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Consensus

• Agreement:  
    Decide the same value 
• Validity: 

Decided values are input values  
• Termination: 

Non-faulty processes decide
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How fast consensus can be reached in arbitrary failure-prone networks?
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Synchronous Failure-prone 
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Know-All model

• Each node has a unique id 

• Graph  and ids assignment are known  G

• Only node  knows its input i vi
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How many rounds are necessary to solve  resilient consensus ?t
Given  and id assignment, design a consensus algorithm  G 𝒜G,id,t

• At most  nodes failt



Synchronous Consensus in 
Complete Graphs
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Synchronous Consensus in 
Arbitrary Graphs

-resilient consensus solvable 
iff 

 is -vertex connected 

t

G (t + 1)

Solvability

[Folklore]

 
?? 
≥ t + 1

Round complexity



Our Results

Dynamic notion of radius  taking into account failures𝖱𝖺𝖽𝗂𝗎𝗌(G, t)

Consensus is solvable in   rounds 𝖱𝖺𝖽𝗂𝗎𝗌(G, t)

Upper bound

Definition

Lower bound

For symmetric graph, consensus cannot be solved in   rounds 𝖱𝖺𝖽𝗂𝗎𝗌(G, t) − 1



Roadmap

1. Failure-sensitive eccentricity and radius


2. A naive algorithm


3. An adaptive algorithm 


4. Optimality for symmetric graphs  



Failure Pattern

Failure pattern  
• Which node fails, and when? 
• Which neighbors received messages  
   in the failing round  
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a r = 1

φ = {(u,1,{b, c}), (v,3,∅)}

Faulty node

round of the failure

receiving neighbors
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Faulty node

round of the failure
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Failure Sensitive 
Eccentricity

#round for  to flood  𝖾𝖼𝖼G(v, φ) = v G

u6

u2u1

u5 u4

y u3

 𝖾𝖼𝖼(y, φ∅) = 1

 𝖾𝖼𝖼(y, φ1) = + ∞

r = 1𝖾𝖼𝖼(y, φ2) = 6

r = 2
#rounds for every correct to receive input of  v



Radius 
 𝖱𝖺𝖽𝗂𝗎𝗌(G, Φ) = min

v∈V
𝖾𝖼𝖼G(v, Φ)

set of failure patterns
max
φ∈Φ

{𝖾𝖼𝖼G(v, φ) : 𝖾𝖼𝖼G(v, φ) is finite}

u6

u2u1

u5 u4

y u3
r = 1

r = 2
 𝖾𝖼𝖼(y, Φ2

all) = 6

 𝖾𝖼𝖼(ui, Φ2
all) = 6

𝖱𝖺𝖽𝗂𝗎𝗌(G, Φ2
all) = 6



A Naive Algorithm

1. Order node according to their eccentricity 

𝖾𝖼𝖼G(v1, Φt
all) ≤ 𝖾𝖼𝖼G(v2, Φt

all) ≤ ⋯ ≤ 𝖾𝖼𝖼G(vt+1, Φt
all)

2. Perform flooding for  rounds 𝖾𝖼𝖼G(vt+1, Φt
all)

3. Decide input of node with smallest ID in v1, …, vt+1
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Example

y

x1 x3x2 x4 x5 x6 x7

 𝖾𝖼𝖼(x5, Φ1
all) = 4  𝖾𝖼𝖼(x4, Φ1

all) = 3 <

Given ,  after 4 rounds: 
•  input received by every correct, or by none 
•  input received by every correct or by none  
• Every correct has received the input of  or , or both

φ ∈ Φ1
all

x4
x5

x4 x5

t = 1
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Non-optimality

y

x1 x3x2 x4 x5 x6 x7

 𝖾𝖼𝖼(x5, Φ1
all) = 4  𝖾𝖼𝖼(x4, Φ1

all) = 3 <   < 𝖾𝖼𝖼(y, Φ1
all) = 7

let   fails Φx4
= {φ : x4 }

𝖾𝖼𝖼(y, Φx4
) = 1

Given ,  after 3 rounds: 
•  input received by every correct, or by none 
• if no correct has rcved  input, every correct has received  input 

φ ∈ Φ1
all

x4
x4 y

t = 1



Consensus in  
 Rounds  𝖱𝖺𝖽𝗂𝗎𝗌(G, Φt
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Φℕ
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Φℕ
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𝖾𝖼𝖼G(v1) = R1

