RFIDEC — cours 3 : Intervalles de confiance, tests d'hypothèses, loi du χ^2

Christophe Gonzales

LIP6 - Université Paris 6, France

Plan du cours n°3

- 1 Intervalles de confiance
- Tests d'hypothèses
- 3 La loi du χ^2

Intervalles de confiance

Estimateur T d'un paramètre $\theta \Longrightarrow$ valeur estimée $\hat{\theta}$

Problème: | peut-on avoir confiance dans l'estimation ponctuelle?

Intervalle de confiance

Un intervalle de confiance de niveau $1 - \alpha$ = intervalle

a(T), b(T) tel que :

$$\forall \theta \in \Theta, P_{\theta}(]a(T), b(T)[\ni \theta) = 1 - \alpha$$

1 – α = proba que l'intervalle contienne θ

Intervalles de confiance : exemple (1/2)

$$X \sim \mathcal{N}(\mu; \sigma^2)$$

échantillon de taille $n \Longrightarrow \overline{X}$ = moyenne

théorème central-limite
$$\Longrightarrow \frac{\overline{X} - \mu}{\sigma/\sqrt{n}} \sim \mathcal{N}(0; 1)$$

$$\left\{ \begin{array}{l} \textit{n} \text{ très grand} \implies \text{la valeur observée } \overline{\textit{x}} \text{ de } \overline{\textit{X}} \approx \mu \\ \\ \textit{n} \text{ moins grand} \implies \overline{\textit{x}} \not\approx \mu \end{array} \right.$$

⇒ estimation par intervalle de confiance de niveau 95%

loi normale
$$\Longrightarrow P\left(-1,96 \le \frac{\overline{X} - \mu}{\sigma/\sqrt{n}} \le 1,96\right) = 95\%$$

Intervalles de confiance : exemple (2/2)

$$P\left(-1,96 \le \frac{\overline{X} - \mu}{\sigma/\sqrt{n}} \le 1,96\right) = 95\%$$

$$P\left(\overline{X}-1,96\frac{\sigma}{\sqrt{n}} \leq \mu \leq \overline{X}+1,96\frac{\sigma}{\sqrt{n}}\right) = 95\%$$

$$\implies$$
 intervalle de confiance = $\left| \overline{x} - 1,96\frac{\sigma}{\sqrt{n}}, \overline{x} + 1,96\frac{\sigma}{\sqrt{n}} \right|$

seulement maintenant, on tire un échantillon de taille n

- \Longrightarrow observation de \overline{x}
- \implies on peut calculer $\left| \overline{x} 1, 96 \frac{\sigma}{\sqrt{n}}, \overline{x} + 1, 96 \frac{\sigma}{\sqrt{n}} \right|$

Intervalles de confiance : autre exemple (1/2)

Énoncé de l'exemple

- plusieurs centaines de candidats à un examen
- variance sur les notes obtenues ≈ 16
- o correcteur ⇒ noté 100 copies, moyenne = 8,75
- Problème : moyenne sur toutes les copies de l'examen ?
- hypothèse : les notes suivent une loi normale $\mathcal{N}(\mu; 16)$

$$\overline{X}$$
 = variable aléatoire « moyenne des notes d'un correcteur »

théorème central-limite
$$\Longrightarrow \frac{\overline{X} - \mu}{\sigma/\sqrt{n}} = \frac{\overline{X} - \mu}{4/10} \sim \mathcal{N}(0; 1)$$

chercher dans la table de la loi normale $z_{\alpha/2}$ tel que :

$$P\left(\overline{X} - z_{\alpha/2} \frac{\sigma}{\sqrt{n}} \le \mu \le \overline{X} + z_{\alpha/2} \frac{\sigma}{\sqrt{n}}\right) = 1 - \alpha$$

Intervalles de confiance : autre exemple (2/2)

$$P\left(\overline{X} - z_{\alpha/2} \frac{\sigma}{\sqrt{n}} \le \mu \le \overline{X} + z_{\alpha/2} \frac{\sigma}{\sqrt{n}}\right) = 1 - \alpha$$

$1-\alpha$	intervalle de confiance								
50%	$[8,75-0,674\times0,4;8,75+0,674\times0,4] = [8,48;9,02]$								
75%	$[8,75-1,15\times0,4;8,75+1,15\times0,4] = [8,29;9,21]$								
80%	$[8,75-1,28\times0,4;8,75+1,28\times0,4] = [8,24;9,26]$								
90%	$[8,75-1,645\times0,4;8,75+1,645\times0,4] = [8,09;9,41]$								
95%	$[8,75-1,96\times0,4;8,75+1,96\times0,4] = [7,96;9,53]$								
99%	$[8,75-2,575\times0,4;8,75+2,575\times0,4] = [7,72;9,78]$								

