Synchronous *t*-Resilient Consensus in Arbitrary Graphs

A. Castaneda, P. Fraigniaud, A. Paz, S. Rajsbaum, M. Roy and <u>C. Travers</u>

Consensus

- Agreement: Decide the same value
- Validity: Decided values are input values
- Termination:
 Non-faulty processes decide

How fast consensus can be reached in arbitrary failure-prone networks?

Consensus

- Agreement: Decide the same value
- Validity: Decided values are input values
- Termination:
 Non-faulty processes decide

How fast consensus can be reached in arbitrary failure-prone networks?

Synchronous rounds: each node sends to/receive from neighbors

Synchronous rounds: each node sends to/receive from neighbors

Synchronous rounds: each node sends to/receive from neighbors

Synchronous rounds: each node sends to/receive from neighbors

At most *t* nodes may crash

Synchronous rounds: each node sends to/receive from neighbors

At most *t* nodes may crash

clean: no message sent

Synchronous rounds: each node sends to/receive from neighbors

At most *t* nodes may crash

clean: no message sent

Synchronous rounds: each node sends to/receive from neighbors

At most *t* nodes may crash

clean: no message sent

Synchronous rounds: each node sends to/receive from neighbors

At most *t* nodes may crash

clean: no message sent

Know-All model

- Each node has a unique id
- Graph G and ids assignment are known
- Only node *i* knows its input v_i
- At most t nodes fail

Given *G* and id assignment, design a consensus algorithm $\mathscr{A}_{G,id,t}$ How many rounds are necessary to solve *t* resilient consensus ?

Synchronous Consensus in Complete Graphs

Theorem

t-resilient consensus in the clique:

(t+1) rounds necessary and sufficient

Distributed Computing 101 [Lamport Fischer 82] [Aguilera Toueg 99] [Charron-Bost Schiper 00] [Lamport 00] [Moses Rajsbaum 02] [Keidar Rajsbaum 03] [Wang Teo Cao 05]

[Castaneda Gonczarowski Moses 14]

(t + 1) rounds for v to <u>flood</u> G in the worst case

Synchronous Consensus in Arbitrary Graphs

Round complexity
$$\geq t+1$$
??

Our Results

Definition

Dynamic notion of radius Radius(G, t) taking into account failures

Upper bound

Consensus is solvable in Radius(G, t) **rounds**

Lower bound

For symmetric graph, consensus cannot be solved in Radius(G, t) - 1 rounds

Roadmap

- 1. Failure-sensitive eccentricity and radius
- 2. A naive algorithm
- 3. An adaptive algorithm
- 4. Optimality for symmetric graphs

Failure Pattern

Failure pattern φ

- Which node fails, and when?
- Which neighbors received messages
 in the failing round

 $\varphi = \left\{ (u, 1, \{b, c\}), (v, 3, \emptyset) \right\}$ Faulty node receiving neighbors round of the failure

Failure Pattern

Failure pattern φ

- Which node fails, and when?
- Which neighbors received messages
 in the failing round

Faulty node

receiving neighbors

round of the failure

 $ecc_G(v, \varphi) =$ #round for v to flood G

 $ecc_G(v, \varphi) = #round for v to flood G$

 $ecc_G(v, \varphi) = #round for v to flood G$

 $ecc_G(v, \varphi) = #round for v to flood G$

 $ecc_G(v, \varphi) = #round for v to flood G$

 $ecc_G(v, \varphi) =$ #round for v to flood G

#rounds for every correct to receive input of $\boldsymbol{\nu}$

 $ecc_G(v, \varphi) = #round for v to flood G$

#rounds for every correct to receive input of $\boldsymbol{\nu}$

 $ecc_G(v, \varphi) = #round for v to flood G$

#rounds for every correct to receive input of $\boldsymbol{\nu}$

 $ecc_G(v, \varphi) = #round for v to flood G$

#rounds for every correct to receive input of $\boldsymbol{\nu}$

 $ecc_G(v, \varphi) = #round for v to flood G$

#rounds for every correct to receive input of $\boldsymbol{\nu}$

 $ecc(y, \varphi_{\emptyset}) = 1$ $ecc(y, \varphi_1) = +\infty$ $ecc(y, \varphi_2) = 6$

A Naive Algorithm

1. Order node according to their eccentricity

 $\operatorname{ecc}_{G}(v_{1}, \Phi_{all}^{t}) \leq \operatorname{ecc}_{G}(v_{2}, \Phi_{all}^{t}) \leq \cdots \leq \operatorname{ecc}_{G}(v_{t+1}, \Phi_{all}^{t})$

