
Cours numéro 9 : arbres binaires et de
recherche

LI213 – Types et Structures de données

Christophe Gonzales – Pierre-Henri Wuillemin

Licence d’Informatique – Université Paris 6

Arbre

Arbre
Un arbre est un ensemble fini A d’éléments, liés entre eux par
une relation, dite de “parenté”, vérifiant ces propriétés :

Relation notée “x est le parent de y ” ou “y est le fils de x”
Il existe un unique élément r (racine) de A sans parent
À part r , tout élément de A possède un unique parent

r

a c d

b

e f g

Les éléments de A sont des nœuds

Les nœuds sans fils sont des feuilles ou
nœuds terminaux

Les descendants d’un nœud x forment le
sous-arbre de racine (ou issu de) x

Un arbre n-aire est un arbre dont les
nœuds ont tous au plus n fils.

Christophe Gonzales – Pierre-Henri Wuillemin Cours numéro 9 : arbres binaires et de recherche

Arbre binaire

Arbre binaire
Un arbre binaire est un arbre 2-aire.
Les fils sont spécialisés et nommés : fils gauche et fils
droit.
On confondra souvent le fils et le sous-arbre issu du fils.

Arbre binaire - définition récursive
Un arbre binaire A est défini par :

L’arbre vide (∅) est un arbre binaire
l’arbre de racine r , de fils gauche Ag et de fils droit Ad est
un arbre binaire si Ag et Ad sont des arbres binaires.

Christophe Gonzales – Pierre-Henri Wuillemin Cours numéro 9 : arbres binaires et de recherche

Représentation d’un arbre binaire par un type somme
Avec un enregistrement
type ’a cellule = { contenu : ’a;

fg : ’a arbre;
fd : ’a arbre }

and ’a arbre = Nil | Noeud of ’a cellule

Avec un triplet (présentation infixe)
type ’a bintree = Nil |

Node of ’a bintree * ’a * ’a bintree

1

2 3

4

let arbre=Noeud{
contenu=1;
fg=Noeud{

contenu=2;
fg=Nil;
fd=Noeud{contenu=4;

fg=Nil;fd=Nil
}

};
fd=Noeud{contenu=3;

fg=Nil;fd=Nil}
} ;;

let tree=Node(
Node(

Nil,
2,
Node(Nil,4,Nil)

)
1,
Node(Nil,3,Nil),

);;

Christophe Gonzales – Pierre-Henri Wuillemin Cours numéro 9 : arbres binaires et de recherche

Fonctions simples (avec bintree)

Récupérer le contenu du nœud racine
let contenu a = match a with

Nil -> failwith "contenu"
| Node(, x,)-> x ;;

val contenu : ’a bintree -> ’a = <fun>

Récupérer les fils (sous-arbres gauche et droit)
let fg = function

Nil -> failwith "fg"
| Node(fg, ,) -> fg;;

val fg : ’a bintree -> ’a bintree = <fun>

let fd = function
Nil -> failwith "fd"

| Node(, ,fd) -> fd;;

val fd : ’a bintree -> ’a bintree = <fun>

Christophe Gonzales – Pierre-Henri Wuillemin Cours numéro 9 : arbres binaires et de recherche

Fonctions simples (2)

taille d’un arbre (nombre de nœuds)
let rec taille a = match a with

Nil -> 0
| Node(fg, ,fd) ->1+(taille fg)+(taille fd) ;;

val taille : ’a bintree -> int = <fun>

hauteur d’un arbre

h3 = 0h2 = 1

h1 = 1 + max(h2, h3) = 2

1

2 3

4

h(A) =

{
−1 si A = ∅
1 + max(h(Ag), h(Ad)) sinon.

let rec hauteur = function
Nil -> -1

| Node(fg, ,fd) ->1 +
max (hauteur fg) (hauteur fd) ;;

val hauteur : ’a bintree -> int = <fun>

Christophe Gonzales – Pierre-Henri Wuillemin Cours numéro 9 : arbres binaires et de recherche

