Un arbre est un ensembile fini A d’éléments, liés entre eux par
Cours numéro 9 : arbres binaires et de une relation, dite de “parenté”, vérifiant ces propriétés :

recherche @ Relation notée “x est le parent de y” ou “y est le fils de x”
LI213 — Types et Structures de données @ |l existe un unigue élément r (racine) de A sans parent
@ A part r, tout élément de A posséde un unique parent

Christophe Gonzales — Pierre-Henri Wuillemin > © Les éléments de A sont des nceuds

@ Les nceuds sans fils sont des feuilles ou

D) () () nceuds terminaux

@ Les descendants d’'un nceud x forment le
0 sous-arbre de racine (ou issu de) x

Licence d’Informatique — Université Paris 6

° ° e @ Un arbre n-aire est un arbre dont les
noeuds ont tous au plus n fils.

Christophe Gonzales — Pierre-Henri Wuillemin Cours numéro 9 : arbres binaires et de recherche

Représentation d’un arbre binaire par un type somme
| Avec un enregistrement

Avec un enregistrement

o type 'a cellule = { contenu : ’'aj;
Arbre binaire fg : "a arbre;
@ Un arbre binaire est un arbre 2-aire. fd : ’a arbre }
o Les fils sont spécialisés et nommés : fils gauche et fils G e asere = WEL | Wosuel of e cellule)
droit. . . . Avec un triplet (présentation infixe)
On confondra souvent le fils et le sous-arbre issu du fils. , ,
type "a bintree = Nil |
— — - - Node of ’'a bintree x "a % ’a bintree
Arbre binaire - définition recursive
. . P # let arbre=Noeud
Un arbre binaire A est défini par : contenu=1 ; { # let tree=Node (
, . .. fg=Noeud{ Node (
@ Larbre vide () est un arbre binaire contenu=2 ; Nil,
. . . . SIS ’ . :
@ l'arbre de racine r, de fils gauche Aq et de fils droit A, est fd=Noeud{contenu=4; NOEE (WAL, g B

fg=Nil; fd=Nil

un arbre binaire si Ay et Ay sont des arbres binaires.

L,
Node (Nil, 3,Nil),

2 g
fd=Noeud{contenu=3; "
fg=Nil ; £d=Nil}

Yo

Christophe Gonzales - Pierre-Henri Wuillemin Cours numéro 9 : arbres binaires et de recherche

Christophe Gonzales — Pierre-Henri Wuillemin Cours numéro 9 : arbres binaires et de recherche

Fonctions simples (avec bintree)

@ Reécupérer le contenu du nceud racine

let contenu a = match a with
Nil —> failwith "contenu"
| Node(-, x,.)—> x ;;

val contenu : "a bintree -> "a = <fun>

@ Récupérer les fils (sous-arbres gauche et droit)

#let fg = function
Nil -> failwith "fg"
| Node(fg, -,-) —-> fg;;

val fg : "a bintree -> ’"a bintree = <fun>

let f£fd = function
Nil —> failwith "f£d"
| Node(-, _,fd) -> £d;;

val fd : ’"a bintree -> ’'a bintree = <fun>

Christophe Gonzales — Pierre-Henri Wuillemin Cours numéro 9 : arbres binaires et de recherche

Fonctions sur les arbres (3)

Fonctions simples (2)

@ taille d’'un arbre (nombre de nceuds)

#1let rec taille a = match a with
Nil -> 0
| Node (fg,_, fd) —->1+(taille fg)+(taille fd) ;;

val taille : "a bintree -> int = <fun>

@ hauteur d'un arbre

hy =1+ max(hy, h3) = 2 A -1 S|A:®
CD (A) = 1+ max(h(Ag), h(Ag)) sinon.

let rec hauteur = function
Nil -> -1
| Node (fg,_, fd) ->1 +
max (hauteur fg) (hauteur £fd) ;;

val hauteur : ’"a bintree —-> int = <fun>

Christophe Gonzales — Pierre-Henri Wuillemin Cours numéro 9 : arbres binaires et de recherche