2. Perform flooding for $ecc_G(v_{t+1}, \Phi_{all}^t)$ rounds

3. Decide input of node with smallest ID in v_1, \ldots, v_{t+1}

A Naive Algorithm

 $\max_{\varphi \in \Phi} \{ \mathsf{ecc}_G(v_2, \varphi) : \mathsf{ecc}_G(v_2, \varphi) \text{ is finite} \}$

1. Order node according to their eccentricity

 $\mathsf{ecc}_G(v_1, \Phi_{all}^t) \le \mathsf{ecc}_G(v_2, \Phi_{all}^t) \le \dots \le \mathsf{ecc}_G(v_{t+1}, \Phi_{all}^t)$

2. Perform flooding for $ecc_G(v_{t+1}, \Phi_{all}^t)$ rounds

3. Decide input of node with smallest ID in v_1, \ldots, v_{t+1}

A Naive Algorithm

- $\max_{\varphi \in \Phi} \{ ecc_G(v_2, \varphi) : ecc_G(v_2, \varphi) \text{ is finite} \}$ 1. Order node according to their eccentricity $ecc_G(v_1, \Phi_{all}^t) \leq ecc_G(v_2, \Phi_{all}^t) \leq \cdots \leq ecc_G(v_{t+1}, \Phi_{all}^t)$
- **2.** Perform flooding for $ecc_G(v_{t+1}, \Phi_{all}^t)$ rounds
- **3.** Decide input of node with smallest ID in v_1, \ldots, v_{t+1}

Given $\varphi \in \Phi^1_{all}$, after 4 rounds:

- x_4 input received by every correct, or by none
- x_5 input received by every correct or by none
- Every correct has received the input of x_4 or x_5 , or both

Non-optimality

 $ecc(x_4, \Phi^1_{all}) = 3 < ecc(x_5, \Phi^1_{all}) = 4 < ecc(y, \Phi^1_{all}) = 7$

Non-optimality t = 1 x_2 X_7 x_3 x_5 x_6

 $ecc(x_4, \Phi_{all}^1) = 3 < ecc(x_5, \Phi_{all}^1) = 4 < ecc(y, \Phi_{all}^1) = 7$ let $\Phi_{x_4} = \{\varphi : x_4 \text{ fails } \}$

Non-optimality t = 1 x_2 X_7 x_3 X_5 x_6

 $ecc(x_4, \Phi_{all}^1) = 3 < ecc(x_5, \Phi_{all}^1) = 4 < ecc(y, \Phi_{all}^1) = 7$ let $\Phi_{x_4} = \{\varphi : x_4 \text{ fails } \}$ $ecc(y, \Phi_{x_4}) = 1$

Non-optimality t = 1 χ_{7} x_{2} x_6 $ecc(x_4, \Phi_{all}^1) = 3 < ecc(x_5, \Phi_{all}^1) = 4 < ecc(y, \Phi_{all}^1) = 7$ let $\Phi_{x_4} = \{\varphi : x_4 \text{ fails }\}$ $ecc(y, \Phi_{x_1}) = 1$ Given $\varphi \in \Phi^1_{all}$, after 3 rounds: • x_4 input received by every correct, or by none • if no correct has revel x_4 input, every correct has received y input

Consensus in $\max\{R_1, R_2, R_3\}$ rounds

Consensus in Radius(
$$G, \Phi^t_{all}$$
) Rounds

Core sequence of t + 1 nodes $v_1, v_2, \ldots, v_{t+1}$ $v_1 : \operatorname{ecc}_G(v_1, \Phi_{v_1}^{\mathbb{N}}) = \operatorname{Radius}(G, \Phi_{all}^t)$ $\Phi_{i-1} = \Phi_{\nu_{i-1}}^{\infty} \cap \dots \cap \Phi_{\nu_1}^{\infty}$

$$v_i : \operatorname{ecc}_G(v_i, \Phi_{v_i}^{\mathbb{N}} \cap \Phi_{i-1}) \le \operatorname{ecc}_G(v, \Phi_v^{\mathbb{N}} \cap \Phi_{i-1}) \forall v \neq v_1, \dots, v_{i-1}$$

