
Non-Negotiating Distributed Computing?

Carole Delporte-Gallet1, Hugues Fauconnier1, Pierre Fraigniaud1, Sergio
Rajsbaum1,2, and Corentin Travers3

1 IRIF, Université Paris Cité and CNRS
2 Instituto de Matematicas, Universidad Nacional Autónoma de México

3 LIS, Aix-Marseille Université

Abstract. A recent trend in distributed computing aims at designing
models as simple as possible for capturing the inherently limited comput-
ing and communication capabilities of insects, cells, or tiny technological
artefacts, yet powerful enough for solving non trivial tasks. This paper
is contributing further in this field, by introducing a new model of dis-
tributed computing, that we call non-negotiating. In the non-negotiating
model, a process decides a priori what it is going to communicate to the
other processes, before the computation starts. Thus, the information a
process sends does not depend on what the process hears from others
during an execution. We consider non-negotiating distributed comput-
ing in the read/write shared memory model in which processes are asyn-
chronous and subject to crash failures. We show that non-negotiating
distributed computing is universal, in the sense that it is capable of
solving any colorless task solvable by an unrestricted full-information al-
gorithm in which processes can remember all their history, and send it
to the other processes at any point in time. To prove this universality re-
sult, we present a non-negotiating algorithm for solving multidimensional
approximate agreement, with arbitrary precision ε > 0.

1 Introduction

1.1 Context and Objective

Standard models of distributed computing assume a set of n ≥ 2 processes
exchanging information via some communication medium. The communication
media may be of very different kinds, from static to dynamic networks, and from
message-passing to shared memory, to mention just a few, under various failure
assumptions. Several textbooks study such models, e.g. [6,31,32]. There has been
however, much interest recently in models to study systems of limited capabil-
ities. This is for instance the case of, e.g., sensor networks, for which space
or energy considerations limit the computing power of each device. Biological
systems like a flock of birds, a school of fish, or a colony of cells or insects, at-
tracted a lot of interest from the distributed computing community recently (see,
e.g., [1,2,15,19]). Extremely weak models have thus been introduced, where, for

? This work is funded in part by the ANR project DUCAT ANR-20-CE48-0006

2 C. Delporte-Gallet et al.

instance, the processes are assumed to be finite-state automata [3], or the com-
munication bandwidth may be drastically limited, e.g., from typically O(log n)
bits in the CONGEST model [31] to O(1) bits in the STONE-AGE model [13]
— the BEEPING model [7] (see also [8,10,22]) even assumes that processes are
capable to communicate only by either emitting a “beep” or remaining silent.
Many of these works considered synchronous failure-free distributed computing.
Others considered asynchronous models, including work assuming noisy com-
munication channels [14], work on self-stabilizing systems in which processes are
subject to transient failures [21], and a few other contributions to asynchronous
shared-memory computing, e.g., to understand epigenetic cell modification [33].

This paper introduces the study of a new type of limitation that we call
non-negotiating distributed computing. In all previous models we are aware of,
the contents of a message sent by a process may depend on the messages it has
previously received. Even in beeping models, a process decides in each round to
emit a beep or remains silent based on the beeps it has heard in the previous
rounds. We consider non-negotiating computing, in the sense that the contents
of all communication sent by a process is fixed before the execution starts. Mes-
sages sent can contain input values, but cannot depend on what a process has
heard from others during an execution. Is it possible to do useful non-negotiating
distributed computing in an asynchronous system?

We show that the answer is yes, in the standard wait-free model in which n
processes communicate by writing and reading in a shared memory, and processes
are subject to permanent crash failures. The shared memory consists of an array
of n single-writer/multi-reader registers (SWMR), one per process. The processes
are asynchronous, and up to n− 1 of them may crash. Algorithms in this model
are wait-free because a process can never wait for another process to perform an
action, as the latter can crash.

1.2 Non-Negotiating Distributed Computation

We propose a very weak asynchronous crash failure model. After writing its input
to the shared memory, each process just repeats a loop consisting of (1) writing
a private counter in its shared register, (2) reading all the counters currently
present in the other registers, and (3) incrementing its private counter, until
some stopping condition is fulfilled. Once the process stops, it decides an output
value, and terminates. The pseudo-code of a process is presented in Algorithm 1.
We call this model non-negotiating, because each process decides what is going
to say (through a sequence of write operations), before the computation starts.
The i-th write operation of a process is simply i, it cannot write a value that
depends on what it has read so far.

1.3 Results

In a nutshell, we show that in fact, a very large class of problems can be solved
in the non-negotiating model. Moreover, we establish a universality result: any
colorless task that is solvable wait-free by an unrestricted algorithm, is solvable

Non-Negotiating Distributed Computing 3

Algorithm 1 Non-Negotiating Distributed Algorithm for Input-Output Tasks
1: write myinput . Private input written (once) in shared memory
2: mycounter ← 1 . Initialization of private counter
3: repeat
4: write mycounter . Private counter written in shared memory
5: read all counters . Counters are read sequentially, in arbitrary order
6: mycounter ← mycounter + 1 . Private counter incremented
7: until test({counters}) . Testing the stopping condition
8: read all inputs . Inputs are read sequentially, in arbitrary order
9: decide output({counters}, {inputs}) . Computing the output

wait-free by a non-negotiating algorithm. This result is established by showing
how to solve multidimensional approximate agreement for an arbitrary small
precision ε > 0, using a non-negotiating algorithm, and then proving a the-
orem that shows how to solve any colorless task using the multidimensional
approximate agreement algorithm. Recall that in multidimensional approximate
agreement, processes start with private input values in Rd, and are required to
output values in the convex hull of the inputs that are at most ε apart.

Detailed results. We start by considering uniform non-negotiating algorithms,
that is, an even more restricted non-negotiating model, where processes execute
the same number of rounds, k, fixed a priori. For n = 2 processes, we show that
there is a uniform non-negotiating algorithm for one-dimensional approximate
agreement, for any arbitrary small ε, using a sufficiently large value of k (Theo-
rem 1). Always, both processes execute exactly k rounds of the algorithm, and
stop.

We however show that there is no uniform non-negotiating algorithms for
approximate agreement for more than two processes (Theorem 3). Remarkably,
to expose its full computational power, a non-negotiating algorithm, for n > 2,
must use, in addition to counters, the ability of a process to stop early, before
executing k writes, as implied by our first main technical result: we present
a non-negotiating algorithm solving multidimensional approximate agreement,
for n ≥ 2 processes (Theorem 4). It is remarkable that a process may convey
information to other processes by stopping, since in a wait-free setting a process
crash or stop is indistinguishable from the process just being slow.

Our second main contribution is to show that our non-negotiating algorithm
for multidimensional approximate agreement can be used to solve any colorless
task that is solvable by an unrestricted, full-information algorithm (Theorem 5).
Our reduction to multidimensional agreement is in fact general, using our non-
negotiating algorithm as a black box, and is also of independent interest.

