
THÈSE DE DOCTORAT DE

l’UNIVERSITÉ PIERRE ET MARIE CURIE

Pour l’obtention du titre de

Docteur en Informatique

École doctorale Informatique, Télécommunications et Electronique (Paris)

Ordonnancement avec dates de livraison et gains
cumulatifs

présentée par Yasmina SEDDIK

JURY

M. Jacques Carlier Rapporteur

Professeur à l’Université de Technologie de Compiègne

M. Philippe Chrétienne Examinateur

Professeur à l’Université Pierre et Marie Curie

M. Stéphane Dauzère-Pérès Rapporteur

Professeur à l’Ecole des Mines de Saint-Etienne

M. Federico Della Croce Examinateur

Professeur au Politecnico di Torino, Italie

M. Christophe Gonzales Directeur de Thèse

Professeur à l’Université Pierre et Marie Curie

Mme. Safia Kedad-Sidhoum Directrice de Thèse

Mâıtre de Conférence HDR à l’Université Pierre et Marie Curie

M. Pascal Wirth Invité

Président Directeur Général de Banctec France

Remerciements

Premièrement, je tiens à exprimer toute ma gratitude à mes directeurs de thèse, Safia
Kedad-Sidhoum et Christophe Gonzales, qui m’ont inlassablement épaulée tout au long
de cette thèse, en rendant cette expérience enrichissante et vraiment très agréable. Ils
ont su conjuguer leurs qualités respectives pour me faire bénéficier d’un encadrement à
la fois rigoureux et enthousiaste, dans la bonne humeur et dans l’écoute. Je ne peux que
leur dire un grand merci pour m’avoir si bien guidée pendant ces trois ans!

Je remercie sincèrement Jacques Carlier et Stéphane Dauzère-Pérès, pour avoir ac-
cepté de rapporter ce travail, et pour leur lecture attentive de la thèse et les remarques
constructives qu’ils m’ont faites.

Je remercie les examinateurs d’avoir accepté de participer à ce jury : Federico Della
Croce, dont j’espère qu’il aura apprécié ces travaux; et Philippe Chrétienne, dont les
précieux conseils dispensés lors de séminaires d’équipe ont contribué à améliorer ces
travaux.

Je remercie également Pascal Wirth, président directeur général de Banctec, pour sa
participation au jury. Son soutien a permis d’initier une collaboration avec le Lip6 dans
le cadre du projet Dem@tFactory qui a permis la définition du périmètre de ces travaux
de recherche.

Mes remerciements vont également aux financeurs du projet Dem@tFactory, grâce
auquel deux ans de thèse ont pu être financés.

Je tiens également à remercier deux personnes qui ont directement contribué à ce
manuscrit : Luciana pour notre agréable collaboration qui a produit un des chapitres de
cette thèse, ainsi que Fanny, pour avoir vaillamment relu la preuve d’approximation.

Je remercie Olivier pour m’avoir maintes fois écoutée et conseillée sur divers aspects
de l’enseignement et de la recherche.

J’adresse mes remerciements chaleureux à tous les membres des équipes Décision
et RO, pour m’avoir accueillie avec cette convivialité qui rend le travail quotidien si
agréable. J’ai trouvé au sein de ces équipes une ambiance chaleureuse, des collègues
toujours prêts à m’aider et me conseiller, ainsi que des personnes d’une grande sympathie.
Merci!

Je tiens aussi à remercier les nombreux autres collègues cotôyés au long de ces trois

iii

ans, au laboratoire, en enseignement, en conférence..., qui m’ont témoigné leur bienveil-
lance et leur sympathie.

Enfin, je remercie ma famille et mes amis, certains lointains géographiquement mais
tous proches dans leur affection; en particulier merci à mes parents sans lesquels je n’en
serais pas arrivée là, et bien sûr à Nicolas, pour son inlassable soutien au quotidien.

Table of Contents

List of Figures vii

List of Tables xi

Introduction 1

1 The digitization scheduling problem 3
1.1 The digitization’s planning issue . 3
1.2 The formal definition of the problem . 6
1.3 State of the art . 9

1.3.1 Stepwise job cost functions . 10
1.3.1.1 Problems without release dates 10
1.3.1.2 Problems with release dates 12

1.3.2 Other related objective functions 18
1.4 Conclusion . 18

2 Complexity analysis for the single machine problem 21
2.1 The multiple delivery dates problem . 21
2.2 The two delivery dates problem . 23
2.3 Polynomial cases . 25

2.3.1 Relaxations of the general problem 25
2.3.2 The single delivery date problem 27

2.4 Conclusion . 32

3 Exact method for the single machine problem: Branch and Bound 33
3.1 Dominance rules . 33
3.2 Branching rule . 36
3.3 Bounds . 40

3.3.1 Initial lower bound . 40
3.3.2 Initial upper bound . 42
3.3.3 Upper bound for a partial schedule 43

v

3.3.3.1 Upper bound computation from the father node bound 53
3.4 Structural properties for pruning . 57
3.5 Experimentations . 59

3.5.1 Instances generator . 60
3.5.2 Numerical results . 60

3.6 Conclusion . 65

4 Solving the single machine problem with two delivery dates 67
4.1 Structural properties . 67
4.2 Exact method . 77

4.2.1 Dynamic programming algorithm 77
4.2.2 Experimentations . 82

4.3 Polynomial algorithm with performance guarantee 84
4.4 Formal proofs . 87

4.4.1 Correctness of the Dominant Schedule algorithm 87
4.4.2 The dynamic programming algorithm 91
4.4.3 The approximation algorithm . 95

4.5 Conclusion . 110

5 Flowshop problem 111
5.1 Definition of the problem and related works 111
5.2 Experimental settings . 114
5.3 Constructive Heuristics . 115
5.4 Local Search Methods . 120

5.4.1 Neighborhoods . 123
5.4.2 Variable Neighborhood Descent 125

5.5 GRASP heuristic . 128
5.6 Conclusion . 131

Conclusion 132

Bibliography 137

List of Figures

1.1 The digitization process (in french). 4

1.2 An example of delivery dates with corresponding goals set by the client. 5

1.3 An example of achieved amounts of digitized books at each delivery date. 6

1.4 A set of jobs: on top the release dates, and at bottom the processing times. 7

1.5 The delivery dates. 7

1.6 Example of a schedule with three delivery dates. 8

1.7 The stepwise job payoff function. 9

1.8 A schedule S. 9

2.1 Schedule σ between Dj−1 and Dj , j = 1, . . . ,m. 22

2.2 Computing an upper bound on the payoff earned by the J̃-type jobs. The
(3j + 1)-th jobs are designed by their rank in the schedule. 23

2.3 Schedule σ. 25

2.4 Illustration of properties of Lemmas 1 and 2. 28

2.5 Execution of SDD-algorithm on an instance I. 30

3.1 Cmax(Sk) and B(Sk), k = 1, . . . , 3. 34

3.2 An ERD-schedule. 34

3.3 This is not an ERD-schedule, since J2 and J3 both complete in I3, but
they are not scheduled in ERD order (r2 < r3). 34

3.4 An example of swap of Ji and Jj where v(S′) = v(S). 35

3.5 An example of swap of Ji and Jj where v(S′) > v(S). 35

3.6 Example for Proposition 3. 36

3.7 Structure of the Branch and Bound tree. 37

3.8 Different cases when adding job Ji+1 to Sa. 38

3.9 Some cases where job Ji+1 cannot be added to Sa, while completing into
Ik. 38

3.10 Example of Branch and Bound tree. 39

3.11 An instance of 1|ri|
∑
Vk with N = 7 jobs. 41

vii

3.12 The construction of a feasible solution for the instance of Figure 3.11, in
five steps: (1) SDD(J all, 0, D1);
(2) Left-shifting J1;
(3) SDD({J2, J3, J4, J5, J6, J7}, C1, D2);
(4) Left-shifting S2;
(5) SDD({J2, J5, J6, J7}, Cmax(S2), D3). 41

3.13 A partial schedule Sa of a node na of the Branch and Bound tree. . . . 44

3.14 Illustration of ∆ values. ∆(Sa3) = D3 − Cmax(Sa3); ∆(Sa2) = B(Sa3) −
Cmax(Sa2) + ∆(Sa3); ∆(Sa1) = D1 − Cmax(Sa1). 44

3.15 The employable intervals for U3. 45

3.16 The “shrunk” horizon with the alternative delivery dates. 46

3.17 On this example, a partial schedule Sa is represented by its striped blocks
Sa1 , S

a
2 , S

a
3 , and the jobs of E = J1, J2, J3 are inserted into Sa while ob-

serving block-preemption (J1, J3). 46

3.18 The solution τD
′
3(Sa) is converted in a solution σD3(Sa). 47

3.19 The equivalent release dates r̃ of the jobs of E = Jf , Jg, Jh. 47

3.20 The shrunk horizon with the alternative delivery and release dates. . . . 48

3.21 The shrunk horizon for U2. 48

3.22 The right-shift of Sa2 . 48

3.23 The shrunk horizon for U1. 49

3.24 Illustration of the case where re+1 ≥ Dk, on an example where k = 2. . . 55

3.25 Illustration of Case 1, on an example where k = 2. 56

3.26 Illustration of Case 2, on an example where k = 2. 57

3.27 The shrunk horizons for Uk(S
a) and Uk(S

f(a)), on an example where
k = K = 3. Between tz = D′1(Sa) and D′3(Sa) = D′3(Sf(a)), the two
horizons are identical. 58

3.28 The shrunk horizons for Uk(S
a) and Uk(S

f(a)), where k = K = 3. Be-
tween tz = D′1(Sa) and D′3(Sa) = D′3(Sf(a)), the two horizons are identical. 59

4.1 An example to illustrate Property 12. 68

4.2 An instance of 1|ri|V1 + V2, whose U1 = 3. In this example, J1, J2, J5

are the SD1-jobs. 69

4.3 Job exchanges to obtain a schedule where U1 jobs complete at or before
D1, for the instance of Figure 4.2. 69

4.4 For the instance of Figure 4.2, a schedule S with less than U1 jobs completing

at or before D1 is illustrated in (a). Suppose that J2 is the first SD1-job that

is reinserted into S1 (b). After this reinsertion, we obtain a schedule where U1

jobs complete at or before D1, even if they are not all SD1-jobs (c) (in such a

case, DS-algorithm stops). 70

4.5 Example for Lemma 3. 71

4.6 The initial case of Algorithm 8: the striped jobs are the SD1-jobs. . . . 75

4.7 “Removal” of the straddling job. 75

4.8 The general case of Algorithm 8: the crossed jobs are S
D1-jobs, while the

striped jobs are SD1-jobs. 76
4.9 The three ways job Jj can be reinserted into S. 78
4.10 An example in which Jj is reinserted into S1: S2 is right-shifted by

max(Cmax(S1), rj) + pj −B(S2) time units to allow Jj to be scheduled. 78
4.11 Value of bminj if: (a) rj < D1 − pj + 1, or (b) rj ≥ D1 − pj + 1. 79
4.12 An example in which Jj is reinserted into S2: the previous block in S2 is

right-shifted by rj − Cmax(S2) time units to avoid idle times in S2. . . . 79
4.13 An execution of the dynamic programming algorithm. 81

4.14 An example where |J (S∗2)| − |J (Sl2)| = 1. 86
4.15 Examples for Lemma 4. 97
4.16 Example 1 for Lemma 5 when pd > pl. 98
4.17 Example 2 for Lemma 5. 98
4.18 The position of Jl and the other jobs in Sl1,2. 99
4.19 Example 4 for Lemma 5: the striped jobs are the jobs of J (Γx+). 101
4.20 Illustration of y = B(Sl2)− Cmax(Sl1). 101
4.21 Example for Lemma 6. 102
4.22 On top, the schedule represents Sl1,2, while the schedule at bottom represents

SD2 , for the same instance. In both schedules, the striped jobs belong to J (Sl1)∩
J (SD2). In Sl1, the white jobs belong to J (Sl1)\J (SD2). On this example, we

have: l = 6 (the number of Jei jobs), d = 4 (the number of white jobs in Sl1),

l2 = 5 (the number of Jfj jobs). 103
4.23 Starting from Sl1,2, we obtain Smid: the d = 4 jobs of J (Sl1)\J (SD2) are removed

from Sl1; the |Ge| = 2 jobs of G ∩ (J (SD2)\J (Sl1,2)) are added to Sl1, and the

|Gf | = 3 jobs of J (Sl2) ∩G are moved from Sl2 to Smid1 105
4.24 Smid. 108

5.1 A schedule for a permutation flowshop. 112
5.2 The schedule obtained with ERDH heuristic for the instance of Table 5.1,

of payoff 3. 116
5.3 The schedule obtained with ECT heuristic for the instance of Table 5.1,

of payoff 2. 117
5.4 First step of NEH heuristic for the instance of Table 5.1. 117
5.5 Insertions of J2 at different positions. 118
5.6 Insertions of J4 at different positions. 119
5.7 First step of IECT heuristics, for the example of Table 5.1. 119
5.8 Insertion of J4 in the partial schedule. 120
5.9 The schedule returned by IECT heuristic. 120

List of Tables

1.1 The problems with objective functions that generalize
∑
Vk, classified

from the more general objective function (left) to the less general (right).
All the problems in this table are NP-hard. The problems with ∗ (resp.
∗∗) are known to be weakly (resp. strongly) NP-hard. 11

1.2 The NP-hard problems considered in this thesis. 11

3.1 Instances solved at the root node. 61
3.2 Instances solved in less than 1 second. 61
3.3 Instances solved in less than 120 seconds. 61
3.4 Instances solved in less than 15 minutes. 61
3.5 Instances unsolved at the end of the time limit of 15 minutes. 61
3.6 Mean gap of the x unsolved instances at the end of the time limit of 15

minutes, where x = 200× the percentage of Table 3.5. 61
3.7 Instances that could be solved in 20 minutes, among the unsolved in-

stances after 15 minutes. 62
3.8 Mean gap of the y unsolved instances at the time limit of 20 minutes,

where y = x× the percentage of Table 3.7. 62
3.9 Mean CPU time for the instances that were not solved at the root node

(in at most 15 minutes). 63
3.10 Standard deviations of the CPU time for the instances that were not

solved at the root node (in at most 15 minutes). 63
3.11 Instances solved at the root node. 63
3.12 Instances solved in less than 1 second. 63
3.13 Instances solved in less than 120 seconds. 63
3.14 Instances solved in less than 15 minutes. 63
3.15 Instances unsolved at the end of the time limit of 15 minutes. 64
3.16 Mean gap of the x unsolved instances at the end of the time limit of 15

minutes, where x = 250× the percentage of Table 3.15. 64
3.17 Instances that could be solved in 20 minutes, among the unsolved in-

stances after 15 minutes. 64
3.18 Mean gap of the y unsolved instances before the time limit of 20 minutes,

where y = x× the percentage of Table 3.17. 64
3.19 Mean CPU times for the instances that were not solved at the root node

(in at most 15 minutes). 64

xi

3.20 Standard deviations of the CPU time for the instances that were not
solved at the root node (in at most 15 minutes). 64

4.1 For each value of N , the number of instances (out of 45 instances) solved
within a time limit of 30 minutes CPU, and the mean CPU time (in
seconds) for the solved instances. 83

4.2 For each couple (A,B), mean CPU time on 70 instances (in seconds). . 84

5.1 An instance of F2|ri, perm|
∑
Vk. 116

5.2 The reevaluation of Ei (Ei2) for the unscheduled jobs. 119
5.3 The reevaluation of Ei (Ei2) for the unscheduled jobs. 120
5.4 Summary of constructive methods (Gap related to K). 121
5.5 Summary of constructive methods (Gap related to A). 121
5.6 Summary of constructive methods (Gap related to R). 122
5.7 Summary of constructive methods (Time related to K). 122
5.8 Summary of constructive methods (Time related to A). 122
5.9 Summary of constructive methods (Time related to R). 122
5.10 Summary of NEH local search (Gap related to K). 124
5.11 Summary of NEH local search (Gap related to A). 124
5.12 Summary of NEH local search (Gap related to R). 124
5.13 Summary of NEH local search (Time related to K). 124
5.14 Summary of NEH local search (Time related to A). 125
5.15 Summary of NEH local search (Time related to R). 125
5.16 Summary of IECT local search (Gap related to K). 125
5.17 Summary of IECT local search (Gap related to A). 125
5.18 Summary of IECT local search (Gap related to R). 126
5.19 Summary of IECT local search (Time related to K). 126
5.20 Summary of IECT local search (Time related to A). 126
5.21 Summary of IECT local search (Time related to R). 126
5.22 Summary of IECT-VND methods (Gap related to K). 128
5.23 Summary of IECT-VND methods (Gap related to A). 128
5.24 Summary of IECT-VND methods (Gap related to R). 128
5.25 Summary of IECT-VND methods (Time related to K). 128
5.26 Summary of IECT-VND methods (Time related to A). 129
5.27 Summary of IECT-VND methods (Time related to R). 129
5.28 Summary of grasp (Gap related to K). 131
5.29 Summary of grasp (Gap related to A). 131
5.30 Summary of grasp (Gap related to R). 131

List of Symbols

B(Sk) The starting time of the first job of Sk, page 33

bl(S) The starting time of job Jl in schedule S, page 33

Ci(S) Completion time of job Ji in schedule S, page 8

Cmax(Sk) The completion time of the last job of Sk, page 33

Cil(S) The completion time of job Ji on machine Ml in schedule S, for the

flowshop problem, page 111

C
1
max The completion time of the last S

D1-job in S′1, page 70

D0 Time 0, page 6

D1, . . . , DK Delivery dates of an instance, page 6

DK+1 Time before which all jobs can complete, page 6

D′k The alternative delivery date corresponding to Dk, for the computation

of an upper bound in the Branch and Bound, page 45

D Unique delivery date of the Single Delivery Date problem, page 27

∆(Sak) The value of the maximal possible right-shift of Sak , page 44

δ(Sak+1) The length of the right-shift of Sak+1, in order to compute Uk, page 47

≺ERD Earliest Release Date order, page 6

Γ A sequence of jobs

Γm The sequence Jim , . . . , Ji1 , in SDD-algorithm, page 29

xiii

Γim Sequence constructed by SDD-algorithm at iteration m, page 29

Ik Interval]Dk−1, Dk], k = 1, . . . ,K + 1}, page 7

Ji i-th job of an instance, i = 1, . . . , N , page 6

J all Set of jobs of an instance, page 6

J A set of jobs

J (Γ) The set of the jobs of sequence Γ, page 21

J (S) The set of the jobs of (partial) schedule S, page 21

K Number of delivery dates of an instance, page 6

Lk Cmax(Sak)−min(B(Sak)), page 44

Ml Machine l, for the flowshop problem, page 111

N Number of jobs of an instance, page 6

na The node, in the Branch and Bound tree, associated to (partial) schedule

Sa, page 36

n1 The number of S
D1-jobs in S′1, in DS-algorithm, page 73

n2 The number of SD1-jobs in S′2, in DS-algorithm, page 73

n3 The number of SD1-jobs in S′3, in DS-algorithm, page 73

pi Processing time of job Ji, page 6

p(Γ) The total processing time of the jobs of sequence Γ, page 21

p(J) The sum of the processing times of the jobs of set J , page 21

p(S) The total processing time of the jobs of (partial) schedule S, page 21

ri Release date of job Ji, page 6

r′i The release date on the shrunk horizon, corresponding to ri, for the

computation of an upper bound in the Branch and Bound, page 47

r̃i The release date equivalent to ri, when we only consider scheduling jobs

on the employable intervals, for the computation of an upper bound in

the Branch and Bound, page 46

S A schedule

σ A schedule

Sk The subschedule of S containing the jobs that complete into the interval

Ik, page 33

Si.Sj The concatenation of subschedule Si with subschedule Sj , page 33

Sa The (partial) schedule associated to node na of the Branch and Bound

tree, page 36

SDk The schedule obtained with SDD(J all, 0, Dk), page 42

sched(Γ) The schedule that schedules the jobs of Γ, in the order given by Γ,

without idle times and with the last job completing at Iup (input of

SDDI), page 28

u bound(Sa) An upper bound on the payoffs of the schedules that can be obtained

by completing the partial schedule Sa, page 40

Uk An upper bound on the number of jobs that can complete at or before

Dk, page 42

Uk(S
a) An upper bound on the number of jobs that can be inserted into Sa,

while completing at or before Dk, page 43

v(S) Payoff of schedule S, page 8

Vk(S) The number of jobs completing at or before Dk in schedule S, page 7

vS(Ji) The payoff earned by job Ji in schedule S, page 8

Introduction

As the web becomes increasingly the place where to share knowledge, the digitization of

books and other paper documents is an issue that becomes more and more important.

In France, all the published books are acquired and stored by the Bibliothèque Nationale

de France (BNF), since 1537, when the king of France François I enjoined the printers

and librarians to submit to the library every printed book available for sale in the

kingdom. Nowadays, the BNF collection includes about 14 millions of printed works

and 12 millions of engravings, amongst others. Beyond the wish to share knowledge,

there is also the will to preserve the more fragile and ancient documents. For these

purposes, the BNF has started to digitize the items of its collection since 1990. At

present, almost 2 million books have been digitized. Among them, 100 000 per year were

digitized between 2008 and 2010, thanks to the mass digitization program Dem@tFactory

launched by the BNF. Seven partners were involved in this FUI project: the industrial

partners Safig (leader of the project), A2IA, Banctec and Temis; and three research

laboratories: Cedric (CNAM), A2SI (ESIEE) and LIP6 (UPMC). This thesis is part

of Dem@tFactory project, concerning the optimization of the workflow which includes

several tasks for each digitized book. However, since we could not yet get accurate

informations on the practical workflow problem, we worked on a theoretical problem

that takes into account part of the specifications of the digitization issue. The direct

collaborator of LIP6 in the project was Banctec, a digitization firm, with which we

worked to obtain the specifications of the problem. However, in April 2010, the leader of

the project, Safig, has been taken over by another firm, Jouve, that became by then the

leader of the project. Nonetheless, during the several months that this take over process

lasted, the project accumulated delays. As a consequence, not all the informations could

be retrieved from Banctec.

The contributions of this work are the following. We modeled the digitization

scheduling problem as a single machine scheduling problem with a new criterion: cu-

mulative payoffs depending on common delivery dates. We established the strong NP-

hardness of the problem in the general case, and identified a weakly NP-hard special

2 Introduction

case (2DD) and four polynomial cases. For one of these polynomial cases, we designed

an algorithm (SDD-algorithm) on which rely many of the further results. We designed

and implemented exact resolution methods, both for the general problem (Branch and

Bound) and for 2DD (dynamic programming). For these two methods, bounds and dom-

inance rules specific to the problem were identified. Moreover, for 2DD, we provided a

polynomial algorithm with an absolute guarantee of 1. Finally, in order to consider a

model that is closer to the real world problem, we studied, as a joint work with post-

doctoral researcher Luciana Pessoa, a permutation flowshop problem with cumulative

payoffs depending on common delivery dates, for which we implemented constructive

heuristics, local search methods and a metaheuristic.

This document is organized as follows. In Chapter 1, we present the real world

problem of book digitization, its modeling as a single machine scheduling problem and the

state of the art about similar problems. In Chapter 2, complexity results are established:

the strongly NP-hardness of the general problem, the NP-hardness of 2DD and four

polynomial cases. In Chapter 3, a Branch and Bound method is presented, in order

to solve the general problem. Chapter 4 is dedicated to solving the 2DD problem.

First, a dynamic programming algorithm is presented, which establishes the weakly

NP-hardness of the problem; some experimental results on this method are presented.

Then, a polynomial algorithm with a performance guarantee is described. In Chapter 5,

we consider the permutation flowshop problem with cumulative payoffs depending on

common delivery dates. Finally, we draw some conclusions and research issues.

Chapter 1
The digitization scheduling problem

In this chapter, we first present the Banctec digitization workflow, pointing out its main

constraints and requirements. Then, starting from these specifications, we establish the

model of the corresponding scheduling problem. Finally, we present a state of the art

on similar scheduling problems.

1.1 The digitization’s planning issue

We consider here the point of view of the manufacturer, Banctec, whose workflow is

depicted in Figure 1.1. It can be seen that the process is mainly linear and is constituted

of four main steps: Digitization, First quality control, Segmentation, Second quality

control (only the Table of contents creation is made in parallel with the Segmentation).

A huge number of works must be digitized following this linear process.

Moreover, each book has its own features. For instance, the degree of fragility of

a book determines the kind of digitization techniques and resources that can be used.

Hence, a more fragile book will be longer to digitize. Another example of a feature

is the belonging to a collection, since the digitization processes of the books of a same

collection are not independent. Indeed, all the books of a collection have a common table

of contents, hence the digitization process of the books of a collection only completes

when all those books have been processed.

This outline brings out the usefulness of an automatic tool that helps the manufac-

turer in planifying the digitization of the books.

As said above, although the BNF is the client, we collaborated with the manufacturer,

i.e. the digitization firm Banctec. Hence, in this thesis, we focus on the manufacturer’s

point of view, by trying to meet the client requirements while maximizing the manufac-

turer’s own profits. Unfortunately, due to the already mentioned problems of Safig, the

project has accumulated some delays, and therefore not all the features of the problem

could be precisely retrieved, nor were any representative data of real digitization situa-

4 The digitization scheduling problem

Figure 1.1: The digitization process (in french).

tions. We therefore focus on a theoretical scheduling problem, taking into account the

features of the digitization’s planning issue that could be ascertained.

Although the problem can be satisfactorily modeled as a flowshop problem, and as

this is a first work on this problem, we mostly focus in this thesis on a single machine

problem (in order to concentrate on the new optimization criterion). However, we in-

vestigate in Chapter 5 a flowshop problem.

Since each book has different characteristics (for instance the fragility, the number

of pages, the presence of images, the required segmentation quality: normal or high), we

consider that each digitization job has a different duration. In the scheduling problem,

this corresponds to a specific processing time for each job. Moreover, the books to be

digitized become available to the manufacturer at different dates: at regular intervals

(once a week), the manufacturer receives parcels of books. For each parcel, its content

The digitization scheduling problem 5

and date of arrival are previously known by the manufacturer. Hence, release dates have

to be considered in the scheduling problem.

Finally, the client (BNF) sets several delivery dates (every four or five months) and

a target quantity of digitized books for each of them. If the target quantities are not

reached, the manufacturer incurs penalty costs, proportional to the number of missing

items. However, when we retrieved these informations, the penalties were not yet applied,

since it would have been too disadvantageous for the manufacturer, whose workflow was

initially not conceived for such a huge quantity of documents.

More formally, let Dk, k = 1, . . . ,K (such that 0 < D1 < · · · < DK) be those

delivery dates, and Qk, k = 1, . . . ,K the corresponding target quantities. For a given

k = 1, . . . ,K, Qk is the number of books the client expects to be digitized from the

very beginning until date Dk. Consider the example of Figure 1.2: the client demands

that 15000 books are digitized 3 months after the beginning of the project. Moreover,

35000 books are demanded to be digitized 6 months after the beginning of the project.

These 35000 books include all the books digitized from the beginning of the project. For

the following delivery dates, we have the following goals: 60000 books must be digitized

after 9 months, and 80000 after 1 year. A cumulative aspect can be noticed, since each

goal includes the amount achieved at the previous delivery dates.

D1: 3 months D2: 6 months D3: 9 months D4: 1 year

digitized books
Goal Q1: 15000 Goal Q2: 35000

digitized books digitized books
Goal Q3: 60000

digitized books
Goal Q4: 80000

beginning of the project

Figure 1.2: An example of delivery dates with corresponding goals set by the client.

Let Vk be the number of books having been digitized from the very beginning until

date Dk, for every k = 1, . . . ,K. It is desirable that Vk is at least equal to Qk if possible,

or else, that Vk be as close as possible to Qk. Let us see an example, on Figure 1.3,

with the same goals as in the example of Figure 1.2. Three months after the beginning

of the project, 16000 books have been digitized. Therefore, the first goal of 15000 is

met. Three months later (six months after the beginning), only 30000 books have been

digitized instead of 35000. Another three months later, 58000 books have been digitized

instead of 60000; and a year after the beginning, 79000 instead of 80000.

A solution with maximal client satisfaction would be having Vk ≥ Qk for every k ∈
{1, . . . ,K}. In other words, if the differences Vk−Qk for each k = 1, . . . ,K, are all greater

than or equal to zero, the client has the maximal satisfaction. Otherwise, the smaller the

difference (the greater in absolute value), the less the client’s satisfaction. Besides, the

manufacturer wishes to satisfy the client, and to maximize its profits (which is related

to the number of digitized books). Therefore, the manufacturer prefers maximizing the

number of digitized books at each delivery date, instead of simply attaining the goal

6 The digitization scheduling problem

D1: 3 months D2: 6 months D3: 9 months D4: 1 year

16000 digitized books
Achieved amount V2:
30000 digitized books 58000 digitized books

Achieved amount V3:
79000 digitized books
Achieved amount V4:

beginning of the project

Achieved amount V1:

Figure 1.3: An example of achieved amounts of digitized books at each delivery date.

fixed by the client. Hence, maximizing Vk − Qk when Vk < Qk and maximizing Vk
otherwise, is equivalent to simply maximize Vk, since Qk is a constant. Overall, the wish

is to maximize Vk, for each k = 1, . . . ,K. To aggregate the K criteria induced by the K

delivery dates, we consider sum
∑K

k=1 Vk to be the manufacturer’s goal, which reflects its

following preference: earning a given payoff is more valuable earlier than later. Indeed,

summing these cumulative values gives a greater weight to the earlier completed tasks.

On the example of Figure 1.3, the payoff is thus 16000+30000+58000+79000 = 183000.

Starting from the features described above, we can define the formal problem.

1.2 The formal definition of the problem

We address here a single machine non-preemptive scheduling problem where the N jobs

of the set J all= {J1, . . . , JN} have to be scheduled. Each job JiJi has a release date ri
≥ 0 and a processing time pi> 0.

The following total order, called ERD order (for Earliest Release Date) is defined on

the jobs of J all. Given two jobs Ji and Jj , we denote by Ji ≺ERD Jj the assertion that

Ji precedes Jj in the ERD order.

• (ri < rj)⇒ Ji ≺ERD Jj ;

• (ri = rj and pi < pj)⇒ Ji ≺ERD Jj ;

• (ri = rj and pi = pj and i < j)⇒ Ji ≺ERD Jj ;

The third condition is clearly arbitrary, in order to break ties and to ensure that ERD

is a total order. This will be important to avoid the need of treating equivalent situations.

On the example of Figure 1.4, we have: J2 ≺ERD J5 ≺ERD J3 ≺ERD J1 ≺ERD J4 ≺ERD
J6.