Exemple : analyse des déchets (cf. cours 2)

- Grenelle de l'environnement
 - ⇒ réduction des déchets
 - ⇒ analyse des déchets
 - ⇒ échantillon de taille 100

- lacktriangle \overline{x} : moyenne de l'échantillon = 390 kg/an/habitant
- lacktriangle écart-type $\sigma=$ 20 supposé connu
- $leftonderightarrow \overline{X} \sim \mathcal{N}(\mu, \mathbf{4})$

$$\implies P\left(-Z_{\alpha/2} \le \frac{\overline{X} - \mu}{2} \le Z_{\alpha/2}\right) = 1 - \alpha$$

 \Longrightarrow estimation par intervalle de confiance de niveau 1 $-\alpha$:

$$]\overline{x} - 2z_{\alpha/2}, \overline{x} + 2z_{\alpha/2}[$$

Exemple : analyse des déchets (suite)

Estimation par intervalle de confiance de niveau 1 $-\alpha$: $]\overline{x}-2z_{\alpha/2},\overline{x}+2z_{\alpha/2}[$

$1-\alpha$	intervalle de confiance								
50%	$[390-0,674 \times 2;390+0,674 \times 2]$	=	[388, 65; 391, 35]						
75%	$[390-1,15\times 2;390+1,15\times 2]$	=	[387, 70; 392, 30]						
80%	$[390-1,28\times 2;390+1,28\times 2]$	=	[387, 44; 392, 56]						
90%	$[390-1,645\times 2;390+1,645\times 2]$	=	[386, 71; 393, 29]						
95%	$[390-1,96\times2;390+1,96\times2]$	=	[386, 08; 393, 92]						
99%	$[390-2,575\times 2;390+2,575\times 2]$	=	[384, 85; 395, 15]						

Exemple du réchauffement climatique (cf. cours 2)

- opinion des gens sur le réchauffement climatique
- 1000 personnes de 15 ans et + interrogées
- 790 pensent qu'il y a un changement climatique
- 210 ne le pensent pas
- lacktriangle : proportion de succès moyenne de l'échantillon
- p : proportion de personnes pensant qu'il y a dérèglement climatique dans la population française

$$\frac{\overline{P}-p}{\sqrt{\frac{p(1-p)}{n}}} \sim \mathcal{N}(0;1)$$

 \Longrightarrow estimation par intervalle de confiance de niveau 1 $-\alpha$:

$$\left| \overline{p} - \sqrt{\frac{p(1-p)}{n}} Z_{\alpha/2}; \overline{p} + \sqrt{\frac{p(1-p)}{n}} Z_{\alpha/2} \right| \approx \left| \overline{p} - \sqrt{\frac{\overline{p}(1-\overline{p})}{n}} Z_{\alpha/2}; \overline{p} + \sqrt{\frac{\overline{p}(1-\overline{p})}{n}} Z_{\alpha/2} \right|$$

Tests d'hypothèses en statistique classique (1/2)

Hypothèses

- \bullet Θ = ensemble des valeurs du paramètre θ
- \bullet Θ partitionné en Θ_0 et Θ_1
- hypothèses = assertions $H_0 = "\theta \in \Theta_0"$ et $H_1 = "\theta \in \Theta_1"$
- H_0 = hypothèse nulle, H_1 = contre-hypothèse
- hypothèse H_i est simple si Θ_i est un singleton; sinon elle est multiple
- test *unilatéral* = valeurs dans Θ_1 toutes soit plus grandes, soit plus petites, que celles dans Θ_0 ; sinon test *bilatéral*

Tests d'hypothèses en statistique classique (2/2)

	hypothèse	test				
$H_0: \mu = 4$	simple	unilatéral				
$H_1: \mu = 6$	simple	amatera				
$H_0: \mu = 4$	simple	test unilatéral				
$H_1: \mu > 4$	composée	test dimateral				
$H_0: \mu = 4$	simple	test bilatéral				
$H_1: \mu \neq 4$	composée	test bilateral				
$H_0: \mu = 4$	simple	formulation incorrecte : les hypothèses				
$H_1: \mu > 3$	composée	ne sont pas mutuellement exclusives				

Exemples pratiques d'hypothèses

- association de consommateurs
- échantillon de 100 bouteilles de Bordeaux
- Pb: la quantité de vin est-elle bien égale à 75cl?