Discussion. The class of tasks that we consider are called colorless, because they
can be specified by sets of possible inputs to the processes, and, for each one,
a set of legal sets of outputs, without referring to process IDs. Colorless tasks
have been thoroughly studied, e.g., [24], as they include many of the standard

4 C. Delporte-Gallet et al.

tasks considered in the context of distributed computing. Note that, even for
just three processes, it is undecidable whether a colorless task with finite inputs
is wait-free solvable [18,25].

The main result of the area is the Asynchronous Computability Theorem [28]
characterizing asynchronous read/write shared memory task solvability in terms
of topology. There is also a corresponding characterization theorem for color-
less tasks [26,27]. These and all subsequent results [24] assumed an unrestricted
model: unbounded size registers and full-information protocols where a process
remembers all its past, and includes all of it in each write operation to the shared
memory [24]. We show in this paper, that for colorless tasks, a full-information
protocol can be replaced by writing a counter as in a non-negotiating algorithm.
We stress however, in terms of time complexity, our approximate agreement al-
gorithm is exponentially slow with respect to full-information algorithms [29].
We do not know if this is unavoidable, except for uniform algorithms, for which
we prove a corresponding lower bound for the case of two processes (Theorem 2).

The approximate agreement algorithms we design assumes fixed inputs: a
process always starts with the same fixed input value. But our reduction in Sec-
tion 4 shows how to solve multidimensional approximate agreement for any (fi-
nite) set of input values, because such a task is colorless [24]. Our non-negotiating
multidimensional agreement algorithm is of independent interest. Indeed, since
consensus is not wait-free solvable [16,23], approximate agreement (that is, 1-
dimensional approximate agreement) has been thoroughly studied since in the
early days of the field [11]. The multidimensional approximate agreement ver-
sion, where processes start with values in Rd, has also received recently much
attention, e.g., [4,17,20]. It was considered in the context of message-passing
Byzantine failures systems [30] as well as in shared memory systems with crash
failures [27]. Connections between approximate agreement, distributed optimiza-
tion, and machine learning have also been recently identified [12].

Organization of the paper. We present the results for two processes in Section 2.
Our non-negotiating algorithm solving multidimensional agreement is described
in Section 3. The fact that this algorithm can be used to solve any task that
is solvable by an unrestricted algorithm is established in Section 4. Section 5
concludes the paper. Due to lack of space, some proof details are omitted. They
can be found in the long version [9].

2 Uniform Non-negotiated Approximate Agreement

In a uniform algorithm, processes always execute the same number of rounds.
We present a uniform approximate agreement algorithm for two processes in
Section 2.1. The proof provides intuition about the algorithm of Section 3 for
any number of processes, but the intuition is only partial, since we will show
that actually, for n > 2 processes, there is no approximate agreement uniform
algorithm

Non-Negotiating Distributed Computing 5

We stress that both in this section and in Section 3 we design fixed inputs
approximate agreement algorithms, in other words, assuming each process al-
ways starts with the same input. Approximate agreement for arbitrary (finite)
inputs can be formally specified as a colorless task [24], and hence, the results
in Section 4 show that they can be solved by a non-negotiating algorithm.

2.1 A Uniform Algorithm for 2-processes Approximate Agreement

We assume two processes, p1 starts with input value 0 and process p2 starts
with input value 1. In every execution of an algorithm, each non-crashed process
therefore has to decide a value in the interval [0, 1], such that if only pi, i ∈ {1, 2}
participates (takes steps), it decides its own input, and in any case, the decided
values are at most ε apart.1

Theorem 1. For every ε > 0, there exists a uniform non-negotiating algorithm
that solves ε-approximate agreement for two processes.

Algorithm 2 is used to prove this theorem. Processes execute k rounds, where
k depends on ε, that is, the algorithm solves ε = 1

2k+1 -approximate agreement.

Algorithm 2 Uniform non-negotiating algorithm for 2-processes 1
2k+1 -

approximate agreement in [0, 1]. Code for pi, i ∈ {1, 2} with input i− 1.
1: ci ← 0; viewi[r]← 0, 1 ≤ r ≤ k
2: for r = 1, . . . , k do
3: ci ← ci + 1
4: write(ci) to R[i] . R[i] is pi’s register
5: viewi[r]← read(R[3− i]) . read other process register

. store value read in the array viewi

6: let d be
{
k if viewi[k] = 0
such that (viewi[d] ≤ k − d) ∧ (viewi[d+ 1] ≥ k − d) otherwise

7: decide yi =

{
2(k−d)
2k+1

if i = 1
2d+1
2k+1

if i = 2

Each process pi, i ∈ {1, 2} has two local variables: a local counter ci and an
array viewi. The counter ci records the local progress of pi: it is incremented
each time pi repeats its for loop. The local array viewi stores the successive
values of the other process counter, as read by pi. That is, for r ∈ {1, . . . , k},
viewi[r] is reserved to store the value returned by its r-th read operation, of the
other process’ register. After k iterations, process pi decides a value yi based on
k and its viewi (at line 7).

The decision of process pi depends on the index di such that viewi[di]+di ≤ k
and viewi[di + 1] + di ≥ k. It is easy to see that such an index di can always
1 Following previous papers, we consider inputs 0, 1 for concreteness, but a similar
algorithm can be designed with inputs (1, 0), (0, 1) as in Section 3.

6 C. Delporte-Gallet et al.

be found since the function r → viewi[r] + r is increasing, and pi performs k
rounds. Moreover, in the case when both processes terminate the algorithm, the
indexes d1 and d2 of p1 and p2 are closely related, d1 = k−d2 or d1 = k−d2−1,
as we prove (Lemma 1). Therefore, the decision values y1 and y2 are at most

1
2k+1 apart, because v1 = 2(k−d1)

2k+1 and v2 = 2d2+1
2k+1 , see line 7.

The validity requirement is trivially satisfied: in case only one process partic-
ipates, say p1, its array view1 contains only 0’s at the end of the algorithm, and
the index d1 is consequently equal to k. p1 thus decides 2(k−d1)

2k+1 = 0, as required.
Similarly, in a solo execution p2 decides 1. When both processes participate,
decisions are in the range [0, 1].

The main technical ingredient is first to show that the arrays view obtained
by the processes when the algorithm terminates can be partitioned into disjoint
classes C1, C2, . . . defined as follows.

Definition 1. Let view be an array of k integers and let d ≥ 0 be an integer.
We say that view is in Cd if and only if:
– For r ∈ {1, . . . , d}, view[r] ∈ {0, .., k − d} and
– For r ∈ {d+ 1, . . . , k}, view[r] ∈ {k − d, . . . , k}.

In particular, [k, k, . . . , k] belongs to the class C0, and [0, 0, . . . , 0] belongs
to the class Ck. Second, we establish that when both processes terminate the
algorithm, their array view1 and view2 belong to two related classes:

Lemma 1. In every execution where pi and pj terminate their algorithm, we
have viewi ∈ Cd =⇒ (viewj ∈ Ck−d−1) ∨ (viewj ∈ Ck−d)

This is illustrated Figure 1. In the case where both processes terminate, the
views of both processes are always in “neighbour” classes. As processes chooses
their output based on the index of the class their view belongs to, this ensures
that outputs are at most ε = 1

2k+1 apart.