𝖾𝖼𝖼G(v2) = R2

𝖾𝖼𝖼G(v3) = R3

Consensus in  roundsmax{R1, R2, R3}



Consensus in  
 Rounds  𝖱𝖺𝖽𝗂𝗎𝗌(G, Φt

all)

Core sequence of  nodes t + 1 v1, v2, …, vt+1

No correct gets  inputv1, …, vi−1

Φi−1 = Φ∞
vi−1

∩ ⋯ ∩ Φ∞
v1

 :    vi 𝖾𝖼𝖼G(vi, Φℕ
vi

∩ Φi−1 ) ≤ 𝖾𝖼𝖼G(v, Φℕ
v ∩ Φi−1)∀v ≠ v1, …, vi−1

Every correct gets  inputvi

Key Lemma
𝖾𝖼𝖼G(vi, Φℕ

vi
∩ Φi−1) > 𝖾𝖼𝖼G(vi+1, Φℕ

vi+1
∩ Φi)

 : v1 𝖾𝖼𝖼G(v1, Φℕ
v1

) = 𝖱𝖺𝖽𝗂𝗎𝗌(G, Φt
all)

Algorithm
Perform flooding for   rounds𝖱𝖺𝖽𝗂𝗎𝗌(G, Φt

all)
Decide input of  the core node with smallest index



Proof of Lemma
 : v1 𝖾𝖼𝖼G(v1, Φℕ
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v2
∩ Φ∞

v1
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u ∩ Φ2) < 𝖾𝖼𝖼G(v2, Φℕ

v2
∩ Φ1)

u v2 v1φ ∈ Φℕ
u ∩ Φ2

u′�

𝖾𝖼
𝖼 G

(u
,φ

)
r = 1

w

r = k

∈ correct(φ)
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1∈ Φℕ
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Lower Bound

• Symmetric graphs 


• Oblivious algorithms
Perform R rounds of flooding 
Decide: {(id1, val1), …, (idk, valk)} → val



Lower Bound

Theorem 

For any symmetric graph , there is no oblivious algorithm 
that solves consensus in less than  rounds

G
𝖱𝖺𝖽𝗂𝗎𝗌(G, Φt

all)
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Note that it may be the case that (u, viewG(u,', r)) = (u, viewG(u, , r)), for
', 2 � with ' 6=  , in which case these pairs correspond to the same vertex
of IFG,�,r. On the other hand, if u 6= v are two distinct nodes of G, we have
(u, viewG(u,', r)) 6= (v, viewG(v,', r)) for every ' 2 �, even if viewG(u,', r)) =
viewG(v,', r).

The set execG(', r) = {(v, viewG(v,', r)) : v 2 V is active in round r in '}
is called the r-round execution for failure pattern '. See Figure 2 for the infor-
mation flow graph of the triangle K3, with one failure, and one communication
round.

execK3('u clean, 1)

execK3('u dirty, 1)

execK3(';, 1)

(u, {u, v, w})

(v, {u, v, w})(w, {u, v, w})

(u, {u, v})

(v, {u, v})

(u, {u,w})

(w, {u,w})

(w, {v, w})(v, {v, w})

Fig. 2: IF
K3,�

(1)
all ,1

, with the execK3(', 1) sets marked, for some ' 2 �(1)
all .

Lemma 4. For every failure pattern ' 2 �, and every r � 0, the set execG(', r)
induces a connected subgraph of IFG,�,r.

Note that there is an edge from (u, viewG(u,', r)) to (v, viewG(v, , r)) in
IFG,�,r if there exists % 2 � such that u and v are active in round r in %,
and viewG(u,', r) = viewG(u, %, r), viewG(v, , r) = viewG(v, %, r) and u 2
viewG(v, %, r).

Note that if there are two failure patterns ' and  yielding the same view
for a node v but two di↵erent views for a node u, then either the edges from the
two views of u to the view of v both exist, or none exist. This is specified in the
following lemma.