K delivery dates are given: D1, . . . , DK , with 0 < D1 < · · · < DK . We also set for

simplicity’s sake:

• D0= 0,

• DK+1 = max(DK ,maxi=1,...,N ri) +
∑N

i=1 pi,

The digitization scheduling problem 7

0 r2 = r5 r3 r1

J1

J2

J5

J3

J4

J6

r4 = r6

Figure 1.4: A set of jobs: on top the release dates, and at bottom the processing times.

We define Ik =]Dk−1, Dk], for each k ∈ {1, . . . ,K + 1}.
All the data of the problem are integer.

Figure 1.5 gives an example of delivery dates (assuming all the release dates are

smaller than DK : hence the value of DK+1).

D0 = 0 DK+1

IK+1︷ ︸︸ ︷I2︷ ︸︸ ︷I1︷ ︸︸ ︷
D1 D2 DK ∑N

i=1 pi

Figure 1.5: The delivery dates.

We will frequently use the following terms:

• A schedule is a set of completion times, one for each job of J all.

• A partial schedule is a set of completion times, one for each job of a given set

J ⊂ J all.

• A subschedule of a given schedule S is a partial schedule S′ where the completion

times of the jobs of S′ are the same in both S and S′.

• A block is a (partial) schedule where there are no idle times, i.e. each job of the

block (except the first) starts at the completion time of the previous job.

Given a schedule S, which is characterized by the completion times of all the jobs,

Vk(S) (denoted as Vk when no ambiguity is possible) represents the number of jobs that

complete at or before Dk in S, k = 1, . . . ,K. The payoff of a given schedule S is defined

8 The digitization scheduling problem

by v(S)=
∑K

k=1 Vk(S). On the example of Figure 1.6, the payoff is computed as follows.

Two jobs (J1 and J2) complete at or before D1, therefore V1 = 2. Three jobs (J1, J2 and

J3) complete at or before D2, therefore V2 = 3. Four jobs (J1, J2, J3 and J4) complete

at or before D3, therefore V3 = 4. Overall, the total payoff is V1 + V2 + V3 = 9.

0 D1 D2 D3

J3J4J2J1

r1 r2 r4 r3

Figure 1.6: Example of a schedule with three delivery dates.

We saw how to obtain the payoff of a schedule, by summing the payoffs corresponding

to each delivery date. Let us see another way of computing the payoff, based on the jobs,

instead of the delivery dates. We will refer to the payoff related to job Ji in schedule S

as vS(Ji) (v(Ji) when no ambiguity is possible). vS(Ji) is the number of delivery dates

before or at which Ji completes in S. Let Ci(S) (or Ci when no ambiguity is possible) be

the completion time of job Ji in S; v(Ji) can be represented by the following decreasing

stepwise function:

v(Ji) =



K if 0 < Ci ≤ D1

...

2 if DK−2 < Ci ≤ DK−1

1 if DK−1 < Ci ≤ DK

0 if DK < Ci

which can be more shortly described as v(Ji) = K − k+ 1 if Ci ∈ Ik, k = 1, . . . ,K. This

stepwise function is depicted in Figure 1.7 for K = 6.

Again on the example of Figure 1.6, the payoff can be computed in the following way.

Both jobs J1 and J2 complete in I1 =]0, D1], therefore v(J1) = v(J2) = 3. J3 completes

in I3 =]D2, D3], therefore v(J3) = 1. J4 completes in I2 =]D1, D2], therefore v(J4) = 2.

Overall, the total payoff is v(J1) + v(J2) + v(J3) + v(J4) = 9.

Both methods of computation of a schedule’s payoff will be used, depending on the

situation.

Extending the three-field notation of Graham et al. [11], the addressed problem can

be defined as 1|ri|
∑K

k=1 Vk.

Finally, consider the following overall example. We are givenN = 5 jobs J1, J2, J3, J4, J5,

such that p1 = 2, p2 = 3, p3 = 4, p4 = 5, p5 = 7 and r1 = 22, r2 = 8, r3 = 3, r4 = 13, r5 =

18. The ERD order on these jobs is: J3 ≺ERD J2 ≺ERD J4 ≺ERD J5 ≺ERD J1.

Moreover, there are K = 3 delivery dates D1 = 10, D2 = 16, D3 = 27. We set:

D4 = D3 +
∑5

i=1 pi = 48. Hence, I1 =]0, 10], I2 =]10, 16], I3 =]16, 27], I4 =]27, 48].

In the feasible schedule S of Figure 1.8 C1(S) = 25 ∈ I3, C2(S) = 13 ∈ I2, C3(S) =

8 ∈ I1, C4(S) = 18 ∈ I3, C5(S) = 35 ∈ I4. Hence, if we compute the payoff by jobs,

The digitization scheduling problem 9

D1 D2 D3 D4 D5 D6
Ci

3

4

5

6

1

2

v(Ji)

Figure 1.7: The stepwise job payoff function.

0 D3r3

J4J3 J5J2 J1

r2 r4 r5 r1D1 D2

Figure 1.8: A schedule S.

we have: vS(J1) = 1, vS(J2) = 2, vS(J3) = 3, vS(J4) = 1, vS(J5) = 0. Thus, the

total payoff is v(S) = 7. If we compute the payoff by delivery dates, V1(S) = 1 since

C3(S) ≤ D1; V2(S) = 2, since J1 and J2 complete before D2; and V3(S) = 4 since

J1, J2, J3, J4 complete before D3. Hence the total payoff is v(S) = 7.

In the following section, we make a survey of the problems related to 1|ri|
∑K

k=1 Vk.

1.3 State of the art

The objective function
∑N

i=1 v(Ji) is a special case of the regular sum objective functions∑N
i=1 fi(Ci), where fi(Ci) is a nondecreasing cost function or a nonincreasing payoff

function. Some other special cases are, for instance, the classical criteria
∑
Ci (the job

cost function is linear),
∑
Ti (the job cost function is linear, starting from its due date),∑

Ui (the job cost function is stepwise, with a unique breakpoint). Raut et al. [26]

consider such a general objective function,
∑N

i=1 fi(Ci), on a single machine without

release dates, for which they provide several list strategy heuristics, based on the two

features specific to each job: processing time and cost function.

In Section 1.3.1 we consider the works with stepwise job cost functions, while in

10 The digitization scheduling problem

Section 1.3.2 we mention some other related problems.

1.3.1 Stepwise job cost functions

The objective function
∑K

k=1 Vk is also a special case of the objective functions obtained

as a sum of stepwise job payoff (or cost) functions,
∑N

i=1 v(Ji), where each job Ji has

its own stepwise payoff (or cost) function v(Ji). v(Ji) is characterized by its moments

of value change (also called jump points or breakpoints) D1,i, . . . , DKi,i, and the corre-

sponding values w1,i, . . . , wK+1,i, as explicited below:

v(Ji) =



w1,i if 0 < Ci ≤ D1,i

w2,i if D1,i < Ci ≤ D2,i

...

wKi,i if DKi−1,i < Ci ≤ DKi,i

wKi+1,i if DKi,i < Ci

Notice that if v(Ji) is a payoff (resp. cost) function, it is a decreasing (resp. increas-

ing) stepwise function, i.e. w1,i > · · · > wKi,i (resp. w1,i < · · · < wKi,i) and the total

objective function
∑N

i=1 v(Ji) has to be maximized (resp. minimized). Both problems

are equivalent.

Section 1.3.1.1 is dedicated to problems without release dates, while in Section 1.3.1.2

we survey two works with release dates and stepwise cost functions.

1.3.1.1 Problems without release dates

The general stepwise objective function described above is considered by Detienne et

al. [8] and Curry and Peters [4].

Detienne et al. [8] consider the single machine problem without release dates, for

which they obtain very good Lagrangean bounds. These bounds are then exploited

in an exact method dealing with a graph representation of the scheduling problem.

Experimentations are conducted on instances with up to 500 jobs, with better results

than already existing exact methods. A straightforward adaptation of the model is

considered that includes release dates, but is not very efficient since it cannot solve some

30 and 50-job instances.

Curry and Peters [4] deal with an online problem on parallel machines with reas-

signments, where jobs arrive at regular intervals (every day) and stepwise increasing

job cost functions must be minimized. When a new set of jobs arrives, the jobs that

are currently being executed are not stopped, but a new optimal schedule is obtained

with a Branch and Price method, including the last arrived jobs, and the jobs that were

already in the system but have not yet been scheduled. Hence, at each rescheduling, all

the jobs are already available, thus there is no need to deal with release dates. However,

The digitization scheduling problem 11

an additional rescheduling cost is taken into account, for the jobs that had already been

assigned to a machine, and are associated to a different machine in the new schedule.

Some special cases of the general stepwise objective function defined above are pre-

sented below. You can refer to Table 1.1, which classifies all the cited problems of

Section 1.3.1 w.r.t. their objective function. Table 1.2 lists the NP-hard problems stud-

ied in this thesis.

Job dependent Common number Common
stepwise functions of breakpoints breakpoints

1||
∑
v(Ji) [8] 1|Ki = 1|

∑
v(Ji)

∗ [15] 1|Dk,i = Dk|
∑
v(Ji)

∗ [15, 35]

P |reassign|
∑
v(Ji) [4] 1|Ki = K|

∑
v(Ji) [15, 16, 32] 1|Dk,i = Dk, nondecr|

∑
v(Ji)

∗∗ [16]

R|ri|
∑
v(Ji)

∗∗ [7] 1|Ki = K,nondecr|
∑
v(Ji)

∗∗ [16] Rm|Dk,i = Dk, fixed K, nondecr|
∑
v(Ji)

∗ [16]

1|ri|
∑
v(Ji)

∗∗ [27] R|Ki = K,nondecr|
∑
v(Ji)

∗∗ [16]

Table 1.1: The problems with objective functions that generalize
∑
Vk, classified from

the more general objective function (left) to the less general (right). All the problems in
this table are NP-hard. The problems with ∗ (resp. ∗∗) are known to be weakly (resp.
strongly) NP-hard.

Common fixed
stepwise function

1|ri, Dk,i = Dk, wki = K − k + 1|
∑
v(Ji)

∗∗ (i.e. 1|ri|
∑
Vk)

1|ri, Dk,i = Dk, fixed K,wki = K − k + 1|
∑
v(Ji)

∗ (i.e. 1|ri, fixed K|
∑
Vk)

1|ri, Dk,i = Dk,K = 2, wki = K − k + 1|
∑
v(Ji)

∗ (i.e. 1|ri|V1 + V2)

Table 1.2: The NP-hard problems considered in this thesis.

Janiak and Krysiak [15] consider the single machine problem without release dates,

with the objective function
∑N

i=1 v(Ji) where all the jobs have the same number of

breakpoints, i.e. Ki = K for all i ∈ {1, . . . , N}. This problem can be denoted as 1|Ki =

K|
∑N

i=1 v(Ji), and is NP-hard, as its special case 1|Ki = 1|
∑N

i=1 v(Ji) is equivalent

to 1||
∑
wiUi (weakly NP-hard). Janiak and Krysiak [15] provide some list strategies

heuristics for 1|Ki = K|
∑N

i=1 v(Ji), based on processing times pi and weights w1,i of

the jobs; and two strategies based on modifications of Moore-Hodgson’s algorithm for

1||
∑
Ui [21].

Moore-Hodgson’s algorithm is also exploited by Tseng et al. [32] for the same prob-

lem, as a part of a constructive heuristic algorithm. Moreover, Tseng et al. [32] define

some neighborhood structures and a Variable Neighborhood Search method, for which

12 The digitization scheduling problem

they present experimental results for instances with up to 50 jobs.

An adaptation of the Moore-Hodgson’s algorithm is also widely used in this thesis,

and is presented as SDD-algorithm in Chapter 2.

The special case where the breakpoints are common to all the jobs, which is denoted

as 1|Dk,i = Dk|
∑N

i=1 v(Ji), is considered by Janiak and Krysiak [15], which provide a

pseudopolynomial algorithm. For the same problem, Yang [35] provides a Branch and

Bound method that uses a similar branching structure as the one used in the Branch and

Bound method that we present in Chapter 3, that consists in choosing the stage (the

interval between two delivery dates) where to schedule a given job. Yang [35] present

satisfying experimental results for instances with up to 100 jobs.

Janiak and Krysiak [16] consider the variant of the objective function where the payoff

stepwise function is nondecreasing, i.e. w1,i ≥ · · · ≥ wKi,i; and where all the jobs have the

same number of breakpoints: 1|Ki = K,nondecr|
∑N

i=1 v(Ji). They show that the single

machine problem where the breakpoints are common 1|Dk,i = Dk, nondecr|
∑N

i=1 v(Ji)

is already strongly NP-hard. They also provide a pseudopolynomial time algorithm for

the unrelated machines problem where the number m of machines is fixed, the jobs

have common breakpoints, and the number K of the breakpoints is fixed: Rm|Dk,i =

Dk,Kfixed, nondecr|
∑N

i=1 v(Ji). Finally, they propose several heuristics to solve the

general problem with unrelated parallel processors R|Ki = K,nondecr|
∑N

i=1 v(Ji).

These heuristic methods are obtained by combining different list strategies (based on

processing times pi and weights w1,i) to obtain an input list, with different strategies for

assigning and then sequencing the jobs on the machines.

Raut et al. [26], Detienne et al. [8], Curry and Peters [4], Janiak and Krysiak [15, 16],

Tseng et al. [32] and Yang [35] mainly focus on the hardness of the objective function,

and do not consider release dates. Hence, despite the similarity of the objective function,

the same structural properties do not apply for 1|ri|
∑K

k=1 Vk. Indeed, in 1|ri|
∑K

k=1 Vk
we have a more specific objective function, however, as shown in Chapter 2, 1|ri|

∑K
k=1 Vk

is still strongly NP-hard, while its relaxed version 1||
∑K

k=1 Vk without release dates is

polynomially solvable.

1.3.1.2 Problems with release dates

To the best of our knowledge, only two works consider both stepwise job cost functions as

objective, and release dates as a constraint of the problem: those of Sahin and Ahuja [27]

and of Detienne et al. [7]. We give a more detailed review of these two works, as the

studied problems are the more closely related to 1|ri|
∑
Vk.

The results of Sahin and Ahuja [27] highlight that time-indexed formulations are not

ideal to solve large instances of 1|ri|
∑
v(Ji). For this reason, Detienne et al. [7] provide

dedicated Integer Linear Programming (ILP) formulations.

The digitization scheduling problem 13

Sahin and Ahuja [27] consider the single machine problem with release dates and

stepwise job cost functions. They propose two time-indexed formulations. The first

formulation, called X-IP, is based on completion times of the jobs and is known to

provide strong lower bounds for 1|rj |
∑
Cj , but is difficult to solve even as an LP, due

to its size, as the number of variables and constraints is pseudopolynomial. The X-IP

formulation follows.

(X − IP)



..

..

..

..

..

..

..

..

..

min

N∑
j=1

T∑
t=1

cjtxjt (1.1)

s.t.
T∑

t=rj+pj

xjt = 1, j ∈ {1, . . . , N} (1.2)

N∑
j=1

t+pj−1∑
t′=t

xjt′ = 1 t ∈ {1, . . . , T} (1.3)

xjt ∈ {0, 1}, j ∈ {1, . . . , N}, t ∈ {1, . . . , T} (1.4)

where:

• cjt =


..

..

..

..

0 if t < D1,j

wk,j if Dk−1,j < t ≤ Dk,j , k = 1, . . . ,Kj − 1

wKj ,j if DKj ,j < t ≤ T

• T = maxj=1,...,N rj +
∑

j=1,...,N pj

• xjt = 1 if job Jj completes at time t, 0 otherwise

X-IP model can be straightforwardly adapted to 1|ri|Vk, by replacing cjt by ct, as all

the jobs have the same cost/payoff function.

The second formulation, Y-PR, is a relaxation based on the following slightly modi-

fied idea of preemption.

Each job Jj , j = 1, . . . , N , is represented by a set Lj = {Jj,1, . . . , Jj,pj} of pj unit-

time tasks. Each unit-time task of Lj has the same release date as its parent job Jj .

When a unit-time task Jj,l completes at time t, its cost is cjt/pj .

14 The digitization scheduling problem

(Y − PR)



..

..

..

..

..

..

..

..

..

min
N∑
j=1

pj∑
l=1

T∑
t=1

(cjt/pj)yjlt (1.5)

s.t.

T∑
t=rj

yjlt = 1, j ∈ {1, . . . , N}, l ∈ Lj (1.6)

N∑
j=1

pj∑
k=1

yjlt ≤ 1, t ∈ {1, . . . , T} (1.7)

yjlt ∈ {0, 1}, j ∈ {1, . . . , N}, l ∈ Lj , t ∈ {1, . . . , T} (1.8)

where:

• yjlt = 1 if task Jj,l completes at time t, 0 otherwise

The scheduling problem depicted with the formulation Y-PR is proved to be pseu-

dopolynomially solvable. The linear relaxation lower bound of X-IP is compared (on

instances with up to 50 jobs) with the lower bound provided by Y-PR, and X-IP ap-

pears to provide stronger lower bounds.

Sahin and Ahuja [27] introduce Y-PR in order to compute lower bounds, as the

classical preemption does not provide lower bounds for 1|ri|
∑
v(Ji). For 1|ri|

∑
Vk,

Y-PR has no interest, as a better lower bound is computed in polynomial time with

SRPT algorithm (the relaxed problem 1|ri, pmtn|
∑
Vk where preemption is allowed is

discussed in Chapter 2).

From Y-PR, the authors derive another formulation, Y-NP, in order to compute

an optimal solution. In Y-NP, all the unit-time tasks of the same parent job must be

processed subsequently one after each other, which can be expressed with constraint 1.9.

yjlt = yj,l+1,t+1, l ∈ {1, . . . , pj − 1}, j ∈ {1, . . . , N}, t ∈ {1, . . . , T} (1.9)

Moreover, only the last unit-time task of each job has a cost, equal to the cost of the

parent job. Then, the Y-NP formulation is:

(Y −NP)


..

..

..

..

min
N∑
j=1

T∑
t=1

cjtyjpjt (1.10)

s.t. Constraints (1.6) – (1.9)

X-IP and Y-NP are compared, on instances with up to 50 jobs, and subject to a time

limit. It appears that X-IP finds more often the optimal solution than Y-NP. This is

probably due to the fact that Y-PR is less compact than X-IP, as the number of variables

in Y-PR is
∑

j=1,...,N pj times the number of variables in X-IP.

Sahin and Ahuja [27] also provide some heuristic methods. Two methods are based on

the result of the linear relaxation of X-IP. The first method, called LPA-α and based on

The digitization scheduling problem 15

the notion of α-points, is described as follows. Let xjt represent the values of the decision

variables in the solution, j ∈ {1, . . . , N}, t ∈ {1, . . . , T}. For each job Jj , let tj be the

completion time corresponding to its α-point: tj = arg mint∈{1,...,T}
{∑t

t′=1 xjt′ = α
}

.

A feasible solution is obtained by ordering the jobs by their tj . LPA-α is tested with

α ∈ {ε, 0.25, 0.5, 0.75, 1}, where ε > 0 and sufficiently small.

The second method, LPT, is similar to LPA-α, the only difference is in the way of

computing tj : tj =
∑T

t′=1 txjt′ .

Finally, they present a k-exchange neighborhood (k-opt) algorithm. This algorithm

starts from an initial feasible solution, with a fixed integer k. For each position i from 1

to N − k, the jobs at positions i, i+ 1, . . . , i+ k are considered. k! neighboring solutions

are constructed, by replacing the sequence i, i+ 1, . . . , i+k by all the possible sequences

of the jobs at those positions. The neighbor solution with the minimal cost becomes the

current solution. This method is tested in the following way: first, perform 3-exchanges

passes until no further improvement is possible. Then, on the obtained solution, perform

4-exchanges passes until no further improvement is possible.

All these algorithms are fast, but for the first two methods we have to solve the linear

relaxation of X-IP. The algorithm that gives the best results is LPT-α, with gaps up to

3%, but k-neighborhood is the fastest (since it does not need the preliminary solving of

X-IP), and also gives good solutions, with gaps up to 6%.

Detienne et al. [7] consider the unrelated parallel machines problem with release dates

R|ri|
∑N

i=1 v(Ji). They present an industrial application of the problem in semiconductor

manufacturing processes, and provide an ILP formulation for the special case without

release dates. In the ILP model, they introduce the notion of occurrences of jobs: a job

has as many occurrences as there are moments of value changes (called jump points)

in its stepwise cost function. Hence, each occurrence can be considered as a job with

a unique due date. Then, they can exploit the dominance rule that says that if there

exists, on a single machine, a schedule where all the jobs meet their due dates, then the

schedule where the jobs are ordered in EDD-order is such that all the jobs meet their

due dates. Hence, by allowing exactly one occurrence per job to be processed, and by

assigning each processed occurrence to exactly one machine, the above dominance rule

allows to verify if each processed occurrence meets its due date. The experiments show

that the formulation solves in a reasonable time instances with up to 50 jobs and 9 jump

points per job.

For the general case with release dates, which is more closely related to 1|ri|
∑
Vk,

the EDD order on occurrences is no more dominant, because of the release dates. Hence,

Detienne et al. [7] define another (strict partial) order, ≺, on the occurrences, defined

as follows: given two occurrences il (associated to job i) and jq (associated to job j),

il ≺ jq ⇔ (dil < djq) or (dil = djq and ri < rj), where dil (resp. djq) is the jump point

associated to occurrence il (resp. jq). This order becomes dominant by introducing

16 The digitization scheduling problem

some virtual jump points. For each occurrence il associated to job i and jump point

dil , and for each occurrence jq of job j (and jump point djq) such that dil > djq and

ri < rj , a new occurrence in of job i is created, associated to the virtual jump point

din = djq . Moreover, Detienne et al. [7] describe some rules which allow to detect if a

virtual jump point is useless and thus avoid its addition. If we use the proposed model

for 1|ri|
∑K

k=1 Vk, every virtual jump point is useless, since:

• if there are two occurrences il and jq such that ri < rj and dil > djq , the created

virtual jump point for il is equal to djq ;

• all the jobs have the same jump points, hence there already exists an occurrence

iq, related to job i, whose due date is djq .

The dominant order on the occurrences defined by Detienne et al. [7] is valid for

1|ri|
∑K

k=1 Vk and is equivalent to the dominance rule that we introduce in Chapter 3

(ERD-schedule dominance, p. 34).

Detienne et al. [7] consider the minimization version of the stepwise objective function

defined at the beginning of Section 1.3.1 (p. 13), i.e. where wk,i represent costs. They

assume that w1,i = 0, i = 1, . . . , N . The model of Detienne et al. [7], called QTS≺,

follows.

(QTS≺)



..

..

..

..

..

..

..

..

..

..

min
∑
µ∈M

∑
q∈{1,...,λ}

wqu
µ
q (1.11)

s.t.
∑
µ∈M

∑
q∈Gi

uµq = 1, i ∈ J (1.12)

tµq ≥ t
µ
q−1 + pµσ(q)u

µ
q , µ ∈M, q ∈ {1, . . . , λ} (1.13)

tµq ≥ (rσ(q) + pσ(q)µ)uµq , µ ∈M, q ∈ {1, . . . , λ} (1.14)

tµq ≤ dq, µ ∈M, q ∈ {1, . . . , λ} (1.15)

uµq ∈ {0, 1}, µ ∈M, q ∈ {1, . . . , λ} (1.16)

tµq ≥ 0, µ ∈M, q ∈ {1, . . . , λ} (1.17)

where:

• M is the set of machines

• λ is the total number of occurrences, numbered w.r.t. the dominant order described

above.

• dq is the jump point associated with occurrence q (its “due date”)

• wq is the cost associated with occurrence q

• σ(q) denotes the job corresponding to the q-th occurrence

• pµσ(q) is the processing time of job σ(q) on machine µ

The digitization scheduling problem 17

• rσ(q) is the release date of job σ(q)

• Gi = {q ∈ {1, . . . , λ}|σ(q) = i} is the set of occurrences linked with job Ji

• uµq is equal to 1 if occurrence q is selected for machine µ, and to 0 otherwise

• tµq denotes the completion time of occurrence q on machine µ

As Detienne et al. [7] remark, the constants of constraints 1.13 and 1.14 degrade

the quality of the linear relaxation of the model, and yet this model cannot solve large

instances in reasonable time. In the Branch and Bound method that we present in

Chapter 3, we use a similar branching structure as in QTS≺ (since it relies on the same

dominant order), but we consider constructive bounds that allow fast results on big

instances.

Starting from QTS≺, we deduce a model for 1|ri|
∑K

k=1 Vk: QTS≺(
∑
Vk), where

each job Ji has K occurrences o1
i , . . . , o

K
i . Each occurrence oki is associated with delivery

date Dk, k = 1, . . . ,K. The dominant order on these occurrences is the same as for

Detienne et al. [7]: oki ≺ ok
′
j ⇔ k < k′ or (k = k′ and i < j).

(QTS≺(
∑
Vk))



..

..

..

..

..

..

..

..

..

..

..

..

max
∑

i∈{1,...,N}

∑
k∈{1,...,K}

(K − k + 1)uki (1.18)

s.t.
K∑
k=1

uki = 1, i ∈ {1, . . . , N} (1.19)

tk1 ≥ tk−1
N + p1u

k
1, k ∈ {2, . . . ,K} (1.20)

tki ≥ tki−1 + piu
k
i , i ∈ {2, . . . , N}, k ∈ {1, . . . ,K} (1.21)

tki ≥ (ri + pi)u
k
i , i ∈ {1, . . . , N}, k ∈ {1, . . . ,K} (1.22)

tki ≤ Dk, i ∈ {1, . . . , N}, k ∈ {1, . . . ,K} (1.23)

uki ∈ {0, 1}, i ∈ {1, . . . , N}, k ∈ {1, . . . ,K} (1.24)

tki ≥ 0, i ∈ {1, . . . , N}, k ∈ {1, . . . ,K} (1.25)

In order to provide a more efficient model, Detienne et al. [7] consider the following

property.

Property. Given a sequence of occurrences δ1, . . . , δn on a given machine, all the

occurrences meet their due dates if and only if: rσ(δq) +
∑l

j=q pσ(δj) ≤ dδl , q ∈ {1, . . . , n},
l ∈ {q, . . . , n}.

Hence, in the QTS≺ model, Constraints (1.13), (1.14), (1.15) and (1.17) are replaced

by constraint (1.26) below.

(rσ(q) + pµσ(q))u
µ
k +

l∑
j=q+1

pµσ(l)u
µ
l ≤ dl, µ ∈M, q ∈ {1, . . . , λ}, l ∈ {q, . . . , λ} (1.26)

18 The digitization scheduling problem

The obtained model, QTS≺MMKP , can be seen, as remarked by Detienne et al. [7],

as a Multiple-choice Multidimensional Knapsack Problem (MMKP) [17], where:

• each group of items represents one job,

• each item corresponds to one occurrence of a job,

• each resource corresponds to the available processing time between one release date

and one jump point.

Since this model has a very large number of constraints, Detienne et al. [7] solve it

with a constraint generation scheme, which solves, within the time limit of 1000 s, more

than 80% of the instances with up to 60 jobs, and more than 60% of the instances with

70 to 100 jobs.

Although the results of Detienne et al. [7] and of Sahin and Ahuja [27] are valid for

1|ri|
∑K

k=1 Vk, our contribution is to analyze the complexity of some problems dealing

with common stepwise functions and to propose dedicated exact and heuristic methods

based on some structural properties of the optimal solutions.

1.3.2 Other related objective functions

Finally, two other kinds of criteria are related to
∑
Vk, regarding the presence of a set

of common delivery or due dates. First, Hall et al. [12] study the class of problems

with fixed delivery dates. They consider several classical scheduling criteria, always

including the following variant: the cost of a job Ji depends on the earliest delivery date

occurring after the completion of Ji. In addition, complexity results are established for

several problems, with different criteria and machine configurations. Second, there exists

another class of problems related to the common due dates: the generalized due date

problem [13], where due dates are not related to the jobs. Instead, global due dates are

defined, and before each of them, one job must complete. Then, given a schedule, the

i-th scheduled job is related to the i-th due date, and its cost is computed in relation

to that due date, as for classical due dates. Complexity results have been established

by Hall et al. [13] for this class of problems. These two classes of problems differ from

1|ri|
∑K

k=1 Vk, as their payoffs are not cumulative with respect to the delivery dates.

1.4 Conclusion

In this chapter, we illustrated a real world digitization workflow issue. We modeled this

problem as a scheduling problem with a new criterion, involving common delivery dates

for the jobs. Each job has its own processing time and release date, and the objective is

to attain some target quantities (fixed by the client) of digitized books at each delivery

date, while maximizing the payoff of the manufacturer. This induces a cumulative aspect,

The digitization scheduling problem 19

since each job can be counted several times (once for each delivery date subsequent to

its completion time). The same objective function can alternatively be represented as a

sum of stepwise payoff functions associated to the jobs. We also presented a few works

dealing with job stepwise cost functions in the scheduling literature.

In the next chapter, we establish the complexity of the single machine problem, in

the general case and in some particular cases.

20 The digitization scheduling problem

Chapter 2
Complexity analysis for the single

machine problem

In this chapter, we establish the complexity of 1|ri|
∑K

k=1 Vk, for an arbitrary K and for

K = 2. We first prove the strong NP-hardness of 1|ri|
∑K

k=1 Vk (Section 2.1), and the

NP-hardness of the two delivery dates problem 1|ri|V1 + V2 (Section 2.2). Finally, in

Section 2.3 we present some polynomial cases, including the Single Delivery Date problem

1|ri|V (Section 2.3.2), whose resolution method is widely used in the next chapters.

Notations. Given a set of jobs J , we denote by p(J) its total processing time: p(J) =∑
Ji∈J pi. Given a sequence Γ of jobs (resp. a schedule S), J (Γ) (resp. J (S)) denotes the

set of the jobs of Γ (resp. S). Given a sequence Γ of jobs (resp. a (partial) schedule S), we

denote by p(Γ) (resp. p(S)) the total processing time p(J (Γ)) (resp. p(J (S))).

2.1 The multiple delivery dates problem

In order to prove the NP-hardness of problem 1|ri|
∑K

k=1 Vk, we prove the NP-completeness

of the corresponding decision problem, defined as follows.

MDD (Multiple Delivery Dates problem). Given a set of N jobs J1, . . . , JN ,

K delivery dates D1, . . . , DK , and a value V, does there exist a schedule S such that

v(S) ≥ V?