- paramètre θ étudié = $\mu = E(X)$
- X = quantité de vin dans les bouteilles
- rôle de l'association $\Longrightarrow H_0: \mu = 75$ cl et $H_1: \mu < 75$ cl
- le mois dernier, taux de chômage = 10%
- échantillon : 400 individus de la pop. active
- Pb : le taux de chômage a-t-il été modifié ?

- paramètre étudié = p = % de chômeurs
- $H_0: p = 10\%$ et $H_1: p \neq 10\%$

Tests d'hypothèse

Définition du test

- test entre deux hypothèses H_0 et H_1 = règle de décision δ
- règle fondée sur les observations
- ensemble des décisions possibles = $\mathcal{D} = \{d_0, d_1\}$
- $d_0 =$ "accepter H_0 "
- $d_1 = \text{``accepter } H_1\text{''} = \text{``rejeter } H_0\text{''}$

région critique

- échantillon \Longrightarrow *n*-uplet (x_1, \ldots, x_n) de valeurs (dans \mathbb{R})
- δ = fonction $\mathbb{R}^n \mapsto \mathcal{D}$
- région critique : $W = \{n \text{-uplets } \mathbf{x} \in \mathbb{R}^n : \delta(\mathbf{x}) = d_1\}$
- région critique = région de rejet
- région d'acceptation = $A = \{ \mathbf{x} \in \mathbb{R}^n : \delta(\mathbf{x}) = d_0 \}$

Régions critiques

Hypothèses	Règle de décision
$H_0: \mu = \mu_0$	« rejeter H_0 si $\overline{x} > c$ », où c est un nombre
$H_1: \mu > \mu_0$	plus grand que μ_0
$H_0: \mu = \mu_0$	« rejeter H_0 si $\overline{x} < c$ », où c est un nombre
$H_1: \mu < \mu_0$	plus petit que μ_0
$H_0: \mu = \mu_0$	« rejeter H_0 si $\overline{x} < c_1$ ou $c_2 < \overline{x} \gg$, où c_1 et c_2 sont des nombres respectivement plus
$H_1: \mu \neq \mu_0$	petit et plus grand que μ_0 , et également
	éloignés de celui-ci

Problème : | erreurs dans les décisions prises

Erreurs dans les décisions

Réalité Décision prise	H ₀ est vraie	H₁ est vraie	
H ₀ est rejetée	mauvaise décision : erreur de type I	bonne décision	
H ₀ n'est pas rejetée	bonne décision	mauvaise décision : erreur de type II	

- $\alpha = \text{risque}$ de première espèce
 - = probabilité de réaliser une erreur de type I
 - = probabilité de rejeter H_0 sachant que H_0 est vraie
 - $= P(\text{rejeter } H_0|H_0 \text{ est vraie}),$
- $\beta = \text{risque}$ de deuxième espèce
 - = probabilité de réaliser une erreur de type II
 - = probabilité de rejeter H_1 sachant que H_1 est vraie
 - = $P(\text{rejeter } H_1|H_1 \text{ est vraie}).$

Exemple de calcul de α (1/2)

Exemple

- échantillon de taille 25
- paramètre estimé : μ d'une variable $X \sim \mathcal{N}(\mu; 100)$
- hypothèses : H_0 : $\mu = 10$ H_1 : $\mu > 10$

Sous
$$H_0$$
: $\frac{\overline{X} - \mu}{\sigma/\sqrt{n}} = \frac{\overline{X} - 10}{10/5} = \frac{\overline{X} - 10}{2} \sim \mathcal{N}(0; 1)$

Sous H_0 : peu probable que \overline{X} éloignée de plus de 2 écarts-types de μ (4,56% de chance)

- \Longrightarrow peu probable que \overline{X} < 6 ou \overline{X} > 14
- \implies région critique pourrait être « rejeter H_0 si $\overline{x} > 14$ »

Exemple de calcul de α (2/2)