Ck C0 Ck−1 C1 C2 Ck−2 C1 Ck−1 C0 Ck

Fig. 1: An edge between Ci and Cj represents an execution of the two processes
ending in these classes, where red is for p1 and blue for p2. Thus, in one extreme
p1 decides 0 and in the other p2 decides 1, and in adjacent vertices decisions are
at most 1

2k+1 apart.

An intuition behind the algorithm can be obtained by representing execu-
tions in a 2-dimensional grid, as illustrated in Figure 2. Starting from the lower
left corner, an execution is depicted by moving 1 unit to the right each time p1
executes a read or write operation, and moving up 1 unit each time p2 executes
an operation. In this example k = 5, and each process executes an alternat-
ing sequence of 5 write and 5 read operations. Three executions are depicted,
all three indistinguishable to p1, and hence with the same view1. However, p2
distinguishes the three executions, and thus it has a different view in each one.

Non-Negotiating Distributed Computing 7

R:
1

R:
2

R:
3

R:
4

R:
5

R:
0

R:1

R:2

R:3

R:4

R:5

R:0

p1

p2

view1 = [1,1,2,2,3]
view2 = [3,5,5,5,5]
view2 = [2,3,4,5,5]
view2 = [0,2,4,5,5]

Fig. 2: Three executions for k = 5, where p1 has the same view [1, 1, 2, 2, 3], while
p2 has different views. A horizontal arrow represents a read or write operation by
process p2 while a vertical one, an operation by process p1. Arrows on the edge
of a bi-colored read/blue cell correspond to read operations. For p1 (respectively,
for p2), output of a read depends solely on the row index (respectively column
index) of the bi-colored cell is on the edge of.

The diagonal x→ k−x is also depicted (black dotted line.). Every path rep-
resenting the execution crosses the diagonal. Notice that the last two executions
(highlighted in green and purple) cross the diagonal at the same point, but not
the third one. The intuition is that the decision of the process depends on when
(it becomes aware from its view that) the execution has reached the diagonal.
In the yellow execution, p2 knows that the crossing point has been reached af-
ter its second read, while this happens only after its third read in the last two
executions.

2.2 Inherent Slowness of Uniform Non-negotiating computing

We show that our uniform two-processes algorithm is essentially optimal with
regards to the number of rounds k. Thus, although it is exponentially slower than
unrestricted algorithms such as [29], this is unavoidable. Indeed, we establish
that Ω(1k) is a lower bound on the agreement parameter ε of any uniform non-
negotiating algorithm that stops after k rounds, for any k:

Theorem 2. For any ε < 1
4k−1 , there is no uniform k-non negotiating algorithm

for two processes that implements ε-agreement.

The main idea is to consider the subset of executions of a uniform k-non
negotiating algorithm that have an immediate snapshot schedule, following [5].
Such an execution is defined by a sequence of concurrency classes, c1, c2, . . .,

8 C. Delporte-Gallet et al.

where each ci consists of a non-empty subset of {p1, p2}. In the corresponding
execution, processes in ci write their counters (in an arbitrary order), and then
they read each other counters (in an arbitrary order). A sequence of concurrency
classes C = c1, c2, . . . , c` is complete if each process appears in exactly k concur-
rency classes, i.e., it is an execution of a uniform k-non negotiating algorithm.
Notice that the number ` of concurrency classes satisfies k ≤ ` ≤ 2k.

Some immediate snapshot executions are represented in Figure 3, where the
horizontal axis corresponds to the operations executed by p1 and the vertical axis
by p2. Thus, a path on the grid defines an interleaving of the operations of the two
processes. Arrows represent concurrency classes. Table (a) represents the fully
synchronous execution of 4 concurrency classes, where every concurrency class
ci is equal to {p1, p2}, while Table (h) represents a fully sequential execution
of 8 concurrency classes, where first p1 executes and then p2, so the first 4
concurrency classes ci are equal to {p1}, and the other 4 concurrency classes are
equal to {p2}. Notice that a full concurrency class {p1, p2} is represented as a
diagonal arrow, for the two write operations, and for the two read operations,
since both commute: no process distinguishes in which order the operations were
performed. Full details of the argument are in [9]. But in brief, the idea is to

W R W R W R W R

W

R

W

R

W

R

W

R

W R W R W R W R

W

R

W

R

W

R

W

R

W R W R W R W R

W

R

W

R

W

R

W

R

W R W R W R W R

W

R

W

R

W

R

W

R

W R W R W R W R

W

R

W

R

W

R

W

R

W R W R W R W R

W

R

W

R

W

R

W

R

W R W R W R W R

W

R

W

R

W

R

W

R

W R W R W R W R

W

R

W

R

W

R

W

R

(a) (b) (c) (d)

(e) (f) (g) (h)

<latexit sha1_base64="dx3sOHuYGyDrQmOKFaI1kcBO7FY=">AAAB+3icbVDLSsNAFL2pr1pfsS7dDBbBVUmKr2XRjcsK9gFNCJPptB06mYSZiVhCfsWNC0Xc+iPu/BunbRbaeuDC4Zx7ufeeMOFMacf5tkpr6xubW+Xtys7u3v6BfVjtqDiVhLZJzGPZC7GinAna1kxz2kskxVHIaTec3M787iOVisXiQU8T6kd4JNiQEayNFNhVT2lMJpLyLAkauadYFNg1p+7MgVaJW5AaFGgF9pc3iEkaUaEJx0r1XSfRfoalZoTTvOKliiZmCR7RvqECR1T52fz2HJ0aZYCGsTQlNJqrvycyHCk1jULTGWE9VsveTPzP66d6eO1nTCSppoIsFg1TjnSMZkGgAZOUaD41BBPJzK2IjLHERJu4KiYEd/nlVdJp1N3L+sX9ea15U8RRhmM4gTNw4QqacActaAOBJ3iGV3izcuvFerc+Fq0lq5g5gj+wPn8AeQWUvA==</latexit>p2⇠
<latexit sha1_base64="HI/luoNDmgp8LOdW32F4rU69IrQ=">AAAB+3icbVDLSsNAFJ34rPUV69JNsAiuSiK+lkU3LivYBzQhTKaTdujMJMzciCXkV9y4UMStP+LOv3HaZqGtBy4czrmXe++JUs40uO63tbK6tr6xWdmqbu/s7u3bB7WOTjJFaJskPFG9CGvKmaRtYMBpL1UUi4jTbjS+nfrdR6o0S+QDTFIaCDyULGYEg5FCu+ZrwGSsKM/T0Ct8zURo192GO4OzTLyS1FGJVmh/+YOEZIJKIBxr3ffcFIIcK2CE06LqZ5qmZgke0r6hEguqg3x2e+GcGGXgxIkyJcGZqb8nciy0nojIdAoMI73oTcX/vH4G8XWQM5lmQCWZL4oz7kDiTINwBkxRAnxiCCaKmVsdMsIKEzBxVU0I3uLLy6Rz1vAuGxf35/XmTRlHBR2hY3SKPHSFmugOtVAbEfSEntErerMK68V6tz7mrStWOXOI/sD6/AF3fJS7</latexit>p1⇠ <latexit sha1_base64="dx3sOHuYGyDrQmOKFaI1kcBO7FY=">AAAB+3icbVDLSsNAFL2pr1pfsS7dDBbBVUmKr2XRjcsK9gFNCJPptB06mYSZiVhCfsWNC0Xc+iPu/BunbRbaeuDC4Zx7ufeeMOFMacf5tkpr6xubW+Xtys7u3v6BfVjtqDiVhLZJzGPZC7GinAna1kxz2kskxVHIaTec3M787iOVisXiQU8T6kd4JNiQEayNFNhVT2lMJpLyLAkauadYFNg1p+7MgVaJW5AaFGgF9pc3iEkaUaEJx0r1XSfRfoalZoTTvOKliiZmCR7RvqECR1T52fz2HJ0aZYCGsTQlNJqrvycyHCk1jULTGWE9VsveTPzP66d6eO1nTCSppoIsFg1TjnSMZkGgAZOUaD41BBPJzK2IjLHERJu4KiYEd/nlVdJp1N3L+sX9ea15U8RRhmM4gTNw4QqacActaAOBJ3iGV3izcuvFerc+Fq0lq5g5gj+wPn8AeQWUvA==</latexit>p2⇠