Fonctions sur les arbres (3)

fonction elt tree
let rec elt tree x a = match a with

Nil -> false
| Node(fg,x,fd) -> true (*x dans motif!*)
| Node(fg,y,fd) -> (x=y)

|| (elt tree x fg)
|| (elt tree x fd) ;;

val elt tree : ’a -> ’a bintree -> bool = <fun>

construction de bintree : fonction map tree

let rec map tree f a = match a with
Nil -> Nil

| Node(fg,y,fd) -> Node(
map tree f fg,
f y,
map tree f fd) ;;

val map tree : (’a -> ’b) -> ’a bintree ->
’b bintree = <fun>

Christophe Gonzales – Pierre-Henri Wuillemin Cours numéro 9 : arbres binaires et de recherche

Utilisation : représentation d’un dictionnaire

Un dictionnaire est un ensemble de couples clé/valeur où
Les clés forment un ensemble totalement ordonné
Chaque valeur est associée à une unique clé.
Chaque clé caractérise une unique valeur.

Un dictionnaire sert à représenter un dictionnaire, une liste de
contacts, une base de données triée par un identifiant, etc ...
Problème : comment représenter un dictionnaire ?

un tableau trié ? On peut retrouver facilement une valeur
(par dichotomie). Mais l’insertion et la suppression
suppose de décaler (au pire) l’ensemble des éléments ...
une liste triée ? L’insertion et la suppression sont rapides.
La recherche est lente ...

Nouvelle proposition : Arbre Binaire de Recherche (ABR)

Christophe Gonzales – Pierre-Henri Wuillemin Cours numéro 9 : arbres binaires et de recherche

Définition

Dans ce qui suit, on utilisera c(x) comme notation indiquant la
clé du nœud x . Dans les programmes, on simplifiera le code en
identifiant le contenu du nœud à la clé.

Arbre Binaire de Recherche
Un Arbre Binaire de Recherche est :

un arbre binaire A
∀x ∈ A,∀y ∈ Ag(x),∀z ∈ Ad(x), c(y) < c(x) < c(z)

8

10

12

17

1913

15

9

A Le parcours infixe d’un ABR donne la liste triée des
clés.
let rec infixe a = match a with

Nil -> []
| Node(fg,c,fd) -> (infixe fg) @ [c] @ (infixe fd)

;;

val infixe : ’a bintree -> ’a list = <fun>

infixe A ::= [8;9;10;12;13;15;17;19]

Christophe Gonzales – Pierre-Henri Wuillemin Cours numéro 9 : arbres binaires et de recherche

Recherche du plus petit/grand élément

A

8

10

12

17

1913

15

9

Dans un ABR :
La plus petite clé se trouve dans le nœud le
“plus à gauche”
Décalage vers la droite = augmentation de la clé

La plus grande clé se trouve dans le nœud le
“plus à droite”
Décalage vers la gauche = diminution de la clé

let rec getMin = function
Nil -> failwith "getMin"

| Node(Nil,c,) -> c
| Node(fg, ,) -> getMin fg

;;

let rec getMax = function
Nil -> failwith "getMax"

| Node(,c,Nil) -> c
| Node(, ,fd) -> getMax fd

;;

Christophe Gonzales – Pierre-Henri Wuillemin Cours numéro 9 : arbres binaires et de recherche

Vérification de la structure d’un ABR

Problème : Vérifier qu’un arbre binaire est un ABR.

let rec checkABR = function
Nil -> true

| Node(Nil, ,Nil) -> true
| Node(Nil,c,fd) -> (checkABR fd) && (c<getMin fd)
| Node(fg,c,Nil) -> (checkABR fg) && (getMax fg<c)
| Node(fg,c,fd) -> (checkABR fd) && (c<getMin fd)

&& (checkABR fg) && (getMax fg<c)
;;

val checkABR : ’a bintree -> bool = <fun>

Remarque : La fonction (<) pourrait être passée en argument pour
paramétrer le choix de la relation d’ordre sur les clés.

