Examen du module MODE

C. Gonzales / P. Weng

Durée: 3 heures

Seuls documents autorisés : Une feuille de papier format A4 recto/verso.

Exercice A (5 points – Achat de câbles informatiques)

Un ingénieur système souhaite acheter un lot de 1000 câbles informatiques pour le compte de son entreprise. Il a inspecté grossièrement le lot en question et a déterminé que les câbles qu'il contient pouvaient être de trois qualités différentes : très bonne (T), bonne (B), moyenne (M). Dans le lot, l'ingénieur système a compté 200 câbles de type T, 250 de type B, 150 de type M, 150 de type T ou B (son inspection étant grossière, il n'a pu déterminer avec certitude le type précis de ces 150 câbles) et 150 câbles de type B ou M. Enfin, par manque de temps, il n'a pu examiner les 100 derniers câbles.

- Q A.1 Donnez une expression de l'ensemble des lois de probabilités \mathcal{P} compatibles avec les informations ci-dessus.
- \mathbb{Q} A.2 Montrez que \mathcal{P} est non vide.

- Q A.3 Calculez l'enveloppe inférieure f de \mathcal{P} ainsi que son inverse de Möbius.
- \mathbb{Q} A.4 La fonction f est-elle une fonction de croyance? Vous justifierez votre réponse.
- Q A.5 À l'usage, les câbles de type T sont défectueux (D) et les autres sont en bon état de fonctionnement (F). L'ingénieur système estime que sa fonction d'utilité concernant l'achat de tout le lot est égale à :

	F	D	$F \cup D$
\overline{u}	100	-200	-100

Selon le critère BEU, quelle est la valeur de la fonction d'utilité de l'ingénieur système si celui-ci décide d'acheter le lot? Sachant que, s'il décide de ne pas acheter le lot, son utilité est de 0, doit-il acheter le lot?

Exercice B (5 points – Espérance du pêcheur)

Le Décideur (un patron-pêcheur) a la possibilité d'assurer son bateau, valant $100 \ k \in \text{(milliers d'euros)}$ et constituant sa fortune initiale, contre :

- une panne (événement A_1), de probabilité $p_1 = 1/10$, de coût $10 \ k \in$;
- un naufrage (événement A_2), de probabilité $p_2 = 1/100$, de coût 100 $k \in \mathbb{N}$
- A_1 , A_2 et $A_3 = (A_1 \cup A_2)^c$ forment une partition. Le décideur a pour critère EU, avec pour

utilité de vNM u(.) la fonction :

$$x \longmapsto u(x) = \begin{cases} 100(x - 75) & \text{pour } x \ge 75\\ 200(x - 75) & \text{pour } x < 75 \end{cases}$$

où x est son état de fortune (exprimé en $k \in$). Il a le choix entre :

- ne pas s'assurer (décision δ);
- s'assurer complètement avec une franchise de 5 $k \in (\text{décision } d_1)$ [l'assurance rembourse le coût du sinistre moins la franchise];
- s'assurer à 70% (décision d_2) [l'assurance ne rembourse que 70% du coût du sinistre]. S'il s'assure, il doit payer une prime d'assurance c_1 pour d_1 et c_2 pour d_2 .
- Q B.1 L'assureur fixe les montants des primes de façon que son espérance mathématique de gain soit nulle ($valeur\ actuarielle$). Calculer c_1 et c_2 .
- Q B.2 Quelle est l'attitude vis-à-vis du risque du Décideur? Que préfère-t-il entre les décisions δ , d_1 et d_2 ?
- Q B.3 On se place désormais dans l'hypothèse suivante : le Décideur pense que si l'assureur a à lui rembourser une somme supérieure à $5 \ k \in$, il y a une probabilité 1/2 qu'il lui rembourse bien toute cette somme et une probabilité 1/2 qu'il ne soit pas solvable et ne lui rembourse que $5 \ k \in$.
- **Q B.3.1** Quelle est maintenant la meilleure décision?

Q B.3.2 Est-il prêt à payer, avant de prendre sa décision, $1 \ k \in \$ à un expert capable de lui dire, immédiatement et avec certitude, si l'assureur est solvable? (On construira l'arbre de décision correspondant à ce problème).