<latexit sha1_base64="HI/luoNDmgp8LOdW32F4rU69IrQ=">AAAB+3icbVDLSsNAFJ34rPUV69JNsAiuSiK+lkU3LivYBzQhTKaTdujMJMzciCXkV9y4UMStP+LOv3HaZqGtBy4czrmXe++JUs40uO63tbK6tr6xWdmqbu/s7u3bB7WOTjJFaJskPFG9CGvKmaRtYMBpL1UUi4jTbjS+nfrdR6o0S+QDTFIaCDyULGYEg5FCu+ZrwGSsKM/T0Ct8zURo192GO4OzTLyS1FGJVmh/+YOEZIJKIBxr3ffcFIIcK2CE06LqZ5qmZgke0r6hEguqg3x2e+GcGGXgxIkyJcGZqb8nciy0nojIdAoMI73oTcX/vH4G8XWQM5lmQCWZL4oz7kDiTINwBkxRAnxiCCaKmVsdMsIKEzBxVU0I3uLLy6Rz1vAuGxf35/XmTRlHBR2hY3SKPHSFmugOtVAbEfSEntErerMK68V6tz7mrStWOXOI/sD6/AF3fJS7</latexit>p1⇠

<latexit sha1_base64="HI/luoNDmgp8LOdW32F4rU69IrQ=">AAAB+3icbVDLSsNAFJ34rPUV69JNsAiuSiK+lkU3LivYBzQhTKaTdujMJMzciCXkV9y4UMStP+LOv3HaZqGtBy4czrmXe++JUs40uO63tbK6tr6xWdmqbu/s7u3bB7WOTjJFaJskPFG9CGvKmaRtYMBpL1UUi4jTbjS+nfrdR6o0S+QDTFIaCDyULGYEg5FCu+ZrwGSsKM/T0Ct8zURo192GO4OzTLyS1FGJVmh/+YOEZIJKIBxr3ffcFIIcK2CE06LqZ5qmZgke0r6hEguqg3x2e+GcGGXgxIkyJcGZqb8nciy0nojIdAoMI73oTcX/vH4G8XWQM5lmQCWZL4oz7kDiTINwBkxRAnxiCCaKmVsdMsIKEzBxVU0I3uLLy6Rz1vAuGxf35/XmTRlHBR2hY3SKPHSFmugOtVAbEfSEntErerMK68V6tz7mrStWOXOI/sD6/AF3fJS7</latexit>p1⇠
<latexit sha1_base64="dx3sOHuYGyDrQmOKFaI1kcBO7FY=">AAAB+3icbVDLSsNAFL2pr1pfsS7dDBbBVUmKr2XRjcsK9gFNCJPptB06mYSZiVhCfsWNC0Xc+iPu/BunbRbaeuDC4Zx7ufeeMOFMacf5tkpr6xubW+Xtys7u3v6BfVjtqDiVhLZJzGPZC7GinAna1kxz2kskxVHIaTec3M787iOVisXiQU8T6kd4JNiQEayNFNhVT2lMJpLyLAkauadYFNg1p+7MgVaJW5AaFGgF9pc3iEkaUaEJx0r1XSfRfoalZoTTvOKliiZmCR7RvqECR1T52fz2HJ0aZYCGsTQlNJqrvycyHCk1jULTGWE9VsveTPzP66d6eO1nTCSppoIsFg1TjnSMZkGgAZOUaD41BBPJzK2IjLHERJu4KiYEd/nlVdJp1N3L+sX9ea15U8RRhmM4gTNw4QqacActaAOBJ3iGV3izcuvFerc+Fq0lq5g5gj+wPn8AeQWUvA==</latexit>p2⇠

<latexit sha1_base64="dx3sOHuYGyDrQmOKFaI1kcBO7FY=">AAAB+3icbVDLSsNAFL2pr1pfsS7dDBbBVUmKr2XRjcsK9gFNCJPptB06mYSZiVhCfsWNC0Xc+iPu/BunbRbaeuDC4Zx7ufeeMOFMacf5tkpr6xubW+Xtys7u3v6BfVjtqDiVhLZJzGPZC7GinAna1kxz2kskxVHIaTec3M787iOVisXiQU8T6kd4JNiQEayNFNhVT2lMJpLyLAkauadYFNg1p+7MgVaJW5AaFGgF9pc3iEkaUaEJx0r1XSfRfoalZoTTvOKliiZmCR7RvqECR1T52fz2HJ0aZYCGsTQlNJqrvycyHCk1jULTGWE9VsveTPzP66d6eO1nTCSppoIsFg1TjnSMZkGgAZOUaD41BBPJzK2IjLHERJu4KiYEd/nlVdJp1N3L+sX9ea15U8RRhmM4gTNw4QqacActaAOBJ3iGV3izcuvFerc+Fq0lq5g5gj+wPn8AeQWUvA==</latexit>p2⇠

Fig. 3: Some immediate snapshot executions of a uniform k-non negotiating al-
gorithm, k = 4, and their indistinguishability relations.

count the number of executions from the fully sequential to the fully concurrent.
In more detail, there is a path of 4k − 1 executions (vertices), with C1 as the
central vertex, and whose endpoints are the fully sequential executions, C ′, C ′′,
and each two consecutive executions are indistinguishable to one process. This
claim implies that the best ε-agreement that can be achieved is 1

4k−1 . This is
because in each two consecutive executions one process decides the same value.