Every correct gets v_i input **No correct gets** v_1, \ldots, v_{i-1} input

Key Lemma

$$\mathsf{ecc}_G(v_i, \Phi_{v_i}^{\mathbb{N}} \cap \Phi_{i-1}) > \mathsf{ecc}_G(v_{i+1}, \Phi_{v_{i+1}}^{\mathbb{N}} \cap \Phi_i)$$

<u>Algorithm</u>

Perform flooding for Radius(G, Φ_{all}^t) rounds

Decide input of the core node with smallest index

 $v_1 : \operatorname{ecc}_G(v_1, \Phi_{v_1}^{\mathbb{N}}) = \operatorname{Radius}(G, \Phi_{all}^t) \qquad \Phi_1 = \Phi_{v_1}^{\infty}$ $v_2 : \operatorname{ecc}_G(v_2, \Phi_{v_2}^{\mathbb{N}} \cap \Phi_1) \le \operatorname{ecc}_G(v, \Phi_v^{\mathbb{N}} \cap \Phi_1) \forall v \neq v_1 \qquad \Phi_2 = \Phi_{v_2}^{\infty} \cap \Phi_{v_1}^{\infty}$

 $v_1 : \operatorname{ecc}_G(v_1, \Phi_{v_1}^{\mathbb{N}}) = \operatorname{Radius}(G, \Phi_{all}^t) \qquad \Phi_1 = \Phi_{v_1}^{\infty}$ $v_2 : \operatorname{ecc}_G(v_2, \Phi_{v_2}^{\mathbb{N}} \cap \Phi_1) \le \operatorname{ecc}_G(v, \Phi_v^{\mathbb{N}} \cap \Phi_1) \forall v \neq v_1 \qquad \Phi_2 = \Phi_{v_2}^{\infty} \cap \Phi_{v_1}^{\infty}$

 $v_1 : \operatorname{ecc}_G(v_1, \Phi_{v_1}^{\mathbb{N}}) = \operatorname{Radius}(G, \Phi_{all}^t) \qquad \Phi_1 = \Phi_{v_1}^{\infty}$ $v_2 : \operatorname{ecc}_G(v_2, \Phi_{v_2}^{\mathbb{N}} \cap \Phi_1) \le \operatorname{ecc}_G(v, \Phi_v^{\mathbb{N}} \cap \Phi_1) \forall v \neq v_1 \qquad \Phi_2 = \Phi_{v_2}^{\infty} \cap \Phi_{v_1}^{\infty}$

 $v_1 : \operatorname{ecc}_G(v_1, \Phi_{v_1}^{\mathbb{N}}) = \operatorname{Radius}(G, \Phi_{all}^t) \qquad \Phi_1 = \Phi_{v_1}^{\infty}$ $v_2 : \operatorname{ecc}_G(v_2, \Phi_{v_2}^{\mathbb{N}} \cap \Phi_1) \le \operatorname{ecc}_G(v, \Phi_v^{\mathbb{N}} \cap \Phi_1) \forall v \neq v_1 \qquad \Phi_2 = \Phi_{v_2}^{\infty} \cap \Phi_{v_1}^{\infty}$

 $v_1 : \operatorname{ecc}_G(v_1, \Phi_{v_1}^{\mathbb{N}}) = \operatorname{Radius}(G, \Phi_{all}^t) \qquad \Phi_1 = \Phi_{v_1}^{\infty}$ $v_2 : \operatorname{ecc}_G(v_2, \Phi_{v_2}^{\mathbb{N}} \cap \Phi_1) \le \operatorname{ecc}_G(v, \Phi_v^{\mathbb{N}} \cap \Phi_1) \forall v \neq v_1 \qquad \Phi_2 = \Phi_{v_2}^{\infty} \cap \Phi_{v_1}^{\infty}$

 $\exists u \neq v_1, v_2 : \mathsf{ecc}_G(u, \Phi_u^{\mathbb{N}} \cap \Phi_2) < \mathsf{ecc}_G(v_2, \Phi_{v_2}^{\mathbb{N}} \cap \Phi_1)$

 $\varphi' \in \Phi_{v_2}^{\mathbb{N}} \cap \Phi_1$

 $v_1 : \operatorname{ecc}_G(v_1, \Phi_{v_1}^{\mathbb{N}}) = \operatorname{Radius}(G, \Phi_{all}^t) \qquad \Phi_1 = \Phi_{v_1}^{\infty}$ $v_2 : \operatorname{ecc}_G(v_2, \Phi_{v_2}^{\mathbb{N}} \cap \Phi_1) \le \operatorname{ecc}_G(v, \Phi_v^{\mathbb{N}} \cap \Phi_1) \forall v \neq v_1 \qquad \Phi_2 = \Phi_{v_2}^{\infty} \cap \Phi_{v_1}^{\infty}$

