Examen de 2ème session du module RFIDEC

Christophe Gonzales Durée : 2 heures

Seuls documents autorisés:

Seuls documents autorisés: les transparents de cours. Calculatrices autorisées.

Exercice 2 (4 points)

Soit X une variable aléatoire suivant la loi binomiale $\mathcal{B}(K,\theta)$, où K est une constante supposée connue. On observe un échantillon $\{x_1,\ldots,x_n\}$ de taille n d'instanciations de cette variable aléatoire.

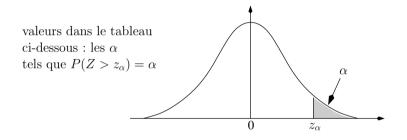
- Q 2.1 Calculez la valeur de θ par maximum de vraisemblance. Bien entendu, vous démontrerez mathématiquement votre résultat.
- Q 2.2 Des études statistiques nous indiquent que θ suit une loi Beta $a\ priori\ \pi(\theta) = \text{Beta}(\theta, a, b)$ Quelle est la valeur a posteriori de θ ? Justifiez mathématiquement votre réponse.

Exercice 3 (3 points)

On répartit les notes des examens de RFIDEC en trois catégories : $c_1 =$ « note < 8 »,

 $c_2 =$ « note ≥ 8 mais < 12 » et $c_3 =$ « note ≥ 12 ». Soit X une variable aléatoire représentant la note d'un étudiant à l'examen de 1ère session, et soit Y sa note en 2ème session. On se demande si X et Y sont des variables aléatoires indépendantes. Pour cela, on a extrait les notes aux 2 examens pour 100 étudiants des promos précédentes et on a obtenu le tableau suivant, qui recense, dans chaque case, le nombre d'étudiants appartenant à la catégorie c_i pour X et c_j pour Y.

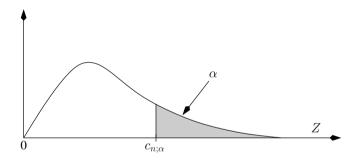
$X \setminus Y$	c_1	c_2	c_3
c_1	2	13	6
c_2	11	27	13
c_3	3	17	8


Dressez un test d'indépendance de niveau de confiance 90%. Peut-on, selon ce test, en déduire que X et Y sont deux variables aléatoires indépendantes?

Exercice 4 (3 points)

Dans cet exercice, on cherche à savoir quelle est la pointure moyenne d'une population d'étudiants. Pour cela, une étude préalable a montré que l'écart-type sur les pointures de la population était de 3. On a par ailleurs extrait l'échantillon de pointures suivant :

Donnez une estimation de la moyenne μ par intervalle de confiance de niveau de confiance 95%.


Table de la loi normale

z_{lpha}	0,00	0,01	0,02	0,03	0,04	0,05	0,06	0,07	0,08	0,09
0,0	0,5000	0,4960	0,4920	0,4880	0,4840	0,4801	0,4761	0,4721	0,4681	0,4641
0,1	0,4602	$0,\!4562$	$0,\!4522$	0,4483	0,4443	0,4404	0,4364	0,4325	$0,\!4286$	0,4247
0,2	0,4207	0,4168	0,4129	0,4090	0,4052	0,4013	0,3974	0,3936	0,3897	0,3859
0,3	0,3821	$0,\!3783$	$0,\!3745$	$0,\!3707$	0,3669	0,3632	$0,\!3594$	$0,\!3557$	$0,\!3520$	0,3483
0,4	0,3446	0,3409	0,3372	0,3336	0,3300	0,3264	0,3228	0,3192	0,3156	0,3121
0,5	0,3085	0,3050	0,3015	0,2981	0,2946	0,2912	0,2877	0,2843	0,2810	0,2776
0,6	0,2743	$0,\!2709$	0,2676	0,2643	$0,\!2611$	$0,\!2578$	$0,\!2546$	$0,\!2514$	0,2483	0,2451
0,7	0,2420	0,2389	0,2358	0,2327	$0,\!2297$	$0,\!2266$	$0,\!2236$	$0,\!2206$	0,2177	0,2148
0.8	0,2119	0,2090	$0,\!2061$	0,2033	0,2005	0,1977	0,1949	0,1922	0,1894	0,1867
0,9	0,1841	0,1814	$0,\!1788$	0,1762	0,1736	0,1711	0,1685	0,1660	0,1635	0,1611
1,0	0,1587	0,1562	0,1539	0,1515	0,1492	0,1469	0,1446	0,1423	0,1401	0,1379
1,1	0,1357	0,1335	0,1314	0,1292	0,1271	0,1251	0,1230	0,1210	0,1190	0,1170
1,2	0,1151	0,1131	0,1112	0,1093	0,1075	0,1056	0,1038	0,1020	0,1003	0,0985
1,3	0,0968	0,0951	0,0934	0,0918	0,0901	0,0885	0,0859	0,0853	0,0838	0,0823
1,4	0,0808	0,0793	0,0778	0,0764	0,0749	0,0735	0,0722	0,0708	0,0694	0,0681
1,5	0,0668	0,0655	0,0643	0,0630	0,0618	0,0606	0,0594	0,0582	0,0571	0,0559
1,6	0,0548	0,0537	0,0526	0,0516	0,0505	0,0495	0,0485	0,0475	0,0466	0,0455
1,7	0,0446	0,0436	0,0427	0,0418	0,0409	0,0401	0,0392	0,0384	0,0375	0,0367
1,8	0,0359	0,0352	0,0344	0,0336	0,0329	0,0322	0,0314	0,0307	0,0301	0,0294
1,9	0,0287	0,0281	0,0274	0,0268	0,0262	0,0256	0,0250	0,0244	0,0239	0,0233
2,0	/	0,0222	0,0217	0,0212	0,0207	0,0202	0,0197	0,0192	0,0188	0,0183
9 1	0.0170	0.0174	0.0170	0.0166	0.0169	0.0158	0.0154	0.0150	0.0146	0.01/3