Non-Negotiating Distributed Computing 9

3 Non-Negotiated Multidimensional Approximate
Agreement

In this section, we show how to solve multidimensional approximate agreement
in the non-negotiating model. As in the previous section, we concentrate on a
fixed inputs version of multidimensional approximate agreement in which each
process starts with a fixed input value. It will be used in Section 4 to solve any
colorless task. Let ε > 0. Each process pi, i ∈ {1, . . . , n}, n ≥ 2, starts with
input xi = (0, . . . , 0, 1, 0, . . . , 0) ∈ {0, 1}n where the unique 1 stands at the i-th
coordinate. Each participating process pi must output a vector yi ∈ Qn such
that, if I ⊆ {1, . . . , n} denotes the set of participating processes, then (1) for
every non-faulty process pi ∈ I, yi ∈ Hull({xi | i ∈ I}), and (2) for every two
non-faulty processes pi, pj ∈ I, ||yi − yj ||2 ≤ ε. Here, for a set S of points
in {0, 1}n, Hull(S) denotes the convex hull of S. Note that since, for every i,
process pi always starts with input xi, it does not need to write xi in memory.

3.1 No Uniform Algorithm can Solve Multidimensional
Approximate Agreement

We first show that actually no uniform algorithm can solve multidimensional
approximate agreement (for arbitrarily small ε).

Theorem 3. Let n ≥ 3. For ε <
√

n−2
n−1 , there is no uniform non-negotiating

algorithm that implements multidimensional approximate agreement for n pro-
cesses.

Proof. Let A be a n-processes uniform non-negotiating algorithm that imple-
ments multidimensional ε-agreement for some ε, 0 ≤ ε < 1. Recall that in our
fixed inputs version, the input of each process pi is the point ui = (0, . . . , 0, 1,
0, . . . , 0) whose all coordinates are 0, except the i-th which is 1.

In a uniform non-negotiating algorithm, in every execution, every process
performs k iterations of the repeat loop before deciding (unless it fails). The
constant k may depend on ε, but it is independent of the execution.

The proof is based on an indistinguishability argument. For i, 1 ≤ i ≤ n− 1,
let ei be an execution such that:
– Process pi performs first its k iterations and decides,
– Then processes pj , j ∈ {1, . . . , n − 1} \ {i} perform their k iterations of the

repeat loop. The order in which these processes take steps does not matter.
For example, they may perform their k iterations sequentially in increasing
index order.

– Finally, process pn performs its k iterations of the for loop of the algorithm.
Let us first observe that for each i, 1 ≤ i ≤ n−1, process pi cannot distinguish

ei from an execution in which it is the only participating process. It thus decides
ui in execution ei.

Second, note that executions e1, . . . , en−1 are indistinguishable for process
pn. Indeed, in each of them, the state of the shared memory is [k, . . . , k, 0]

10 C. Delporte-Gallet et al.

when pn starts executing its algorithm as every process has written the final
value, k, of its counter before pn has taken even one step. Hence, in each exe-
cution ei, 1 ≤ i ≤ n − 1, the successive views of the counters for process pn is
[k, . . . , k, 1], . . . , [k, . . . , k, k]. pn thus decides the same point y in e1, . . . , en−1.

By the first observation, it must be the case that ||y − ui||2 ≤ ε for all
i, 1 ≤ i ≤ n− 1. The coordinates of the point c closest to u1, . . . ,un−1 (that is,
the centroid of u1, . . . ,un−1) are (1

n−1 , . . . ,
1

n−1 , 0). As ||c − ui||2 =
√

n−2
n−1 for

every i, 1 ≤ i ≤ n− 1, it follows that ε ≥
√

n−2
n−1 .

3.2 Not Uniform General Multidimensional Approximate
Agreement Algorithm

We now present our general multidimensional approximate agreement algorithm,
which in light of the previous impossibility, is not uniform.

Theorem 4. For every n ≥ 2, and for every ε > 0, Algorithm 3 with k = 3n
ε

solves multidimensional ε-approximate agreement for n processes.

Algorithm 3 Non-negotiating Algorithm for multidimensional approximate
agreement. Code for process pi, i ∈ {1, . . . , n}, starting with input xi. R is a
shared array of n integers initialized to 0.
1: ci ← 0 . Counter of pi
2: viewi ← [0, . . . , 0] . viewi[j] contain last read value of pj ’s counter
3: repeat
4: ci ← ci + 1
5: write(ci) to R[i] . R[i] is the shared register of pi
6: viewi ← collect(R) . instruction collect reads all registers in arbitrary order
7: until

∑n
j=1 viewi[j] ≥ k . stop when the sum of counters reaches threshold k

8: decide yi =
∑n

j=1(viewi[j]·xj)∑n
j=1 viewi[j]

The rest of the section is dedicated to the proof of Theorem 4. In Algorithm 3,
the accuracy ε of the agreement is controlled through parameter k = O(nε). A
process stops incrementing its counter when it observes that the sum of the
counters is larger than the threshold k (line 7). In other words, each process
looks for the first iteration d at which the sum of the counters of the processes
is at least k. In each iteration of the repeat-loop, the value of the counters, as
observed by process pi, are stored in the local variable viewi, and are interpreted
as the coordinates of a point di ∈ Rn where

di =

n∑
j=1

(viewi[j] · xj).

The algorithm stops at process pi when di is far enough from the origin (0, . . . , 0),
that is, when it is on the other side of the hyperplane Hk with respect to

Non-Negotiating Distributed Computing 11

the origin — see Figure 4. Hk is the hyperplane that contains the n points
(k, 0, . . . , 0), . . . , (0, . . . , 0, k). The coordinates of di are then scaled down to pro-
duce a decision yi that belongs to the hyperplane H1 (line 8). As we shall prove
in Lemma 3, scaling down the points di ensures validity as the resulting points
yi are in the convex hull of the unit vectors corresponding to the participating
processes. For agreement, we shall prove in Lemma 6 that the decisions yi, i ∈ I,
all lie in a same L2-ball of diameter O(nk).

O

x1

x2

H1

x3

(k, 0, 0)

(0, k, 0)

Hk

(0, 0, k)

d1

d2

d3

y1
y2

y3

Fig. 4: Points di, i ∈ {1, 2, 3}, and outputs
yi for n = 3.

O

di

dj

H1

Hki

Hkj

yiyj

I

Fig. 5: The points used in the proof
of Lemma 6

We first show that Algorithm 3 terminates.

Lemma 2. In every execution, every process decides after a finite number of
iterations.

Proof. Let pi be a process. Suppose for contradiction that there is an infinite
execution in which pi does not fail, and does not decide. This means that pi per-
forms infinitely many iterations of the repeat-loop. In particular, in iteration k,
the value of the counter of process pi is k, which is the value that pi writes to
shared memory in this iteration. Hence, the view it obtains after reading the
memory in this iteration is such that viewi[i] = k. Since the initial value of each
register is 0 and each process writes only positive values to its register, we get
that

∑
1≤j≤n viewi[j] ≥ k. Therefore, process pi exits the repeat-loop, and, as it

does not fail, decides at line 8.

Next, we show that the validity condition of multidimensional ε-agreement
is satisfied.

12 C. Delporte-Gallet et al.

Lemma 3. In every execution, any decision is in the convex hull of the inputs
of the participating processes.