Utilisation : représentation d’un dictionnaire

@ fonction elt _tree
let rec elt_tree x a = match a with
Nil -> false
+Nede(fgrxEfd—>+true (+X dans motif !=«)
| Node (fg,y, £d) —> (x=y)
|| (elt_tree x £fg)
|| (elt_tree x fd) ;;

val elt_tree : 'a -> ’"a bintree -> bool = <fun>

@ construction de bintree : fonction map_tree
let rec map_.tree f a = match a with
Nil —> Nil
| Node (fg,y, £d) —> Node (

map-tree £ fg,
f v,
map_-tree £ £d) ;;

val map.-tree : ('a —-> ’'"b) -> ’"a bintree ->

"b bintree = <fun>

Christophe Gonzales - Pierre-Henri Wuillemin Cours numéro 9 : arbres binaires et de recherche

Un dictionnaire est un ensemble de couples c1¢/valeur ou
@ Les c1és forment un ensemble totalement ordonné
@ Chaque valeur est associée a une unique c1é.
@ Chaque c1é caractérise une unique valeur.

Un dictionnaire sert a représenter un dictionnaire, une liste de
contacts, une base de données triée par un identifiant, etc ...
Probléme : comment représenter un dictionnaire ?

@ un tableau trié ? On peut retrouver facilement une valeur
(par dichotomie). Mais I'insertion et la suppression
suppose de décaler (au pire) 'ensemble des éléments ...

@ une liste triée ? Linsertion et la suppression sont rapides.
La recherche est lente ...

Nouvelle proposition : Arbre Binaire de Recherche (ABR)

Christophe Gonzales — Pierre-Henri Wuillemin Cours numéro 9 : arbres binaires et de recherche

Dans ce qui suit, on utilisera ¢(x) comme notation indiquant la
clé du nceud x. Dans les programmes, on simplifiera le code en
identifiant le contenu du nceud a la clé.

Arbre Binaire de Recherche
Un Arbre Binaire de Recherche est :

@ un arbre binaire A
@ Vx € A Vy € Ag(x),Vz € Ag(x),c(y) < c(x) < ¢c(2)

A Le parcours infixe d’'un ABR donne la liste triée des
° clés.
e # let rec infixe a = match a with
Nil -—> []
° G | Node (fg,c, fd) -> (infixe fg) @ [c] @ (infixe £fd)

@ val infixe : ’"a bintree -> ’"a list = <fun>
(¢) (2) infixe A = [8;9;10;12;13;15;17;19]

Christophe Gonzales - Pierre-Henri Wuillemin Cours numéro 9 : arbres binaires et de recherche

Vérification de la structure d’'un ABR

Probleme : Vérifier qu’un arbre binaire est un ABR.

let rec checkABR = function

Nil -> true

Node (Nil, _,Nil) —-> true

Node (Nil,c, fd) —-> (checkABR fd) && (c<getMin fd)

Node (fg,c,Nil) -> (checkABR fg) && (getMax fg<c)

Node (fg, c, fd) —-> (checkABR fd) && (c<getMin fd)
&& (checkABR fg) && (getMax fg<c)

rs

val checkABR : ’'a bintree -> bool = <fun>

Remarque : La fonction (<) pourrait étre passée en argument pour
paramétrer le choix de la relation d’ordre sur les clés.

Christophe Gonzales - Pierre-Henri Wuillemin Cours numéro 9 : arbres binaires et de recherche

Recherche du plus petit/grand élément

A Dans un ABR :
° o @ La plus petite clé se trouve dans le nceud le
“plus a gauche”
° G Décalage vers la droite = augmentation de la clé
° @ La plus grande clé se trouve dans le nceud le
“plus a droite”
° @ Décalage vers la gauche = diminution de la clé
let rec getMin = function # let rec getMax = function
Nil -> failwith "getMin" Nil -> failwith "getMax"
| Node (Nil,c,-) —-> c | Node(-,c,Nil) -> c
| Node (fg,-,-) —-> getMin fg | Node(.,-,fd) -> getMax fd

rr rr

Christophe Gonzales — Pierre-Henri Wuillemin Cours numéro 9 : arbres binaires et de recherche