To prove the NP-completeness of MDD, we show that the 3-Partition problem, de-

fined as follows [10], reduces to MDD:

3-PARTITION. Given positive integers m, B, and a set of integers A = {a1, a2, . . . ,

a3m} such that
∑3m

i=1 ai = mB and B/4 < ai < B/2 for 1 ≤ i ≤ 3m, does there exist a

partition 〈A1, A2, . . . , Am〉 of A into 3-element sets such that, for each i,
∑

a∈Ai a = B?

22 2. Complexity analysis for the single machine problem

Before proving the NP-completeness of MDD, we need to introduce the following

definition.

Definition 1. In a schedule S, a straddling job Ji is a job such that Ci− pi < Dk < Ci,

for some k ∈ {1, . . . ,K}.

Theorem 1. MDD is unary NP-complete.

Proof. Given a feasible solution S for MDD, its payoff v(S) can be computed in O(N)

time, thus MDD ∈ NP .

We show that 3-Partition reduces to MDD. Suppose we are given an instance of

3-Partition, with m, B and A. The corresponding input to MDD is a set of N = 4m

jobs, a set of m delivery dates, and a value V = 2m(m+ 1).

The delivery dates are: Dj = j(3mB +B + 1), j ∈ {0, . . . ,m}.
We define two different kinds of jobs, with processing times and release dates specified

as follows. For each i ∈ {1, . . . , 3m}, job J̃i has a processing time of mB + ai, and its

release date is zero; for each j ∈ {1, . . . ,m}, job J j has a processing time of 1, and its

release date is Dj − 1.

We show that MDD has a solution with a payoff at least equal to V if and only if

the desired partition of A exists.

First, if there exists a partition 〈A1, A2, . . . , Am〉 of A, such that for each i,
∑

a∈Ai a =

B, then the following schedule σ is such that v(σ) = V (see Figure 2.1).

For each j ∈ {1, . . . ,m}:

• let Aj = {a1j , a2j , a3j}; then the three jobs J̃1j , J̃2j , J̃3j , of length mB+a1j , mB+

a2j , mB+a3j respectively, are scheduled from Dj−1 to Dj−1 +(3m+1)B = Dj−1.

• the job J j is scheduled from Dj − 1 to Dj .

Dj−1

J̃1j J̃2j J̃3j

Djrj

1

Jj

(3m+ 1)B

Figure 2.1: Schedule σ between Dj−1 and Dj , j = 1, . . . ,m.

In schedule σ, 4 jobs are executed between each pair of consecutive delivery dates.

Hence, v(σ) = 4(1 + 2 + · · ·+m) = 4m(m+ 1)/2 = V.

Conversely, assume that there exists a schedule σ′ such that v(σ′) ≥ V.

Let us show that an upper bound on the payoff earned by the J̃-type jobs in σ′ is

3m(m + 1)/2. For this purpose, let us consider all the partial schedules in which the

2. Complexity analysis for the single machine problem 23

J̃-type jobs are scheduled as soon as possible, i.e. starting from 0 and completing at

Dm −m, without idle times (we do not consider J-type jobs for now), as in Figure 2.2.

Notice that the processing time of each J̃-type job is strictly greater than mB+B/4.

Then, in each of the partial schedules defined above, we have: for every j ∈ {0, . . . ,m−1},
the (3j+1)-th job of the schedule completes after (3j+1)(mB+B/4) = 3jmB+3jB/4+

mB + B/4 > 3jmB + jB + j = Dj . Hence, the (3j + 2)-th and (3j + 3)-th jobs also

complete after Dj . Therefore, the payoff of each of these three jobs is at most (m− j).
Hence, the total payoff is at most

∑m−1
j=0 3(m− j) = 3m(m+ 1)/2.

D1 D2 Dm−1 Dm

m

4 7 3m− 21

D0 = 0

Figure 2.2: Computing an upper bound on the payoff earned by the J̃-type jobs. The
(3j + 1)-th jobs are designed by their rank in the schedule.

However, since v(σ′) ≥ 2m(m+ 1), a payoff of at least m(m+ 1)/2 is earned by the

J-type jobs in σ′. The only way for these jobs to earn this payoff, is to schedule one of

them in each interval [Dj − 1, Dj], which yields a payoff of exactly m(m+ 1)/2. Hence,

for every j ∈ {1, . . . ,m}, the job J j is scheduled from Dj − 1 to Dj in σ′

We deduce that the J̃-type jobs are scheduled in the intervals [Dj−1, Dj − 1] in σ′.

More precisely, exactly three J̃-type jobs are scheduled in each interval I ′j = [Dj−1, Dj−
1], j = 1, . . . ,m. Indeed, their processing time is strictly greater than mB, therefore at

most three of them can be scheduled in each interval I ′j (of length (3m + 1)B). Hence,

exactly three jobs are scheduled in each interval I ′j , otherwise v(σ′) < V.

Each J̃-type job can be seen as composed of two parts: the first of length mB, and

the second of length ai. Since three J̃-type jobs are scheduled in I ′1, their first parts

occupy 3mB time slots. The remaining slots of I ′1, of total length B, are occupied by

the second parts of J̃-type jobs, each one being of length ai. The same reasoning holds

for every I ′j , j = 1, . . . ,m. Therefore, the second parts of J̃-type jobs, each one of length

ai, are partitioned into m groups, each one having a total length of B, which constitutes

a solution to 3-Partition.

2.2 The two delivery dates problem

We consider the problem of 1|ri|
∑K

k=1 Vk with K = 2, i.e. 1|ri|V1 +V2. Its corresponding

decision problem is the following:

2DD (Two Delivery Dates problem). Given a collection of N jobs: {J1, . . . , JN},
two delivery dates: D1, D2, and a value V, does there exist a schedule S such that

v(S) ≥ V ?

24 2. Complexity analysis for the single machine problem

We show a polynomial reduction from the Partition problem to 2DD. A definition of

the Partition problem follows.

Partition. Given n positive integers s1, . . . , sn, does there exist L′ ⊂ L = {1, . . . , n}
such that:

∑
i∈L′ si =

∑
i∈L\L′ si ?

Theorem 2. 2DD is NP-complete.

Proof. Given a feasible solution S for 2DD, its payoff v(S) can be computed in O(N)

time, thus 2DD ∈ NP .

We show that Partition reduces to 2DD. Suppose we are given an instance of Parti-

tion, with n positive integers s1, . . . , sn. Let b = 1
2

∑n
i=1 si. The corresponding input of

2DD is a set of 3n jobs, two delivery dates and a value V = 5n.

There are three different kinds of jobs, with processing times and release dates spec-

ified as follows. For each i ∈ {1, . . . , n}:

• job J̃i has a processing time of nb+ si, and its release date is zero,

• job Ĵi has a processing time of nb, and its release date is zero,

• job J i has a processing time of 1, and its release date is b(n2 + 1).

The delivery dates are: D1 = b(n2 + 1) + n and D2 = D1 + b(n2 + 1).

We now show that 2DD has a solution of value at least V if and only if the desired

partition of s1, . . . , sn exists.

First, if Partition has a solution, the solution is represented by a partition of L in

two sets L′ and L\L′. Let q be the cardinality of L′. The cardinality of L\L′ is then

n− q.
Let σ be the following schedule (see Figure 2.3):

1. The q jobs of the set {J̃i|i ∈ L′} are executed from time zero to b(qn+ 1)

2. The n− q jobs of the set {Ĵi|i ∈ L\L′} are executed from b(qn+ 1) to b(n2 + 1)

3. The n jobs J1, . . . , Jn are executed from b(n2 + 1) to D1

4. The n− q jobs {J̃i|i ∈ L\L′} are executed from D1 to D1 + (n− q)nb+ b

5. The q jobs of the set {Ĵi|i ∈ L′} are executed from D1 + (n− q)nb+ b to D2

Therefore, in schedule σ, q + (n − q) + n = 2n jobs are executed before D1, and

(n− q) + q = n jobs complete into I2 =]D1, D2]. Hence, v(σ) = 5n.

Conversely, suppose there exists a schedule σ′ whose payoff is at least 5n. We first

prove that, in σ′, 2n jobs are executed before D1. Indeed, if less than 2n jobs are

2. Complexity analysis for the single machine problem 25

{J̃i|i∈L\L′}︷ ︸︸ ︷{J1,...,Jn}︷︸︸︷{Ĵi|i∈L\L′}︷ ︸︸ ︷{J̃i|i∈L′}︷ ︸︸ ︷
D1 D20

nb(qn+ 1) nb(n− q)

b(n2 + 1)

nb(n− q) + b qnb

{Ĵi|i∈L′}︷ ︸︸ ︷

b(n2 + 1)

Figure 2.3: Schedule σ.

executed before D1, then v(σ′) is less than 5n (because of the total number of jobs). At

most n J̃-type and Ĵ-type jobs can be processed before D1, since the processing time

of each of these jobs is at least equal to nb. Hence, the n jobs J1, . . . , Jn must all be

executed before D1 (in the interval [b(n2 + 1), D1]), otherwise it would be impossible

to execute 2n jobs before D1. Therefore, n J̃-type and Ĵ-type jobs are executed in the

interval [0, b(n2 + 1)].

So, in schedule σ′, to reach the minimal payoff of 5n, exactly n jobs are processed

in the interval I ′1 = [0, b(n2 + 1)] and n jobs in the interval I2 =]D1, D2]. The length of

each of the intervals I ′1 and I2 is b(n2 + 1). Moreover, the 2n jobs scheduled into these

intervals are all the J̃-type and Ĵ-type jobs, whose processing times are at least equal to

nb. Hence, each of them can be seen as composed of two parts: a first part of length nb,

and a second part whose length is 0 for Ĵ-type jobs and si for J̃-type jobs. Since n jobs

are executed in I ′1, n2b time slots are occupied by the first parts of these n jobs. The

remaining portion of I ′1, which is of length b, is occupied by the second parts of J̃-type

jobs, each of length si. The same reasoning holds for I2. Therefore, the second parts

of the J̃-type jobs, each of length si, are partitioned in two groups, each of total length

equal to b, which constitutes a solution to Partition.

In Chapter 4 we present a pseudopolynomial time algorithm for 1|ri|V1 +V2, proving

thus that 1|ri|V1 + V2 is weakly NP-hard.

2.3 Polynomial cases

We first introduce three simple polynomial cases, and then the Single Delivery Date

problem 1|ri|V .

2.3.1 Relaxations of the general problem

Three polynomial cases resulting from different relaxations of the general problem 1|ri|
∑K

k=1 Vk
have been identified.

1. The problem with no release date 1||
∑K

k=1 Vk can be easily shown to be optimally

solved by sequencing the jobs in a nondecreasing order of their processing times

(SPT rule) [15].

26 2. Complexity analysis for the single machine problem

2. The preemptive case 1|ri, pmtn|
∑K

k=1 Vk can be optimally solved using Shortest

Remaining Processing Time rule (SRPT), which is also called Modified Smith’s

rule [2]: at each release time or completion time of a job, the available job with

the smallest remaining processing time is scheduled. This can be proved with the

same arguments used to show that applying SRPT [2] yields an optimal solution

for the problem 1|rj , pmtn|
∑
Cj . Therefore, the problem 1|ri, pmtn|

∑K
k=1 Vk can

be solved in O(NlogN) time.

3. We consider the case where all the jobs have the same processing time 1|ri, pi =

p|
∑K

k=1 Vk.

Definition 2. A “left-shifted” schedule is such that each job starts as soon as

possible, either at its release date or at the completion time of the preceding job in

the schedule.1

Hence, to represent a left-shifted schedule S it is sufficient to provide the ordered

sequence of all the jobs in S.

Proposition 1. A left-shifted schedule in which jobs are ordered w.r.t. a nonde-

creasing order of their release dates is optimal for the identical processing times

problem 1|ri, pi = p|
∑K

k=1 Vk.

Proof. In the following proof, we will only consider left-shifted schedules. Indeed,

every feasible schedule can be transformed into a left-shifted schedule inO(N) time,

without decreasing its payoff. Let SR be a schedule in which jobs are ordered w.r.t.

a nondecreasing order of their release dates. We show that every feasible schedule

S can be transformed into SR, and that v(SR) ≥ v(S). We renumber the jobs w.r.t.

their order in S: J1, · · · , JN . If there exists a job Ji such that Ci(SR) > Ci+1(SR),

then by swapping Ji and Ji+1 in S, the total payoff will not decrease. Indeed, if

ri = ri+1, the payoff does not change, since pi = pi+1. Otherwise, if ri > ri+1,

the payoff can remain unchanged, or can possibly increase if Ci(S) − pi = ri and

[ri−1, ri] is an idle time. Iterating this process, we get, after a polynomial number

of steps, the schedule SR such that v(SR) ≥ v(S). Since this result holds for every

feasible schedule S, it also holds for every optimal schedule. Hence the proposition

holds.

Proposition 1 leads to an optimal algorithm for problem 1|ri, pi = p|
∑K

k=1 Vk in

O(NlogN) time.

1Such a schedule is also called a non-delay schedule.

2. Complexity analysis for the single machine problem 27

2.3.2 The single delivery date problem

The problem with a single delivery date 1|ri|V is equivalent to the problem 1|ri, di =

d|
∑
Ui. In order to solve 1|ri|V , we introduce the Single Delivery Date algorithm (SDD-

algorithm) that solves the problem SDDI , defined below. The SDD-algorithm is widely

used to establish the results of the next chapters.

Notation. Let D be the unique delivery date of 1|ri|V .

Definition 3. SDDI : given an interval [Ilow, Iup] and a set of jobs J , a feasible so-

lution is a (partial) schedule S where each job Ji ∈ J (S) ⊆ J must start at or after

max(ri, Ilow) and complete at or before Iup. An optimal solution is a feasible solution

with the maximum number of jobs in the interval [Ilow, Iup].

As SDDI is defined on a finite horizon, there might not exist feasible schedules as

defined in Chapter 1 (p. 7) (i.e. that schedule all the jobs of the instance). Hence, in

this section, for the sake of simplicity, we call schedule every feasible (partial) schedule

of SDDI .

Notice that 1|ri|V is equivalent to SDDI when Ilow = 0, Iup = D and J = J all.
Before presenting the SDD-algorithm, let us introduce two lemmas.

Lemma 1. There exists an optimal schedule for SDDI such that the last scheduled job

completes at time Iup.

Proof. Let S∗ be an optimal schedule for SDDI such that the last scheduled job Jl
does not complete at time Iup. We can right-shift Jl such that it completes at time Iup
(see Figures 2.4a and 2.4b). The obtained schedule schedules as many jobs as S∗ into

[Ilow, Iup].

Lemma 2. There exists an optimal schedule for SDDI such that there is no idle time

between any pair of consecutive scheduled jobs.

Proof. Let S∗ be an optimal schedule such that there are idle times between pairs of

consecutive scheduled jobs. Without moving the last job, the other jobs can be right-

shifted in order to avoid idle times (see Figures 2.4b and 2.4c).

Clearly, there exists an optimal schedule for SDDI such that the last scheduled job

completes at time Iup and there is no idle time between any pair of consecutive scheduled

jobs (see Figure 2.4). Therefore, a feasible schedule for SDDI can be represented as a

sequence of jobs.

The SDD-algorithm is a polynomial time algorithm solving SDDI , depicted in Algo-

rithm 1. It is worth noting that it is close to the Moore-Hodgson algorithm [21] for solving

1||
∑
Ui. It is also a particular case of the algorithm of Kise et al. [18] for the problem

28 2. Complexity analysis for the single machine problem

Ilow Iup

J1 J2 J3 J4

(a) A schedule S.

Ilow Iup

J1 J2 J3 J4

(b) Partial schedule S′, obtained from S by right-shifting J4 in order to make it complete at Iup.

Ilow Iup

J4J3J2J1

(c) Partial schedule S′′, obtained from S′ by right-shifting J1, J2, J3 in such a way that S′′ is a
block.

Figure 2.4: Illustration of properties of Lemmas 1 and 2.

1|ri|
∑
Ui where release dates and due dates are agreeable (i.e. where ri ≤ rj ⇒ di ≤ dj

for each pair of jobs Ji, Jj). Kise et al. [18] provide an O(N2) algorithm, which can be

directly applied to the problem 1|ri|V . The algorithm of Kise et al. [18] is based on the

same principle as the Moore-Hodgson algorithm, with the difference that the choice of

the job to be removed from the current sequence is made in O(N) (by considering all the

jobs), while Moore-Hodgson algorithm does it in O(logN) (by extracting the job with

the greatest processing time from a heap). Hence, by adapting the algorithm of Kise et

al. [18] for 1|ri|V in order to reduce its complexity, we obtain the SDD-algorithm.

Notations. We will use the following notations, for any sequence Γ of jobs, and any job

Jq:

• ∀Jq 6∈ J (Γ), Jq.Γ denotes the sequence obtained by prepending Jq to Γ.

• ∀Jq ∈ J (Γ), Γ\Jq denotes the sequence obtained by removing Jq from Γ, leaving all

the other jobs in the order given by Γ.

• sched(Γ) denotes the schedule that schedules the jobs of Γ, in the order given by Γ,

without idle times and with the last job completing at Iup.

In the following, the jobs of J (input of SDDI) are reindexed from i|J | to i1 w.r.t.

ERD order, i.e. Ji|J | ≺ERD · · · ≺ERD Ji1 .

2. Complexity analysis for the single machine problem 29

At each iteration m (m = 1, . . . , |J |), the SDD-algorithm constructs a sequence

Γim of jobs such that sched(Γim) is feasible (i.e. each job Jij ∈ Γim is scheduled into

[max(rij , Ilow), Iup]). Notice that when Ilow = 0, it is only necessary to check whether

release dates are satisfied. Moreover, in each sequence Γim , m = 1, . . . , |J |, the jobs

are ordered w.r.t. ERD order. At the end of the algorithm, sched(Γi|J |) is an optimal

schedule.

Input: J , Ilow, Iup
Output: S

1 Γi0 ← ∅, t← Iup
2 for m = 1 to |J | do
3 Γim ← Jim .Γim−1

4 t← t− pim
5 if t < max{rim , Ilow} then
6 q ← min{l | pil = max{pij |Jij ∈ J (Γim)}}
7 Γim ← Γim\Jiq
8 t← t+ piq

9 return S ← sched(Γi|J |)

Algorithm 1: SDD-algorithm.

An example of the execution of the algorithm on an instance is given in Figure 2.5.

Theorem 3. The SDD-algorithm solves optimally SDDI .

Proof. The arguments for the proof of correctness are similar to those for the Moore-

Hodgson algorithm [23]. We give a sketch of proof below.

Let us first show that, at the end of iteration m (m ∈ {1, . . . , |J |}), sched(Γim) is

feasible (i.e. all its jobs are scheduled into [Ilow, Iup], and satisfy their release dates). Γi0
is feasible since it is an empty schedule. By induction on m, suppose that Γim is feasible.

If Jim+1 .Γim is feasible, the algorithm constructs Γim+1 as Jim+1 .Γim . Otherwise, the

algorithm constructs Γim+1 as Jim+1 .Γim deprived of its longest job Jiq . Hence, Jim+1

starts piq − pim+1 time units after the starting time of Γim (piq − pim+1 ≥ 0). Moreover,

the starting time of Γim is at least rim+1 , since all the jobs of Γim have release dates at

least equal to rim+1 (because of the ERD-order). Hence, Jim+1 starts not earlier than

rim+1 . The other jobs of Γim+1 do not start earlier as they started in Γim : the jobs

{Jij |j > q} start at the same time, and the jobs {Jij |j < q} start piq time units later.

We show next that Γi|J | is optimal.

Let Γm be the sequence Jim , . . . , Ji1 , m = 1, . . . , |J |. A subsequence E of Γm is

called eligible if sched(E) is feasible. Consider an eligible subsequence of Γm with the

maximum number of jobs, and let Nm be its number of jobs. Hence, N|J | is the value

of an optimal solution of SDDI .

Notice that Γim is an eligible subsequence of Γm. In order to prove the optimality of

Γi|J | (i.e. that Γi|J | has N|J | jobs), we show by induction on m that Γim has Nm jobs,

30 2. Complexity analysis for the single machine problem

ri4 ri3 ri2 ri1ri5 Ilow

Iup
ri4 ri3 ri2 ri1ri5 Ilow

Iup
ri4 ri3 ri2 ri1r1 Ilow

Iup
ri4 ri3 ri2 ri1ri5 Ilow

Iup
ri4 ri3 ri2 ri1ri5 Ilow

Iup

Iup
ri4 ri3 ri2 ri1ri5 Ilow

Iup
ri4 ri3 ri2 ri1ri5 Ilow

sched(Γi4)

sched(Γi5)

sched(Γi1)

sched(Γi2)

sched(Γi3)

I

Ji1

Ji1

Ji1

Ji1

Ji1

Ji1

Ji1

Ji2

Ji2

Ji2

Ji2

Ji3

Ji3

Ji3

Ji4

Ji4

Ji3Ji4

Ji3Ji4Ji5

Ji5

Figure 2.5: Execution of SDD-algorithm on an instance I.

and has the shortest total processing time among the eligible subsequences of Γm with

Nm jobs.

First, let us show that Γi1 has N1 jobs, and that its total processing time is minimal.

Γi1 has N1 jobs, since if Ji1 can start at Iup − pi1 , the algorithm constructs Γi1 as the

sequence containing only Ji1 , otherwise Γi1 is empty. Clearly, the processing time of Γi1
is minimal, as Γ1 only contains job Ji1 .

The induction hypothesis is thus that Γim has Nm jobs, and has the shortest total

processing time among the eligible subsequences of Γm with Nm jobs. We show next

that Γim+1 has Nm+1 jobs, and has the shortest total processing time among the eligible

subsequences of Γm+1 with Nm+1 jobs.

Let us consider the first step of the construction of Γim+1 at iteration m + 1: job

Jim+1 is prepended to Γim . There are two cases to be considered.

Case 1. Jim+1 is processed into [max(rim+1 , Ilow), Iup] in sched(Jim+1 .Γim).

2. Complexity analysis for the single machine problem 31

We have Nm+1 = Nm + 1, since |Jim+1 .Γim | = Nm + 1 and since Nm+1 ≤ Nm + 1 by

definition of Nm and Nm+1.

Moreover, every eligible subsequence of Γm+1 that contains Nm+1 jobs, includes job

Jim+1 . Otherwise, it would imply that there exists an eligible subsequence of Γm with

Nm+1 jobs, which is in contradiction with the inductive hypothesis. Then, to construct

Γim+1 , we must add job Jim+1 to an eligible subsequence of Γm with Nm jobs. This

eligible subsequence must have a minimal processing time, in order to have p(Γim+1)

minimal. All these conditions are satisfied by Γim , by inductive hypothesis. Therefore,

Γim+1 = Jim .Γim .

Case 2. Jim+1 is not processed into [max(rim+1 , Ilow), Iup] in sched(Jim+1 .Γim).

We have Nm+1 = Nm. Indeed, Jim+1 cannot belong to an eligible subsequence E of

Γm+1 such that |E| = Nm + 1, because by adding Jim+1 to Γim (which contains Nm jobs

and has the shortest processing time), Jim+1 starts earlier than max(rim+1 , Ilow). Thus,

Nm is the maximal number of jobs of an eligible subsequence of Γm+1.

In order to guarantee the minimality of the total processing time, Γim+1 must contain

the Nm shortest jobs of J (Γim)∪{Jim+1}. This is done by the algorithm when prepend-

ing Jim+1 to Γim and then removing the longest job of the obtained sequence. Hence,

the algorithm constructs an eligible subsequence Γim+1 with Nm+1 jobs and minimal

processing time.

The SDD-algorithm runs in O(NlogN) if a heap is used for the search of the job

with the largest processing time.

We introduce now some properties of the SDD-algorithm that will be useful in the

next chapters.

Property 1. Given a set J of jobs and an interval [Ilow, Iup], the SDD-algorithm pro-

duces a schedule that schedules the maximal number N(J , Ilow, Iup) of jobs of J between

Ilow and Iup.

Property 2. Given a set J of jobs and an interval [Ilow, Iup], the SDD-algorithm pro-

duces a schedule with the shortest processing time p(J , Ilow, Iup) among all the feasible

schedules of N(J , Ilow, Iup) jobs of J between Ilow and Iup.

The arguments of the proofs of Properties 1 and 2 are similar to those of the proof

of Theorem 3.

Property 3. The SDD-algorithm produces a partial schedule where the jobs are ordered

w.r.t. ERD order.

Property 4. When SDD-algorithm removes a job from the current sequence, it chooses

the job with the longest processing time, and breaks ties by choosing the job with the high-

est ranking in ERD order (i.e. that follows the other jobs with same longest processing

time, in ERD order).

Properties 3 and 4 are true by construction.

32 2. Complexity analysis for the single machine problem

2.4 Conclusion

In this chapter, we showed that the general single machine problem is strongly NP-hard.

Moreover, we showed that the single machine problem with two delivery dates is NP-

hard (more precisely, the pseudopolynomial algorithm provided in Chapter 4 establishes

its weak NP-hardness). Finally, we identified some polynomial cases: among them, the

single delivery date case is solved with the SDD algorithm, which is also widely used in

the following chapters to establish bounds on the general single machine problem.

In the next chapter, we present a Branch and Bound method based on the structural

properties of the problem: dominance rules, dedicated bounds and pruning rules.

Chapter 3
Exact method for the single machine

problem: Branch and Bound

In order to solve the problem 1|ri|
∑K

k=1 Vk in the general case, we present in the current

chapter a Branch and Bound method based on the structural properties of the problem.

We first introduce the dominance rules (Section 3.1) that are the backbone of the Branch

and Bound structure. This structure is based on the branching rule described in Sec-

tion 3.2. Algorithms for computing lower and upper bounds are described in Section 3.3,

while in Section 3.4 some additional pruning rules are presented. Finally, in Section 3.5

we show how to generate random instances and report some numerical results of the

Branch and Bound on the generated instances.

Let us first introduce some notations.

Notations. Any (partial) schedule S of 1|ri|
∑
Vk can be split into K + 1 subschedules

S1, . . . , SK+1; Sk being the subschedule of the jobs completing into Ik =]Dk−1, Dk], k =

1, . . . ,K + 1. Thus, S can be expressed as S = S1.S2.SK+1, where Si.Sj denotes the

concatenation of subschedule Si with subschedule Sj (assuming that J (Si) ∩ J (Sj) = ∅).

Moreover, for any (partial) schedule S, we denote by Cmax(Sk) (resp. B(Sk)) the

completion time of the last job of Sk (resp. the starting time of the first job of Sk),

k = 1, . . . ,K + 1. If Sk is empty, we set Cmax(Sk) = B(Sk) = Dk−1 (see Figure 3.1).

Finally, for any job Jl and any schedule S, we denote by bl(S) the starting time of job

Jl in schedule S, i.e. bl(S) = Cl(S)− pl.

3.1 Dominance rules

The following propositions define the dominance rules on which is based the Branch and

Bound structure.

34 3. Exact method for the single machine problem: Branch and Bound

D1 D2

0

D3

B(S2) Cmax(S2)B(S1) Cmax(S1)

B(S3) = Cmax(S3)

S

Figure 3.1: Cmax(Sk) and B(Sk), k = 1, . . . , 3.

Definition 4. A feasible schedule S = S1.S2.SK+1 such that all the jobs of Sk
(k = 1, . . . ,K+1) are scheduled in ERD order is called an ERD-schedule (see Figures 3.2

and 3.3).

0 r1 r2 r3 r4
D1 D2 D3

J1 J2 J4 J3

Figure 3.2: An ERD-schedule.

0 r1 r2 r3 r4
D1 D2 D3

J1 J4 J3 J2

Figure 3.3: This is not an ERD-schedule, since J2 and J3 both complete in I3, but they
are not scheduled in ERD order (r2 < r3).

Proposition 2. There exists an ERD-schedule that is an optimal solution of 1|ri|
∑
Vk.

Proof. We first show that every feasible schedule S = S1.S2.SK+1 can be modified

in order to obtain an ERD-schedule SR such that v(SR) ≥ v(S). Let Ji and Jj be

two consecutive jobs in S, such that Dk−1 < Ci(S) < Cj(S) ≤ Dk, for some k ∈
{1, . . . ,K + 1}, and such that Jj ≺ERD Ji. A schedule S′ can be obtained starting from

S, by simply swapping Ji and Jj , such that Ci(S
′) = Cj(S), Cj(S

′) = Ci(S) − pi + pj ,

and Cl(S
′) = Cl(S) for every l ∈ {1, . . . , N}\{i, j} (see Figure 3.4).

Let us show that S′ is feasible. In S′, Ji and Jj are both scheduled in the interval

[bi(S), Cj(S)], whose length is at least pi + pj . Hence, the starting time of each of the

other jobs is the same in S and in S′. Moreover, Ji and Jj meet their release dates in

S′, since rj ≤ ri ≤ bi(S) and ri ≤ bi(S) < Cj(S)− pi.
We show now that v(S′) ≥ v(S). Let us consider the payoffs of Ji and Jj in both

schedules S and S′. vS′(Ji) = vS(Jj) since Ci(S
′) = Cj(S). vS′(Jj) ≥ vS(Jj) since

3. Exact method for the single machine problem: Branch and Bound 35

Cj(S
′) < Cj(S). Therefore, vS′(Ji) + vS′(Jj) ≥ vS(Ji) + vS(Jj). Notice that vS′(Jj) >

vS(Jj) implies that Jj belongs to S′q, for some q ∈ {1, . . . , k − 1} (see Figure 3.5).

Iterating this process, we get after a finite number of steps an ERD-schedule SR. In

particular, this modification process can be applied to any optimal schedule. Hence the

result holds.

rj ri

JjJi

DkDk−1

rj ri

DkDk−1

JiJj

C′i C′j

S

S′

C′j C′i

Figure 3.4: An example of swap of Ji and Jj where v(S′) = v(S).

DkDk−1

rj ri

Ji Jj

DkDk−1

rj ri

JiJjS′

S

C′i C
′
j

C′iC′j

Figure 3.5: An example of swap of Ji and Jj where v(S′) > v(S).

Proposition 3. There exists an optimal schedule for 1|ri|
∑
Vk where, for k ∈ {2, . . . ,K},

Sk is a block.

Proof. Let S = S1.S2.SK+1 be a feasible schedule where there are idle times in Sk,

for some k ∈ {2, . . . ,K}. Without modifying Cmax(Sk), we can right-shift the jobs of

Sk (except the last one) until there are no more idle times in Sk (see Figure 3.6). We

obtain a solution with payoff v(S), since for every l ∈ {1, . . . ,K}\{k}, the completion

times of the jobs of Sl are unchanged, and the jobs of Sk still complete in the interval

Ik. In particular, this applies for any optimal schedule. Hence the result holds.

36 3. Exact method for the single machine problem: Branch and Bound

DkDk−1

Cmax(Sk)

DkDk−1

Cmax(Sk)

idle times
Sk without

Sk with
idle times

Figure 3.6: Example for Proposition 3.