Proof. Let e be an execution of Algorithm 3, let P be the set of participating
processes in e, and let pi ∈ P be a process that decides in e. We denote by
yi its decision. It is required that any decision yi belongs to the convex hull
of the inputs of the participating processes, that is, y =

∑
j∈P λjxj where, for

each j ∈ P , λj ≥ 0 and
∑
j∈P λj = 1. Let viewi be the result of the last

collect by process pi before it decides. Note that for each pj /∈ P , viewi[j] = 0
as a non-participating process never writes to shared memory, and all registers
are initialized to 0. By Line 8, the coordinates of the output decision yi are

1∑
j viewi[j]

(viewi[1], . . . , viewi[n]). Therefore, the coordinates are all positive, and
their sum is 1. Since, in addition, viewi[j] = 0 for every j /∈ P , it follows that
yi ∈ Hull({xj : j ∈ P}).

We now establish a couple of technical lemmas that will be used for proving
that the outputs are close to each other. Their proof can be found in[9].

Lemma 4. Let e be an execution, and let i ∈ {1, . . . , n} such that process pi is
correct in e. Let viewi be the last view of pi before pi decides. Then

k ≤
∑

1≤j≤n

viewi[j] ≤ k + n− 1.

The previous lemma establishes a bound on the sum of the components of the
final views of the processes. This sum cannot be too far away from the threshold
value k. In the next lemma, we examine each component individually, and we
show that each component j cannot be to far from some value cj .

Lemma 5. Let e be a finite execution in which at least one process decides. For
each process pj, j ∈ {1, . . . , n}, let cj be the last value of its counter as written
to its register, with cj = 0 if process pj does not participate in e. For every
process pi that decides there exists n non-negative integers δ1i , . . . , δni such that∑n
`=1 δ

`
i ≤ n− 1, and di =

∑n
`=1(c` − δ`i) · x`.

We now have all the ingredients to show that multidimensional ε-agreement
is solved by Algorithm 3.

Lemma 6. Let us assume that, in some execution of Algorithm 3, pi and pj
decide yi and yj, respectively. Then ||yi − yj ||2 ≤ 3(n−1)

k .

Sketch of the proof. We denote by viewi and viewj the last counters collected
on the memory obtained by pi and pj , respectively. If viewi = viewj , then
yi = yj , and the lemma follows. Let us suppose that viewi 6= viewj . Let ki
(respectively, kj) be the sum of the components of viewi (respectively, viewj).
Without loss of generality, we assume that ki ≤ kj . For every integer ` > 0,
let H` be the hyperplane that contains the n points (`, 0, . . . , 0), . . . , (0, . . . , 0, `).

Non-Negotiating Distributed Computing 13

That is, H` = {v = (v1, . . . , vn) |
∑

1≤λ≤n vλ = `}. Note that di ∈ Hki as it is
the point whose coordinates are (viewi[1], . . . , viewi[n]).

The line (Odi), where O = (0, . . . , 0) is the origin, intersects Hk in a single
point that we denote by I — See Figure 5. Indeed, dj is either in Hki , in which
case I = dj , or on the opposite side of Hk. By line 8 in Algorithm 3, yi stands
on the line (Odi). Similarly, yi stands on the line (Odj), and, by definition, I
also stands on this line. Therefore, points O, di, dj , yi, yj , and I are co-planar.
To bound the distance between yi and yj , we are going to use the Intercept
Theorem on the triangles (OdiI) and (Oyiyj).

The main steps of the proofs are as follows (See [9] for the complete proof):

– We show, using Lemma 5, that we can bound the L2-norm ||I − di||2 from
above by a quantity that does not depend on k,

||di − I||2 ≤ ||di − I||1 ≤ 3(n− 1) (1)

– Finally, we use the Intercept Theorem to bound the distance between the
decision yi and yj . O,yi,di,yj and I are co-planar. HyperplanesH1 andHki

have the same direction, and contain yi,yj and di, I, respectively. Therefore,
the lines (yiyj) and (diI) are parallel. From the Intercept Theorem, we have

||yj − yi||2
||I − di||2

=
||yi −O||2
||di −O||2

Now, the decision of process pi is yi = di∑
1≤`≤n viewi[`]

= di

ki
. Therefore,

||yj − yi||2 =
||yi||2
||di||2

||I − di||2 =
1

ki

||di||2
||di||2

||I − di||2 ≤ 3
(n− 1)

ki
≤ 3

(n− 1)

k
.

The penultimate inequality comes from Eq. (1), and the last inequality fol-
lows from the fact that the sum ki of the components in the last collect viewi
of process pi is at least k.

4 Universality of Multidimensional Approximate
Agreement

In this section, we show that multidimensional approximate agreement with fixed
inputs is complete, in the sense that any problem that is solvable wait-free can
be solved by merely solving multidimensional ε-agreement for an appropriate
setting of ε, and inferring the outputs of the problem directly from the solution
to multidimensional ε-agreement.

To formally define the notion of “problem”, it is convenient to adopt the
terminology of algebraic topology (see, e.g., [24]). Recall that a simplicial complex
K with vertex set V is a collection of non-empty subsets of V containing each
singleton {v}, v ∈ V , and closed by inclusion, i.e., if σ ∈ K then σ′ ∈ K for
every non-empty σ′ ⊆ σ. Each set in K is called a simplex. A task is then

14 C. Delporte-Gallet et al.

defined as a triple Π = (I,O, ∆) where I and O are simplicial complexes,
and ∆ : I → 2O is the input-output specification. That is, every vertex of I
(resp., of O) is a possible input value (resp., output value), and every σ ∈ I
(resp., τ ∈ O) represents a collection of legal input configurations (resp., output
configurations) of the system. In other words, if σ = {x1, . . . , xk} belongs to I,
then it is legal that n ≥ k processes conjointly start with this set of inputs, i.e.,
some processes start with input x1, some others with input x2, etc. Similarly,
if τ = {y1, . . . , yk} belongs to O then it is legal for a set of n ≥ k processes to
conjointly output τ , i.e., some processes output y1, while some others output y2,
etc. Finally, for every σ ∈ I, ∆(σ) is a sub-complex of O specifying the set
of legal outputs for σ, i.e., any set of processes with input configuration σ can
collectively output any simplex τ ∈ ∆(σ).

For instance, n-dimensional ε-agreement with fixed inputs is the task Π =
(I,O, ∆) with

I =
{
{xi | i ∈ I} | (I 6= ∅) ∧ (I ⊆ {1, . . . , n}

}
where, for each i ∈ {1, . . . , n}, xi is the n-dimensional vector (0, . . . , 0, 1, 0, . . . , 0)
with the 1 at the i-th coordinate,

O =
{
{yj | j ∈ J} ∈ P(Qn) | (∅ 6= J ⊆ {1, . . . , n})∧ (∀i, j ∈ J, ||yi−yj ||2 ≤ ε)

}
and, for every σ = {xi | i ∈ I} ∈ I, and every τ = {yj | j ∈ J} ∈ O, we have

τ ∈ ∆(σ) ⇐⇒ yj ∈ Hull({xi | i ∈ I}) for every j ∈ J .
The following theorem essentially states that an algorithm for multidimensional
ε-agreement can be used to solve any (solvable) task.