 $\exists u \neq v_1, v_2 : \mathsf{ecc}_G(u, \Phi_u^{\mathbb{N}} \cap \Phi_2) < \mathsf{ecc}_G(v_2, \Phi_{v_2}^{\mathbb{N}} \cap \Phi_1)$

 $\varphi \in \Phi_u^{\mathbb{N}} \cap \Phi_2$

 $\varphi' \in \Phi_{\nu_2}^{\mathbb{N}} \cap \Phi_1$

 $v_1 : \operatorname{ecc}_G(v_1, \Phi_{v_1}^{\mathbb{N}}) = \operatorname{Radius}(G, \Phi_{all}^t) \qquad \Phi_1 = \Phi_{v_1}^{\infty}$ $v_2 : \operatorname{ecc}_G(v_2, \Phi_{v_2}^{\mathbb{N}} \cap \Phi_1) \le \operatorname{ecc}_G(v, \Phi_v^{\mathbb{N}} \cap \Phi_1) \forall v \neq v_1 \qquad \Phi_2 = \Phi_{v_2}^{\infty} \cap \Phi_{v_1}^{\infty}$

 $\exists u \neq v_1, v_2 : \mathsf{ecc}_G(u, \Phi_u^{\mathbb{N}} \cap \Phi_2) < \mathsf{ecc}_G(v_2, \Phi_{v_2}^{\mathbb{N}} \cap \Phi_1)$

 $\varphi \in \Phi_u^{\mathbb{N}} \cap \Phi_2$ $\varphi' \in \Phi_{\nu_2}^{\mathbb{N}} \cap \Phi_1$

 $ecc_G(u, \varphi) + 1 \leq ecc_G(v_2, \varphi')$

Lower Bound

• Symmetric graphs

• Oblivious algorithms

Perform R rounds of flooding Decide: $\{(id_1, val_1), ..., (id_k, val_k)\} \rightarrow val$

Lower Bound

Theorem

For any symmetric graph G, there is no oblivious algorithm that solves consensus in less than $Radius(G, \Phi_{all}^t)$ rounds

Information Flow Graph

Consensus and Domination

Definition

Node $v \in V(G)$ dominates a connected component C of $\mathbb{IF}_G(\Phi, r)$ iff $\exists \varphi \in \Phi \text{ s.t. } (v, \operatorname{view}_G(v, \varphi, r)) \text{ dominates } C$

Theorem

There is an oblivious consensus algorithm in r rounds in G under failure patterns Φ iff each connected component of $\mathbb{IF}_G(\Phi, r)$ is dominated

Consensus and Domination

Suppose consensus solvable in *r* rounds and there is a non-dominated CC in $\mathbb{IF}_{G}(\Phi, r)$

Consensus and Domination

Suppose consensus solvable in *r* rounds and there is a non-dominated CC in $\mathbb{IF}_{G}(\Phi, r)$

Application: Symmetric Graphs

Theorem

If G is symmetric, there is no oblivious algorithm that solves consensus in $\text{Radius}(G, \Phi_{all}^t) - 1$ rounds

Conclusion and Future Work

- Tight complexity bound for oblivious, crash-tolerant consensus in symmetric graph
- The information flow (a.k.a protocol complex) for study computability/complexity in network
- Are there faster **non-oblivious** algorithms ?
- What is the lower bound for non-symmetric graphs ?
- What are the round complexity of other classical agreement tasks in arbitrary graphs ?

Thanks!

Information Flow Graph

Unknown communication graph

All-to-all communication

Synchronous, no failure

Construction tasks

Asynchronous, failure prone

Decision tasks

Related Work: Connectivity

t-resilient consensus solvable iff G is (t + 1)-vertex connected

t-resilient consensus in the clique: (t + 1) rounds necessary and sufficient

Consensus in Radius(
$$G, \Phi^t_{all}$$
) rounds

$$\Phi_{v}^{\mathbb{N}} = \{\varphi \in \Phi_{all}^{t} : ecc_{G}(v, \varphi) < +\infty\}$$
No correct gets v input
$$\Phi_{v}^{\infty} = \{\varphi \in \Phi_{all}^{t} : ecc_{G}(v, \varphi) = +\infty\}$$