- échantillon de taille 25
- paramètre estimé : μ d'une variable $X \sim \mathcal{N}(\mu; 100)$
- hypothèses : H_0 : $\mu = 10$ H_1 : $\mu > 10$
- région critique : « rejeter H_0 si $\overline{x} > 14$ »

$$lpha = P(\text{rejeter } H_0 | H_0 \text{ est vraie})$$

$$= P(\overline{X} > 14 | \mu = 10)$$

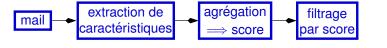
$$= P\left(\frac{\overline{X} - 10}{2} > \frac{14 - 10}{2} \middle| \mu = 10\right)$$

$$= P\left(\frac{\overline{X} - 10}{2} > 2\right) = 0,0228$$

en principe α est fixé et on cherche la région critique

Exemple de test d'hypothèses (1/2)

filtre de mails sur un serveur mail :



- ullet X= score \geq 18000 \Longrightarrow spam ; historiques des mails $\Longrightarrow \sigma_X=5000$
- le serveur reçoit un envoi en masse de n = 400 mails de xx@yy.fr Problème : xx@yy.fr est-il un spammeur?
- $\bullet \ \, H_0: xx@yy.fr = <\!\!< spammeur >\!\!> v.s. \,\, H_1: xx@yy.fr \neq <\!\!< spammeur >\!\!>$
- ullet test : H_0 : $\mu = 18000$ v.s. H_1 : $\mu < 18000$ où $\mu = E(X)$
- règle : si $\overline{x} < c$ alors rejeter H_0
- 400 mails \Longrightarrow théorème central limite \Longrightarrow sous H_0 :

$$Z = \frac{\overline{X} - \mu}{\sigma / \sqrt{n}} = \frac{\overline{X} - 18000}{5000 / \sqrt{400}} = \frac{\overline{X} - 18000}{250} \sim \mathcal{N}(0; 1)$$

Exemple de test d'hypothèses (2/2)

$$Z = \frac{\overline{X} - \mu}{\sigma / \sqrt{n}} = \frac{\overline{X} - 18000}{5000 / \sqrt{400}} = \frac{\overline{X} - 18000}{250} \sim \mathcal{N}(0; 1)$$

• choix du risque de première espèce : $\alpha = 0,01$

$$\alpha = 0,01 = P(\overline{X} < c | \mu = 18000)$$

$$= P\left(\frac{\overline{X} - 18000}{250} < \frac{c - 18000}{250} | \mu = 18000\right)$$

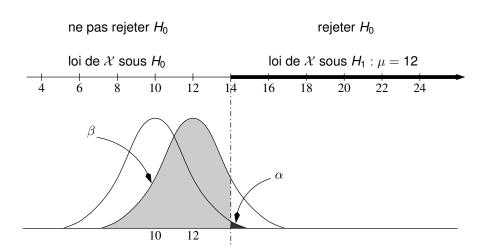
$$= P\left(Z < \frac{c - 18000}{250}\right)$$

$$= P(Z < -2,326)$$

$$\Rightarrow \frac{c - 18000}{250} = -2,326 \Rightarrow c = 17418,5$$

règle de décision : si \overline{x} < 17418, 5, rejeter $H_0 \Longrightarrow$ non spam

Interprétation de α et β



Puissance du test

$$\alpha = P(\text{rejeter } H_0 | H_0 \text{ est vraie})$$

$$\beta = P(\text{rejeter } H_1|H_1 \text{ est vraie})$$

 α et β varient en sens inverse l'un de l'autre

⇒ test = compromis entre les deux risques

 H_0 = hypothèse privilégiée, vérifiée jusqu'à présent et que l'on n'aimerait pas abandonner à tort

- \Longrightarrow on fixe un *seuil* α_0 :
- $\alpha \leq \alpha_0$
- \bullet test minimisant β sous cette contrainte
- min β = max 1 $-\beta$

$1 - \beta$ = puissance du test

Exemple de calcul de β (1/2)

- échantillon de taille 25
- paramètre estimé : μ d'une variable $X \sim \mathcal{N}(\mu; 100)$
- hypothèses : H_0 : $\mu = 10$ H_1 : $\mu > 10$
- région critique : « rejeter H_0 si $\overline{x} > 14$ »

sous H_1 : plusieurs valeurs de μ sont possibles

 \Longrightarrow courbe de puissance du test en fonction de μ

Supposons que $\mu = 11$:

$$\mu = 11 \Longrightarrow \frac{\overline{X} - \mu}{\sigma / \sqrt{n}} = \frac{\overline{X} - 11}{2} \sim \mathcal{N}(0; 1)$$