Lemma 5. Consider ', 2 � and u, v 2 V such that u and v are active in

round r in both ' and  . If viewG(v,', r) = viewG(v, , r), and
�
(u, viewG(u,', r)), (v, viewG(v,', r))

�
2 E(IFG,�,r),

u v

w

G

t = 1

1 round  information flow 𝕀𝔽(G,1)



Consensus and Domination

Theorem 

There is an oblivious consensus algorithm in  rounds  
in  under failure patterns  iff  

each connected component of   is dominated 

r
G Φ

𝕀𝔽G(Φ, r)

Definition

Node  dominates a connected component  of  
iff 

 s.t.  dominates 

v ∈ V(G) C 𝕀𝔽G(Φ, r)

∃φ ∈ Φ (v, 𝗏𝗂𝖾𝗐G(v, φ, r)) C
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Lemma 5. Consider ', 2 � and u, v 2 V such that u and v are active in

round r in both ' and  . If viewG(v,', r) = viewG(v, , r), and
�
(u, viewG(u,', r)), (v, viewG(v,', r))

�
2 E(IFG,�,r),

Suppose consensus solvable in  roundsr
and there is a non-dominated CC in 𝕀𝔽G(Φ, r)

decide val(u)

decide ≠ val(u)
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Application: Symmetric 
Graphs

Theorem 

If  is symmetric, there is no oblivious algorithm that solves  
consensus in  rounds  

G
𝖱𝖺𝖽𝗂𝗎𝗌(G, Φt

all) − 1
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node that has the same view in both failure patterns, in round r. An algorithm
cannot existe because the decision in '1 has to be 0, while de decision in 'n

has to be 1 and, then there are 'i and 'i+1 with distinct decisions, which is a
contradiction. ut

4.3 Optimality of Padapt for Symmetric Graphs

To conclude, we use the characterization in Theorem 3 to show that Padapt is
time optimal for symmetric graphs, among oblivious algorithms.

Recall that an automorphism of G is a bijection ⇡ : V ! V such that, for
every two nodes u and v, {u, v} 2 E () {⇡(u),⇡(v)} 2 E. Also recall that
a graph G = (V,E) is vertex-transitive if, for every two nodes u and v, there
exists an automorphism ⇡ of G such that ⇡(u) = v. For instance, the complete
graphs Kn, the cycles Cn, the d-dimensional hypercubes Qd, the d-dimensional
toruses Cn1 ⇥ · · ·⇥Cnd , the Kneser graphs KGn,k, the Cayley graphs, etc., are
all vertex-transitive. The wheel, composed of a cycle and a central node, is not
vertex-transitive, since the center node has degree n � 1 while the cycle nodes
have degree 3.

Theorem 4. If G is vertex-transitive, then there is no oblivious algorithm that

solves consensus in less than radius(G,�(t)
all ) rounds.

execK3('u dirty, 1)

execK3('w dirty, 1)

execK3('v dirty, 1)

execK3(';, 1)

Fig. 3: The information flow graph IFK3,�,1 appearing in the proof of Theorem 4,
for K3 and the failure pattern � defined there.

Proof. Clearly, the result holds if radius(G,�(t)
all ) = 1, as consensus is trivially

not solvable in zero rounds in any graph with at least 2 nodes, even with no

failures. So we assume now that radius(G,�(t)
all ) � 2.

𝕀𝔽(C3,1,Φ) is not dominated



Conclusion and Future 
Work

• Tight complexity bound for oblivious, crash-tolerant 
consensus in symmetric graph


• The information flow (a.k.a protocol complex) for study 
computability/complexity in network 


• Are there faster non-oblivious algorithms ? 


• What is the lower bound for non-symmetric graphs ? 


• What are the round complexity of other classical 
agreement tasks in arbitrary graphs ? 



Thanks! 





Information Flow Graph

u v

w

G

t = 1

𝕀𝔽(G,1)1 round  information flow

(w, {v, w})

(v, {v, w})

(v, {u, v, w})

𝖾𝗑𝖾𝖼G(φu clean,1)

𝖾𝗑𝖾𝖼G(φu dirty,1)

(w, {u, v, w})



Volvo vs Nascar
Unknown communication graph All-to-all communication

Asynchronous, failure prone 

Decision tasks

Synchronous, no failure

Construction tasks

[Fraigniaud]



Related Work: Connectivity

-resilient consensus solvable 
iff 

 is -vertex connected 

t

G (t + 1)

-resilient consensus in the clique: 
 rounds necessary and sufficient 

t
(t + 1)
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v = {φ ∈ Φt

all : 𝖾𝖼𝖼G(v, φ) < + ∞}

Φ∞
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all : 𝖾𝖼𝖼G(v, φ) = + ∞}

Every correct gets  inputv
No correct gets  inputv

Core set of  nodes t + 1 v1, v2, …, vt+1

 : v1 𝖾𝖼𝖼G(v1, Φℕ
v1

) = 𝖱𝖺𝖽𝗂𝗎𝗌(G, Φt
all) Φ1 = Φ∞

v1
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