Core set of t + 1 nodes v_1, v_2, \dots, v_{t+1} $v_1 : ecc_G(v_1, \Phi_{v_1}^{\mathbb{N}}) = \text{Radius}(G, \Phi_{all}^t)$ $\Phi_1 = \Phi_{v_1}^{\infty}$

Consensus in Radius(
$$G, \Phi^t_{all}$$
) rounds

$$\Phi_{v}^{\mathbb{N}} = \{\varphi \in \Phi_{all}^{t} : ecc_{G}(v, \varphi) < +\infty\}$$
No correct gets v input
$$\Phi_{v}^{\infty} = \{\varphi \in \Phi_{all}^{t} : ecc_{G}(v, \varphi) = +\infty\}$$

 $\begin{aligned} & \text{Core set of } t+1 \text{ nodes } v_1, v_2, \dots, v_{t+1} \\ & v_1 : \text{ecc}_G(v_1, \Phi_{v_1}^{\mathbb{N}}) = \text{Radius}(G, \Phi_{all}^t) \\ & v_2 : \text{ecc}_G(v_2, \Phi_{v_2}^{\mathbb{N}} \cap \Phi_1) \leq \text{ecc}_G(v, \Phi_v^{\mathbb{N}} \cap \Phi_1) \forall v \neq v_1 \\ \end{aligned} \qquad \begin{aligned} \Phi_1 &= \Phi_{v_1}^{\infty} \\ \Phi_2 &= \Phi_{v_2}^{\infty} \cap \Phi_{v_1}^{\infty} \end{aligned}$

Consensus in Radius(
$$G, \Phi^t_{all}$$
) rounds

$$\Phi_{v}^{\mathbb{N}} = \{\varphi \in \Phi_{all}^{t} : ecc_{G}(v, \varphi) < +\infty\}$$
No correct gets v input

$$\Phi_{v}^{\infty} = \{\varphi \in \Phi_{all}^{t} : ecc_{G}(v, \varphi) = +\infty\}$$

Core set of t + 1 nodes $v_1, v_2, ..., v_{t+1}$ $v_1 : ecc_G(v_1, \Phi_{v_1}^{\mathbb{N}}) = \text{Radius}(G, \Phi_{all}^t)$ $\psi_2 : ecc_G(v_2, \Phi_{v_2}^{\mathbb{N}} \cap \Phi_1) \le ecc_G(v, \Phi_v^{\mathbb{N}} \cap \Phi_1) \forall v \neq v_1$ $\Phi_2 = \Phi_{v_2}^{\infty} \cap \Phi_{v_1}^{\infty}$ No correct gets v_1 input
Every correct gets v_2 input

Consensus in Radius(
$$G, \Phi^t_{all}$$
) rounds

$$\Phi_{v}^{\mathbb{N}} = \{\varphi \in \Phi_{all}^{t} : ecc_{G}(v, \varphi) < +\infty\}$$
No correct gets v input
$$\Phi_{v}^{\infty} = \{\varphi \in \Phi_{all}^{t} : ecc_{G}(v, \varphi) = +\infty\}$$

 $\begin{aligned} & \text{Core set of } t+1 \text{ nodes } v_1, v_2, \dots, v_{t+1} \\ & v_1 : \text{ecc}_G(v_1, \Phi_{v_1}^{\mathbb{N}}) = \text{Radius}(G, \Phi_{all}^t) \\ & v_2 : \text{ecc}_G(v_2, \Phi_{v_2}^{\mathbb{N}} \cap \Phi_1) \leq \text{ecc}_G(v, \Phi_v^{\mathbb{N}} \cap \Phi_1) \forall v \neq v_1 \\ \end{aligned} \qquad \begin{aligned} \Phi_1 &= \Phi_{v_1}^{\infty} \\ \Phi_2 &= \Phi_{v_2}^{\infty} \cap \Phi_{v_1}^{\infty} \end{aligned}$

Consensus in Radius(
$$G, \Phi^t_{all}$$
) rounds

$$\Phi_{v}^{\mathbb{N}} = \{\varphi \in \Phi_{all}^{t} : ecc_{G}(v, \varphi) < +\infty\}$$
No correct gets v input

$$\Phi_{v}^{\infty} = \{\varphi \in \Phi_{all}^{t} : ecc_{G}(v, \varphi) = +\infty\}$$

