Cours n°8 : les arbres équilibrés et les tas

Christophe Gonzales

Comment équilibrer un ABR

► Ce que l'on aimerait :

- ► A(n): sous-arbre de racine le nœud n $A_g(n)$ et $A_d(n)$: ses sous-arbres gauche et droit
- ▶ $\forall n, |A_g(n)| = |A_d(n)|$: même nombre de nœuds à gauche et à droite
- ▶ $\forall n, h(A_g(n)) = h(A_d(n))$: même hauteur des sous-arbres gauche et droit
- ▶ Propriétés précédentes difficiles à maintenir dans un ABR

Version relachée

▶ $\forall n, |h(A_g(n)) - h(A_d(n))| < 2$: les 2 hauteurs sont les mêmes, à 1 près.

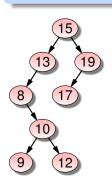
Cours n°8: les arbres équilibrés et les tas

2/18

Arbres équilibrés

Arbre AVL [1962 - Adelson-Velsky et Landis]

Un arbre AVL est tel que la différence des hauteurs des fils gauche et droit de tout noeud ne peut excéder 1.



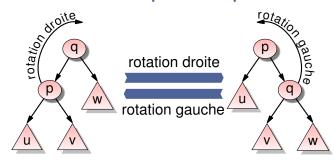
- Nœuds 15, 13 et 8 : violent la propriété
- ▶ Tous les autres nœuds : OK
- ▶ Pour maintenir un arbre AVL, il faut garder en tout nœud cette différence de hauteur.

Propriété des arbres AVL

La hauteur d'un arbre AVL est de l'ordre de $\log_2 n$.

Rééquilibrage : rotations d'un arbre

► Les rotations d'un arbre pour le rééquilibrer :



- ▶ Remarque 1 : Rotation ⇒ ABR transformé en ABR
- ▶ Remarque 2 : Rotation ⇒ conserve l'ordre infixe

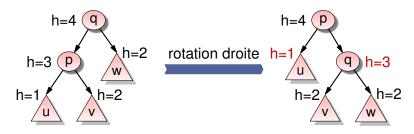
Cours n°8 : les arbres équilibrés et les tas

3/18

Cours n°8 : les arbres équilibrés et les tas

Arbre AVL et rotation « simple »

La propriété AVL n'est pas conservée par 1 rotation



⇒ Rotations à effectuer avec précautions!

Cours n°8 : les arbres équilibrés et les tas

Double rotation droite de A(r)Opposition gauche

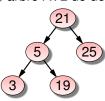
La double rotation gauche est définie similairement.

Cours n°8: les arbres équilibrés et les tas

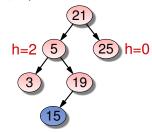
6/18

À quoi servent les doubles rotations

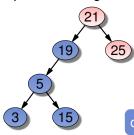
arbre AVL de départ :

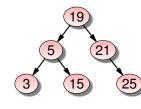


2 après insertion de 15 :



- \bigcirc après rotation gauche de A(5):
- après rotation droite de A(21):





double rotation droite de A(21

Insertion/suppression d'un élément

Rééquilibrage : doubles rotations

Insertion

- Insérer l'élément comme dans un ABR classique
- 2 Soit z le parent du nœud inséré
- Si z n'est pas équilibré ($|h(A_a(z) h(A_d(z))| = 2$) alors rééquilibrer l'arbre de racine z
- Si z n'est pas la racine de l'ABR, remonter au parent de z et revenir en 3 avec ce nœud

Suppression

- Supprimer l'élément comme dans un ABR classique
- 2 Soit z le parent du nœud physiquement supprimé de l'ABR
- 3 Si z n'est pas équilibré ($|h(A_q(z) h(A_d(z))| = 2$) alors rééquilibrer l'arbre de racine z
- Si z n'est pas la racine de l'ABR, remonter au parent de z et revenir en 3 avec ce nœud

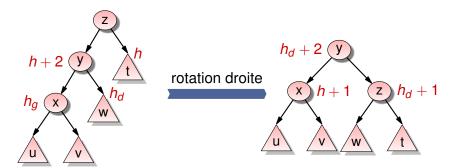
Cours n°8 : les arbres équilibrés et les tas

Cours n°8 : les arbres équilibrés et les tas

8/18

Les 4 cas de rééquilibrage d'un arbre (1/4)

▶ 1er cas : A(y) Arbre AVL mais pas A(z) et $h_g \ge h_d$ $\implies h_g = h + 1$ $\implies h < h_d < h + 1$