Obviously, there exists an optimal schedule S∗ = S∗1 .S
∗
2S

∗
K+1 that is an ERD-

schedule where for all k ∈ {2, . . . ,K} S∗k is a block.

3.2 Branching rule

A Branch and Bound method is an enumerative algorithm that explores the feasible

solutions of a problem by constructing them iteratively by the means of a tree [3]. We

develop a Branch and Bound algorithm where each node of the tree represents a (partial)

schedule. The root node represents the empty schedule, i.e. where no jobs are scheduled;

the leaves of the tree represent complete schedules; while all the other nodes represent

partial schedules. Each node na of the tree, representing a (partial) schedule Sa, is

obtained from its father node nf(a) (representing a (partial) schedule Sf(a)), by adding

a job to Sf(a), thus obtaining Sa. Since there exists an optimal schedule that is an

ERD-schedule, the jobs will be considered in the ERD order. Hence, for the sake of

readability, the jobs are, from now on, reindexed in ERD order, thus obtaining after

reindexation: J1 ≺ERD J2 ≺ERD . . . ≺ERD JN . We call depth of a node the number

of its predecessors (the depth of the root node is 0). Then, the children of a node na

of depth i are obtained by inserting job Ji+1 into Sa. Ji+1 can be inserted into Sa

at different positions (described below), hence na has a child node for each of these

positions. Let us describe precisely these positions. Notice that Sa schedules the jobs

J1, . . . , Ji, which all precede Ji+1 in ERD order, and that when Ji+1 is inserted into Sa,

it completes into some interval Ik, k = 1, . . . ,K+1. Hence, Ji+1 must be scheduled after

the jobs of Sa that complete into Ik, in order to maintain the ERD-schedule structure.

Therefore, choosing the position of Ji+1 in the schedule amounts to simply choosing in

which interval Ik (k = 1, . . . ,K + 1) Ji+1 completes. The structure of the Branch and

Bound tree is illustrated in Figure 3.7.

When Ji+1 is added to Sa in order to complete into Ik, Ji+1 is always scheduled as

3. Exact method for the single machine problem: Branch and Bound 37

Root node (empty schedule)

C1 ∈ I1 C1 ∈ IK+1
C1 ∈ I2

C2 ∈ I1 C2 ∈ I2 C2 ∈ IK+1

CN ∈ IK+1CN ∈ I2CN ∈ I1CN ∈ I2CN ∈ I1
CN ∈ IK+1

Figure 3.7: Structure of the Branch and Bound tree.

soon as possible after the jobs already completing into Ik (see Figure 3.8). Moreover, if

the addition of Ji+1 induces an idle time between Ji+1 and the jobs of Sa that complete

into Ik, these jobs are right-shifted (as described in the proof of Proposition 3, p. 35), in

order for Sk to be a block (see Figure 3.8b). Notice that the insertion of Ji+1 into Sak may

require right-shifting the jobs of Sak′ , k
′ > k, as shown in Figure 3.8c. However, these

right-shiftings are only allowed if they do not decrease the payoff of the right-shifted

jobs, i.e. all the jobs of Sak′ , k
′ > k, must still complete into Ik′ .

For some intervals Ik, k = 1, . . . ,K, Ji+1 cannot be inserted into Sak . In this case,

no node is added to the search tree. Figure 3.9 illustrates some examples of these cases.

Nonetheless, any job Ji+1 can always be inserted into SaK+1. Therefore, each node of the

tree has at least one child node and at most K + 1 children nodes (one for each interval

Ik, k = 1, . . . ,K + 1).

The structure of the tree ensures that every ERD-schedule is explored, and among

them there is at least an optimal schedule, as proven in Section 3.1. A complete example

of a Branch and Bound tree is illustrated in Figure 3.10 for a small instance.

The choice of this branching rule will be justified after presenting the computation

of the bounds (p. 53).

38 3. Exact method for the single machine problem: Branch and Bound

������
������
������

������
������
������

������
������
������

������
������
������

Dk

ri+1

Dk−1

Ji+1

Dk

ri+1

Dk−1

Cmax(Sa
k)

Sa
k

Sa
k after

insertion of Ji+1

(a) Cmax(Sak) ≥ ri+1.

������
������
������

������
������
������

������
������
������

������
������
������

������
������
������
������

DkDk−1

ri+1

DkDk−1

Ji+1

ri+1

DkDk−1

Ji+1

ri+1

Cmax(Sa
k)

of Ji+1

Insertion

Sa
k

Block
restored

(b) Cmax(Sak) < ri+1.

������
������
������
������

�������
�������
�������

�������
�������
�������

������
������
������

������
������
������

������
������
������
������

DkDk−1 Dk+1

ri+1

DkDk−1 Dk+1

ri+1

Ji+1

Cmax(Sa
k)

B(Sa
k+1)

of Ji+1

Insertion

Sa
k

(c) max(Cmax(Sak), ri+1) + pi+1 > B(Sak+1).

Figure 3.8: Different cases when adding job Ji+1 to Sa.

�������
�������
�������

�������
�������
�������

DkDk−1

ri+1

Cmax(S
a
k)

(a) ri+1 ≥ Dk.

�������
�������
�������

�������
�������
�������

DkDk−1

ri+1 ri+1 + pi+1

Cmax(S
a
k)

(b) ri+1 + pi+1 > Dk.

�������
�������
�������

�������
�������
�������

������������
������������
������������

������������
������������
������������

Dk−1

ri+1

Dk+1Dk
Cmax(S

a
k) + pi+1

B(Sa
k+1)

Cmax(S
a
k)

Cmax(S
a
k+1)

(c) max(Cmax(Sak), ri+1) + pi+1 −B(Sak+1) > Dk+1 − Cmax(Sak+1).

Figure 3.9: Some cases where job Ji+1 cannot be added to Sa, while completing into Ik.

3. Exact method for the single machine problem: Branch and Bound 39

D
e
p
th

2 

..

D
e
p
th

1 

................

D
e
p
th

0 

................

0
D

1
D

2
r
2

r
1

0
D

1
D

2
r
2

r
1

0
D

1
D

2
r
2

r
1

0
D

1
D

2
r
2

r
1

0
D

1
D

2
r
2

r
1

0
D

1
D

2
r
2

r
1

0
D

1
D

2
r
2

r
1

0
D

1
D

2
r
2

r
1

0
D

1
D

2
r
2

r
1

0
D

1
D

2
r
2

r
1

0
D

1
D

2
r
2

r
1

0
D

1
D

2
r
2

r
1

0
D

1
D

2
r
2

r
1

C
1
∈
I
1

C
2
∈
I
1

C
2
∈
I
2

C
1
∈
I
2

C
2
∈
I
1

C
2
∈
I
2

C
1
∈
I
3

C
2
∈
I
2

C
2
∈
I
1

C
2
∈
I
3

C
2
∈
I
3

C
2
∈
I
3

J
1

J
1

J
1

J
1

J
1

J
1

J
1

J
1

J
2

J
1

J
1

J
1

J
1

J
2

J
2

J
2

J
2

J
2

J
2

J
2

J
2

J
1

J
2

Figure 3.10: Example of Branch and Bound tree.

40 3. Exact method for the single machine problem: Branch and Bound

3.3 Bounds

We have seen in the previous section the structure of the Branch and Bound tree, which

enables the exploration of every feasible ERD-schedule. However, in order to find more

quickly an optimal schedule, we can prune some branches of the tree when we are sure

that they are not useful to find an optimal schedule. For this purpose, each time we

create a node na in the tree, we compute an upper bound u bound(Sa) on the payoffs

of the schedules that can be obtained by completing the partial schedule Sa associated

to na. Equivalently, u bound(Sa) is an upper bound on the payoffs of the schedules

associated to the descendant nodes of na. This way, if a feasible schedule σ with payoff

v(σ) ≥ u bound(Sa) is known, node na does not need to be developed. Indeed, it will

not lead to the construction of a better solution than σ. Therefore, na is pruned. In

order to perform this kind of pruning, a lower bound on the optimal payoff is updated

during the algorithm. At the beginning, an initial lower bound is computed. The payoff

of any feasible schedule is a lower bound on the optimal payoff. Afterwards, each time

a feasible schedule whose payoff is greater than the current lower bound is constructed,

the lower bound is updated to this greater payoff. Therefore, we need to calculate an

initial lower bound, and an upper bound at each node of the search tree.

3.3.1 Initial lower bound

As said above, the lower bound allows prunings within the search tree. Therefore, the

better the initial lower bound, the faster the exploration of the tree. Let us consider the

following idea to quickly construct a feasible schedule with a satisfactory payoff. First,

by using SDD-algorithm (p. 29), schedule as many jobs as possible into [0, D1]. The jobs

completing in this interval are those providing the greatest job payoffs. Then, starting

from the obtained partial schedule, add as many of the remaining unscheduled jobs as

possible, that can complete into I2 =]D1, D2]. And so on for each interval Ik, while there

still are unscheduled jobs.

Each computed subschedule of jobs completing in]Dk−1, Dk], k = 1, . . . ,K, is a

right-shifted schedule completing at Dk, by construction with SDD-algorithm. This

subschedule is left-shifted before computing the next subschedule, in order to allow as

many time units as possible to be available for a possible straddling job, starting before

Dk and completing after Dk, in the next subschedule. This left-shift is performed while

maintaining feasibility (cf. the definition of a left-shifted schedule, p. 26), and does

not decrease the payoffs of the left-shifted jobs. Figures 3.11 and 3.12 illustrate the

constructive algorithm.

The formal pseudocode is described in Algorithm 2 (p. 42), and makes use of SDD-

algorithm (described in Chapter 2, p. 29). For any feasible (partial) schedule S, we

denote by left-shift(S) the left-shifted (partial) schedule that schedules the jobs of S in

the same order (cf. the definition of a left-shifted schedule, p. 26).

3. Exact method for the single machine problem: Branch and Bound 41

0

D3
D1 D2

r1 r2 r3 r4 r5 r7r6

J1

J2

J3

J4

J5

J6

J7

Figure 3.11: An instance of 1|ri|
∑
Vk with N = 7 jobs.

J1 J3 J4

J1 J3 J4 J7

J1 J4

J1

J1

0

D3
D1 D2

r1 r2 r3 r4 r5 r7r6

0

D3
D1 D2

r1 r2 r3 r4 r5 r7r6

0

D3
D1 D2

r1 r2 r3 r4 r5 r7r6

0

D3
D1 D2

r1 r2 r3 r4 r5 r7r6

0

D3
D1 D2

r1 r2 r3 r4 r5 r7r6

J3

(1)

(4)

(3)

(2)

(5)
J2

Figure 3.12: The construction of a feasible solution for the instance of Figure 3.11, in
five steps: (1) SDD(J all, 0, D1);
(2) Left-shifting J1;
(3) SDD({J2, J3, J4, J5, J6, J7}, C1, D2);
(4) Left-shifting S2;
(5) SDD({J2, J5, J6, J7}, Cmax(S2), D3).

42 3. Exact method for the single machine problem: Branch and Bound

Input: J all, D1, . . . , DK

Output: Sl, l bound
1 J ← J all
2 Sl1 ← SDD(J , 0, D1)

3 Sl1 ← left-shift(Sl1)

4 J ← J\J (Sl1)
5 for k = 2 to K do
6 Slk ← SDD(J , Cmax(Slk−1), Dk)

7 Slk ← left-shift(Slk)

8 J ← J\J (Slk)

9 SlK+1 ← schedule obtained by scheduling the jobs of J in ERD order after DK

10 return Sl1.S
l
2.S

l
K+1,

∑K
k=1 k|J (SlK−k+1)|

Algorithm 2: Computation of a lower bound on the optimal payoff of 1|ri|
∑
Vk.

Proposition 4. Algorithm 2 produces a feasible schedule for 1|ri|
∑
Vk.

Proof. Since the SDD-algorithm yields a feasible subschedule, the subschedules con-

structed at lines 2 and 6 are feasible. The left-shift operations of lines 3 and 7 are

performed while maintaining feasibility. Moreover, the subschedules do not overlap,

since the SDD-algorithm is used on intervals where no jobs are scheduled yet (line 2 and

line 6). Additionally, there are no jobs scheduled in more than one subschedule, since J
is updated at lines 4 and 8. Finally, scheduling the remaining jobs after DK maintains

feasibility and enables to have a complete schedule. Therefore, Sl is feasible.

Algorithm 2 uses SDD-algorithm (whose complexity is O(NlogN)) K times, hence

its complexity is O(KNlogN). From Proposition 4, Algorithm 2 returns a lower bound

on the optimal payoff of 1|ri|
∑
Vk.

We show next how to compute upper bounds. In the Branch and Bound algorithm,

upper bounds are mainly computed starting from partial schedules. However, for the

sake of clarity, we first describe how to compute an initial upper bound.

3.3.2 Initial upper bound

By Property 1 (p. 31), the SDD-algorithm applied on J all over any interval [0, Dk],

k = 1, . . . ,K, yields a schedule with the maximal number N(J all, 0, Dk) of jobs that

can complete at or before Dk in a feasible schedule.

Notations. We denote N(J all, 0, Dk) by Uk.

We denote by SDk the schedule obtained with SDD(J all, 0, Dk), k = 1, . . . ,K.

Hence, Uk = |J (SDk)|.

An upper bound on the optimal payoff of 1|ri|
∑
Vk is obtained by considering the

payoff of a hypothetical schedule where Uk jobs complete at or before Dk, for each

3. Exact method for the single machine problem: Branch and Bound 43

k = 1, . . . ,K. Algorithm 3 computes such an upper bound.

Input: J all, D1, . . . , DK

Output: u bound
1 u bound← 0
2 for k = 1 to K do
3 SDk ← SDD(J all, 0, Dk)
4 Uk ← |SDk |
5 u bound← u bound+ Uk
6 end
7 return u bound

Algorithm 3: Computation of an upper bound on the optimal payoff of 1|ri|
∑
Vk.

Algorithm 3 uses SDD-algorithm K times, hence its complexity is O(KNlogN).

Proposition 5. Algorithm 3 returns an upper bound on the optimal payoff
∑
Vk for

1|ri|
∑
Vk.

Proof. Let N∗k be the number of jobs completing in [0, Dk], k = 1, . . . ,K, in an optimal

schedule S∗. Algorithm 3 computes Uk as the number of jobs of SDD(J all, 0, Dk), which

is the maximal number of jobs that can complete in [0, Dk], k = 1, . . . ,K, in any feasible

schedule. Therefore, N∗k ≤ Uk, for every k = 1, . . . ,K. Hence, v(S∗) =
∑K

k=1N
∗
k ≤∑K

k=1 Uk = u bound, where u bound is the value computed by Algorithm 3.

3.3.3 Upper bound for a partial schedule

We call upper bound on node na an upper bound on the payoff of the schedules that

can be obtained by completing the partial schedule Sa associated to na. The rationale

of the computation of an upper bound on a node na is similar to that on the root node

(initial upper bound).

Notation. The variable Uk(S
a) (Uk when no ambiguity is possible), k = 1, . . . ,K, repre-

sents an upper bound on the number of jobs that can be inserted into Sa, while completing

at or before Dk.

Hence, an upper bound computed at node na is u bound(Sa) =
∑K

k=1 Uk(S
a). There-

fore, the difference with the initial upper bound (Subsection 3.3.2) stands in the way the

Uk values are computed.

Notations. Given a partial schedule Sa that satisfies the two structural properties of

Propositions 2 and 3 (p. 34), recall that B(Sak) (resp. Cmax(Sak)) denotes the starting time

(resp. the completion time) of the k-th block Sak , k = 1, . . . ,K.

Moreover, the variable Lk, k = 2, . . . ,K, represents the number of time units that

are unavailable due to block Sak (cf. Figure 3.13), i.e. the time units used to process the

jobs of Sak , and also the time units preceding Sak in the interval Ik =]Dk−1, Dk]. Indeed,

44 3. Exact method for the single machine problem: Branch and Bound

since we only consider ERD-schedules, the time units preceding Sak in Ik cannot be used

by the Branch and Bound algorithm to insert jobs into Sa (cf. Branching rule, p. 36).

More formally, we have the following notation.

Notation. We set: Lk = Cmax(Sak)−min(B(Sak), Dk−1), k = 2, . . . ,K (see Figure 3.13).

The block SaK+1 is not considered for the computation of an upper bound, since its

jobs are worth 0 for the payoff (moreover, notice that we can assume that SaK+1 always

starts after DK).

�����
�����
�����

�����
�����
�����

�����
�����
�����

�����
�����
�����

�������
�������
�������

�������
�������
�������

D1 D2

0

D3

Sa1 Sa3

L2 L3

B(Sa2) Cmax(Sa2) Cmax(Sa3)B(Sa1) Cmax(Sa1) B(Sa3)

Sa2

Figure 3.13: A partial schedule Sa of a node na of the Branch and Bound tree.

Given a partial schedule Sa, we denote by ∆(Sak), k = 1, . . . ,K, the value of the

maximal possible right-shift of Sak that maintains the same payoff for each job, i.e. such

that all the jobs of Sak′ , k ≤ k′ < K + 1, still complete in Ik′ after the right-shift.

Notation. The maximal possible right-shift of SaK is ∆(SaK) = DK − Cmax(SaK).

The maximal possible right-shift of Sak , k = 1, . . . ,K − 1, is: ∆(Sak) = min{Dk −
Cmax(Sak), B(Sak+1)− Cmax(Sak) + ∆(Sak+1)} (see Figure 3.14).

����������
����������
����������

����������
����������
����������

�������
�������
�������

�������
�������
�������

����
����
����

����
����
����

D1 D2

0

D3

Sa1 Sa3

B(Sa2) Cmax(Sa2) Cmax(Sa3)B(Sa1) Cmax(Sa1) B(Sa3)

∆(Sa3)∆(Sa1) ∆(Sa2)

Sa2

Figure 3.14: Illustration of ∆ values. ∆(Sa3) = D3 − Cmax(Sa3); ∆(Sa2) = B(Sa3) −
Cmax(Sa2) + ∆(Sa3); ∆(Sa1) = D1 − Cmax(Sa1).

To get an upper bound on the partial schedule Sa of Figure 3.13, we need to compute

the three values U1(Sa), U2(Sa) and U3(Sa) (U1, U2 and U3, for shortness).

In a general way, a partial schedule Sa of depth e contains the jobs J1, . . . , Je. Con-

sequently, the only jobs that will be added to Sa in the further steps of the Branch

and Bound algorithm are the jobs of E = {Je+1, . . . , JN}. In order to maintain the

ERD-schedule structure, these jobs can only complete between Cmax(Sak) and Dk, k =

1, . . . ,K, (possibly on an interval strictly included in [Cmax(Sak), Dk], depending on the

3. Exact method for the single machine problem: Branch and Bound 45

already scheduled blocks), or after DK . In order to compute an upper bound on the

payoffs of the descendants of na, we will insert the jobs of E into Sa while allowing a so

called block-preemption (defined later in Definition 5).

The jobs of E will only be inserted in some “employable intervals”, which guarantee

that the ERD-schedule structure is maintained and that we obtain an upper bound.

These employable intervals depend on the current computed Uk. We illustrate on Fig-

ure 3.15 the employable intervals for U3 with bold lines.

When computing a given Uk, the considered employable intervals are [Cmax(Sak′),

min(Dk′ , B(Sak′+1))]k′=1,...,k−1 and [Cmax(Sak),min{Dk, B(Sak+1) + ∆(Sak+1)}].
Let us show, on the example of Figure 3.15, how to compute U3. To compute an upper

bound on the maximal number of jobs of E that can be scheduled in the bold intervals,

we will ignore the already scheduled blocks, and consider a “shrunk” horizon composed

of the concatenated bold intervals. Indeed, in a similar way as for the computation of

an initial upper bound, the use of SDD-algorithm is necessary to compute each value

Uk(S
a). And it appears that it is easier to use SDD-algorithm on an uninterrupted

horizon, than to design a variant of SDD-algorithm that deals with the blocks of Sa.

The shrunk horizon is obtained by defining some alternative delivery dates, as shown

in Figure 3.16. We have: D′3 = D3, D′2 = Cmax(Sa3), D′1 = Cmax(Sa2) + L3 and D′0 =

Cmax(Sa1) +L2 +L3. In a general way, D′K = DK , and D′k = Cmax(Sak+1) +
∑K

j=k+2 Lj ,

for all k ∈ {0, . . . ,K − 1}.

�����
�����
�����

�����
�����
�����

����
����
����

����
����
����

�������
�������
�������

�������
�������
�������

D1 D2

0
Cmax(Sa2)

D3

B(Sa2)B(Sa1)

Sa1 Sa3

Cmax(Sa3)B(Sa3)

L2
L3

Cmax(Sa1)

Sa2

Figure 3.15: The employable intervals for U3.

Definition 5. Let Sa be a partial schedule and E the set of jobs that will be added to Sa

in the further steps of the Branch and Bound algorithm. We say that block-preemption

is allowed on the jobs of E when interrupting the execution of a job is possible only at

the end of a bold interval, and if the same job is the first to be processed at the beginning

of the next bold interval (see Figure 3.17).

46 3. Exact method for the single machine problem: Branch and Bound

�����
�����
�����

�����
�����
�����

�����
�����
�����

�����
�����
�����

�������
�������
�������

�������
�������
�������

D′3D′2D′1
D′0

D1 D2

0
Cmax(Sa2)

D3

B(Sa2)B(Sa1)

Sa1 Sa3

Cmax(Sa3)B(Sa3)

L2 L3

Cmax(Sa1)

Sa2

Figure 3.16: The “shrunk” horizon with the alternative delivery dates.

����
����
����

����
����
����

�����
�����
�����

�����
�����
�����

�������
�������
�������

�������
�������
�������

D1 D2

0

D3

Sa1 Sa3J1 J1 J2 J3J3Sa2

Figure 3.17: On this example, a partial schedule Sa is represented by its striped blocks
Sa1 , S

a
2 , S

a
3 , and the jobs of E = J1, J2, J3 are inserted into Sa while observing block-

preemption (J1, J3).

On the yielded shrunk horizon, we can use SDD-algorithm. We obtain a partial

schedule τD
′
3(Sa) of the jobs of E on the shrunk horizon [D′0, D

′
3]. τD

′
3(Sa) can be

converted into a partial schedule σD3(Sa) on the original horizon. σD3(Sa) schedules

the jobs of E on the bold intervals, while allowing block-preemption. Block-preemption

ensures that σD3(Sa) provides an upper bound. The conversion from τD
′
3(Sa) to σD3(Sa)

is simply made by separating the bold intervals that were stuck together in the shrunk

horizon, so that they are again integrated in the original horizon, while modifying the

starting times of the jobs accordingly. An example can be seen in Figure 3.18.

We have already seen how to adapt the delivery dates, in order to define the new

horizon. The other parameters that need to be updated on the new horizon are the

release dates of the jobs of E. Notice that, on the original horizon, the release dates r of

the jobs of E can all be replaced by equivalent release dates r̃ on the bold intervals, in the

following way (cf. Figure 3.19, where E = {Jf , Jg, Jh}). When a release date ri is on a

bold interval, it remains unchanged. Otherwise, the equivalent release date r̃i is equal to

the next completion time of a block: r̃i = mink=1,...,K{Cmax(Sak)|Cmax(Sak) > ri}. These

new release dates are equivalent to the original ones, since we only consider scheduling

the jobs of E on the bold intervals.

3. Exact method for the single machine problem: Branch and Bound 47

�����
�����
�����

�����
�����
�����

����
����
����

����
����
����

�������
�������
�������

�������
�������
�������

����
����
����

����
����
����

�������
�������
�������

�������
�������
�������

�����
�����
�����

�����
�����
�����

D1 D2

0

D3

B(Sa1)
D1 D2

0

D3

J4J4J2J1 J5J3J2

D′3D′2D′1
D′0

J4J3J2J1 J5

Cmax(Sa1) B(Sa2) Cmax(Sa2) Cmax(Sa3)B(Sa3)

τD
′
3(Sa)

Sa1 Sa3σD3(Sa) Sa2

Figure 3.18: The solution τD
′
3(Sa) is converted in a solution σD3(Sa).

����
����
����

����
����
����

�����
�����
�����

�����
�����
�����

�������
�������
�������

�������
�������
�������

D1 D2 D3

Sa1 Sa3

Cmax(Sa1) B(Sa2) Cmax(Sa2) B(Sa3) Cmax(Sa3)

0 r̃hrhrf = r̃f r̃grg

B(Sa1)

Sa2

Figure 3.19: The equivalent release dates r̃ of the jobs of E = Jf , Jg, Jh.

This way, when the horizon is shrunk, the alternative release dates r′ of the jobs of

E appear in the shrunk horizon. Their values are obtained by translating the r̃ release

dates in a similar way as for the alternative delivery dates, as follows (cf. Figure 3.20).

Let Dki be the smallest delivery date such that r̃i < Dki . Then, r′i = r̃i +
∑K

j=ki+1 Lj .

On the same example as above, in Figure 3.20 we have: r′h = r̃h, r′g = r̃g + L3 and

r′f = r̃f + L2 + L3.

We have seen how to build a shrunk horizon for the computation of U3 on an example.

On the same example, U2 is computed on the same shrunk horizon, by only considering

it between D′0 and D′2 (see Figure 3.21).

As for U1, we need a supplementary step to deduce the available shrunk horizon.

Indeed B(Sa2) < D1 (see for instance Figure 3.19), thus to ensure that we really calculate

an upper bound on the jobs that can complete before D1, we need to right-shift Sa2 as

much as possible, i.e. of ∆(Sa2) time units.

In a general way, right-shifting Sak+1 of ∆(Sak+1) units does not change the structure

of the partial solution, since Sak+1 still completes at or before Dk+1. However, this right-

shift allows the use of the freed time units before Dk to block-preemptively schedule

the jobs of E, in order to compute Uk, which ensures that the result yields an upper

bound. Notice that, for our purposes, Sak+1 needs only be shifted of min{max(0, Dk −
B(Sak+1)),∆(Sak+1)} time units.

Notation. δ(Sak+1) = min{max(0, Dk −B(Sak+1)),∆(Sak+1)}, k = 1, . . . ,K.

48 3. Exact method for the single machine problem: Branch and Bound

����
����
����

����
����
����

�����
�����
�����

�����
�����
�����

�������
�������
�������

�������
�������
�������

r̃f = rf

D2 D3

Sa1 Sa3

Cmax(Sa2) B(Sa3) Cmax(Sa3)

0 r̃hrhr̃grg

B(Sa1)

D′3D′2
r′g

D′1
r′h

r′f

D′0

Cmax(Sa1)
D1B(Sa2)

Sa2

Figure 3.20: The shrunk horizon with the alternative delivery and release dates.

D′2
r′g

D′1
r′h

r′f

D′0

Figure 3.21: The shrunk horizon for U2.

To come back to the example, you can see on Figure 3.22 the right-shift of S2.

����
����
����
����

�����
�����
�����
�����

����
����
����

����
����
����

�����
�����
�����

�����
�����
�����

������
������
������

������
������
������

�������
�������
�������
�������

D1 D2 D3

Sa1 Sa3

0 rhrgrf

D1 D2 D3

Sa1 Sa3

0 rhrgrf

Sa

Sa after right-
shifting Sa2

δ(Sa
2) freed time units︷ ︸︸ ︷

Sa2

Sa2

Figure 3.22: The right-shift of Sa2 .

Therefore, to obtain the shrunk horizon for U1 from the shrunk horizon for U3, we

3. Exact method for the single machine problem: Branch and Bound 49

need to add the interval freed by the shift (see Figure 3.23) to [D′0, D
′
1]. Hence, D′1 must

be recalculated: D′1(U1) = D′1(U3)+δ(Sa2). Moreover, for the jobs whose original release

dates are on the “freed time units interval” (see Figure 3.22), we need to update their

alternative release dates: on the example, r′g = D′1(U1)− (D1 − rg).

r′g

D′1

r′f

D′0

D′1
D′0

r′f r′g

D′0(U1) and D′1(U1)

δ(Sa2)

D′0(U3) and D′1(U3)

Figure 3.23: The shrunk horizon for U1.

The procedure that yields an upper bound on na does first compute UK by the means

of a shrunk horizon. Then, this shrunk horizon is updated for the computation of each of

the Uk values, k = K− 1, . . . , 1. These operations are formalized in the following. First,

Algorithm 4 (p.50) computes the horizon for UK . Then, given this shrunk horizon,

Algorithm 5 (p.51) computes every Uk, k = K, . . . , 1, and returns the upper bound.

Moreover, Algorithm 5 uses the CONV-algorithm (described by Algorithm 6, p. 52) to

convert a schedule τD
′
k on the shrunk horizon into a block-preempted schedule σDk on

the original horizon.

Notation. We denote by Er′ the set of jobs of E where alternative release dates replace

the original ones.

Proposition 6. Given a partial schedule Sa, Algorithm 5 returns an upper bound.

Proof. The general principle for the computation of an upper bound on na, consisting

in summing the Uk, is the same as for an initial upper bound, and is performed at

lines 18-19 of Algorithm 5. It remains to prove that Uk, as computed by Algorithm 5,

is an upper bound on the number of jobs that can be added to partial schedule Sa

between 0 and Dk. Recall that, for each k ∈ {1, . . . ,K}, we call employable intervals

[Cmax(Sak′),min(Dk′ , B(Sak′+1))]k′=1,...,k−1 and [Cmax(Sak),min{Dk, B(Sak+1)+∆(Sak+1)}].
First, we show that, for any k ∈ {1, . . . ,K}, the maximal number of jobs of E that can

be scheduled on the employable intervals when block-preemption is allowed, is an upper

bound on the number of jobs that can be added to partial schedule Sa between 0 and

Dk. Second, we show that, for each k ∈ {1, . . . ,K}, Uk, as computed by Algorithm 5,

50 3. Exact method for the single machine problem: Branch and Bound

Input: e, re+1, . . . , rN , D0, . . . , DK , Sa

Output: r′e+1, . . . , r
′
N , D′0, . . . , D

′
K

1 D′K ← DK

2 k ← K − 1
3 i← N
4 translate← 0
5 while i ≥ e+ 1 do
6 if ri > min(Dk, B(Sak+1)) then
7 if ri < Cmax(Sak+1) then
8 r̃i ← Cmax(Sak+1)

9 else
10 r̃i ← ri

11 r′i ← r̃i + translate
12 i← i− 1

13 else
14 Lk+1 ← Cmax(Sak+1)−min(Dk, B(Sak+1))

15 translate← translate+ Lk+1

16 D′k ← Dk + translate
17 k ← k − 1

18 for j = k to 1 do
19 Lj+1 ← Cmax(Saj+1)−min(Dj , B(Saj+1))

20 translate← translate+ Lj+1

21 D′j ← Dj + translate

22 j ← j − 1

23 return r′e+1, . . . , r
′
N , D′0, . . . , D

′
K

Algorithm 4: Computation of the shrunk horizon for UK , starting from a partial
schedule Sa.

is the maximal number of jobs of E that can be scheduled on the employable intervals

when block-preemption is allowed.