Christophe Gonzales – Pierre-Henri Wuillemin Cours numéro 9 : arbres binaires et de recherche

Recherche d’un élément par sa clé

Problème : Vérifier qu’un élément (une clé) est dans un ABR.

let rec eltABR x = function
Nil -> false

| Node(,c,) when c=x -> true
| Node(fg,c,fd) -> if (x<c) then

eltABR x fg
else

eltABR x fd
;;

val eltABR : ’a -> ’a bintree -> bool = <fun>

Remarque : La fonction (<) pourrait être passée en argument pour
paramétrer le choix de la relation d’ordre sur les clés.

Christophe Gonzales – Pierre-Henri Wuillemin Cours numéro 9 : arbres binaires et de recherche

Insertion d’un élément

Problème : Insérer un nouvel élément (une nouvelle clé).
18

8

10

12

17

1913

15

9

18

8

10

12

17

1913

15

9

18

18

188

10

12

17

1913

15

9

18

18

8

10

12

17

1913

15

9

18

let insertion e = function
Nil -> Node(Nil,e,Nil)

| Node(fg,c,fd) ->
if (e<c) then

Node(insertion e fg,c,fd)
else

Node(fg,c,insertion e fd)
;;

Christophe Gonzales – Pierre-Henri Wuillemin Cours numéro 9 : arbres binaires et de recherche

Suppression d’un élément (1)

Sous-problème : Suppression du max d’un ABR

Remarques :

la fonction va rendre un
couple : max,ABR \ {max}

propriété utilisée : un max
n’a pas de sous-arbre droit

17

18

8

10

12

13

15

9

8

10

12

13

15

9

19

17

18

let rec supprMax = function
Nil -> failwith "supprMax"

| Node(fg,m,Nil) -> (m,fg)
| Node(fg,rac,fd) ->let (m,nvfd)=supprMax fd in

(m ,Node(fg,rac,nvfd))
;;

val supmax : ’a bintree -> ’a * ’a bintree = <fun>

Christophe Gonzales – Pierre-Henri Wuillemin Cours numéro 9 : arbres binaires et de recherche

Suppression d’un élément (2)

Idées de l’algorithme :

Si l’élément n’est pas la racine de l’arbre, il suffit de le supprimer
dans le bon fils (gauche ou droit) et de recréer l’arbre complet à
partir de ce nouveau fils.

Si l’élément est la racine, alors le bon candidat à son
remplacement est soit son fils s’il n’en a qu’un, soit le max de
son fils gauche (ou le min de son fils droit)

let rec suppABR e = function
Node(fg,c,Nil) when c=e -> fg

| Node(Nil,c,fd) when c=e -> fd
| Node(fg,c,fd) when c=e -> let (m,neofg)=supmax fg in

Node(neofg,m,fd)
| Node(fg,c,fd) when c<e -> Node(fg,c,suppABR e fd)
| Node(fg,c,fd) when c>e -> Node(suppABR e fg,c,fd)
| -> failwith "suppABR"

;;

val suppABR : ’a bintree -> ’a bintree = <fun>

Christophe Gonzales – Pierre-Henri Wuillemin Cours numéro 9 : arbres binaires et de recherche

Intérêt des ABR

Les Arbres Binaires de Recherche sont une structure de
données qui permet de représenter correctement un
ensemble ordonné de clés.
Les alternatives (tableaux ou listes) ont de bien moins
bons comportements dans les opérations usuelles : ajout /
suppression / recherche.
tous les algorithmes des ABRs, le temps de calcul est
proportionnel à la hauteur de l’arbre (et non au nombre de
clés comme pour les autres alternatives)
toutefois, dans le pire des cas, la hauteur de l’arbre est le
nombre de clés dans l’arbre.
En moyenne, les ABRs sont quand même souvent
intéressants.
Pour éviter les mauvais cas : équilibrage des arbres.

Christophe Gonzales – Pierre-Henri Wuillemin Cours numéro 9 : arbres binaires et de recherche

