∞}

Φ∞
v = {φ ∈ Φt

all : 𝖾𝖼𝖼G(v, φ) = + ∞}

Every correct gets inputv
No correct gets inputv

Core set of nodes t + 1 v1, v2, …, vt+1

 : v1 𝖾𝖼𝖼G(v1, Φℕ
v1

) = 𝖱𝖺𝖽𝗂𝗎𝗌(G, Φt
all) Φ1 = Φ∞

v1

 : v2 𝖾𝖼𝖼G(v2, Φℕ
v2

∩ Φ1) ≤ 𝖾𝖼𝖼G(v, Φℕ
v ∩ Φ1)∀v ≠ v1 Φ2 = Φ∞

v2
∩ Φ∞

v1

Consensus in
 rounds 𝖱𝖺𝖽𝗂𝗎𝗌(G, Φt

all)

Φℕ
v = {φ ∈ Φt

all : 𝖾𝖼𝖼G(v, φ) < + ∞}

Φ∞
v = {φ ∈ Φt

all : 𝖾𝖼𝖼G(v, φ) = + ∞}

Every correct gets inputv
No correct gets inputv

Core set of nodes t + 1 v1, v2, …, vt+1

 : v1 𝖾𝖼𝖼G(v1, Φℕ
v1

) = 𝖱𝖺𝖽𝗂𝗎𝗌(G, Φt
all) Φ1 = Φ∞

v1

 : v2 𝖾𝖼𝖼G(v2, Φℕ
v2

∩ Φ1) ≤ 𝖾𝖼𝖼G(v, Φℕ
v ∩ Φ1)∀v ≠ v1 Φ2 = Φ∞

v2
∩ Φ∞

v1

No correct gets inputv1

Every correct gets inputv2

Consensus in
 rounds 𝖱𝖺𝖽𝗂𝗎𝗌(G, Φt

all)

Φℕ
v = {φ ∈ Φt

all : 𝖾𝖼𝖼G(v, φ) < + ∞}

Φ∞
v = {φ ∈ Φt

all : 𝖾𝖼𝖼G(v, φ) = + ∞}

Every correct gets inputv
No correct gets inputv

Core set of nodes t + 1 v1, v2, …, vt+1

 : v1 𝖾𝖼𝖼G(v1, Φℕ
v1

) = 𝖱𝖺𝖽𝗂𝗎𝗌(G, Φt
all) Φ1 = Φ∞

v1

 : v2 𝖾𝖼𝖼G(v2, Φℕ
v2

∩ Φ1) ≤ 𝖾𝖼𝖼G(v, Φℕ
v ∩ Φ1)∀v ≠ v1 Φ2 = Φ∞

v2
∩ Φ∞

v1

Consensus in
 rounds 𝖱𝖺𝖽𝗂𝗎𝗌(G, Φt

all)

Φℕ
v = {φ ∈ Φt

all : 𝖾𝖼𝖼G(v, φ) < + ∞}

Φ∞
v = {φ ∈ Φt

all : 𝖾𝖼𝖼G(v, φ) = + ∞}

Every correct gets inputv
No correct gets inputv

Core set of nodes t + 1 v1, v2, …, vt+1

 : v1 𝖾𝖼𝖼G(v1, Φℕ
v1

) = 𝖱𝖺𝖽𝗂𝗎𝗌(G, Φt
all) Φ1 = Φ∞

v1

 : v2 𝖾𝖼𝖼G(v2, Φℕ
v2

∩ Φ1) ≤ 𝖾𝖼𝖼G(v, Φℕ
v ∩ Φ1)∀v ≠ v1 Φ2 = Φ∞

v2
∩ Φ∞

v1

 : v3 𝖾𝖼𝖼G(v3, Φℕ
v3

∩ Φ2) ≤ 𝖾𝖼𝖼G(v, Φℕ
v ∩ Φ2)∀v ≠ v1, v2 Φ3 = Φ∞

v3
∩ Φ∞

v2
∩ Φ∞

v1

Consensus in
 rounds 𝖱𝖺𝖽𝗂𝗎𝗌(G, Φt

all)

Φℕ
v = {φ ∈ Φt

all : 𝖾𝖼𝖼G(v, φ) < + ∞}

Φ∞
v = {φ ∈ Φt

all : 𝖾𝖼𝖼G(v, φ) = + ∞}

Every correct gets inputv
No correct gets inputv

Core set of nodes t + 1 v1, v2, …, vt+1

 : v1 𝖾𝖼𝖼G(v1, Φℕ
v1

) = 𝖱𝖺𝖽𝗂𝗎𝗌(G, Φt
all) Φ1 = Φ∞

v1

 : v2 𝖾𝖼𝖼G(v2, Φℕ
v2

∩ Φ1) ≤ 𝖾𝖼𝖼G(v, Φℕ
v ∩ Φ1)∀v ≠ v1 Φ2 = Φ∞

v2
∩ Φ∞

v1

 : v3 𝖾𝖼𝖼G(v3, Φℕ
v3

∩ Φ2) ≤ 𝖾𝖼𝖼G(v, Φℕ
v ∩ Φ2)∀v ≠ v1, v2 Φ3 = Φ∞

v3
∩ Φ∞

v2
∩ Φ∞

v1

No correct gets inputv1, v2

Every correct gets inputv3

Consensus in
 rounds 𝖱𝖺𝖽𝗂𝗎𝗌(G, Φt

all)

Φℕ
v = {φ ∈ Φt

all : 𝖾𝖼𝖼G(v, φ) < + ∞}

Φ∞
v = {φ ∈ Φt

all : 𝖾𝖼𝖼G(v, φ) = + ∞}

Every correct gets inputv
No correct gets inputv

Core set of nodes t + 1 v1, v2, …, vt+1

 : v1 𝖾𝖼𝖼G(v1, Φℕ
v1

) = 𝖱𝖺𝖽𝗂𝗎𝗌(G, Φt
all) Φ1 = Φ∞

v1

 : v2 𝖾𝖼𝖼G(v2, Φℕ
v2

∩ Φ1) ≤ 𝖾𝖼𝖼G(v, Φℕ
v ∩ Φ1)∀v ≠ v1 Φ2 = Φ∞

v2
∩ Φ∞

v1

 : v3 𝖾𝖼𝖼G(v3, Φℕ
v3

∩ Φ2) ≤ 𝖾𝖼𝖼G(v, Φℕ
v ∩ Φ2)∀v ≠ v1, v2 Φ3 = Φ∞

v3
∩ Φ∞

v2
∩ Φ∞

v1