Given a node na of depth e in the branching tree, the jobs that can be added to Sa

in the Branch and Bound are the jobs of E = {Je+1, . . . , JN}. In order to maintain the

ERD-schedule structure, the jobs of E can only complete after Cmax(Sak) if they complete

in Ik. When computing Uk, k = 1, . . . ,K, we only consider adding the jobs of E between

0 and Dk. In this case, if the block Sak+1 is straddling, it must be momentarily right-

shifted of its maximal shift ∆(Sak+1), to maximize the length of the total idle time before

Dk. Indeed, in the Branch and Bound algorithm, Sak+1 can be right-shifted in order

to allow a job to be inserted into Ik. Therefore, by right-shifting Sak+1 of its maximal

possible shift, we ensure that the considered set of intervals is not suboptimal. We showed

that the last employable interval, when computing Uk, is [Cmax(Sak),min{Dk, B(Sak+1)+

∆(Sak+1)}].

3. Exact method for the single machine problem: Branch and Bound 51

Input: E, r′e+1, . . . , r
′
N , D1, . . . , DK , D′0, . . . , D

′
K , Sa

Output: u bound, τD
′
1 , . . . , τD

′
K , σD1 , . . . , σDK

1 τD
′
K ← SDD(Er′ , D

′
0, D

′
K)

2 UK ← |τD
′
K |

3 u bound← u bound+ UK
4 ∆K ← DK − Cmax(SaK)
5 k ← K − 1
6 while k ≥ 1 and re+1 < Dk do
7 δk+1 ← min{max(0, Dk −B(Sak+1)),∆k+1}
8 if δk+1 > 0 then
9 D′k ← D′k + δk+1

10 for i = N to e+ 1 do
11 if ri > B(Sak+1) then
12 if ri < B(Sak+1) + δk+1 then
13 r′i ← D′k − (B(Sak+1) + δk+1 − ri)

14 else
15 break

16 τD
′
k ← SDD(Er′ , D

′
0, D

′
k)

17 σDk ← CONV (τD
′
k , D′0, . . . , D

′
K , D1, . . . , DK , S)

18 Uk ← |τD
′
k |

19 u bound← u bound+ Uk
20 ∆k ← min{Dk − Cmax(Sak), B(Sak+1)− Cmax(Sak) + ∆k+1}
21 k ← k − 1

22 for i = k to 1 do

23 τD
′
k ←empty schedule

24 return u bound, τD
′
1 , . . . , τD

′
K , σD1 , . . . , σDK

Algorithm 5: Computation of an upper bound on na, starting from the outputs of
Algorithm 4.

When computing Uk, right-shifting the blocks Sa1 , . . . , S
a
k yields a suboptimal set of

intervals, since it does not increase the number of available time units, though it makes

free time units to be earlier, which is suboptimal, since jobs have release dates and

block-preemption is allowed. Finally, allowing block-preemption guarantees to produce

an upper bound on the number of jobs that can be added non-preemptively to the

partial schedule. Indeed, block-preemption is a relaxation, and it allows to use the

maximal number of time units to schedule jobs. We showed that for any k ∈ {1, . . . ,K},
the maximal number of jobs of E that can be scheduled on the employable intervals

defined above, when block-preemption is allowed, is an upper bound on the number of

jobs that can be added to partial schedule Sa between 0 and Dk.

Let us show that Uk, as computed by Algorithm 5, is the maximal number of jobs of

52 3. Exact method for the single machine problem: Branch and Bound

Input: Cl1(τD
′
k), . . . , ClUk (τD

′
k), D′0, . . . , D

′
K , D1, . . . , DK , Sa

Output: σDk = Cl1(σDk), . . . , ClUk (σDk)

1 j ← k − 1
2 translate← 0
3 i← Uk
4 while i ≥ 1 do

5 if Cli(τ
D′k) > D′j then

6 Cli(σ
Dk)← Cli(τ

D′k)− translate
7 i← i− 1

8 else
9 Lj+1 ← Cmax(Saj+1)−min(Dj , B(Saj+1))

10 translate← translate+ Lj+1

11 j ← j − 1

12 return σDk = Cl1(σDk), . . . , ClUk (σDk)

Algorithm 6: The CONV-algorithm produces a block-preempted schedule σDk , start-
ing from its corresponding partial schedule τD

′
k on the shrunk horizon. A schedule is

completely represented by the completion times of its jobs.

E that can be scheduled on the employable intervals when block-preemption is allowed.

We know, by Property 1 (p. 31), that SDD-algorithm schedules the maximal number

of jobs into [D′0, D
′
k] (line 15 of Algorithm 5). Therefore, it remains to show that an

optimal sequence on [D′0, D
′
k] is also an optimal sequence on the employable intervals of

[0, Dk].

Given an optimal schedule τD
′
k on [D′0, D

′
k] (computed at line 16), consider each

“portion” of τD
′
k scheduled between two consecutive alternative delivery dates. The jobs

of τD
′
k that are straddling on the delivery dates are scheduled partly in different portions.

By scheduling each portion of τD
′
k in the corresponding employable interval of [0, Dk]

(you can refer to Figure 3.18 for an example), we obtain a “block-preempted” schedule

σDk that schedules the jobs of E on the employable intervals of [0, Dk]. This operation is

executed by CONV-algorithm at line 17 of Algorithm 5. σDk satisfies the release dates,

since, if we translate the alternative release dates r′ with the portions of τD
′
k , we obtain

the release dates r̃ on the employable intervals, which are equivalent to the original

release dates r, when the only allowed intervals to schedule jobs are the employable

intervals of [0, Dk]. It remains to show that σDk is optimal, i.e. contains the maximal

number of jobs that can be scheduled on the employable intervals of [0, Dk], when block-

preemption is allowed. By contradiction, suppose that there exists a block-preempted

schedule σ̂k of jobs of E on the employable intervals, such that |J (σ̂k)| > |J (σDk)|.
Therefore, by the inverse operation used to transform τD

′
k into σDk , we obtain from σ̂k

a solution τ̂k on [D′0, D
′
k]. τ̂

k is feasible, since the alternative release dates on the shrunk

horizon can be obtained by translating the release dates with the portions of σDk . Since

3. Exact method for the single machine problem: Branch and Bound 53

|J (τ̂k)| > |J (τD
′
k)|, this leads to a contradiction on Property 1 (p.31) on τD

′
k .

Proposition 7. The time complexity for the computation from scratch of an upper bound

at a node na is O(KNlogN).

Proof. The computation of an upper bound needs the execution of Algorithm 4 followed

by Algorithm 5. Algorithm 4 is executed in O(N +K) time, since the while loop of lines

5-17 is executed at most N times, while the for loop of lines 18-22 is executed at most

K times. Algorithm 5 is executed in O(KNlogN) time, since the while loop of lines

6-21 is executed at most K times; and in each of these loops, the for loop of lines 10-15

is executed at most N times, SDD-algorithm is executed once, in time O(NlogN), and

CONV-algorithm is executed once, in time O(N).

Justification of the branching structure. If we had chosen a classic branching

scheme where jobs are scheduled sequentially, we would not have needed deal with

employable intervals. In this case, by denoting by Cmax(Sa) the completion time of

the last job of the current left-shifted partial schedule Sa, computing an upper bound

on a node could have been done by simply applying SDD-algorithm on the intervals

[Cmax(Sa), Dk], forall {k ∈ {1, . . . ,K}|Dk > Cmax(Sa)}. Even if in practice this bound

computation is faster than that presented in Section 3.3.3, its complexity in the worst

case is still O(KNlogN).

On the other side, with the branching rule we chose, we explore at most KN nodes,

because of the dominance of ERD-schedules (cf. Proposition 2, p. 34). With a classic

branching scheme, the maximal number of nodes is NN , which is much larger, as N is

intended to be much larger than K.

3.3.3.1 Upper bound computation from the father node bound

In order to avoid redundant computations, we identified some cases where the upper

bound on a node na can be computed starting from the upper bound on its father node

nf(a). In the other cases, this is not possible, and the bound must thus be computed

from scratch.

There are three cases where the computation of an upper bound at node na is done in

O(1), starting from the upper bound at its father node. We also present the rationale for

another possible case, in which the upper bound at node na is computed in O(kNlogN)

time, where Dk is the delivery date associated with na, and where in practice we consider

fewer jobs than if the bound was computed from scratch.

Let e be the depth of na. Then, Sa is obtained from Sf(a) by adding Je to Sf(a), as

seen in Section 3.2. The value Uk(S
f(a)), k = 1, . . . ,K, has been previously obtained as

the number of jobs scheduled in τD
′
k(Sf(a)) (as seen in Section 3.3.3).

In order to compute Uk(S
a), we construct τD

′
k(Sa), k = 1, . . . ,K. First, Algorithm 7

computes the shrunk horizon for UK(Sa), starting from Sa, Sf(a) and the shrunk horizon

54 3. Exact method for the single machine problem: Branch and Bound

Input: E, r′e+1(Sf(a)), . . . , r′N (Sf(a)), D0, . . . , DK , Sa, Sf(a)

Output: r′e+1(Sa), . . . , r′N (Sa), D′0, . . . , D
′
K

1 D′K ← DK

2 k ← K − 1
3 i← N
4 translate← 0

5 if Cmax(S
f(a)
k+1) = Cmax(Sak+1) then flag ← true

6 else flag ← false
7 while i ≥ e+ 1 do
8 if ri > min(Dk, B(Sak+1)) then

9 if flag then r′i(S
a)← r′i(S

f(a))
10 else
11 if ri < Cmax(Sak+1) then r̃i ← Cmax(Sak+1)

12 else r̃i ← ri
13 r′i ← r̃i + translate

14 i← i− 1

15 else
16 Lk+1 ← Cmax(Sak+1)−min(Dk, B(Sak+1))

17 translate← translate+ Lk+1

18 D′k ← Dk + translate
19 k ← k − 1

20 if Cmax(S
f(a)
k+1) 6= Cmax(Sak+1) then flag ← false

21 for j = k to 1 do
22 Lj+1 ← Cmax(Saj+1)−min(Dj , B(Saj+1))

23 translate← translate+ Lj+1

24 D′j ← Dj+

25 j ← j − 1

26 return r′e+1(Sa), . . . , r′N (Sa), D′0, . . . , D
′
K

Algorithm 7: Computation of the shrunk horizon for UK(Sa), starting from Sa, Sf(a)

and the shrunk horizon for UK(Sf(a)).

for UK(Sf(a)). The complexity of Algorithm 7 is O(KNlogN), but in practice we con-

sider fewer jobs (only from Je+1 to JN). Then, each schedule τD
′
k(Sa), k = 1, . . . ,K, is

obtained from τD
′
k(Sf(a)) if possible (the possible cases are detailed below), otherwise it

is computed from scratch as seen in Section 3.3.3. We denote by r′i(S
a) (resp. r′i(S

f(a)))

the alternative release date of job Ji in the shrunk horizon for UK(Sa) (resp. UK(Sf(a))).

The cases where τD
′
k(Sa) can be derived from τD

′
k(Sf(a)) are listed below, with a

sketch of proof of their validity.

First, notice that if re+1 ≥ Dk, then τD
′
k(Sa) is empty, since no job of {Je+1, . . . , JN}

can complete before Dk (see Figure 3.24). In this case, the bound is obtained in O(1)

3. Exact method for the single machine problem: Branch and Bound 55

time.

����
����
����

����
����
����

�����
�����
�����

�����
�����
�����

�����
�����
�����

�����
�����
�����

Dk−1 Dk

0

Dk+1

Sak−1

re+1

Sa Sak Sak+1

Figure 3.24: Illustration of the case where re+1 ≥ Dk, on an example where k = 2.

In the following cases, we consider that re+1 < Dk.

• Case 1. (cf. Figure 3.25) Consider the case where:

– Je belongs to the schedule τD
′
k(Sf(a)): Je ∈ J (τD

′
k(Sf(a))) (which implies

that Je ∈ J (σDk(Sf(a)))), and

– the completion time of Je in σDk(Sf(a)) is greater than or equal to the com-

pletion time of Je in Sa: Ce(σ
Dk(Sf(a))) ≥ Ce(Sa).

We have: σDk(Sa) = σDk(Sf(a))\Je1.

Indeed, Je is the first job of σDk(Sf(a)), therefore all the jobs of J (σDk(Sf(a)))\{Je}
can be scheduled between Ce(σ

Dk(Sf(a))) and Dk in addition to Sa which is identi-

cal to Sf(a) between Ce(σ
Dk(Sf(a))) and Dk. Moreover, no other job can be added

to σDk(Sa) between Ce(S
a) and Dk, otherwise it would have been possible to add

it also to σDk(Sf(a)).

In this case, the bound is obtained in O(1) time.

• Case 2. (cf. Figure 3.26) Consider the case where:

– Je does not belong to the schedule τD
′
k(Sf(a)): Je 6∈ J (τD

′
k(Sf(a))),

– Je starts at or after Dk in Sa: Ce(S
a)− pe ≥ Dk and

– B(Sak+1) + δ(Sak+1) = B(S
f(a)
k+1) + δ(S

f(a)
k+1).

We have: σDk(Sa) = σDk(Sf(a)).

Indeed, since Je starts after Dk in Sa, the schedule Sa between 0 and Dk is identical

to schedule Sf(a) between 0 and Dk, except for B(Sak+1) and B(S
f(a)
k+1) that can be

different if Je belongs to Sak+1. However, since B(Sak+1) + δ(Sak+1) = B(S
f(a)
k+1) +

δ(S
f(a)
k+1), the same free time units are available between 0 and Dk for both schedules

after the right-shifting of Sak+1, respectively S
f(a)
k+1 . Finally, since Je 6∈ J (τD

′
k(Sa)),

we deduce that replacing E with E\{Je} as input of SDD-algorithm between 0

and Dk yields the same result.

In this case, the bound is obtained in O(1) time.

1σDk (Sf(a))\Je is the subschedule of σDk (Sf(a)) that includes the jobs of J (σDk (Sf(a)))\{Je}.

56 3. Exact method for the single machine problem: Branch and Bound

����
����
����

����
����
����

�����
�����
�����

�����
�����
�����

�����
�����
�����

�����
�����
�����

�����
�����
�����

�����
�����
�����

�����
�����
�����

�����
�����
�����

����
����
����
����

�����
�����
�����
�����

�����
�����
�����
�����

�����
�����
�����
�����

����
����
����

����
����
����

�����
�����
�����
�����

���������
���������
���������
���������

Dk−1 Dk Dk+1

Je Jg Jg Jh

re+10

Dk−1 Dk Dk+1

re+10

Dk−1 Dk Dk+1

S
f(a)
k−1

re+10

Dk−1 Dk Dk+1

Jg Jg Jh

re+10

Je

Ce(Sa)

S
f(a)
k−1

Ce(σDk (Sf(a)))

Sf(a)

Computing σDk(Sf(a))

Inserting Je into Sf(a)

to obtain Sa

Computing σDk(Sa)

S
f(a)
k

S
f(a)
k

Sa
k

Sa
k

S
f(a)
k+1

S
f(a)
k−1 S

f(a)
k+1

Sa
k−1 Sa

k+1

Sa
k+1

Figure 3.25: Illustration of Case 1, on an example where k = 2.

Another possible idea for optimizing the computation of the bound is the following.

Suppose that:

• Je does not belong to the schedule τD
′
k(Sf(a)): Je 6∈ J (τD

′
k(Sf(a))) and

• Je completes before Dk in Sa: Ce(S
a) < Dk.

If we compare the shrunk horizons for Uk(S
a) and Uk(S

f(a)), we notice that there

exists a date tz such that the two shrunk horizons are identical between tz and Dk, as

shown in Figure 3.27.

Then, the rationale of the algorithm to construct τD
′
k(Sa) starting from τD

′
k(Sf(a)) is

the following (cf. Figure 3.28). Let Jz be the first job of τD
′
k(Sf(a)) starting at or after tz.

Let Sz be the subschedule of τD
′
k(Sf(a)) including Jz and the subsequent jobs. Schedule

the jobs of Sz, in the same order, on the shrunk horizon for U3(Sa), in a unique block

that completes at D′3(Sa). We have thus a partial schedule, that can be completed with

SDD-algorithm. Indeed, Sz can be considered as the current schedule of SDD-algorithm,

after the iteration that considered job Jz. Hence, we can execute the following iterations

of SDD-algorithm, considering Sz as the current schedule, and examining each of the

jobs of E that precedes Jz in ERD order, in order to add them to the current schedule.

The idea is that jobs that had been discarded by SDD-algorithm when constructing

τD
′
k(Sf(a)) (i.e. the jobs that follow Jz) in ERD order but do not appear in Sz will also

3. Exact method for the single machine problem: Branch and Bound 57

����
����
����

����
����
����

�����
�����
�����

�����
�����
�����

�����
�����
�����

�����
�����
�����

�����
�����
�����

�����
�����
�����

�����
�����
�����

�����
�����
�����

����
����
����
����

�����
�����
�����
�����

�����
�����
�����
�����

����
����
����
����

�����
�����
�����
�����

��������
��������
��������
��������

����
����
����

����
����
����

Dk−1 Dk Dk+1

S
f(a)
k−1 Jf Jg Jg Jh

re+10

Dk−1 Dk Dk+1

re+10

Dk−1 Dk Dk+1

Sa
k−1

re+10

Je

Dk−1 Dk Dk+1

Sa
k−1 Jf Jg Jg Jh

re+10

Cmax(S
f(a)
k+1)B(S

f(a)
k+1)

B(Sak+1) Cmax(Sak+1)

Sf(a)

Computing σDk(Sf(a))

Inserting Je into Sf(a)

to obtain Sa

Computing σDk(Sa)

S
f(a)
k

S
f(a)
k

Sa
k

Sa
k

S
f(a)
k+1

S
f(a)
k−1 S

f(a)
k+1

S
f(a)
k+1

Sa
k+1

Figure 3.26: Illustration of Case 2, on an example where k = 2.

be discarded when constructing τD
′
k(Sa) from scratch with SDD-algorithm. Indeed, we

apply the algorithm with the same set of jobs (E\{Je}, since Je is not in τD
′
k(Sf(a)))

but on a smaller interval.

3.4 Structural properties for pruning

Let Sa be the current partial schedule, and E = {Je+1, . . . , JN} the remaining jobs to

examine in the Branch and Bound procedure.

Property 5. If Sa schedules UK jobs completing at or before DK , then the only feasible

leaf descendant of na is the one that schedules all the remaining jobs after DK+1.

Property 6. If SaK is empty and re+1 ≥ min(DK−2, B(SaK−1)), then the best schedule

among those that can be obtained from Sa, schedules exactly UK−1(Sa) + |J (SaK−1)|
jobs completing into IK−1. In this case, every descendant node nd of na satisfying these

two conditions is pruned:

• re+1 ≥ min(DK−1, B(SdK)), and

• Sd schedules less than UK−1(Sa) + |J (SaK−1)|.

58 3. Exact method for the single machine problem: Branch and Bound

����
����
����

����
����
����

�����
�����
�����

�����
�����
�����

����
����
����
����

�����
�����
�����
�����

�������
�������
�������

�������
�������
�������

�������
�������
�������
�������

D2 D3

Sa1 Sa3

0

D′3D′2D′1
D′0

D2 D3

Sa1 Sa3

0

D′3D′2D′1
D′0

D1

Je

D1

tz

Sf(a)

Sa

Shrinked horizon for U3(Sf(a))

Shrinked horizon for U3(Sa)

Sa2

Sa2

Figure 3.27: The shrunk horizons for Uk(S
a) and Uk(S

f(a)), on an example where
k = K = 3. Between tz = D′1(Sa) and D′3(Sa) = D′3(Sf(a)), the two horizons are
identical.

Property 6 is valid because of the dominance rule for the two delivery dates problem

presented in Chapter 4.

Property 7. If re+1 ≥ min(DK−1, B(SaK)), then Sa can be completed in polynomial

time, with SDD-algorithm.

Property 8. For each k ∈ {1, . . . ,K}, let Jik be the first job in the ERD order (i.e.

with the smallest index) such that rik + pik > Dk. Then, for each node of the Branch

3. Exact method for the single machine problem: Branch and Bound 59

Sz on the shrinked horizon for U3(Sa)

D′3D′2D′1
D′0

tz

JzJa Jf Jg Jb Jc

D′3D′2D′1
D′0

JcJbJgJz

D′3D′2D′1
D′0

JcJbJgJz

JaJh

τD
′
3(Sf(a))

τD
′
3(Sa)

Sz︷ ︸︸ ︷

Figure 3.28: The shrunk horizons for Uk(S
a) and Uk(S

f(a)), where k = K = 3. Between
tz = D′1(Sa) and D′3(Sa) = D′3(Sf(a)), the two horizons are identical.

and Bound of depth included in [ik, ik+1[, it is only necessary to consider the branches

Ik, . . . , IK+1.

Special case of 1|ri|V1 + V2

If K = 2, the following structural properties apply.

Property 9. Consider the schedule obtained by left-shifting SD2: if it schedules U1 jobs

before D1, then it is an optimal schedule.

Property 10. If U1 jobs are scheduled before D1 in the current partial schedule Sa, then

Sa can be completed in polynomial time with SDD-algorithm.

Property 10 is valid because of the dominance rule for the two delivery dates problem

presented in Chapter 4.

3.5 Experimentations

The algorithm is tested on randomly generated instances, as described in the next sec-

tion.

60 3. Exact method for the single machine problem: Branch and Bound

3.5.1 Instances generator

The instances generator takes the following inputs: the number of jobs N , the number

of delivery dates K, a parameter A ∈]0, 1] and a parameter R ∈]0, 1].

The processing times of the jobs are first generated, each being picked randomly

from a uniform distribution {10, . . . , 99}. Then, the delivery dates are: D1 = b(A ×∑N
i=1 pi)/Kc and Dk = k × D1, for k = 1, . . . ,K. The release date ri associated with

processing time pi is chosen in one of the intervals Rk = [Dk−1, Dk−1 + R × D1],

k = 1, . . . ,K. To avoid Ji to be trivially late (i.e. ri + pi > DK), ri is chosen

as follows. First, determine in which intervals Rk the value ri can be chosen. Let

ki = maxk=1,...,K{k|Dk−1 + pi ≤ DK}. An interval Rk is chosen randomly among

R1, . . . , Rki (each with a probability of 1/ki). Finally, ri is picked randomly into Rk
(uniform distribution), however by avoiding the possibly forbidden dates of Rki .

The parameters were chosen as follows: K ∈ {3, 5, 8, 10, 20}; N = n × K, where

n ∈ {10, 20, 30, 50, 100}; A ∈ {0.5, 0.8, 1, 1.2}; R ∈ {0.1, 0.3, 0.5, 0.7, 1}.
For each of these 500 configurations, 10 instances were generated.

3.5.2 Numerical results

The tests were performed on a 2.66 GHz Intel Core2-Duo processor, 4 GB RAM, running

Debian wheezy/sid. Each instance was initially allocated a maximum CPU time of 15

minutes. The experimentations were conducted on a preliminary version of the Branch

and Bound algorithm in which the upper bound is computed from scratch at each node.

Results by K and n. We first present the results according to the values of K and n.

Tables 3.1 to 3.5 present the percentages of instances of each of the following categories:

• instances solved at the root node (Table 3.1)

• instances solved in less than 1 second (Table 3.2)

• instances solved in less than 120 seconds (Table 3.3)

• instances solved before the time limit of 15 minutes (Table 3.4)

• instances unsolved at the end of the time limit of 15 minutes (Table 3.5)

For the last category of instances, we present the mean gap at the end of the time

limit, in Table 3.6. The gap is computed as: (upperbound− lowerbound)/upperbound.

3. Exact method for the single machine problem: Branch and Bound 61

n\K 3 5 8 10 20

10 85.5% 66% 39.5% 39% 14.5%
20 87% 72.5% 43.5% 38.5% 18%
30 83% 68.5% 48.5% 39% 23%
50 86.5% 67.5% 53% 46.5% 24%
100 85% 70% 54% 51% 28%

Table 3.1: Instances solved at the
root node.

n\K 3 5 8 10 20

10 100% 100% 98.5% 86.5% 42%
20 100% 99% 92.5% 87.5% 44.5%
30 100% 97% 90% 84.5% 40%
50 100% 99.5% 90% 84% 34.5%
100 100% 96% 87% 73.5% 28%

Table 3.2: Instances solved in less
than 1 second.

n\K 3 5 8 10 20

10 100% 100% 100% 92% 60%
20 100% 100% 96.5% 92.5% 60.5%
30 100% 99% 93.5% 87% 59%
50 100% 99.5% 92.5% 88% 65%
100 100% 97% 91% 91.5% 70%

Table 3.3: Instances solved in less
than 120 seconds.

n\K 3 5 8 10 20

10 100% 100% 100% 97.5% 62.5%
20 100% 100% 98% 93.5% 61%
30 100% 99.5% 96% 89% 61.5%
50 100% 100% 94% 88% 72%
100 100% 99% 91% 92% 73%

Table 3.4: Instances solved in less
than 15 minutes.

n\K 3 5 8 10 20

10 0% 0% 0% 2.5% 37.5%
20 0% 0% 2% 6.5% 39%
30 0% 0.5% 4% 11% 38.5%
50 0% 0% 6% 12% 28%
100 0% 1% 9% 8% 27%

Table 3.5: Instances unsolved at
the end of the time limit of 15 min-
utes.

n\K 3 5 8 10 20

10 − − − 1.95% 1.09%
20 − − 0.36% 0.77% 0.57%
30 − 0.53% 0.34% 0.41% 0.38%
50 − − 0.24% 0.27% 0.2%
100 − 0.09% 0.11% 0.11% 0.08%

Table 3.6: Mean gap of the x un-
solved instances at the end of the
time limit of 15 minutes, where x =
200× the percentage of Table 3.5.

We see from Table 3.4 that for instances with up to 10 delivery dates and 1000 jobs,

almost all the instances (at least 88% of each class) are solved in less than 15 minutes.

For the instances with 20 deliver dates, still 61% of the instances are solved within the

time limit. Moreover, we can notice from Tables 3.3 and 3.4 that the majority of the

instances solved within the time limit are solved in less than 2 minutes.

For the last category of instances (i.e. the instances that could not be optimally

solved in less than 15 minutes), we present the results when allowing 5 minutes more of

computation. In Table 3.7 we present the percentage of instances that could be solved

in 20 minutes, among the unsolved instances after 15 minutes. In Table 3.8 are reported

62 3. Exact method for the single machine problem: Branch and Bound

the gaps of the unsolved instances at the time limit of 20 minutes.

n\K 3 5 8 10 20

10 − − − 20% 2.7%
20 − − 25% 0% 1.3%
30 − 0% 0% 0% 0%
50 − − 8.3% 4.2% 0%
100 − 0% 0% 0% 5.6%

Table 3.7: Instances that could be
solved in 20 minutes, among the
unsolved instances after 15 min-
utes.

n\K 3 5 8 10 20

10 − − − 2.08% 1.06%
20 − − 0.38% 0.77% 0.57%
30 − 0.53% 0.34% 0.41% 0.38%
50 − − 0.22% 0.27% 0.2%
100 − 0.09% 0.11% 0.11% 0.08%

Table 3.8: Mean gap of the y un-
solved instances at the time limit
of 20 minutes, where y = x× the
percentage of Table 3.7.

On Tables 3.6 and 3.8, we notice that, for a fixed number of delivery dates, the mean

gaps are higher when there are less jobs. To explain this behavior, we have the following

hypothesis. We show, in Chapter 4, an approximation result for the two delivery dates

case which says that the initial gap is at most equal to 1. We conjecture that this

result can be extended to K delivery dates: the initial gap would be at most equal to

1 + 2 + . . . + K − 1 = K(K − 1)/2. Hence, two instances with the same number of

delivery dates would have similar absolute gaps. However, the more the jobs, the less

the relative gap.

We notice that 5 minutes more of computation do not have a significant impact (see

Tables 3.7 and 3.8). Therefore, we attempted to close the gap for one class of instances,

by allowing 1 hour of computation. We chose the class where K = 10 and n = 100,

since none of the unsolved instances in 15 minutes of this class could be solved in 20

minutes; moreover there was no improvement of the mean gap, which is one of the

smallest (0.11%). On the 16 instances that were allowed one hour computation, only

one could be solved optimally in less than 1 hour (in 1484 seconds). The mean gap of

the other 15 instances is 0.1, which is very close to the mean gap after 15 or 20 minutes.

Below, we present in Table 3.9 the mean CPU time for the instances that were

not solved at the root node, and in Table 3.10 the corresponding standard deviations,

computed as
√
E(T 2)− (E(T))2, where E(T) (resp. E(T 2)) is the mean CPU time

(resp. the mean squared CPU time) over the concerned instances.

3. Exact method for the single machine problem: Branch and Bound 63

n\K 3 5 8 10 20

10 0 0 0.46 19.21 21.93
20 0 0.82 9.84 4.51 9.26
30 0 6.62 17.47 13.06 30.23
50 0.02 3.49 15.21 1.01 36.81
100 0.03 6.94 1.17 5.27 40.6

Table 3.9: Mean CPU time for the
instances that were not solved at
the root node (in at most 15 min-
utes).

n\K 3 5 8 10 20

10 0 0 3.97 83.45 83.83
20 0 5.86 48.79 20.14 27.08
30 0.01 50.16 72.81 73.83 96.51
50 0.06 27.8 83.86 3.66 67.1
100 0.05 30.32 3.44 18.65 97.73

Table 3.10: Standard deviations of
the CPU time for the instances that
were not solved at the root node (in
at most 15 minutes).

From Table 3.10 we see that the solving times are not homogeneous, as it could be

seen in Tables 3.1 to 3.5. The majority of the instances is rapidly solved, however there

exists a non negligible number of more difficult to solve instances.

Overall, the mean CPU time remains correct, considering that the mean CPU times

of Table 3.9 only take into account the instances that were solved by exploring more

than the root node.

Results by A and R. In order to identify the more difficult instance configurations,

we show below the same kind of tables as above, this time according to the values of A

and R.

A\R 0.1 0.3 0.5 0.7 1

0.5 38% 36.4% 38.4% 32% 12.8%
0.8 46.4% 47.2% 42.8% 33.2% 14.4%
1 66.4% 65.2% 60.4% 54% 24%

1.2 97.2% 94.4% 94.4% 92.8% 74.8%

Table 3.11: Instances solved at the
root node.