Theorem 5. Let n ≥ 2, and let Π = (I,O, ∆) be a task solvable by n processes.
There exists ε > 0 such that, for every input σ = {xi | i ∈ I} ∈ I for Π, with
∅ 6= I ⊆ {1, . . . , n}, if {yi | i ∈ I} denotes any solution of multidimensional
ε-agreement whenever process pi starts with input xi for every i ∈ I, then every
process pi, i ∈ I can compute locally from yi an output yi for Π such that {yi |
i ∈ I} ∈ ∆(σ).

Proof. By the colorless wait-free computability theorem [24,27], sinceΠ = (I,O,
∆) is a task solvable by n processes, there exists an integer T ≥ 0 and a simplicial
map2

f : BT (I)→ O
where BT (I) is the simplicial complex obtained by applying T times the barycen-
tric subdivision operator to I (see Fig. 6). Moreover, this map f agrees with the
input-output specification ∆ of the task, that is, for every σ ∈ I,

f(BT (σ)) ⊆ ∆(σ),

i.e., every simplex σ′ ∈ BT (σ) is mapped by f to a simplex f(σ′) of ∆(σ).
2 Recall that a map f from the vertex set of a complex K1 to the vertex set of a
complex K2 is simplicial if, for every σ ∈ K1, f(σ) ∈ K2. Such a map is therefore a
map f : K1 → K2, mapping every simplex of K1 to a simplex of K2.

Non-Negotiating Distributed Computing 15

-ball ϵ B1

-ball ϵ B3

-ball ϵ B2

x1

x2 x3

u

v

a
b

c

Fig. 6: Applying two times the barycentric subdivision operator to σε =
{x1,x2,x3}. Formally, the figure displays the canonical geometric realization
of B2(σε), and the outer triangle represents the frontier of the convex hull of the
three points x1,x2,x3.

Let us denote by Πε = (Iε,Oε, ∆ε) the multidimensional ε-agreement task.
Recall that we mean here the fixed inputs version, for which every i ∈ {1, . . . , n},
process pi can only start with the point xi. That is, the input complex of mul-
tidimensional ε-agreement is simply Iε = {x1, . . . ,xn}. Now, recall that, by
definition of multidimensional ε-agreement, the outputs yj , j ∈ J , will be at mu-
tual distance at most ε, and will stand in the convex hull of the input simplex
σ = {xi | i ∈ J}.

A first observation is that, by picking ε sufficiently small, any ball of radius ε
in the convex hull of σ can be mapped to a simplex of BT (σ). For instance, in
Fig. 6, the ball B1 is included in the simplex {a, b,x1} of B2(σ). Therefore, each
yj in B1 can be mapped to any of the three points a, b, or x1, e.g., to the closed
point. Instead, the ball B2 intersects a face of B2(σ), namely the edge {u, v}. In
this case, each yj in B2 can be mapped to any of the two points u or v, e.g., the
closest. A ball of radius ε may however intersect many different faces, just like
the ball B3 does in Fig. 6. However, for ε sufficiently small, this may occur only
for balls that are close to a single vertex (c in the case of the ball B3). Therefore,
each yj in B3 can simply be mapped to this vertex. This mapping is denoted by

g : Oε → BT (Iε)

A second observation is that there is a canonical one-to-one correspondence
between any input simplex σ = {xi | i ∈ I} ∈ I of the task Π and the input
simplex σε = {xi | i ∈ I} ∈ Iε of multidimensional ε-agreement. Therefore, the
same holds for their barycentric subdivisions. Let us denote by

hσ : BT (σ)→ BT (σε)

this one-to-one map. Note that, for every face σ′ of σ, hσ′ coincides with hσ
restricted to BT (σ′).

We have now all the ingredients for establishing the theorem. Let us first ex-
plain how the generic non-negotiating algorithm (Algorithm 1 of Section 1.2) is

16 C. Delporte-Gallet et al.

instantiated by each process. Every process pj starts by writing its input for task
Π (line 1 of the generic algorithm). It then solves multidimensional ε-agreement
(with fixed input xj) using the multidimensional approximate agreement algo-
rithm (Algorithm 3). Following algorithm 3, this consists in performing O(n/ε)
iterations of the repeat loop of the generic algorithm. pj finally reads all inputs
for task Π previously written (line 8 of the generic algorithm.).

By reading the inputs for Π, process pj thus collects an input simplex σ =
{xi | i ∈ I} ∈ I. From σ, pi infers σε = {xi | i ∈ I} which is its view of the input
simplex of the multidimensional approximate agreement. Let y be the output of
pj in multidimensional ε-agreement. Using the map g : Oε → BT (Iε), process pj
computes

z = g(y) ∈ BT (Iε).
Given z, σ, and σε, process pj can then use the one-to-one map hσ : BT (σ) →
BT (σε) to compute

z = h−1σ (z) ∈ BT (σ).
Finally, given z ∈ BT (σ), process pj just outputs y = f(z) where f : BT (I)→ O
is the aforementioned simplicial map whose existence is guaranteed by the wait-
free computability theorem.

To show correctness, let I ⊆ {1, . . . , n} be the set of (correct) participating
processes, with input simplex {xi | i ∈ I}. These processes solve multidimen-
sional ε-agreement with input σε = {xi | i ∈ I}, and output {yj | j ∈ J} ∈
∆ε(σε). Thanks to the mapping g, these output values are mapped to a simplex
τ ∈ BT (σε), which is, thanks to hσ, in one-to-one correspondence with a simplex
τ ′ ∈ BT (σ). Since f is simplicial, the latter simplex is mapped to a simplex
τ ′′ ∈ O. In fact, since f solves the task Π, and since τ ′ ∈ BT (σ), we necessarily
have τ ′′ ∈ ∆(σ) as f agrees with ∆. This completes the proof.

The following is a direct consequence of Theorem 5, merely because multi-
dimensional ε-agreement with process pi starting with input xi for every i ∈
{1, . . . , n} can be solved using a non-negotiating algorithm.

Corollary 1. Let n ≥ 2, and let Π = (I,O, ∆) be a task solvable by n pro-
cesses with an unrestricted algorithm. There exists a non-negotiating algorithm
solving Π for n processes.

5 Conclusion

We have introduced a very restricted form of distributed wait-free shared mem-
ory computing, and shown that nevertheless, it is universal, in the sense that it
is capable of solving any colorless task that is wait-free solvable under no restric-
tions on the algorithm. The result is achieved by proving a general result about
multidimensional approximate agreement: a black box that solves this task for
arbitrary ε > 0, can be used to solve any (wait-free solvable) colorless task.

Our results open several interesting avenues for future research. They uncover
the remarkable power of asynchronous read/write shared memory, that allows

Non-Negotiating Distributed Computing 17

processes to communicate to each other information, through the timing of their
read/write operations, which is not under their control. Our non-negotiating
algorithm for ε-multidimensional agreement has step complexity O(n/ε) which
is exponentially slower than standard shared memory algorithms. Although we
proved a lower bound for two processes uniform algorithms, in general we don’t
know if this slowdown is unavoidable.