Cours n°8 : les arbres équilibrés et les tas

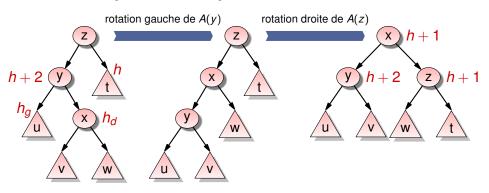
9/18

Les 4 cas de rééquilibrage d'un arbre (2/4)

ightharpoonup 2ème cas : A(y) Arbre AVL mais pas A(z) et $h_d>h_g$

$$\implies h_d = h + 1$$

$$\implies h \le h_g < h+1 \implies h_g = h$$



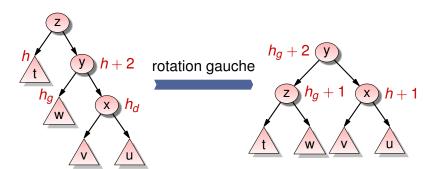
double rotation droite de A(z)

Cours n°8 : les arbres équilibrés et les tas

10/18

Les 4 cas de rééquilibrage d'un arbre (3/4)

▶ 3ème cas : A(y) Arbre AVL mais pas A(z) et $h_d \ge h_g$ $\implies h_d = h + 1$ $\implies h \le h_q \le h + 1$

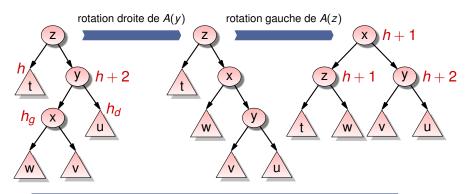


Les 4 cas de rééquilibrage d'un arbre (4/4)

▶ 4ème cas : A(y) Arbre AVL mais pas A(z) et $h_g > h_d$

$$\implies h_g = h + 1$$

$$\implies h \le h_d < h + 1 \implies h_d = h$$



double rotation gauche de A(z)

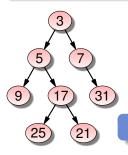
2 Les tas

Les tas

Définition d'un tas

- ► Tas = arbre binaire
- ▶ Il est *ordonné* :

Tous les nœuds, autre que la racine, ont une valeur plus grande que leur père.



- Structure de tas faible :
- ➤ On sait uniquement que :
 - ▶ le min est à la racine
 - ▶ le max est sur une feuille

Dans un tas, on ne s'intéresse qu'au min

⇒ peut servir pour des tris (heapsort)

Cours n°8 : les arbres équilibrés et les tas

13/18

Cours n°8 : les arbres équilibrés et les tas

14/18

Opérations sur les tas

Seulement 3 opérations dans un tas :

- ► Rajouter des éléments dans le tas
- ► Récupérer le min du tas
- ► Supprimer le min du tas (racine de l'arbre)

Rajouter un élément dans un tas

- ► Essayer d'équilibrer l'arbre
 - ⇒ garder le tas le plus proche d'un arbre complet
- ajouter toujours dans le fils gauche puis échanger les deux fils \implies garantit une hauteur proportionnelle à $\log_2 n$

```
bintree_t insert (bintree_t tree, int elt) {
   if (tree == NULL) return new_node (elt);

int min_x, max_x;
   if (tree->label < elt) {
      min_x = tree->label;
      max_x = elt;
   }

else {
   min_x = elt;
   max_x = tree->label;
}

node_t* fils_gauche = tree->fils_gauche;
   tree->fils_gauche = insert (tree->fils_droit, max_x);
   tree->fils_droit = fils_gauche;
   tree->label = min_x;
   return tree;
}
```

Cours n°8 : les arbres équilibrés et les tas

15/19

Cours n°8 : les arbres équilibrés et les tas

16/18

Supprimer le min d'un tas

```
bintree_t suppr_min (bintree_t tree) {
 if (tree == NULL) throw std::exception ();
 node t* node;
  // si la racine a au plus un fils
 if (tree->fils_gauche == NULL) {
   node = tree->fils_droit;
  else if (tree->fils_droit == NULL) {
   node = tree->fils_gauche;
  // si la racine a deux fils
  else if (tree->fils_gauche->label < tree->fils_droit->label) {
   node_t* node = new_node (tree->fils_gauche->label);
   node->fils_gauche = suppr_min (tree->fils_gauche);
   node->fils_droit = tree->fils_droit;
  else {
   node_t* node = new_node (tree->fils_droit->label);
   node->fils_droit = suppr_min (tree->fils_droit);
   node->fils_gauche = tree->fils_gauche;
  free (tree);
  return node;
```

Synthèse des arbres AVL et des tas

Opération	arbre AVL	tas
Insertion d'un élément	O(log(n))	O(log(n))
Suppression d'un élément	O(log(n))	O(log(n))
Accéder au premier élément (racine)	O(1)	O(1)
Accéder au dernier élément	O(log(n))	O(log(n))
Accéder à l'élément le plus petit	O(log(n))	O(1)
Accéder à l'élément le plus grand	O(log(n))	O(n)
Chercher si un élément existe	O(log(n))	O(n)

Cours n°8 : les arbres équilibrés et les tas

Cours n°8: les arbres équilibrés et les tas

18/18