A\R 0.1 0.3 0.5 0.7 1

0.5 71.2% 69.2% 68.8% 67.6% 68.4%
0.8 73.6% 72% 74% 72% 75.6%
1 90.4% 89.6% 87.6% 86.8% 82.8%

1.2 99.6% 100% 99.6% 100% 97.6%

Table 3.12: Instances solved in less
than 1 second.

A\R 0.1 0.3 0.5 0.7 1

0.5 81.6% 78% 83.6% 79.2% 82%
0.8 80.4% 79.6% 80.8% 78.4% 82.8%
1 96.4% 98% 95.6% 98.8% 95.6%

1.2 100% 100% 100% 100% 99.6%

Table 3.13: Instances solved in less
than 120 seconds.

A\R 0.1 0.3 0.5 0.7 1

0.5 83.6% 80% 84.4% 81.6% 84.8%
0.8 82% 81.6% 82.8% 80.4% 84.8%
1 98% 98.4% 96% 99.2% 97.2%

1.2 100% 100% 100% 100% 99.6%

Table 3.14: Instances solved in less
than 15 minutes.

64 3. Exact method for the single machine problem: Branch and Bound

A\R 0.1 0.3 0.5 0.7 1

0.5 16.4% 20% 15.6% 18.4% 15.2%
0.8 18% 18.4% 17.2% 19.6% 15.2%
1 2% 1.6% 4% 0.8% 2.8%

1.2 0% 0% 0% 0% 0.4%

Table 3.15: Instances unsolved at
the end of the time limit of 15 min-
utes.

A\R 0.1 0.3 0.5 0.7 1

0.5 0.39% 0.54% 0.48% 0.54% 1.24%
0.8 0.22% 0.23% 0.32% 0.34% 0.76%
1 0.07% 0.13% 0.12% 0.25% 0.29%

1.2 − − − − 0.02%

Table 3.16: Mean gap of the x un-
solved instances at the end of the
time limit of 15 minutes, where x =
250× the percentage of Table 3.15.

A\R 0.1 0.3 0.5 0.7 1

0.5 0% 0% 0% 2.2% 2.6%
0.8 4.4% 6.4% 2.3% 0% 0%
1 0% 0% 0% 0% 28.6%

1.2 − − − − 0%

Table 3.17: Instances that could
be solved in 20 minutes, among
the unsolved instances after 15 min-
utes.

A\R 0.1 0.3 0.5 0.7 1

0.5 0.39% 0.54% 0.48% 0.52% 1.15%
0.8 0.21% 0.23% 0.32% 0.34% 0.76%
1 0.06% 0.13% 0.1% 0.25% 0.39%

1.2 − − − − 0.02%

Table 3.18: Mean gap of the y
unsolved instances before the time
limit of 20 minutes, where y = x×
the percentage of Table 3.17.

A\R 0.1 0.3 0.5 0.7 1

0.5 15.16 16.4 10.62 16.81 13.15
0.8 16.95 11.74 22.08 13.68 11.38
1 10.88 5.22 6.2 5.02 11.88

1.2 0.51 0.06 0.32 0.13 1.2

Table 3.19: Mean CPU times for
the instances that were not solved
at the root node (in at most 15 min-
utes).

A\R 0.1 0.3 0.5 0.7 1

0.5 64.16 70.07 44.86 71.48 51.97
0.8 73.23 39.18 90.92 61.07 63.73
1 39.39 20.41 22.48 20.26 66.05

1.2 0.42 0.11 0.64 0.23 5.1

Table 3.20: Standard deviations of
the CPU time for the instances that
were not solved at the root node (in
at most 15 minutes).

We can notice that the value of R does not affect significantly the results.

However, the smallest values of A (0.5 and 0.8) correspond to instances with higher

CPU times. This can be explained by noticing that when A is greater (i.e. equal to 1 or

1.2), the horizon is longer and thus more jobs can be scheduled before the last delivery

date. Hence, there is less concurrence among candidate jobs to be scheduled.

If we only consider instances with small A, there are still at least 80% of each class

of instances that are solved within the time limit of 15 minutes, the majority of which

are solved in less than 2 minutes.

Finally, allowing 5 more minutes of computation time does not seem significant,

3. Exact method for the single machine problem: Branch and Bound 65

except for A = 1 and R = 1 (cf. Table 3.17), but this result must be considered in the

light of the small number of unsolved instances within 15 minutes, for this configuration,

compared to the configurations where A = 0.5 or A = 0.8 (cf. Table 3.15).

3.6 Conclusion

In this chapter, we proposed a Branch and Bound method for the single machine problem.

For this purpose, we established some dominance rules, on which relies the branching

scheme. Moreover, we designed some efficient bounds relying on the SDD algorithm;

some pruning rules are presented to improve the Branch and Bound method. Finally,

experimental results are presented on randomly generated instances with up to 20 de-

livery dates and 2000 jobs: 85% of all the tested instances were optimally solved in less

than 2 minutes; while the mean gap over all instances unsolved after 15 minutes is less

than 0.5%.

In the next chapter, we study the single machine problem with two delivery dates.

66 3. Exact method for the single machine problem: Branch and Bound

Chapter 4
Solving the single machine problem

with two delivery dates

The two delivery dates problem 1|ri|V1 + V2 has been proven to be NP-hard in Chap-

ter 2. In order to solve 1|ri|V1 + V2, we first present a specific dominance rule for this

problem in Section 4.1. Then, in Section 4.2 we propose a pseudopolynomial time ex-

act method, based on dynamic programming (which proves the weak NP-hardness of

1|ri|V1 + V2); and in Section 4.3 a polynomial time algorithm yielding a solution with

an absolute performance guarantee. Finally, Section 4.4 gathers the long formal proofs

of this chapter.

4.1 Structural properties

The dominance rules for 1|r1|
∑K

k=1 Vk presented in Section 3.1 are also valid for 1|ri|V1+

V2, and are summarized in Property 11 below. First, recall the following notation.

Notation. Any (partial) schedule S of 1|ri|
∑
Vk can be split into K + 1 subschedules

S1, . . . , SK+1; Sk being the subschedule of the jobs completing into Ik =]Dk−1, Dk], k =

1, . . . ,K + 1. Thus, S can be expressed as S = S1.S2.SK+1, where Si.Sj denotes the

concatenation of subschedule Si with subschedule Sj (assuming that J (Si)∩J (Sj) = ∅).

Property 11. There exists an optimal schedule S∗ = S∗1 .S
∗
2 .S
∗
3 for 1|ri|V1 + V2 that is

an ERD-schedule where S∗2 is a block.

Another dominance rule, specific to 1|ri|V1 + V2, is expressed by Property 12. First,

recall the following notations.

Notations. We denote by SDk the schedule obtained with SDD(J all, 0, Dk). Uk denotes

the number of jobs of SDk ; hence Uk is the maximal number of jobs that can complete at

or before Dk in any feasible schedule, k = 1, . . . ,K.

68 4. Solving the single machine problem with two delivery dates

For any feasible schedule S, and, a fortiori, for an optimal schedule, we have |J (S1)| ≤
U1.

Property 12. There exists an optimal schedule S∗ = S∗1 .S
∗
2 .S
∗
3 for 1|ri|V1 + V2 where

|J (S∗1)| = U1.

Before proving Property 12 by the means of Proposition 8, a small example is given

in Figure 4.1.

r1 r4r30 D1 D2
r6r2 r5

Jobs

Delivery dates
and release dates

J1 J2 J3 J4 J5 J6

(a) An instance of 1|ri|V1 + V2.

r1 r4r30 D1 D2
r6r2 r5

J4J3J2

(b) U1 = 3.

r1 r4r30 D1 D2
r6r2 r5

J1 J2 J5 J6J4J3

(c) An optimal schedule S∗ where |J (S∗1)| = U1.

Figure 4.1: An example to illustrate Property 12.

Proposition 8. Given any feasible schedule S of 1|ri|V1 + V2, there exists a feasible

schedule S′ such that |J (S′1)| = U1 and v(S′) ≥ v(S).

The proof of Proposition 8 is based on constructive arguments. For this purpose,

we introduce a constructive algorithm that, given a schedule S such that |J (S1)| < U1,

constructs a schedule S′ such that |J (S′1)| = U1 and v(S′) ≥ v(S), starting from S′ = S.

The algorithm will be called DS-algorithm (for Dominant Schedule) and will be described

at page 74.

Notation. Let SD1-jobs denote the jobs that belong to SD1 , and let S
D1-jobs denote

the jobs of J all that do not belong to SD1 .

The key idea of the DS-algorithm is to rearrange jobs in S′, by reinserting S
D1-jobs

that are in S′1 into S′2 and S′3 and reinserting all the SD1-jobs into S′1, while main-

taining feasibility and without decreasing the total payoff of S′. Left-shifting some

SD1-jobs, and right-shifting some S
D1-jobs will thus be necessary, as on the example of

Figures 4.2, 4.3, 4.4.

4. Solving the single machine problem with two delivery dates 69

r1 r30 r2
D1 D2

r5r4 r6

r1 r30 r2
D1 D2

r5r4 r6

SD1

Jobs

Delivery dates
and release dates

J2J1

J2 J3J1 J6

J5

J5J4

Figure 4.2: An instance of 1|ri|V1 + V2, whose U1 = 3. In this example, J1, J2, J5 are
the SD1-jobs.

r1 r30 r2
D1 D2

r5r4 r6

J1 J2 J6 J3J4 J5

(a) A schedule S where |J (S1)| < U1 = 3 and v(S) = 7.

r1 r30 r2
D1 D2

r5r4 r6

J1 J2 J6 J3J4 J5

(b) The two SD1-jobs J2 and J5 are reinserted into S1, while the S
D1

-job J4 is removed from S1.

r1 r30 r2
D1 D2

r5r4 r6

J1 J6 J3J2 J5 J4

(c) If J4 is reinserted into S′2, the obtained schedule S′ has a payoff of 8, since the payoff variation
of J2 (resp. J4, resp. J5) is 1 (resp. −1, resp. 1).

r1 r30 r2
D1 D2

r5r4 r6

J1 J6 J3J2 J5 J4

(d) If J4 is reinserted into S′3, the obtained schedule S′ has a payoff of 7, since the payoff variation
of J2 (resp. J4, resp. J5) is 1 (resp. −2, resp. 1).

Figure 4.3: Job exchanges to obtain a schedule where U1 jobs complete at or before D1,
for the instance of Figure 4.2.

70 4. Solving the single machine problem with two delivery dates

r1 r30 r2
D1 D2

r5r4 r6

r1 r30 r2
D1 D2

r5r4 r6

(b)

(c)

(a)
r1 r30 r2

D1 D2

r5r4 r6

J1 J3 J6 J2

J1 J3 J6J2

J1 J3 J6 J2

J4 J5

J4 J5

J4 J5

Figure 4.4: For the instance of Figure 4.2, a schedule S with less than U1 jobs completing at
or before D1 is illustrated in (a). Suppose that J2 is the first SD1 -job that is reinserted into S1

(b). After this reinsertion, we obtain a schedule where U1 jobs complete at or before D1, even if
they are not all SD1-jobs (c) (in such a case, DS-algorithm stops).

Finally, note that the DS-algorithm will only be used to prove Proposition 8.

Before describing the DS-algorithm and its proof of validity, we need some prelimi-

nary lemma and definitions.

Notation. Let C
1
max be the completion time of the last S

D1-job in S′1 (C
1
max = 0 if

there are no S
D1-jobs in S′1).

Lemma 3. Given a schedule S′, let Ji be an SD1-job scheduled in S′2 or S′3. If there is

no straddling job Js starting before D1 and completing after D1 in S′, and if the total

sum of the idle times in [C
1
max, D1] is at least equal to pi, then Ji can be reinserted in

S′ into the interval [C
1
max, D1].

Proof. Let X be the set of SD1-jobs scheduled into [C
1
max, D1] in S′. Then, SDD(X ∪

{Ji}, C
1
max, D1) schedules all the jobs of the set X∪{Ji} into [C

1
max, D1], hence resulting

in a partial schedule denoted σx (cf. Figure 4.5). Indeed, the interval [C
1
max, D1] is wide

enough to contain all the processing times of the jobs of X ∪ {Ji}. However, we must

be sure that σx is feasible (i.e. each job starts after its release date). Notice that the

sequence of jobs corresponding to σx is a subsequence of the sequence associated to SD1 .

Hence, because both schedules are right-justified and complete at D1, for any job Jj of

σx we have Cj(S
D1) ≤ Cj(σx). Therefore, as SD1 is feasible, σx is also feasible.

We define two operators that will be used in DS-algorithm to reinsert jobs inside

the schedule S′: a left-shift (resp. right-shift) operator LS(Ji, x, y) (resp. RS(Ji, x, y)),

which shifts Ji from S′x to S′y, with x, y ∈ {1, 2, 3} (y < x for LS and y > x for RS).

Let us describe these operators, and the induced payoff variations: the payoff variations

4. Solving the single machine problem with two delivery dates 71

���
���
���

���
���
���

����
����
����

����
����
����

��
��
��

��
��
��

���
���
���

���
���
���

0
D2D1

C
1
max

0
D2D1

C
1
max

σx︷ ︸︸ ︷

S′

Ji in S′1

After reinserting

Xlast S
D1 -job completing before D1

Ji

Ji

Figure 4.5: Example for Lemma 3.

can be easily deduced by reminding that a job completing in [0, D1] is worth 2 for the

payoff, a job completing in]D1, D2] is worth 1, and a job completing after D2 is worth

0.

1. For any job Ji we define:

• RS(Ji, 1, 3): Ji is removed from S′1 and reinserted after the last job of S′3, as

shown below. It induces a payoff variation of −2.

Ji

Ji

0 D2D1

0 D2D1

RS(Ji, 1, 3)

• RS(Ji, 2, 3): Ji is removed from S′2 and reinserted after the last job of S′3, as

shown below. It induces a payoff variation of −1.

Ji

Ji

0 D2D1

0 D2D1

RS(Ji, 2, 3)

After performing RS(Ji, 1, 3) or RS(Ji, 2, 3), the feasibility is maintained, as Ji is

right-shifted.

2. For any job Ji such that pi is at most equal to the total sum of the idle times in

S′2, we define:

• RS(Ji, 1, 2): Ji is removed from S′1 and reinserted in S′2, in the following way

(see figure below). First, all the jobs of S′2 that start at or after D1 are right-

72 4. Solving the single machine problem with two delivery dates

shifted in order to obtain a unique block β that completes at D2. Then, Ji is

inserted in S′2 before the first job of β.

Ji

Ji

0 D2D1
y1 y2 y3

0 D2D1

︸ ︷︷ ︸
β

RS(Ji, 1, 2)

pi ≤ y1 + y2 + y3

After performing RS(Ji, 1, 2), the feasibility is maintained, as Ji is right-shifted

and, by assumption, the idle time induced by right-shifting the jobs of S′2 is large

enough to schedule Ji. RS(Ji, 1, 2) induces a payoff variation of −1.

3. For any SD1-job JM , with processing time pM , such that:

(a) there is no straddling job in S′ starting before D1 and completing after D1,

and

(b) the total sum of the idle times between C
1
max and D1 in S′ is at least pM ,

we define:

• LS(JM , 3, 1): JM is removed from S′3 and reinserted in S′1 into the interval

[C
1
max, D1], as shown below.

�
�
�

�
�
�

��
��
��
��

��
��
��
��

��
��
��

��
��
��

���
���
���
���

���
���
���
���

JM

JM

0 D2D1
pM ≤ y1 + y2y1 y2

0 D2D1

C
1
max

LS(JM , 3, 1)

︸ ︷︷ ︸
scheduled with SDD-algorithm

In the example of the above figure, the striped jobs are the SD1-jobs scheduled

after C
1
max in S′1. JM is reinserted in S′1 by rescheduling all the striped jobs and

JM between C
1
max and D1 with the SDD-algorithm. After LS(JM , 3, 1) has been

applied, the feasibility is maintained by Lemma 3, i.e. release dates are satisfied.

LS(JM , 3, 1) induces a payoff variation of 2.

4. For any SD1-job JM , with processing time pM , such that:

(a) there is no straddling job in S′ starting before D1 and completing after D1,

and the total sum of the idle times between C
1
max and D1 in S′ is at least

pM , or

4. Solving the single machine problem with two delivery dates 73

(b) JM is a straddling job starting before D1 and completing after D1, and the

total sum of the idle times between C
1
max and bM is at least CM −D1,

we define:

• LS(JM , 2, 1): JM is removed from S′2 and reinserted in S′1 into the interval

[C
1
max, D1] (see the two figures below, where the striped jobs are the SD1-jobs

scheduled after C
1
max in S′1.).

�
�
�

�
�
�

��
��
��
��

��
��
��
��

��
��
��

��
��
��

���
���
���
���

���
���
���
���

JM

JM

0 D2D1
y1 y2

0 D2D1

C
1
max

pM ≤ y1 + y2

LS(JM , 2, 1)(a)

�
�
�

�
�
�

��
��
��
��

��
��
��
��

���
���
���

���
���
���

���
���
���
���

���
���
���
���

JM

JM

0 D2D1
y1 y2

0 D2D1

C
1
max

LS(JM , 2, 1)(b)

CM −D1 ≤ y1 + y2

JM is reinserted in S′1 by rescheduling all the striped jobs and JM between C
1
max

and D1 with the SDD-algorithm. After LS(JM , 2, 1) has been applied, the feasi-

bility is maintained, by Lemma 3, i.e. release dates are satisfied. Indeed, in the

case in which JM is a straddling job, once JM is removed from S′2 there is no

straddling job anymore, and therefore Lemma 3 applies. LS(JM , 2, 1) induces a

payoff variation of 1 in both cases.

DS-algorithm is a recursive function, depicted by pseudocode Algorithm 8 (p. 74),

that takes as parameters the initial schedule S′ = S′1.S
′
2.S
′
3 and q, the current step of

the algorithm.

Notation. We denote by n1 the number of S
D1-jobs in S′1 and by n2 (resp. n3) the

number of SD1-jobs in S′2 (resp. S′3).

We have |J (S′1)| = U1 +n1− (n3 +n2), thus the terminal condition is achieved when

n1 = n2 + n3. Initially, n1 < n2 + n3.

We describe next the structure of the algorithm.

There are two main cases: the initial case q = 0 (lines 2-14) and the general case

q > 0 (lines 15-40). For each of these two cases, we have two subcases. Therefore, we

74 4. Solving the single machine problem with two delivery dates

Algo8: q, S′

1 if n1 = n2 + n3 then return S′

2 if q = 0 then
3 if (n1 = 0 and n2 ≥ 0) or (n1 > 0 and n2 ∈ {0, 1}) then

4 for each S
D1 -job Ji in S′1 do RS(Ji, 1, 3)

5 if ∃ a straddling S
D1 -job Js then RS(Js, 2, 3)

6 for each SD1 -job JM in S′2 do LS(JM , 2, 1)

7 for each SD1 -job JM in S′3 do LS(JM , 3, 1)

8 else
9 if (∃ a straddling job Js) and (∃ an SD1 -job Ji in S′2 s.t. (ri ≤ bs and pi ≤ D1 − bs) or

(ri > bs)) then
10 RS(Js, 2, 3)
11 LS(Ji, 2, 1)

12 if n1 < n2 + n3 then
13 if n2 ∈ {0, 1} then return Algo8(0, S’)
14 else return Algo8(1, S’)

15 else
16 if ∀ Eq+1, p(Gq) < p(Eq+1) then
17 if n1 > q and n2 > q + 1 then return Algo8(q + 1, S′)
18 else
19 if n2 = q + 1 and there is a straddling SD1 -job Js then flag ← true
20 else flag ← false

21 for each SD1 -job JM in S′2 do RS(JM , 2, 3)
22 if ∃ a straddling job Js then RS(Js, 2, 3)
23 for each job Jj in Gq−1 do RS(Jj , 1, 2)
24 Ju ← the unique job of Gq\Gq−1

25 if flag then RS(Ju, 1, 3)
26 else RS(Ju, 1, 2)

27 for each S
D1 -job Ji in S′1 do RS(Ji, 1, 3)

28 for each SD1 -job JM in S′3 do LS(JM , 3, 1)

29 else
30 if ∃ a straddling job Js such that Js 6∈ Eq+1 then
31 Jf ← the first job of Eq+1

32 exchange Jf and Js

33 for each job Ji in Eq+1 do RS(Ji, 2, 3)
34 for each job Jj in Gq−1 do RS(Jj , 1, 2)
35 Ju ← the unique job of Gq\Gq−1

36 RS(Ju, 1, 3)
37 for each job Ji in Eq+1 do LS(Ji, 3, 1)
38 if n1 < n2 + n3 then
39 if n1 > 0 and n2 ≥ 2 then return Algo8(1, S′)
40 else return Algo8(0, S′)

41 return S′

Algorithm 8. DS-algorithm.

consider Algorithm 8 as composed of four parts: Part 1 includes lines 3-7, Part 2 lines

8-14, Part 3 lines 16-28 and Part 4 lines 29-40.

In the initial case, if there are no S
D1-jobs in S′1 or if there is at most one SD1-job in

4. Solving the single machine problem with two delivery dates 75

S′2 (lines 3-7), then it is easy, without decreasing the payoff, to reinsert all the SD1-jobs

in S′1 (and possibly reinsert some S
D1-jobs in S′3) (see Figure 4.6). Otherwise, if there

exists a straddling job starting before D1 and completing after D1 and it is possible to

exchange it with another job in order to obtain a schedule without straddling job (and

without decreasing the payoff), this exchange is performed at lines 9-11 (see Figure 4.7).

����
����
����

����
����
����

����
����
����

����
����
����

�����
�����
�����

�����
�����
�����

����
����
����

����
����
����

����
����
����

����
����
����

���
���
���

���
���
���

���
���
���

���
���
���

0
D1 D2

(a) If n1 = 0, it is sufficient to reinsert all the SD1-jobs of S′2 and S′3 to S′1: the payoff increases (by
n2 + 2n3).

����
����
����

����
����
����

�����
�����
�����

�����
�����
�����

����
����
����

����
����
����

��
��
��

��
��
��

����
����
����

����
����
����

���
���
���

���
���
���

���
���
���

���
���
���

0
D1 D2

(b) If n1 > 0 and n2 ≤ 1, all the SD1 -jobs of S′2 and S′3 are reinserted into S′1, while all the S
D1

-jobs

in S′1 and possibly a straddling S
D1

-job in S′2 are reinserted into S′3. The payoff variation is equal
to n2 + 2n3 − 2n1. In this example, since n2 = 1, and since n1 < n2 + n3, the payoff increases.

Figure 4.6: The initial case of Algorithm 8: the striped jobs are the SD1-jobs.

D1 D2
0 ri

D1 D2

bs0 ri

Js

Js

Ji

Ji

Figure 4.7: “Removal” of the straddling job.

The general case is composed of parts 3 and 4. Let us give the idea of its inductive

structure (refer to Figure 4.8). At the beginning of each step q > 0, we consider Gq:

the set of the last q S
D1-jobs scheduled in S′1. We also denote by Eq+1 a set of q + 1

SD1-jobs in S′2. Then, if the following condition Hq is satisfied, we execute Part 3:

76 4. Solving the single machine problem with two delivery dates

∀ Eq+1, p(Gq) < p(Eq+1) (Hq)

Otherwise, we execute Part 4.

����
����
����

����
����
����

���
���
���

���
���
���

�����������
�����������
�����������

�����������
�����������
�����������

����
����
����
����

����
����
����
����

���
���
���
���

���
���
���
���

�����
�����
�����
�����

�����
�����
�����
�����

��
��
��
��

��
��
��
��

���
���
���

���
���
���

D1

0
D2

G1︷ ︸︸ ︷

(a) For any pair E2 of SD1 -jobs in S′2, H1 is satisfied: p(G1) < p(E2).

���
���
���

���
���
���

�����������
�����������
�����������

�����������
�����������
�����������

����
����
����
����

����
����
����
����

���
���
���
���

���
���
���
���

�����
�����
�����
�����

�����
�����
�����
�����

��
��
��
��

��
��
��
��

���
���
���

���
���
���

����
����
����

����
����
����

D1

0
D2

G2︷ ︸︸ ︷

(b) For any set E3 of three SD1-jobs in S′2, H2 is satisfied: p(G2) < p(E3).

���
���
���

���
���
���

�����
�����
�����
�����

�����
�����
�����
�����

����
����
����

����
����
����

�����������
�����������
�����������

�����������
�����������
�����������

���
���
���

���
���
���

����
����
����
����

����
����
����
����

��
��
��
��

��
��
��
��

���
���
���
���

���
���
���
���

D1

0
D2

G3
E4

(c) There exists a set E4 of four SD1 -jobs in S′2, such that p(G3) ≥ p(E4).

���
���
���

���
���
���

�����
�����
�����
�����

�����
�����
�����
�����

����
����
����

����
����
����

�����������
�����������
�����������

�����������
�����������
�����������

���
���
���

���
���
���

����
����
����
����

����
����
����
����

��
��
��
��

��
��
��
��

���
���
���
���

���
���
���
���

D1

0
D2

(d) The following reinsertions can be done: first, the job of G3\G2 is reinserted into S′3. Then, the
jobs of G2 and E4 can be exchanged, since p(G2) < p(E3) by H2 and since p(E4) ≤ p(G3). The
total payoff variation is 0, since the payoff variation of the job of G3\G2 (resp. the jobs of G2, resp.
the jobs of E4) is −2 (resp. −2, resp. 4). The number of SD1 -jobs in S′1 increases by 1.

Figure 4.8: The general case of Algorithm 8: the crossed jobs are S
D1-jobs, while the

striped jobs are SD1-jobs.

Of these two cases, the only one in which the instruction “go to step q + 1” (repre-

sented by the call of Algo8(q+1, S′)) can be performed is Part 3 (at line 17). Thus, (Hq)

is an inductive hypothesis. Indeed, if we are at a given step qu > 1, then we executed

Part 3 in all the previous steps q such that 1 ≤ q < qu (cf. Figures 4.8a, 4.8b and 4.8c).

Hence, at any step qu > 1, (Hq) is observed for all 1 ≤ q < qu.

When performing Part 4, there exists an Eq+1 that satisfies condition p(Gq) ≥
p(Eq+1) (cf. Figures 4.8c and 4.8d). Therefore, by removing the jobs of Gq from S′1,

the jobs of Eq+1 can be reinserted in S′1, and consequently the number of jobs in S′1
increases. This condition can be reached several times before the terminal condition is

satisfied, and each time |J (S′1)| increases.

4. Solving the single machine problem with two delivery dates 77

Finally, correctness of Algorithm 8 is established by Proposition 9, which is proven

in Section 4.4.1.

Proposition 9. Algorithm 8 with parameters (0, S) yields a feasible schedule S′ whose

payoff is greater than or equal to v(S), and that schedules U1 jobs completing no later

than D1.

4.2 Exact method

In this section, we describe a dynamic programming algorithm for 1|ri|V1 +V2, and then

show the experimental results of this algorithm on randomly generated instances.

4.2.1 Dynamic programming algorithm

The key point of the dynamic programming algorithm is to construct ERD-schedules

where S2 is a block (cf. Property 11, p. 11).

Any schedule S will be described by a 4-tuple (Cmax(S1), B2(S), Cmax(S2), v(S)). Of

course this 4-tuple does not provide a precise description of the schedule, like completion

times of the jobs; however it includes enough information for the purpose of the algo-

rithm, which is to return an optimal payoff. In this section, we first handle schedules,

to explain the idea of the algorithm, then we define some formal functions that handle

4-tuples.

The jobs are reindexed in ERD order: J1 ≺ERD · · · ≺ERD JN . There are N steps

in the dynamic programming algorithm. At each step j = 1, . . . , N , we construct a

set Sj of dominant ERD-schedules where S2 is a block, starting out from Sj−1, the set

of schedules built at the previous step. To build Sj , we modify the schedules of Sj−1

by reinserting job Jj either before D1 or between D1 and D2, or keeping Jj after D2.

Indeed, the initial set of schedules S0 contains only one schedule, in which all the jobs

are scheduled after D2, in ERD order. The unique schedule of S0 is represented by

the following 4-tuple: (0, D2, 0, 0). In this 4-tuple, Cmax(S1) = 0 because S1 is empty,

therefore it can be represented as starting at time 0 and completing at time 0. Since S2

is empty too, it should be represented as starting at D1 and finishing at D1; however, we

set its starting time at D2 (B(S2) = D2) and its completion time at 0 (Cmax(S2) = 0),

in order to avoid considering additional subcases. This assumption does not affect the

correctness of the algorithm.

Suppose now we are at step j, j = 1, . . . , N . Let S = S1.S2.S3 be a schedule of Sj−1.

Then, Jj ∈ J (S3). Indeed, as a job Jj is reinserted only at step j, job Jj is scheduled

after D2 in all the schedules of Sj−1. Thus, starting out from S, we can build some new

schedules (at most three) by reinserting job Jj in three different ways: in S1, in S2, or

in S3.

When Jj is reinserted into S1, resp. S2, it is always scheduled at the end of S1, resp.

S2, in order to obtain an ERD-schedule (see Figure 4.9).

78 4. Solving the single machine problem with two delivery dates

Cmax(S1) Cmax(S2)

B(S2)

0 D1 D2

Jj

Figure 4.9: The three ways job Jj can be reinserted into S.

Moreover, if we attempt to reinsert Jj into S1:

• if Jj can be scheduled after Cmax(S1) while completing before both D1 and the

starting time of the first job of S2 (i.e. ifmax(rj , Cmax(S1))+pj ≤ min(B(S2), D1)),

then Jj is scheduled as soon as possible after Cmax(S1) and we have Cj = max(rj ,

Cmax(S1)) + pj .

• if Jj can be scheduled after Cmax(S1) while completing beforeD1 (i.e. max(rj , Cmax(S1))+

pj ≤ D1) but cannot complete before the starting time of the first job of S2 (i.e. if

max(rj , Cmax(S1)) + pj > B(S2)), and if S2 can be right-shifted of the necessary

number of time units to allow Jj to be reinserted in S1 while keeping the completion

times of all the jobs of S2 in I2 (i.e. Cmax(S2) +max(Cmax(S1), rj) +pj−B(S2) ≤
D2), then this right-shift is performed and Jj is reinserted in S1 (see Figure 4.10).

• otherwise, Jj is not reinserted in S1.

In the first two cases, the payoff of the new schedule is v(S) + 2.

Jj

B(S2)

Cmax(S2)Cmax(S1)

0

0

D2

D2

D1

D1

rj

rj

Jj

Cmax(S2)Cmax(S1) = B(S2)

Figure 4.10: An example in which Jj is reinserted into S1: S2 is right-shifted by
max(Cmax(S1), rj) + pj −B(S2) time units to allow Jj to be scheduled.