Exemple de calcul de β (2/2)

$$1 - \beta(11) = P(\text{rejeter } H_0 | H_1 : \mu = 11 \text{ est vraie})$$

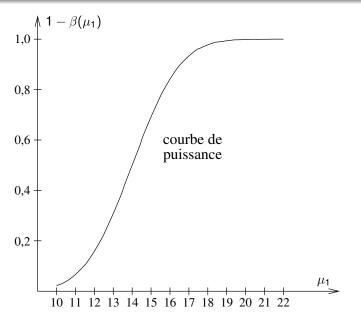
$$= P(\overline{X} > 14 | \mu = 11)$$

$$= P\left(\frac{\overline{X} - 11}{2} > \frac{14 - 11}{2} | \mu = 11\right)$$

$$= P\left(\frac{\overline{X} - 11}{2} > 1, 5\right) = 0,0668$$

μ_1	$z_1 = \frac{14 - \mu_1}{2}$	$1-\beta(\mu_1)=P(Z>z_1)$	$\beta(\mu_1)$
10	2,0	0,0228	0,9772
11	1,5	0,0668	0,9332
12	1,0	0,1587	0,8413
13	0,5	0,3085	0,6915
14	0,0	0,5000	0,5000
15	-0,5	0,6915	0,3085
16	-1,0	0,8413	0,1587
17	-1,5	0,9332	0,0668

Courbe de puissance du test



Exemple: notes d'examen de RFIDEC (1/3)

- lacktriangle les années précédentes, notes d'examen $\sim \mathcal{N}(14,6^2)$
- cette année, correction d'un échantillon de 9 copies :

Les notes sont-elles en baisse cette année?

- hypothèse H₀ = « la moyenne est égale à 14 »
 hypothèse H₁ = « la moyenne a baissé, i.e., elle est ≤ 14 »
 test d'hypothèse de niveau de confiance 1 α = 95%
- \implies déterminer seuil c tel que $\overline{x} < c \implies H_1$ plus probable que H_0

Exemple: notes d'examen de RFIDEC (2/3)

10 8 13 20 12 14 9 7 15
$$H_0: \mu = 14, \sigma = 6$$

- sous hypothèse H_0 , on sait que $\frac{\overline{X}-14}{\sigma/\sqrt{n}}=\frac{\overline{X}-14}{2}\sim\mathcal{N}(0;1)$
- calcul du seuil c (région de rejet) :

$$P\left(\frac{\overline{X}-14}{2}<\frac{c-14}{2}\left|\ \frac{\overline{X}-14}{2}\sim\mathcal{N}(0;1)\right.\right)=0,05$$

- Table de la loi normale : $\frac{c-14}{2} \approx -1,645 \Longrightarrow c = 10,71$
- **•** Règle de décision : rejeter H_0 si $\overline{x} < 10,71$
- tableau $\Longrightarrow \overline{x} = 12$ \Longrightarrow on ne peut déduire que la moyenne a diminué

Exemple: notes d'examen de RFIDEC (3/3)

Problème : le risque de 2ème espèce est-il élevé ?

Puissance du test pour une moyenne de 12

- H₁: la moyenne est égale à 12
- Puissance du test = $1 \beta(12)$

$$= P(\text{rejeter } H_0|H_1)$$

$$= P\left(\overline{X} < 10,71 \left| \frac{\overline{X}-12}{2} \sim \mathcal{N}(0;1) \right. \right)$$

$$= P\left(\frac{\overline{X}-12}{2} < -0,645 \left| \frac{\overline{X}-12}{2} \sim \mathcal{N}(0;1) \right. \right)$$

$$\approx 25.95\%.$$

Lemme de Neyman-Pearson (1/2)

Cas :
$$\Theta_0 = \{\theta_0\}$$
 $\Theta_1 = \{\theta_1\}$

- Échantillon (x_1, \ldots, x_n) de taille n
- Échantillon \Longrightarrow les x_i = réalisations de variables aléatoires X_i
- Échantillon i.i.d. \Longrightarrow les X_i sont mutuellement indépendants

$$\Longrightarrow P(X_1 = x_1, \dots, X_n = x_n | \theta = \theta_k) = \prod_{i=1}^n P(X_i = x_i | \theta = \theta_k)$$

Vraisemblance d'un échantillon

- \bullet $x = (x_1, \dots, x_n)$: échantillon de taille n
- $L(x, \theta_k) = \text{Vraisemblance de l' échantillon}$
- $L(x, \theta_k)$ = proba d'obtenir cet échantillon sachant que $\theta = \theta_k$

$$L(x, \theta_k) = P(x_1, \dots, x_n | \theta = \theta_k) = \prod_{i=1}^n P(x_i | \theta = \theta_k)$$