The class of tasks we have considered are colorless [24], which includes con-
sensus, approximate agreement, set agreement, and many others. It remains an
open question if our non-negotiating model can be used to solve general tasks,
most notably, renaming [6].

Acknowledgments. We thank the anonymous reviewers for their nice comments that
help improve the presentation of that paper.

References

1. Afek, Y., Alon, N., Barad, O., Hornstein, E., Barkai, N., Bar-Joseph, Z.: A biolog-
ical solution to a fundamental distributed computing problem. science 331(6014),
183–185 (2011)

2. Ancona, B., Bajwa, A., Lynch, N.A., Mallmann-Trenn, F.: How to color a french
flag - biologically inspired algorithms for scale-invariant patterning. In: 14th Latin
American Symposium on Theoretical Informatics (LATIN). LNCS, vol. 12118, pp.
413–424. Springer (2020)

3. Angluin, D., Aspnes, J., Diamadi, Z., Fischer, M.J., Peralta, R.: Computation in
networks of passively mobile finite-state sensors. Distributed Comput. 18(4), 235–
253 (2006)

4. Attiya, H., Ellen, F.: The step complexity of multidimensional approximate agree-
ment. In: 26th International Conference on Principles of Distributed Systems,
OPODIS. LIPIcs, vol. 253, pp. 6:1–6:12.(2022).

5. Attiya, H., Rajsbaum, S.: The combinatorial structure of wait-free solvable tasks.
SIAM J. Comput. 31(4), 1286–1313 (2002)

6. Attiya, H., Welch, J.: Distributed computing: fundamentals, simulations, and ad-
vanced topics, vol. 19. John Wiley & Sons (2004)

7. Cornejo, A., Kuhn, F.: Deploying wireless networks with beeps. In: 24th Interna-
tional Symposium on Distributed Computing (DISC). LNCS, vol. 6343, pp. 148–
162. Springer (2010)

8. Davies, P.: Optimal message-passing with noisy beeps. In: 42th ACM Symposium
on Principles of Distributed Computing (PODC). pp. 300–309 (2023)

9. Delporte-Gallet, C., Fauconnier, H., Fraigniaud, P., Rajsbaum, S., Travers, C.:
Non-negotiating distributed computing. https://hal.science/hal-04470425

10. Delporte-Gallet, C., Fauconnier, H., Rajsbaum, S.: Communication complexity of
wait-free computability in dynamic networks. In: 27th International Colloquium
on Structural Information and Communication Complexity (SIROCCO). LNCS,
vol. 12156, pp. 291–309. Springer (2020)

11. Dolev, D., Lynch, N.A., Pinter, S.S., Stark, E.W., Weihl, W.E.: Reaching approx-
imate agreement in the presence of faults. J. ACM 33(3), 499–516 (1986)

12. El-Mhamdi, E.M., Guerraoui, R., Guirguis, A., Hoang, L.N., Rouault, S.: Gen-
uinely distributed byzantine machine learning. Distributed Comput. 35(4), 305–
331 (2022)

https://hal.science/hal-04470425

18 C. Delporte-Gallet et al.

13. Emek, Y., Wattenhofer, R.: Stone age distributed computing. In: 32nd ACM Sym-
posium on Principles of Distributed Computing (PODC). pp. 137–146 (2013)

14. Feinerman, O., Haeupler, B., Korman, A.: Breathe before speaking: efficient infor-
mation dissemination despite noisy, limited and anonymous communication. Dis-
tributed Comput. 30(5), 339–355 (2017)

15. Feinerman, O., Korman, A.: The ANTS problem. Distributed Comput. 30(3), 149–
168 (2017)

16. Fischer, M.J., Lynch, N.A., Paterson, M.: Impossibility of distributed consensus
with one faulty process. J. ACM 32(2), 374–382 (1985)

17. Függer, M., Nowak, T., Schwarz, M.: Tight bounds for asymptotic and approximate
consensus. J. ACM 68(6), 46:1–46:35 (2021).

18. Gafni, E., Koutsoupias, E.: Three-processor tasks are undecidable. SIAM J. Com-
put. 28(3), 970–983 (1999)

19. Gelblum, A., Fonio, E., Rodeh, Y., Korman, A., Feinerman, O.: Ant collective
cognition allows for efficient navigation through disordered environments. eLife 9,
e55195 (may 2020)

20. Ghinea, D., Liu-Zhang, C., Wattenhofer, R.: Multidimensional approximate agree-
ment with asynchronous fallback. In: 35th ACM Symposium on Parallelism in
Algorithms and Architectures (SPAA). pp. 141–151 (2023)

21. Giakkoupis, G., Ziccardi, I.: Distributed self-stabilizing MIS with few states and
weak communication. In: 42nd ACM Symposium on Principles of Distributed Com-
puting (PODC). pp. 310–320 (2023)

22. Hella, L., Järvisalo, M., Kuusisto, A., Laurinharju, J., Lempiäinen, T., Luosto, K.,
Suomela, J., Virtema, J.: Weak models of distributed computing, with connections
to modal logic. Distributed Computing 28(1), 31–53 (2015)

23. Herlihy, M.: Wait-free synchronization. ACM Trans. Program. Lang. Syst. 13(1),
124–149 (1991).

24. Herlihy, M., Kozlov, D.N., Rajsbaum, S.: Distributed Computing Through Com-
binatorial Topology. Morgan Kaufmann (2013)

25. Herlihy, M., Rajsbaum, S.: The decidability of distributed decision tasks. In: Pro-
ceedings of the Twenty-Ninth Annual ACM Symposium on the Theory of Com-
puting (STOC). pp. 589–598. ACM (1997).

26. Herlihy, M., Rajsbaum, S.: The topology of distributed adversaries. Distributed
Comput. 26(3), 173–192 (2013)

27. Herlihy, M., Rajsbaum, S., Raynal, M., Stainer, J.: From wait-free to arbitrary
concurrent solo executions in colorless distributed computing. Theor. Comput. Sci.
683, 1–21 (2017)

28. Herlihy, M., Shavit, N.: The topological structure of asynchronous computability.
J. ACM 46(6), 858–923 (1999)

29. Hoest, G., Shavit, N.: Toward a topological characterization of asynchronous com-
plexity. SIAM J. Comput. 36(2), 457–497 (2006)

30. Mendes, H., Herlihy, M., Vaidya, N.H., Garg, V.K.: Multidimensional agreement
in byzantine systems. Distributed Comput. 28(6), 423–441 (2015)

31. Peleg, D.: Distributed Computing: A Locality-Sensitive Approach. Society for In-
dustrial and Applied Mathematics (2000)

32. Raynal, M.: Fault-Tolerant Message-Passing Distributed Systems - An Algorithmic
Approach. Springer (2018)

33. Taubenfeld, G.: Anonymous shared memory. J. ACM 69(4) (2022)

	Non-Negotiating Distributed Computing