Recherche d’un élément par sa clé

Probleme : Vérifier qu’un élément (une clé) est dans un ABR.

let rec eltABR x = function
Nil —> false
| Node(.,c,-.) when c=x —-> true
| Node (fg,c,fd) -> if (x<c) then
eltABR x fg
else
eltABR x fd
rr

val eltABR : 'a —> ’'a bintree -> bool = <fun>

Remarque : La fonction (<) pourrait étre passée en argument pour
paramétrer le choix de la relation d’ordre sur les clés.

Christophe Gonzales — Pierre-Henri Wuillemin Cours numéro 9 : arbres binaires et de recherche

Insertion d’un élément Suppression d’un élément (1)

Probléeme : Insérer un nouvel élément (une nouvelle clé).

(=)

let insertion e = function
Nil -> Node (Nil,e,Nil)
| Node (fg,c, fd) —>
if (e<c) then
Node (insertion e fg,c, £d)
else
Node (fg,c, insertion e fd)

rr

Christophe Gonzales — Pierre-Henri Wuillemin Cours numéro 9 : arbres binaires et de recherche

Suppression d’'un élément (2)

ldées de I'algorithme : |

@ Sil'élément n’est pas la racine de l'arbre, il suffit de le supprimer
dans le bon fils (gauche ou droit) et de recréer I'arbre complet a
partir de ce nouveau fils.

@ Sil'élément est la racine, alors le bon candidat a son
remplacement est soit son fils s’il n’en a qu’un, soit le max de
son fils gauche (ou le min de son fils droit)

let rec suppABR e = function
Node (fg,c,Nil) when c=e -> fg
| Node (Nil,c, fd) when c=e -> fd
| Node (fg,c, fd) when c=e -> let (m,neofg)=supmax fg in
Node (neofg, m, £d)
| Node (fg,c, fd) when c<e —-> Node (fg,c, suppABR e fd)
| Node (fg,c, £fd) when c>e —-> Node (suppABR e fg,c, fd)
| - —> failwith "suppABR"
rr

val suppABR : 'a bintree -> ’'a bintree = <fun>

Christophe Gonzales - Pierre-Henri Wuillemin Cours numéro 9 : arbres binaires et de recherche

Sous-probleme : Suppression du max d’'un ABR

M9
@ la fonction va rendre un G > - °

couple : max,ABR \ {max} ° 0 ° °
@ propriété utilisée : un max (0) (7o) (1) ()
n’a pas de sous-arbre droit
O @ OO

let rec supprMax = function
Nil -> failwith "supprMax"
| Node (fg,m,Nil) -> (m, fqg)
| Node (fg, rac, fd) ->let (m,nvfd)=supprMax fd in
(m ,Node (fg, rac,nvfd))

Remarques :

rrs

val supmax : ’'a bintree -> 'a *x "a bintree = <fun>

Christophe Gonzales — Pierre-Henri Wuillemin Cours numéro 9 : arbres binaires et de recherche

Intérét des ABR

@ Les Arbres Binaires de Recherche sont une structure de
données qui permet de représenter correctement un
ensemble ordonné de clés.

@ Les alternatives (tableaux ou listes) ont de bien moins
bons comportements dans les opérations usuelles : ajout /
suppression / recherche.

@ tous les algorithmes des ABRs, le temps de calcul est
proportionnel a la hauteur de 'arbre (et non au nombre de
clés comme pour les autres alternatives)

@ toutefois, dans le pire des cas, la hauteur de I'arbre est le
nombre de clés dans l'arbre.

@ En moyenne, les ABRs sont quand méme souvent
intéressants.

@ Pour éviter les mauvais cas : équilibrage des arbres.

Christophe Gonzales — Pierre-Henri Wuillemin Cours numéro 9 : arbres binaires et de recherche