Lemme de Neyman-Pearson (2/2)

Cas :
$$\Theta_0 = \{\theta_0\}$$
 $\Theta_1 = \{\theta_1\}$

Lemme de Neyman-Pearson

- il existe toujours un test (aléatoire) le plus puissant de seuil donné α_0
- c'est un test du rapport de vraisemblance :

$$\frac{L(x,\theta_0)}{L(x,\theta_1)} > k \Rightarrow x \in A \text{ (accepter } H_0)$$

$$\frac{L(x,\theta_0)}{L(x,\theta_1)} < k \Rightarrow x \in W \text{ (rejeter } H_0)$$

$$\frac{L(x,\theta_0)}{L(x,\theta_1)} = k \Rightarrow \delta(x) = \rho \text{ (accepter } H_0 \text{ avec proba } 1 - \rho$$

$$H_1$$
 avec proba ρ)

• k et ρ déterminés de façon unique par $\alpha = \alpha_0$

Loi du χ^2 (1/3)

lacktriangle population \Longrightarrow répartie en k classes

-				
	p_1	p_2	p_3	p_k

- hypothèse : répartition dans les classes connues
 - \implies $p_r =$ proba qu'un individu appartienne à la classe c_r
- échantillon de *n* individus
- N_r = variable aléatoire « nombre d'individus tirés de classe c_r »
- Chaque individu $\Longrightarrow p_r$ chances d'appartenir à la classe c_r
 - \implies $X_i^r =$ v.a. succès si l'individu i appartient à la classe c_r
 - $\implies X_i^r \sim \mathcal{B}(1, p_r)$
 - $\implies N_r \sim \mathcal{B}(n, p_r)$
 - $\implies N_r \sim \text{loi normale quand } n \text{ grand}$

Loi du χ^2 (2/3)

lacktriangle population \Longrightarrow répartie en k classes

<i>p</i> ₁	p_2	p_3	p_k

- p_r = proba qu'un individu appartienne à la classe c_r
- échantillon de *n* individus
- $N_r = v.a. \ll nb$ d'individus tirés de classe $c_r \gg \sim loi$ normale

$$D_{(n)}^{2} = \sum_{r=1}^{k} \frac{(N_{r} - n.p_{r})^{2}}{n.p_{r}}$$

 $\Longrightarrow \mathcal{D}^2_{(n)}=$ somme des carrés de k v.a. \sim lois normales

- $D_{(n)}^2$ = écart entre théorie et observation
- $D_{(n)}^2$ tend en loi, lorsque $n \to \infty$, vers une loi du χ^2_{k-1}

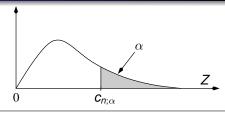
Loi du χ^2 (3/3)

Loi du χ^2

- loi du χ_r^2 = la loi de la somme des carrés de r variables indépendantes et de même loi $\mathcal{N}(0,1)$
- espérance = r
- variance = 2r

Table de la loi du χ^2

valeurs dans le tableau ci-dessous : les $c_{n;\alpha}$ tels que $P(Z > c_{n;\alpha}) = \alpha$



$n \setminus \alpha$	0,995	0,99	0,975	0,95	0,90	0,10	0,05	0,025	0,01	0,005
1	0,00004	0,0002	0,001	0,0039	0,0158	2,71	3,84	5,02	6,63	7,88
2	0,0100	0,0201	0,0506	0,103	0,211	4,61	5,99	7,38	9,21	10,6
3	0,0717	0,115	0,216	0,352	0,584	6,25	7,81	9,35	11,3	12,8
4	0,207	0,297	0,484	0,711	1,06	7,78	9,49	11,1	13,3	14,9
5	0,412	0,554	0,831	1,15	1,61	9,24	11,1	12,8	15,1	16,7
6	0,676	0,872	1,24	1,64	2,20	10,6	12,6	14,4	16,8	18,5
7	0,989	1,24	1,69	2,17	2,83	12,0	14,1	16,0	18,5	20,3
8	1,34	1,65	2,18	2,73	3,49	13,4	15,5	17,5	20,1	22,0
9	1,73	2,09	2,70	3,33	4,17	14,7	16,9	19,0	21,7	23,6
10	2 16	2.56	3 25	3 94	4 87	16.0	18.3	20.5	23.2	25.2