Consider now the case in which we attempt to reinsert Jj into S2.

Notation. Let bminj be the earliest starting time allowing job Jj to complete after D1:

bminj = max(rj , D1 − pj + 1) (see Figure 4.11).

4. Solving the single machine problem with two delivery dates 79

rj D1 − pj + 10

0 D2

D1

D1

D2
D1 + 1

Jj

Jj
(b)

(a)

bminj

bminj

rj rj + pj

Figure 4.11: Value of bminj if: (a) rj < D1 − pj + 1, or (b) rj ≥ D1 − pj + 1.

• if S2 is empty, and if max(bminj , Cmax(S1)) + pj ≤ D2, then Jj is scheduled as soon

as possible while completing into]D1, D2]; thus Cj = max(bminj , Cmax(S1)) + pj .

• if S2 is not empty, and if Jj can be scheduled after Cmax(S2) while completing

into]D1, D2] (i.e. max(rj , Cmax(S2)) + pj ≤ D2), then Jj is scheduled as soon as

possible after Cmax(S2); thus Cj = max(rj , Cmax(S2))+pj . If Cmax(S2) < rj , then

all the jobs of S2, except for Jj , are right-shifted in order to constitute a unique

block with Jj , while maintaining feasibility (see Figure 4.12).

• otherwise, Jj is not reinserted in S2.

In the first two cases, the payoff of the new schedule is v(S) + 1.

Jj

Jj

Jj

Cmax(S2)

Cmax(S1) B(S2) Cmax(S2)

Cmax(S2)Cmax(S1) B(S2)

Inserting Jj

Restoring
block S2

Cmax(S1) B(S2)

0 D1 rj

0 D1 rj

0 D1 rj

D2

D2

D2

Figure 4.12: An example in which Jj is reinserted into S2: the previous block in S2 is
right-shifted by rj − Cmax(S2) time units to avoid idle times in S2.

80 4. Solving the single machine problem with two delivery dates

An example of the execution of the algorithm on a small instance is given in Fig-

ure 4.13.

More formally, let Qj be the set of 4-tuples corresponding to the schedules of Sj ,
j = 0, . . . , N . Then, at step j, we can define three functions g1, g2, g3 on Qj−1. Given

a 4-tuple (Cmax(S1), B2(S), Cmax(S2), v(S)) of Qj−1, corresponding to a solution S of

Sj−1, function g1 (resp. g2, g3) returns the 4-tuple associated to a solution obtained by

reinserting job Jj in S1 (resp. in S2, in S3).

Before giving the formal definition of these three functions, we need the following

notations. For a given j ∈ {1, . . . , N} and a given schedule S ∈ Sj−1:

• α is the earliest possible completion time of Jj if it is reinserted in S1: α =

max(rj , Cmax(S1)) + pj ,

• β1 is the earliest possible completion time of Jj if it is reinserted in S2 when S2 is

empty: β1 = max(bminj , Cmax(S1)) + pj ,

• β2 is the earliest possible completion time of Jj if it is reinserted in S2 when S2 is

not empty: β2 = max(rj , Cmax(S2)) + pj .

Notation. For shortness, we denote v(S) by v, when no ambiguity is possible.

The formal definitions of functions g1, g2, g3 follow.

g1(Cmax(S1), B(S2), Cmax(S2), v, j) =
(α,B(S2), Cmax(S2), v + 2) if α ≤ min(B(S2), D1)

(α, α,Cmax(S2) + α−B(S2), v + 2) if B(S2) < α ≤ D1 and

Cmax(S2) + α−B(S2) ≤ D2

(Cmax(S1), B(S2), Cmax(S2), v) otherwise

g2(Cmax(S1), B(S2), Cmax(S2), v, j) =
(Cmax(S1), β1 − pj , β1, v + 1) if B(S2) = D2 and β1 ≤ D2

(Cmax(S1), B(S2) + β2 − pj − Cmax(S2), β2, v + 1) if B(S2) < D2 and β2 ≤ D2

(Cmax(S1), B(S2), Cmax(S2), v) otherwise

g3(Cmax(S1), B(S2), Cmax(S2), v, j) = (Cmax(S1), B(S2), Cmax(S2), v)

Two 4-tuples (Cmax(S1), B(S2), Cmax(S2), v(S)) and (Cmax(S′1), B2(S′1), Cmax(S′2), v(S′))

are said to be similar iff Cmax(S1) = Cmax(S′1) and B2(S) = B2(S′) and Cmax(S2) =

Cmax(S′2). Clearly, at step j, some subsets of similar 4-tuples can be generated with

functions g1, g2, g3. In this case, we keep in Qj only one of the similar 4-tuples, that has

the maximal value of v.

4. Solving the single machine problem with two delivery dates 81

B
(S

2
)

S
2 

..

S
1 

................

S
0 

................

B
(S

2
)
C

m
a
x
(S

2
)

C
m

a
x
(S

1
)

B
(S

2
)

B
(S

2
)

B
(S

2
)

B
(S

2
)

C
m

a
x
(S

1
)
=
C

m
a
x
(S

2
)

C
m

a
x
(S

2
)

C
m

a
x
(S

1
)

C
m

a
x
(S

1
)
=
C

m
a
x
(S

2
)

B
(S

2
)

C
m

a
x
(S

2
)

C
m

a
x
(S

1
)

B
(S

2
)

C
m

a
x
(S

1
)

B
(S

2
)

C
m

a
x
(S

1
)
=
C

m
a
x
(S

2
)

B
(S

2
)

C
m

a
x
(S

2
)

C
m

a
x
(S

1
)

C
m

a
x
(S

2
)

C
m

a
x
(S

1
)

B
(S

2
)

C
m

a
x
(S

1
)
=
B
(S

2
)

C
m

a
x
(S

1
)

C
m

a
x
(S

2
)

C
m

a
x
(S

1
)
=
B
(S

2
)

C
m

a
x
(S

1
)

C
m

a
x
(S

2
)

C
m

a
x
(S

2
)

C
m

a
x
(S

2
)

C
m

a
x
(S

2
)

0
D

1
D

2
r
2

r
1

0
D

1
D

2
r
2

r
1

0
D

1
D

2
r
2

r
1

0
D

1
D

2
r
2

r
1

0
D

1
D

2
r
2

r
1

0
D

1
D

2
r
2

r
1

0
D

1
D

2
r
2

r
1

0
D

1
D

2
r
2

r
1

0
D

1
D

2
r
2

r
1

0
D

1
D

2
r
2

r
1

0
D

1
D

2
r
2

r
1

0
D

1
D

2
r
2

r
1

0
D

1
D

2
r
2

r
1

(v
=

1
)

(v
=

3
)

(v
=

2
)

(v
=

1
)

(v
=

0
)

(v
=

2
)

(v
=

0
)

(v
=

0
)

(v
=

2
)

(v
=

2
)

(v
=

3
)

(v
=

1
)

D
1
+

1

D
1
+

1

J
1

J
1

J
1

J
1

J
1

J
1

J
1

J
1

J
1

J
2

J
1

J
1

J
1

J
2

J
2

J
2

J
2

J
2

J
2

J
2

J
2

J
2

J
2

J
2

J
2

J
1

Figure 4.13: An execution of the dynamic programming algorithm.

82 4. Solving the single machine problem with two delivery dates

The algorithm ends after N steps. Once QN is built (without similar 4-tuples), the

maximal value of v among those of all the 4-tuples of QN is an optimal payoff.

The complexity of the algorithm is given by the sizes of the sets Q1, . . . ,QN . Thus,

it is given by the number of steps (N) and the maximal number of non-similar 4-tuples

built at each step. The number of non-similar 4-tuples generated at a step is bounded

by O(D1(D2)2), since the number of possible values of Cmax(S1) (resp. B(S2), resp.

Cmax(S2)) is bounded by O(D1) (resp. O(D2), resp. O(D2)). Moreover, sorting the

jobs in ERD order at the beginning of the algorithm induces a complexity of O(NlogN).

Finally, the total complexity is O(NlogN + ND1(D2)2). Since this complexity is

pseudopolynomial, and since we showed in Chapter 2 that 1|ri|V1 + V2 is NP-hard, we

deduce that 1|ri|V1 + V2 is weakly NP-hard.

Remark: Notice that the dynamic programming algorithm can be extended to any

number K of delivery dates, by adapting the number and the definitions of the gi func-

tions. In this case, we have a variable Cmax(S1) for the first delivery date, and two vari-

ables B(Sk) and Cmax(Sk) for each of the other delivery dates (k = 2, . . . ,K). Hence,

the time complexity of the dynamic programming algorithm for K delivery dates is

O(NlogN + ND1(DK)2(K−1)). When K is fixed, this complexity remains pseudopoly-

nomial. Thus we deduce that 1|ri, fixed K|
∑K

k=1 Vk is weakly NP-hard.

The pseudocode of the dynamic programming algorithm, its proof of correctness,

and the formal proof of its complexity are given in Section 4.4.2.

For the sake of clarity, we provided an algorithm that returns an optimal payoff, and

only handles sets Qj . However, it is easy to modify it in order to get an optimal schedule

(by also handling sets Sj).

In order to speed up the execution of the algorithm, we introduce a pruning rule for

the dynamic programming algorithm. Recall that the jobs are reindexed in ERD order.

Pruning rule. Let Je be the last job such that its release date is strictly less than

D1: e = maxi=1,...,N{i|ri < D1}. At the end of step e of the dynamic programming

algorithm, prune all the schedules that do not have exactly U1 jobs completing in the

interval [0, D1].

The pruning rule is based on Property 12, which states that the set of schedules

where U1 jobs complete before D1 is dominant.

4.2.2 Experimentations

The dynamic programming algorithm was tested on randomly generated instances. In-

stances are generated as seen in Section 3.5.1 for the Branch and Bound. We recall that

4. Solving the single machine problem with two delivery dates 83

the generator takes the following inputs:

• the number of jobs N ,

• a parameter A ∈]0, 1], representing the ratio D2/
∑N

i=1 pi,

• a parameter R ∈]0, 1] (release dates are picked randomly in the intervals [0, R×D1]

and [D1, D1 +R×D1]).

For each combination of N ∈ {30, 40, 50, 60, 70, 80}, A ∈ {0.8, 1, 1.2} and R ∈
{0.1, 0.3, 0.5}, 5 instances were generated. Some experiments were performed to ana-

lyze the efficiency of the algorithm in terms of CPU time. The tests were performed in

C++ on a 3.33 GHz Intel Core2-Duo processor, 8 GB RAM, running Debian wheezy/sid.

Each run was limited to a single processor.

Since the results did not show that the CPU times are strongly related to the values

of a and R, we only present the results in relation to the number of jobs N , in Table 4.1.

N Number of solved instances CPU time

30 45 9.3
40 45 56.7
50 45 274.8
60 44 668.4
70 28 797.8
80 9 1186.6

Table 4.1: For each value of N , the number of instances (out of 45 instances) solved
within a time limit of 30 minutes CPU, and the mean CPU time (in seconds) for the
solved instances.

Table 4.1 shows that it becomes hard to efficiently solve instances with more than 70

jobs within reasonable CPU time. Indeed, for the 70-jobs instances, seventeen instances

require more than 30 minutes to be solved.

Some further tests were performed to study the influence of D1 and D2 on the

efficiency of the algorithm. We fixed N = 40 and R = 0.3. Moreover, we considered the

following parameters, where B represents ratio D1/D2:

• A ∈ {0.3, 0.4, 0.5, 0.7, 0.8, 0.9, 1, 1.2, 1.5}

• B ∈ {0.1, 0.3, 0.4, 0.6, 0.8, 0.9}

For each pair of values of A and B, 70 instances are generated, as above, except for

the delivery dates, which are generated from parameters A and B. The average CPU

times are provided in Table 4.2.

84 4. Solving the single machine problem with two delivery dates

A\B 0.1 0.3 0.4 0.6 0.8 0.9

0.3 2 9.4 11.8 12.3 5.2 2.8
0.4 5.7 21.5 28.2 24.1 13.1 4.4
0.5 8.1 32.2 43.8 45.1 16.5 5.5
0.7 16.5 57.8 70 58.9 28.9 8.6
0.8 22.5 78.1 72.3 55.4 30.8 10.9
0.9 26.9 81.4 83.4 43.5 30.4 13.5
1 31.3 84.5 68.4 46.2 32.1 11

1.2 38.1 91.8 58.9 45.7 28.3 12.4
1.5 60.1 71.7 54.8 31.1 24.5 11.2

Table 4.2: For each couple (A,B), mean CPU time on 70 instances (in seconds).

We can notice that when D1 is very small or very large, compared to D2 (B = 0.1

or B = 0.9), the CPU time is usually shorter than for other values of B. This can be

explained by noticing that, in these two cases, the instances are very similar to the single

delivery date problem 1|ri|V . For the same reason, the instances with B = 0.8 are also

quite easy. Conversely, the most difficult instances are those generated with B = 0.3 or

B = 0.4.

As for parameter A, we notice that when it increases, the CPU time increases up

to some point, then it decreases. Since an increase of A implies an increase of D2, the

initial increase of CPU times can be explained by observing that the complexity of the

algorithm is O(NlogN + ND1(D2)2). However, when D2 is very large, almost all the

jobs can be scheduled before D2, and therefore it is easier to obtain an optimal solution.

This can explain the observed decrease in the CPU times.

4.3 Polynomial algorithm with performance guarantee

In this section, we show how to obtain a near-optimal feasible solution for 1|ri|V1 + V2

using a polynomial time algorithm. We prove that the difference between the payoff of

the obtained feasible schedule and the optimal payoff is at most 1.

A feasible schedule Sl = Sl1.S
l
2.S

l
3 is obtained with Algorithm 9, which is equivalent

to Algorithm 2 (p. 42) when K = 2. Recall that, for any feasible (partial) schedule S,

we denote by left-shift(S) the left-shifted (partial) schedule that schedules the jobs of S

in the same order (cf. the definition of a left-shifted schedule, p. 26).

Notice that, before the left-shifting of Sl1, Sl1 = SD1 , since both schedules are obtained

as the output of SDD(J all, 0, D1).

Notation. Let Sl1,2 = Sl1.S
l
2 be the partial schedule equal to Sl between 0 and D2.

4. Solving the single machine problem with two delivery dates 85

Input: J all, D1, D2

Output: Sl, l bound
1 J ← J all
2 Sl1 ← SDD(J , 0, D1)

3 Sl1 ← left-shift(Sl1)

4 J ← J\J (Sl1)

5 Sl2 ← SDD(J , Cmax(Sl1), D2)

6 J ← J\J (Sl2)

7 Sl3 ← a schedule that schedules the jobs of J in ERD order after D2

8 return Sl1.S
l
2.S

l
3, 2|J (Sl1)|+ |J (Sl2)|

Algorithm 9: Construction of a feasible schedule for 1|ri|V1 + V2.

Notice that v(Sl1,2) = v(Sl), because the jobs completing after D2 do not provide

any payoff.

To prove the approximation guarantee, we will compare v(Sl1,2) to the upper bound

u bound obtained with Algorithm 10, which yields an upper bound on the optimal payoff

of 1|ri|V1 + V2, since it is equivalent to Algorithm 3 (p. 43), when K = 2.

Input: J all, D1, D2

Output: u bound
1 SD1 ← SDD(J all, 0, D1)
2 U1 ← |J (SD1)|
3 SD2 ← SDD(J all, 0, D2)
4 U2 ← |J (SD2)|
5 u bound← U1 + U2

6 return u bound

Algorithm 10: Computation of an upper bound on the optimal payoff of 1|ri|V1 +V2.

The main result of this section is stated in Theorem 4.

Theorem 4. Algorithm 9 yields a feasible schedule Sl for 1|ri|V1 +V2 such that v(Sl) ≥
v(S∗)− 1, where S∗ is an optimal schedule for 1|ri|V1 + V2.

In order to prove the result of Theorem 4, we will prove that u bound − v(Sl) =

u bound− v(Sl1,2) ≤ 1.

We have: v(Sl1,2) = 2|J (Sl1)|+|J (Sl2)| = |J (Sl1)|+|J (Sl1,2)|. Since J (Sl1) = J (SD1),

v(Sl1,2) = |J (SD1)|+ |J (Sl1,2)| = U1 + |J (Sl1,2)|.
Moreover, u bound = U1 + U2. Hence, u bound− v(Sl1,2) = U2 − |J (Sl1,2)|.
Therefore, we will show that U2 − |J (Sl1,2)| ≤ 1. Notice that we are compar-

ing the number of jobs of two feasible schedules: U2 is the number of jobs of SD2 =

SDD(J all, 0, D2), and |J (Sl1,2)| is the number of jobs of the feasible schedule Sl1,2.

86 4. Solving the single machine problem with two delivery dates

Hence, we will prove Theorem 5, that directly implies the result of Theorem 4.

Theorem 5. U2 − |J (Sl1,2)| ≤ 1.

The formal proof of Theorem 5 can be seen in Section 4.4.3. Here, we attempt to

give its rationale.

By Property 12 (p. 68), there exists an optimal schedule S∗ of 1|ri|V1 +V2 such that

|J (S∗1)| = U1 = |J (Sl1)|. Therefore, v(S∗) − v(Sl1,2) ≤ 1 is equivalent to |J (S∗2)| −
|J (Sl2)| ≤ 1.

r1 r30 r2
D1

J1

D2

r5r4

Delivery dates
and release dates

Jobs J2 J3 J4 J5

(a) An instance of 1|ri|V1 + V2.

r1 r30 r2
D1 D2

r5r4

Sl
1=SD1︷ ︸︸ ︷

J2 J3 J5

(b) A feasible (partial) schedule Sl1,2 obtained with Algorithm 9.

J1

r1 r30 r2
D1 D2

r5r4

J3 J4 J5

(c) An optimal schedule S∗ where |J (S∗1)| = U1.

J1

r1 r30 r2
D1 D2

r5r4

J3 J5J7J6

(d) If two jobs (J6 and J7) could be scheduled in the “extra place”,
then at least one of the two jobs (J7) would have been scheduled
in Sl1,2.

Figure 4.14: An example where |J (S∗2)| − |J (Sl2)| = 1.

Let us consider the example of Figure 4.14, where |J (S∗2)| − |J (Sl2)| = 1. As can be

seen on this example, Sl1,2 can be suboptimal because while constructing it we consider

the intervals [0, D1] and [Cmax(Sl1), D2] separately, without a global vision on the total

horizon. Indeed, in the example, p(J (S∗1)) > p(J (Sl1)) but the release dates configura-

tion induces Cmax(S∗1) < Cmax(Sl1), which allows the addition of J4 as a straddling job.

However, we cannot have |J (S∗2)| − |J (Sl2)| ≥ 2. Let us attempt to give an intuitive

reason for this. As seen on the example, the presence of an additional job is due to the

4. Solving the single machine problem with two delivery dates 87

fact that Cmax(S∗1) < Cmax(Sl1). Therefore, these Cmax(Sl1)−Cmax(S∗1) time units allow

a straddling job to be scheduled between Cmax(S∗1) and B(S∗2). This extra place can

only be used to schedule one straddling job. On the example, if there were two more

jobs J6 and J7 that could be scheduled instead of J4 in S∗, then one of them would have

been scheduled in Sl1,2 (see Figure 4.14d). Indeed, if another job, besides the straddling

job, could be scheduled, it would not be straddling and it would be scheduled in S∗2
(since the maximal number U1 is already attained in S∗1).

4.4 Formal proofs

4.4.1 Correctness of the Dominant Schedule algorithm

Proposition 9 Algorithm 8 with parameters (0, S) yields a feasible schedule S′ whose

payoff is greater than or equal to v(S), and that schedules U1 jobs completing no later

than D1.

Proof. We need to prove the following assertions:

1. The algorithm always terminates.

2. The returned schedule is feasible.

3. In the returned schedule, exactly U1 jobs complete no later than D1.

4. The returned schedule has a payoff greater than or equal to the payoff of the initial

schedule.

Assertion 1: The algorithm always terminates. When Algo8(0, S′) is first called,

Part 1 (lines 3-7) and/or Part 2 (lines 8-14) are executed. If we are in Part 1, the

algorithm terminates, as there are no other calls to function DS. In Part 2, the algo-

rithm terminates, unless there is a call to Algo8(0, S′) (line 13) or Algo8(1, S′) (line 14).

Algo8(0, S′) will cause the execution of Part 1 (since n2 ∈ {0, 1}), which will terminate.

Therefore we only need to prove that Algo8(1, S′) terminates, and more generally that

Algo8(q, S′) terminates, for q > 0.

Let us first consider the evolution of n1, n2, n3 on lines 19-28 and 30-37. At line 21,

n3 increases by n2, and n2 becomes equal to 0; at line 23, n1 decreases by q− 1, and on

lines 26-27 it decreases by 1; at line 27, n1 becomes equal to 0; at line 28, n3 becomes

equal to 0. As for lines 30-37, we have: at line 33, n3 increases by q+1, and n2 decreases

by q + 1; at line 34, n1 decreases by q − 1; at line 36, n1 decreases by 1; at line 37, n3

decreases by q + 1.

Let us consider all the calls of DS to show that they cannot be executed indefinitely.

When Algo8(0, S′) is called at line 40, the algorithm stops, since n2 ∈ {0, 1}. Hence

88 4. Solving the single machine problem with two delivery dates

we only need to examine the calls of Algo8(1, S′) on lines 14 and 39, and the call of

Algo8(q + 1, S′) on line 17. The instruction of line 14 is executed at most once, that is

at the first call of Algo8(0, S′), since the following calls of Algo8(0, S′) are executed only

if n2 ∈ {0, 1}. As for the instruction of line 39, it can be executed only while n1 > 0 and

n2 ≥ 2, which is a limited number of times, since n1 and n2 strictly decrease on lines

19-28 and 30-37. Finally, the instruction Algo8(q + 1, S′) of line 17 cannot be executed

indefinitely, since at some point we will have q = n1 or q + 1 = n2.

Assertion 2: The returned schedule is feasible. We need to show that each

performed operation (LS or RS) is feasible.

Let us examine each part of the pseudocode. We will refer to the different cases

considered for the definitions of the RS and LS operations in Section 4.1. Moreover, by

straddling job (Js) we always mean a job starting before D1 and completing after D1.

Part 1.

Line 4: the RS(Ji, 1, 3) operations are feasible (cf. Case 1). After executing this line,

there are no more S
D1-jobs in S′1, and therefore C

1
max = 0.

Line 5: RS(Js, 2, 3) is feasible (cf. Case 1). After executing this line, if there is a

straddling job Js, Js is an SD1-job.

Line 6: if there is a straddling job Js, the operation LS(Js, 2, 1) is first performed

(since Js is an SD1-job), and then we perform LS(JM , 2, 1) for each of the other SD1-

jobs JM in S′2. Since C
1
max = 0 and Js is an SD1-job, the total sum of the idle times

between C
1
max and bs is at least Cs − D1. Therefore, LS(Js, 2, 1) is feasible (cf. Case

4.(b)). Hence, when LS(JM , 2, 1) is performed for each of the non-straddling SD1-jobs

JM in S′2, there is no straddling job. Moreover, since C
1
max = 0, and all of these jobs

are SD1-jobs, their total processing time is at most the total sum of the idle times in

[C
1
max, D1]. Therefore, the LS(JM , 2, 1) operations are feasible (cf. Case 4.(a)).

Line 7: LS(JM , 3, 1) is performed for every SD1-job in S′3. Since the reinserted jobs

are all SD1-jobs, and since there is no straddling job, and C
1
max = 0, the total sum of

the idle times in [C
1
max, D1] is at least equal to the total processing time of those jobs.

Therefore, the LS(JM , 3, 1) operations are feasible (cf. Case 3).

Part 2.

Line 10: RS(Js, 2, 3) is feasible (cf. Case 1). After this operation there is no strad-

dling job. Moreover, C
1
max is unchanged and C

1
max ≤ bs.

Line 11: since Ji is an SD1-job, ri > bs implies pi ≤ D1 − bs. Therefore, if the

condition of line 9 is true, pi ≤ D1 − bs. Hence, since C
1
max ≤ bs, the total amount of

idle times in [C
1
max, D1] is greater than pi. Therefore, since there is no straddling job,

LS(Ji, 2, 1) is feasible (cf. Case 4.(a)).

Part 3.

4. Solving the single machine problem with two delivery dates 89

Lines 19-20: notice that if flag is true, there are exactly q + 1 SD1-jobs in S′2 and

thus there exists a unique Eq+1, which contains all the SD1-jobs in S′2, including Js. (If

flag is false, n2 ≥ q + 1).

Line 21: the RS(JM , 2, 3) operations are feasible (cf. Case 1). If flag is true, there

is no straddling job after these operations. If flag is false, it is possible that there is a

straddling job Js after these operations: in this case, Js is an S
D1-job.

Line 22: RS(Js, 2, 3) is feasible (cf. Case 1). This operation is never performed if

flag is true. After line 22 there is no straddling job.

Lines 23-26: there are two cases, depending on the value of flag.

• If flag is false, we perform for all the jobs Jj of Gq: RS(Jj , 1, 2) (lines 23 and 26).

Since flag is false, at least q + 1 non-straddling jobs were moved to S′3 at line 21.

Let us consider Eq+1 a set of q + 1 non-straddling jobs that were moved to S′3 at

line 21. So, after lines 21 and 22, the total sum of the idle times in S′2 is at least

equal to p(Eq+1). Moreover, by induction hypothesis, p(Gq) < p(Eq+1). Therefore,

the total sum of the idle times in S′2 is at least equal to p(Gq). We deduce (cf.

Case 2) that RS(Jj , 1, 2) is feasible for all the jobs Jj of Gq.

• If flag is true, we perform RS(Jj , 1, 2) (line 23) only for the jobs of Gq−1, while for

the unique job Ju of Gq\Gq−1 we perform RS(Ju, 1, 3) (line 25). Since flag is true,

exactly q + 1 jobs were moved to S′3 at line 21, one of them being Js. Therefore,

exactly q non-straddling jobs were moved to S′3 at line 21. Let Eq be the set of

those jobs. Moreover, the instruction of line 22 is not performed, since RS(Js, 2, 3)

is already performed at line 21. So, after lines 21 and 22, the total sum of the idle

times in S′2 is at least equal to p(Eq). By induction hypothesis, p(Gq−1) < p(Eq).

Therefore, the total sum of the idle times in S′2 is at least equal to p(Gq−1). We

deduce (cf. Case 2) that RS(Jj , 1, 2) is feasible for all the jobs Jj of Gq−1. Finally,

the operation RS(Ju, 1, 3) at line 25 is feasible (cf. Case 1).

Line 27: the RS(Ji, 1, 3) operations are feasible (cf. Case 1). After these operations,

there are no more S
D1-jobs in S′1, therefore C

1
max = 0.

Line 28: LS(JM , 3, 1) is performed for every SD1-job in S′3. Since the reinserted jobs

are all SD1-jobs, and since there is no straddling job, and C
1
max = 0, the total sum of

the idle times in [C
1
max, D1] is at least equal to the total processing time of those jobs.

Therefore, the LS(JM , 3, 1) operations are feasible (cf. Case 3).

Part 4

Recall that the following condition is observed: ∃ Eq+1, p(Gq) ≥ p(Eq+1).

Lines 30-32: if the condition of line 30 is true, we have that for all Ji ∈ Eq+1, ri ≤ bs
and pi > D1−bs, because of the instructions of lines 9-11. Indeed, none of the operations

performed in the algorithm transforms a schedule without straddling job into a schedule

90 4. Solving the single machine problem with two delivery dates

with a straddling job, as can be seen in the definitions of the left-shift and right-shift

operators. Therefore, any job Ji of Eq+1 can be rescheduled in order to start at time bs,

by right-shifting Js. After this exchange, Ji is the actual straddling job.

Line 33: the RS(Ji, 2, 3) operations are feasible (cf. Case 1). After executing these

operations there is no straddling job.

Line 34: since at least q non-straddling jobs were moved to S′3 at line 33, the total

sum of the idle times in S′2 is at least equal to p(Eq), with Eq a set of q non-straddling

jobs moved to S′3 at line 33. By induction hypothesis, p(Gq−1) < p(Eq). Therefore,

performing RS(Jj , 1, 2) on every job Jj of Gq−1 is feasible (cf. Case 2).

Line 36: RS(Ju, 1, 3) is feasible (cf. Case 1).

Line 37: at lines 34-36, all the jobs of Gq were removed from S′1. Therefore, the total

amount of idle times in [C
1
max, D1] is at least p(Gq). Since p(Gq) ≥ p(Eq+1), the total

amount of idle times in [C
1
max, D1] is at least p(Eq+1). For this reason, and since there

is no straddling job, we deduce that performing LS(Ji, 3, 1) on every job Ji of Eq+1 is

feasible (cf. Case 3).

Assertion 3: In the returned schedule, exactly U1 jobs complete no later than

D1. Since the terminal condition n1 = n2 + n3 implies that exactly U1 jobs complete

no later than D1, it is sufficient to prove that whenever the algorithm terminates, the

terminal condition is true.

In Part 1, at line 4, n1 becomes equal to 0, at line 6, n2 becomes equal to 0, and at

line 7, n3 becomes equal to 0. Therefore, the terminal condition is true.

In Part 2, the algorithm stops only if the condition n1 < n2 + n3 (line 12) is not

satisfied, which implies that the terminal condition is true, since we cannot have n1 >

n2 + n3, otherwise there would be a contradiction on U1 being the maximal number of

jobs that can complete no later than D1.

If Part 3 terminates (lines 19-28), we have that n1 = n2 = n3 = 0, as shown in the

proof of Assertion 1. Therefore the terminal condition is true.

Finally, Part 4 terminates only if the condition n1 < n2 +n3 (line 38) is not satisfied,

which, as said above, implies that the terminal condition is true.

Assertion 4: The returned schedule has a payoff greater than or equal to the

payoff of the initial schedule. In order to prove this assertion, we show that the

execution of any aforementioned part does not decrease the payoff. Let nb1 (resp. nb2,

nb3) be the value of n1 (resp. n2, n3) at the beginning of the sequence of instructions of

a given part. Let us consider each part.

• lines 4-7: at line 4, nb1 operations RS(Ji, 1, 3) are performed, inducing a payoff

variation of −2nb1; if RS(Js, 2, 3) is performed at line 5, it induces a payoff variation

of −1; the nb2 LS(JM , 2, 1) operations of line 6 induce a payoff variation of nb2; and

4. Solving the single machine problem with two delivery dates 91

the nb3 LS(JM , 3, 1) operations of line 7 induce a payoff variation of 2nb3. Thus,

the total payoff variation is at least nb2 + 2nb3 − 2nb1 − 1. If nb1 = 0, the payoff is at

least nb2 + 2nb3 − 1 ≥ 0, since 0 = nb1 < nb2 + nb3. Otherwise (i.e. nb1 > 0), if nb2 = 0,

then nb1 < nb2 + nb3 = nb3 and therefore nb2 + 2nb3 − 2nb1 − 1 ≥ 0; else (i.e. nb2 = 1),

then nb1 < nb3 + 1. Thus, 2nb3 ≥ 2nb1. Therefore, nb2 + 2nb3 − 2nb1 − 1 ≥ 0.