Table de la loi du χ^2

valeurs dans le tableau ci-dessous : les $c_{n;\alpha}$ tels que $P(Z>c_{n;\alpha})=\alpha$

Page 1										
$n \setminus \alpha$	0,995	0,99	0,975	0,95	0,90	0,10	0,05	0,025	0,01	0
1	0,0000393	0,000157	0,000982	0,00393	0,0158	2,71	3,84	5,02	6,63	-
2	0,0100	0,0201	0,0506	0,103	0,211	4,61	5,99	7,38	9,21	1
3	0,0717	$0,\!115$	0,216	$0,\!352$	0,584	$6,\!25$	7,81	9,35	11,3	1
4	$0,\!207$	$0,\!297$	$0,\!484$	0,711	1,06	7,78	9,49	$11,\!1$	13,3	1
5	0,412	$0,\!554$	0,831	1,15	1,61	$9,\!24$	11,1	12,8	15,1	1
6	0,676	0,872	1,24	1,64	2,20	10,6	12,6	14,4	16,8	-
7	0,989	1,24	1,69	2,17	2,83	12,0	14,1	16,0	18,5	<i>C</i>
8	1,34	1,65	2,18	2,73	3,49	13,4	15,5	17,5	20,1	6 2
9	1,73	2,09	2,70	3,33	$4,\!17$	14,7	16,9	19,0	21,7	6
10	2,16	$2,\!56$	$3,\!25$	3,94	$4,\!87$	16,0	18,3	20,5	23,2	2
11	2,60	3,05	3,82	$4,\!57$	5,58	17,3	19,7	21,9	24,7	6
12	3,07	3,57	4,40	5,23	6,30	18,5	21,0	23,3	26,2	<i>6</i>
13	$3,\!57$	4,11	5,01	5,89	7,04	19,8	22,4	24,7	27,7	<i>6</i>
14	4,07	4,66	5,63	$6,\!57$	7,79	21,1	23,7	26,1	29,1	
15	4,60	$5,\!23$	$6,\!26$	7,26	8,55	22,3	25,0	27,5	30,6	٩
16	5,14	5,81	6,91	7,96	9,31	23,5	26,3	28,8	32,0	•
17	5,70	6,41	7,56	8,67	10,1	24,8	27,6	30,2	33,4	(
18	6,26	7,01	8,23	9,39	10,9	26,0	28,9	31,5	34,8	•
19	6,84	7,63	8,91	10,1	11,7	27,2	30,1	32,9	36,2	و
20	7,43	8,26	9,59	10,9	12,4	28,4	31,4	34,2	37,6	4
21	8,03	8,90	10,3	11,6	13,2	29,6	32,7	35,5	38,9	۷
22	9,64	0.54	11.0	19.2	140	$\frac{20.8}{20.8}$	32,0 33,0	36 g	40.2	