Core set of t + 1 nodes v_1, v_2, \dots, v_{t+1} $v_1 : \operatorname{ecc}_G(v_1, \Phi_{v_1}^{\mathbb{N}}) = \operatorname{Radius}(G, \Phi_{all}^t)$ $\Phi_1 = \Phi_{v_1}^{\infty}$ $v_2 : \operatorname{ecc}_G(v_2, \Phi_{v_2}^{\mathbb{N}} \cap \Phi_1) \le \operatorname{ecc}_G(v, \Phi_v^{\mathbb{N}} \cap \Phi_1) \forall v \neq v_1$ $\Phi_2 = \Phi_{v_2}^{\infty} \cap \Phi_{v_1}^{\infty}$ $v_3 : \operatorname{ecc}_G(v_3, \Phi_{v_3}^{\mathbb{N}} \cap \Phi_2) \le \operatorname{ecc}_G(v, \Phi_v^{\mathbb{N}} \cap \Phi_2) \forall v \neq v_1, v_2$ $\Phi_3 = \Phi_{v_3}^{\infty} \cap \Phi_{v_2}^{\infty} \cap \Phi_{v_1}^{\infty}$

Consensus in Radius(
$$G, \Phi^t_{all}$$
) rounds

$$\Phi_{v}^{\mathbb{N}} = \{\varphi \in \Phi_{all}^{t} : ecc_{G}(v, \varphi) < +\infty\}$$
No correct gets v input
$$\Phi_{v}^{\infty} = \{\varphi \in \Phi_{all}^{t} : ecc_{G}(v, \varphi) = +\infty\}$$

Core set of t + 1 nodes $v_1, v_2, ..., v_{t+1}$ $v_1 : \operatorname{ecc}_G(v_1, \Phi_{v_1}^{\mathbb{N}}) = \operatorname{Radius}(G, \Phi_{all}^t)$ $\Phi_1 = \Phi_{v_1}^{\infty}$ $v_2 : \operatorname{ecc}_G(v_2, \Phi_{v_2}^{\mathbb{N}} \cap \Phi_1) \le \operatorname{ecc}_G(v, \Phi_v^{\mathbb{N}} \cap \Phi_1) \forall v \neq v_1$ $\Phi_2 = \Phi_{v_2}^{\infty} \cap \Phi_{v_1}^{\infty}$ $v_3 : \operatorname{ecc}_G(v_3, \Phi_{v_3}^{\mathbb{N}} \cap \Phi_2) \le \operatorname{ecc}_G(v, \Phi_v^{\mathbb{N}} \cap \Phi_2) \forall v \neq v_1, v_2$ $\Phi_3 = \Phi_{v_3}^{\infty} \cap \Phi_{v_2}^{\infty} \cap \Phi_{v_1}^{\infty}$ No correct gets v_1, v_2 input
Every correct gets v_3 input

Consensus in Radius(
$$G, \Phi^t_{all}$$
) rounds

$$\Phi_{v}^{\mathbb{N}} = \{\varphi \in \Phi_{all}^{t} : ecc_{G}(v, \varphi) < +\infty\}$$
No correct gets v input

$$\Phi_{v}^{\infty} = \{\varphi \in \Phi_{all}^{t} : ecc_{G}(v, \varphi) = +\infty\}$$

Core set of t + 1 nodes v_1, v_2, \dots, v_{t+1} $v_1 : \operatorname{ecc}_G(v_1, \Phi_{v_1}^{\mathbb{N}}) = \operatorname{Radius}(G, \Phi_{all}^t)$ $\Phi_1 = \Phi_{v_1}^{\infty}$ $v_2 : \operatorname{ecc}_G(v_2, \Phi_{v_2}^{\mathbb{N}} \cap \Phi_1) \le \operatorname{ecc}_G(v, \Phi_v^{\mathbb{N}} \cap \Phi_1) \forall v \neq v_1$ $\Phi_2 = \Phi_{v_2}^{\infty} \cap \Phi_{v_1}^{\infty}$ $v_3 : \operatorname{ecc}_G(v_3, \Phi_{v_3}^{\mathbb{N}} \cap \Phi_2) \le \operatorname{ecc}_G(v, \Phi_v^{\mathbb{N}} \cap \Phi_2) \forall v \neq v_1, v_2$ $\Phi_3 = \Phi_{v_3}^{\infty} \cap \Phi_{v_2}^{\infty} \cap \Phi_{v_1}^{\infty}$