• lines 10-11: the RS(Js, 2, 3) operation at line 10 induces a payoff variation of −1,

while the LS(Ji, 2, 1) operation at line 11 induces a payoff variation of 1. Therefore,

the total payoff variation is 0.

• lines 19-28: at line 21, we perform nb2 times the operation RS(JM , 2, 3) (payoff

variation: −nb2).

If flag is true, there is no straddling job after the operation of line 21. In this case,

at line 23 we perform q−1 times the operationRS(Jj , 1, 2) (payoff variation: −q+1)

and at line 25 the operation RS(Ju, 1, 3) (payoff variation: −2). Otherwise, if flag

is false, the operation RS(Js, 2, 3) at line 22 can possibly be performed (payoff

variation: −1); and q RS(Jj , 1, 2) operations (payoff variation: −q) are performed

at lines 23 and 26.

Finally, at line 27 we perform nb1 − q times the operation RS(Ji, 1, 3) (payoff vari-

ation: −2(nb1− q)); and at line 28 we perform (nb2 +nb3) times LS(JM , 3, 1) (payoff

variation: 2(nb2 + nb3)).

Therefore, the total payoff variation is at least 2nb3 +nb2 +q−2nb1−1. If nb1 = q, the

payoff variation is at least 2nb3 +nb2−nb1− 1 ≥ 0, since nb1 < nb2 +nb3. If nb2 = q+ 1,

the payoff variation is at least 2(nb3 + nb2 − nb1 − 1) ≥ 0, since nb1 < nb2 + nb3.

• lines 30-37: the exchange performed in lines 30-32 does not change the payoff; at

line 33 we perform q+1 times the operation RS(Ji, 2, 3) (payoff variation: −q−1);

at line 34 we perform (q − 1) times the operation RS(Jj , 1, 2) (payoff variation:

−q + 1); at line 36 we perform RS(Ju, 1, 3) (payoff variation: −2); and at line 37,

(q+ 1) times the operation LS(Ji, 3, 1) (payoff variation: 2(q+ 1)). Therefore, the

total payoff variation is 0.

4.4.2 The dynamic programming algorithm

The pseudocode of the dynamic programming algorithm is given in Algorithm 11. In

Algorithm 11, a 4-tuple (Cmax(S1), B(S2), Cmax(S2), v) is represented as a pair of a 3-

tuple and a payoff: (〈Cmax(S1), B(S2), Cmax(S2)〉, v), in order to easily handle similar

4-tuples. Hence, two pairs (e, v) and (e′, v′) are said to be similar iff e = e′ (note that

their payoffs may differ, i.e. v is not necessarily equal to v′).

Moreover, we defined in Section 4.2.1 variables β1 and β2:

92 4. Solving the single machine problem with two delivery dates

• β1 is the earliest possible completion time of Jj if it is reinserted in S2 and S2 is

empty: β1 = max(bminj , Cmax(S1)) + pj ; notice that β1 = max(bminj , Cmax(S1)) +

pj = max(bminj , Cmax(S1), Cmax(S2)) + pj since Cmax(S2) = 0.

• β2 is the earliest possible completion time of Jj if it is reinserted in S2 and S2 is not

empty: β2 = max(rj , Cmax(S2)) + pj ; notice that β2 = max(rj , Cmax(S2)) + pj =

max(bminj , Cmax(S2)) + pj , since Cmax(S2) > D1; and max(bminj , Cmax(S2)) + pj =

max(bminj , Cmax(S2), Cmax(S1)) + pj , since Cmax(S1) < Cmax(S2).

Thus, in Algorithm 11, we use variable β = max(bminj , Cmax(S1), Cmax(S2)) + pj
instead of β1 and β2.

Input: pi, ri (jobs sorted by ERD order), D1, D2

Output: The payoff of an optimal schedule
1 Q0 ← {(〈0, D2, 0〉, 0)}
2 for j = 1 to N do

// Reinserting task Jj into S3

3 Qj ← Qj−1

// Reinserting task Jj into S1

4 foreach (〈Cmax(S1), B(S2), Cmax(S2)〉, v) ∈ Qj−1 do
5 α← max(rj , Cmax(S1)) + pj

6 e←
{
〈α,B(S2), Cmax(S2)〉 if α ≤ B(S2)
〈α, α,Cmax(S2) + α−B(S2)〉 otherwise

7 if Cmax(S1)(e) ≤ D1 and Cmax(S2)(e) ≤ D2 then

8 Qj ←


Qj ∪ {(e, v + 2)}\{(e, v′)} if ∃(e, v′) ∈ Qj such that v′ < v + 2
Qj if ∃(e, v′) ∈ Qj such that v′ ≥ v + 2
Qj ∪ {(e, v + 2)} otherwise

// Reinserting task Jj into S2

9 foreach (〈Cmax(S1), B(S2), Cmax(S2)〉, v) ∈ Qj−1 do
10 β ← max(bminj , Cmax(S1), Cmax(S2)) + pj

11 e←
{
〈Cmax(S1), β − pj , β〉 if B(S2) = D2

〈Cmax(S1), B(S2) + β − pj − Cmax(S2), β〉 otherwise

12 if Cmax(S1)(e) ≤ D1 and Cmax(S2)(e) ≤ D2 then

13 Qj ←


Qj ∪ {(e, v + 1)}\{(e, v′)} if ∃(e, v′) ∈ Qj such that v′ < v + 1
Qj if ∃(e, v′) ∈ Qj such that v′ ≥ v + 1
Qj ∪ {(e, v + 1)} otherwise

14 return max{v : (e, v) ∈ QN}
Algorithm 11: Pseudopolynomial algorithm, where Cmax(S1)(e) (resp. Cmax(S2)(e))
denotes the first (resp. third) element of 3-tuple e.

4. Solving the single machine problem with two delivery dates 93

Theorem 6. Algorithm 11 returns the payoff of an optimal schedule.

Proof. Recall that jobs are numbered w.r.t. ERD order: J1 ≺ERD · · · ≺ERD JN . More-

over, recall that at each step j, three functions g1, g2, g3 were defined in Section 4.2.1, tak-

ing as argument a 4-tuple. We define the corresponding functions q1, q2, q3, such that, for

i ∈ {1, 2, 3}: gi(Cmax(S1), B(S2), Cmax(S2), v, j) = (Cmax(S′1), B(S′2), Cmax(S′2), v′) ⇔
qi(〈Cmax(S1), B(S2), Cmax(S2)〉, v, j) = (〈Cmax(S′1), B(S′2), Cmax(S′2)〉, v′). Finally, let

Q0 = {(〈0, D2, 0〉, 0)} and, for any j ∈ {1, . . . , N}, let Qj = ∪(e,v)∈Qj−1
(q1(e, v, j) ∪

q2(e, v, j) ∪ q3(e, v, j)).

Algorithm 11 constructs exactly the sets Qj , j = {1, . . . , N}, except for the similar

pairs: for each subset of similar pairs, only one of the pairs with the maximal value

of v is kept. Indeed, line 3 clearly adds {q3(e, v, j) : (e, v) ∈ Qj−1} to Qj , lines 4-8

add {q1(e, v, j) : (e, v) ∈ Qj−1} to Qj and lines 9-13 add {q2(e, v, j) : (e, v) ∈ Qj−1} to

Qj ; all these additions are performed while observing the avoidance of similar pairs. We

show next that QN , when constructed without avoiding similar pairs, contains some pair

corresponding to an optimal schedule. Therefore, since the removal of similar pairs from

Qj , j = 1, . . . , N , clearly does not prevent to have at least one pair corresponding to an

optimal schedule in QN , that will prove that Algorithm 11 returns an optimal payoff.

Notation. For any ERD-schedule S where S2 is a block, we denote by f(S) the pair

(e, v) corresponding to S’s 3-tuple and payoff respectively.

Let S∗ be an optimal ERD-schedule where S∗2 is a block. Let us denote by {Ji1 , . . . , Jil},
i1 < i2 < · · · < il (i.e. Ji1 ≺ERD · · · ≺ERD Jil), the set of jobs of S∗ that complete

at or before D2. For h = 1, .., l, let Sih be the schedule that satisfies all the following

conditions, with minimum Cmax(Sih1) and Cmax(Sih2) (among all the schedules satisfying

the same conditions):

1. Sih schedules all the jobs Ji1 , . . . , Jih before D2, and all the other jobs after D2

2. if Cix(S∗) ≤ D1, then Cix(Sih) ≤ D1, ∀x ∈ {1, . . . , h}

3. if D1 < Cix(S∗) ≤ D2, then D1 < Cix(Sih) ≤ D2, ∀x ∈ {1, . . . , h}

4. Sih is an ERD-schedule where Sih2 is a block

We show by induction that, for every h ∈ {1, . . . , l}, f(Sih) ∈ Qih , which implies

f(Sil) ∈ Qil ⊆ QN , which indeed proves the theorem, since v(Sil) = v(S∗).

First step of the induction. The only 3-tuple of set Q0 corresponds to a schedule

with no jobs before D2. If i1 > 1, for all i ∈ {1, . . . , i1 − 1}: (〈0, D2, 0〉, 0) ∈ {q3(e, v, i) :

(e, v) ∈ Qi−1} ⊆ Qi, by definition of Qi. Then, there are two cases.

If Ci1(S∗) ≤ D1, then, in Si1 , Ji1 completes at its earliest possible completion time

ri1 + pi1 , and all the other jobs are executed after D2. Therefore, f(Si1) = (〈ri1 +

pi1 , D2, 0〉, 2) = q1(〈0, D2, 0〉, 0, i1) ∈ {q1(e, v, i1) : (e, v) ∈ Qi1−1} ⊆ Qi1 .

94 4. Solving the single machine problem with two delivery dates

Otherwise, if D1 < Ci1(S∗) ≤ D2, then, in Si1 , job Ji1 completes at its earli-

est possible completion time into]D1, D2]: max(ri1 , bi1) + pi1 . Therefore, f(Si1) =

(〈0,max(ri1 , bi1),max(ri1 , bi1) + pi1〉, 1) = q2(〈0, D2, 0〉, 0, i1) ∈ {q2(e, v, i1) : (e, v) ∈
Qi1−1} ⊆ Qi1 .

General step of the induction. Assume now that f(Sij−1) ∈ Qij−1 . There are two

cases.

If Cij (S
∗) ≤ D1, then, in Sij , job Jij must start after both Cmax(S

ij−1

1) and rij , in

order to satisfy condition 4 and to maintain feasibility. So, the earliest possible starting

time of job Jij is max(rij , Cmax(S
ij−1

1)). Moreover, S
ij
2 must start not earlier than both

the starting time of S
ij−1

2 (since Cmax(S
ij−1

2) is minimal) and the completion time of

Jij in S
ij
1 (to avoid overlaps). Hence, if S

ij−1

2 starts before the completion time of Jij
in S

ij
1 (i.e. max(rij , Cmax(S

ij−1

1)) + pij > B(S
ij−1

2)), then S
ij
2 must start exactly at the

completion time of Jij in Sij . Otherwise, S
ij
2 must start at B(S

ij−1

2). In both cases,

Cij (S
ij) ≤ D1, since Cij (S

∗) ≤ D1, and S
ij
1 is a left-shifted subschedule of S∗. Hence q2

adds f(Sij) to Qij .
Otherwise, if D1 < Cij (S

∗) ≤ D2, then the earliest possible starting time of Jij in Sij

is clearly max(bij , Cmax(S
ij−1

1)) if S
ij−1

2 is empty, otherwise it is max(rij , Cmax(S
ij−1

2)).

Function q2 places the job precisely at that date and, in order for S
ij
2 to remain a

block, it right-shifts all its jobs so that S
ij
2 contains no idle time. Cij (S

ij) ≤ D2, since

Cij (S
∗) ≤ D2, and S

ij
2 is a left-shifted block subschedule of S∗. Hence, f(Sij) ∈ Qij .

Proposition 10. Algorithm 11 computes the optimal payoff of an instance in pseu-

dopolynomial time (O(N(D1(D2)2) +N logN)).

Proof. First, observe that, by lines 8 and 13, it is impossible that some Qj contains two

pairs (e, v) and (e′, v′) with e = e′. So the number of elements in each Qj is bounded

by the number of possible 3-tuples. Clearly, Cmax(S1) can only range from 1 to D1 and

Cmax(S2) from D1 + 1 to D2. B(S2) can only range from b = minj=1,...,N b
min
j to D2−1.

Overall, the number of states in each Qj is bounded by X = (D1)×(D2−D1)×(D2−b).
In each for loop of lines 2–13, we first copy Qj−1 into Qj , hence inducing a complexity of

O(X), then for each loop of lines 4–8, we try to reinsert job Jj into S1 for each 3-tuple

of Qj−1, hence inducing an overall complexity of O(X) to create states e on line 6 and,

by storing Qj as an array or a hash table, a complexity of O(X) is induced to update

Qj on line 8. The same complexity clearly applies for the foreach loop of lines 9–13. So,

overall, the complexity of executing lines 3–13 is O(X) = O(D1(D2)2). The for loop of

lines 2–13 is executed N times. Finally, sorting the jobs in ERD order can be achieved in

O(N logN). Overall, the complexity of Algorithm 11 is O(N(D1(D2)2) +N logN).

4. Solving the single machine problem with two delivery dates 95

4.4.3 The approximation algorithm

We prove in this section the result of Theorem 5.

Theorem 5. U2 − |J (Sl1,2)| ≤ 1.

First, we prove the intermediate results of Lemmas 4, 5 and 6, concerning (partial)

schedules SD2 and Sl1,2. Then, we introduce another partial schedule, Smid, and give its

features. Finally, we prove the main result of Theorem 5.

We suppose that the jobs of J all are reindexed in ERD order: J1 ≺ERD · · · ≺ERD JN .

Since we will often refer to Properties 1, 2, 3, 4 presented in Chapter 2, we recall them

here, for the sake of readability.

Property 1. Given a set J of jobs and an interval [Ilow, Iup], the SDD-algorithm

produces a partial schedule that schedules the maximal number N(J , Ilow, Iup) of jobs of

J between Ilow and Iup.

Property 2. Given a set J of jobs and an interval [Ilow, Iup], the SDD-algorithm

produces a partial schedule with the shortest processing time p(J , Ilow, Iup) among all

the feasible partial schedules of N(J , Ilow, Iup) jobs of J between Ilow and Iup.

Property 3. The SDD-algorithm produces a partial schedule where the jobs are ordered

w.r.t. ERD order.

Property 4. When SDD-algorithm removes a job from the current sequence, it chooses

the job with the longest processing time, and breaks ties by choosing the job with the high-

est ranking in ERD order (i.e. that follows the other jobs with same longest processing

time, in ERD order).

The (partial) schedules that will be useful for the proof are the following. Notice

that, by Property 3, the jobs are scheduled in ERD order in SD2 , in Sl1 and in Sl2.

• SD2 = SDD(J all, 0, D2)

• Sl1 = left-shift(SDD(J all, 0, D1))

• Sl2 = SDD(J all\J (Sl1), Cmax(Sl1), D2)

• Sl1,2 = Sl1.S
l
2

Notation. For any job Ji ∈ J all, we denote by J +
i (resp. J −i) the set of jobs of J all

that follow Ji in ERD order, i.e with greater indices (resp. that precede Ji in ERD order, i.e

with smaller indices).

In Lemma 4, we show that any job Jl of Sl2 such that all the following jobs in Sl2
belong to SD2 has a shorter or equal processing time than any job Jd of SD2 that is not

in Sl1,2. The result holds, whether or not Jl belongs to SD2 .

96 4. Solving the single machine problem with two delivery dates

Lemma 4. For any pair of jobs Jd, Jl such that:

• Jd ∈ J (SD2)\J (Sl1,2), and

• Jl ∈ J (Sl2), and

• J +
l ∩ J (Sl2) ⊆ J (SD2),

we have: pd ≥ pl.

Proof. By contradiction, suppose that pd < pl. By Property 3, the jobs of J +
l ∩ J (Sl2)

are exactly the jobs scheduled after Jl in Sl2. Let bl be the starting time of Jl in Sl2:

bl = D2− p(J +
l ∩J (Sl2))− pl (see Figure 4.15a). Let us now consider SD2 , and suppose

that we remove from it all the jobs, except Jd and the jobs of J +
l ∩ J (Sl2). We obtain

a feasible (partial) schedule (see Figure 4.15b). If the jobs of the obtained schedule

are then right-shifted so that the last one completes at D2, then the schedule remains

feasible. Moreover, the obtained schedule S includes Jd and the jobs of J +
l ∩ J (Sl2),

and starts at bl + pl − pd > bl, since pd < pl. Therefore, there exists a feasible partial

schedule S̃l2 (see Figure 4.15c) without idle times and that completes at D2, scheduling

the following jobs: first the jobs of J −l ∩J (Sl2) in the same order as in Sl2, followed by S.

Moreover, S̃l2 schedules only jobs of J all\J (Sl1), between Cmax(Sl1) and D2; and since

J (S̃l2) = (J (Sl2)\{Jl}) ∪ {Jd}, we have that |J (S̃l2)| = |J (Sl2)|, and that p(S̃l2) < p(Sl2),

since pd < pl. This is in contradiction with Property 2 on Sl2.

In Lemma 5, we show that all the jobs of Sl2 are scheduled in SD2 . We first show

that, if there exists a job Jl in J (Sl2)\J (SD2), then Jd ≺ERD Jl and pd > pl, for all

Jd ∈ J (SD2)\J (Sl1,2). Then, we show that S̃D2 = SDD(J (SD2) ∪ {Jl}, 0, D2) is equal

to SD2 . Finally, we show that Jl belongs to S̃D2 . Hence, Jl belongs to SD2 , which is in

contradiction with the initial assumption.

In order to show that Jl belongs to S̃D2 , we will examine the way SDD-algorithm

constructs a schedule. We recall here SDD-algorithm (cf. Algorithm 12, p. 98), where,

for the sake of coherence with the rest of the proof, the jobs are reindexed in ERD order

(in SDD-algorithm as presented in Chapter 2, the jobs were reindexed in inverse ERD

order).

Notation. Recall that, for any sequence Γ, sched(Γ) denotes the schedule that schedules

the jobs of Γ, in the order given by Γ, without idle times and with the last job completing

at Iup.

Lemma 5. J (Sl2) ⊆ J (SD2).

Proof. By contradiction, let us suppose that there exists at least one job in J (Sl2)\J (SD2).

Then, there exists at least one job in J (SD2)\J (Sl1,2), since |J (SD2)| ≥ |J (Sl1,2)|, from

Property 1 on SD2 .

4. Solving the single machine problem with two delivery dates 97

��
��
��

��
��
��

����
����
����

����
����
����

����
����
����

����
����
����

J−l ∩J (Sl
2)︷ ︸︸ ︷ J+

l ∩J (Sl
2)︷ ︸︸ ︷

D2

0

Sl1

bl

D1

Jl

(a) (Partial) schedule Sl1,2.

����
����
����

����
����
����

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

��
��
��

��
��
��

����
����
����

����
����
����

���
���
���
���

��
��
��
��

����
����
����
����

D2

0

D1

D2

0

D1

D2

0

D1

bl + pl − pd

SD2

S Jd

Jd

Jd

(b) From top to bottom: (partial) schedule SD2 , an intermediate
partial schedule, partial schedule S.

����
����
����

����
����
����

���
���
���

���
���
���

���
���
���

���
���
���

D2

0

Sl1

D1

︸ ︷︷ ︸
S̃l
2

J+
l
∩J (Sl

2)︷ ︸︸ ︷
Jd

(c) (Partial) schedule Sl1.S̃
l
2.

Figure 4.15: Examples for Lemma 4.

Let Jl be the last scheduled job in Sl2 among the jobs of J (Sl2)\J (SD2). We have:

Jl ∈ J (Sl2), and all the jobs that succeed Jl in Sl2 belong to SD2 : J +
l ∩J (Sl2) ⊆ J (SD2).

Then, by Lemma 4, for any d such that Jd ∈ J (SD2)\J (Sl1,2): pd ≥ pl.
Let us show that d < l (i.e. that Jd ≺ERD Jl). By contradiction, suppose that

d ≥ l. We cannot have d = l because Jl ∈ J (Sl1,2) while Jd 6∈ J (Sl1,2). So, d > l.

Then, since d > l (which implies rd ≥ rl) and pd ≥ pl, Jd can be replaced by Jl in SD2 ,

which yields a schedule ŜD2 with as many jobs as in SD2 (see Figure 4.16). If pd > pl,

then p(ŜD2) < p(SD2), which is in contradiction with Property 2 on SD2 . Otherwise, if

pd = pl, p(Ŝ
D2) = p(SD2) but ŜD2 contains a job with a smaller index (Jl, instead of Jd

in SD2), which is in contradiction with Property 4 on SD2 .

98 4. Solving the single machine problem with two delivery dates

Input: J , Ilow, Iup
Output: S

1 Γi|J |+1
← ∅, t← Iup

2 for m = |J | to 1 do
3 Γim ← Jim .Γim+1

4 t← t− pim
5 if t < max{rim , Ilow} then
6 q ← min{l|pil = max{pij |Jij ∈ J (Γim)}}
7 Γim ← Γim\Jiq
8 t← t+ piq

9 return S ← sched(Γi1)

Algorithm 12: SDD-algorithm.

D2

0

D1

D2

0

D1

rdrl

rl rd

ŜD2

SD2

Jl

Jd

Figure 4.16: Example 1 for Lemma 5 when pd > pl.

So, we have: pd ≥ pl and d < l (which implies rd ≤ rl). Let us show that pd > pl.

By contradiction, suppose that pd = pl. Then, Jl can be replaced by Jd in Sl2 (see

Figure 4.17), which yields a schedule with as many jobs as Sl2, whose total processing

time is p(Sl2), and containing a job with a smaller index. This is in contradiction with

Property 4 on Sl2. Thus, pd > pl.

D2

0

Sl1

D1

rd rl

D2

0

Sl1

D1

rd rl

Sl
2︷ ︸︸ ︷

Jl

Jd

Figure 4.17: Example 2 for Lemma 5.

4. Solving the single machine problem with two delivery dates 99

Therefore, we have, for all Jd ∈ J (SD2)\J (Sl1,2):

• d < l (α)

• pd > pl (β)

Figure 4.18 shows how Jl and the other jobs are distributed in Sl1,2. From Property 3

on Sl1 and Sl2, the jobs of Sl1 (respectively Sl2) are scheduled in ERD order.

D1
0 D2

Jl

Cmax(S
l
1) B(Sl2)b+

1 bl

J +
l ∩ J (Sl1)J −l ∩ J (Sl1) J −l ∩ J (Sl2) J +

l ∩ J (Sl2)

Figure 4.18: The position of Jl and the other jobs in Sl1,2.

Notation. b+1 denotes the starting time of the first scheduled job in Sl1 among the jobs

of J +
l . bl denotes the starting time of Jl in Sl2.

In order to get the contradiction that will prove the lemma, let us consider the

following set of jobs: J (SD2) ∪ {Jl}. We call S̃D2 the partial schedule obtained by

applying the SDD-algorithm on the jobs of J (SD2) ∪ {Jl} between 0 and D2: S̃D2 =

SDD(J (SD2) ∪ {Jl}, 0, D2). We first show that S̃D2 = SD2 . Then, we will show that

Jl ∈ J (S̃D2), which is in contradiction with the hypothesis Jl 6∈ J (SD2).

Since the jobs of J (SD2) ∪ {Jl} are a subset of the total set of jobs J all, no more

of |J (SD2)| of them can be scheduled between 0 and D2, in S̃D2 , from Property 1

on SD2 . Moreover, at least |J (SD2)| of them are scheduled in S̃D2 (since the jobs of

J (SD2) can be scheduled between 0 and D2). So, |J (S̃D2)| = |J (SD2)|. Let us prove

that J (S̃D2) = J (SD2). This will imply S̃D2 = SD2 , since both schedules complete at

D2 without idle times, and they both schedule the jobs in ERD order (i.e. increasing

indices). Suppose by contradiction that J (S̃D2) 6= J (SD2). Since Jl is the only job

among those of J (SD2) ∪ {Jl} that is not in J (SD2), and since |J (S̃D2)| = |J (SD2)|,
we deduce that Jl ∈ J (S̃D2) and that there exists one job in J (SD2)\J (S̃D2). Moreover,

from Properties 2 and 4 on S̃D2 , one of the following assertions holds:

• p(J (S̃D2)) < p(J (SD2)) (which is in contradiction with Property 2 on SD2), or

• p(J (S̃D2)) = p(J (SD2)) and l is smaller than the index of the job of J (SD2)\J (S̃D2)

(which is in contradiction with Property 4 on SD2)

Therefore, S̃D2 = SD2 .

100 4. Solving the single machine problem with two delivery dates

Now, by examining the construction of S̃D2 , we show that Jl ∈ J (S̃D2), which is in

contradiction with the result above. Let Jl+ be the job of J (SD2)∪{Jl} that immediately

follows Jl in ERD order.

When constructing S̃D2 with the SDD-algorithm: SDD(J (SD2) ∪ {Jl}, 0, D2), the

jobs are considered in inverse ERD order (i.e. decreasing indices), and are added

(or not) to the current sequence, possibly by removing another job. Any job Jd ∈
J (SD2)\J (Sl1,2) is such that d < l from (α), and is thus considered after Jl when con-

structing S̃D2 . Therefore, J +
l ∩J (SD2) ⊆ J +

l ∩J (Sl1,2). So, when Jl is considered, the

jobs of the current sequence Γl+ (cf. SDD-algorithm p. 98) all belong to J +
l ∩ J (Sl1,2).

We now show that Jl can be added to Γl+ without removing any job from it.

Notation. Let Bl+ be the starting time of sched(Γl+).

Bl+ = D2 − p(J (Γl+)) ≥ D2 − p(J +
l ∩ J (Sl1)) − p(J +

l ∩ J (Sl2)) since J (Γl+) ⊆
J +
l ∩ J (Sl1,2).

Then, we need to show that the release date of Jl allows it to be scheduled at the

beginning of sched(Γl+): rl ≤ Bl+ − pl.
If J +

l ∩J (Sl1) is empty, then Bl+ ≥ D2− p(J +
l ∩J (Sl2)) = bl + pl (see Figure 4.18).

And since bl ≥ rl (otherwise Sl1,2 would not be feasible), we have that rl ≤ Bl+ − pl.
Conversely, if J +

l ∩J (Sl1) is not empty, then we have: Bl+ ≥ D2− p(J +
l ∩J (Sl2))−

p(J +
l ∩ J (Sl1)). Therefore, Bl+ − pl ≥ D2 − p(J +

l ∩ J (Sl2)) − pl − p(J +
l ∩ J (Sl1)) =

bl− p(J +
l ∩J (Sl1)) (see Figure 4.18). Moreover, bl ≥ B(Sl2) ≥ Cmax(Sl1) = b+1 + p(J +

l ∩
J (Sl1)). From the inequalities above: Bl+ − pl ≥ b+1 . Furthermore, rl ≤ b+1 , because the

job that starts at time b+1 in Sl1,2 has a release date greater than or equal to rl, since

it belongs to J +
l and Sl1,2 is feasible. From Bl+ − pl ≥ b+1 and rl ≤ b+1 , we deduce:

rl ≤ Bl+ − pl.
Therefore, Jl can be added to Γl+ without removing any job.

However, Jl does not belong to S̃D2 since S̃D2 = SD2 and Jl 6∈ J (SD2): thus, by the

SDD-algorithm, there exists Jx ∈ J (SD2), x < l, such that Jl belongs to Γx+ but not to

Γx (i.e. Jl is removed from the current partial schedule in order to add Jx).

Suppose that Jx does not belong to Sl1,2: Jx ∈ J (SD2)\J (Sl1,2). Therefore, by

(β), px > pl, which implies that Jl is not removed in order to insert Jx in SD2 . So,

Jx ∈ J (Sl1,2).

Let us show that there exists in Γx+ at least one job that does not belong to J (Sl1,2).

By contradiction, suppose that J (Γx+) ⊆ J (Sl1,2). Moreover, Jx ∈ J (Sl1,2). Let us

consider Sl1,2, and remove from it all the jobs except those of J (Γx+)∪ {Jx}: we obtain

a feasible schedule. If we reorder the jobs by increasing indices (i.e. in ERD order), and

right-shift them in order to obtain a unique block that completes in D2, we still have a

feasible schedule (see Figure 4.19). Notice that this schedule is exactly the same obtained

by adding Jx at the beginning of sched(Γx+). Hence, no job of Γx+ is removed in order to

add Jx, and in particular Jl is not removed from Γx+ . Therefore, Jl ∈ J (S̃D2) = J (SD2),

4. Solving the single machine problem with two delivery dates 101

which is in contradiction with the hypothesis Jl 6∈ J (SD2). Therefore, there exists at

least one job Jd ∈ J (Γx+)\J (Sl1,2).

����
����
����

����
����
����

��
��
��

��
��
��

���
���
���

���
���
���

��
��
��

��
��
��

���
���
���

���
���
���

����
����
����
����

��
��
��
��

���
���
���
���

��
��
��
��
���
���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

��
��
��

��
��
��

����
����
����

����
����
����

��
��
��

��
��
��

After removing all

After right-shifting

the jobs except those
of J (Γx+) ∪ {Jx}

Sl1,2

D2

0

D1

D2

0

D1

D2

0

D1

︸ ︷︷ ︸
sched(Γ

x+)

Jx

Jx

Jx

Figure 4.19: Example 4 for Lemma 5: the striped jobs are the jobs of J (Γx+).

From (β), pd > pl. Hence, there exists at least one job in Γx+ that has a longer pro-

cessing time than Jl. Therefore, Jl cannot be removed in order to add Jx. Consequently,

Jl ∈ J (S̃D2) = J (SD2), which is in contradiction with the hypothesis Jl 6∈ J (SD2).

Let us introduce the following notation, necessary for Lemma 6.

Notation. We set: y = B(Sl2)− Cmax(Sl1) (see Figure 4.20).

����
����
����
����

�����
�����
�����
�����

����
����
����
����

0 D2D1

Sl1

yCmax(S
l
1) B(Sl2)

Sl2 Sl3

Figure 4.20: Illustration of y = B(Sl2)− Cmax(Sl1).

Lemma 6. For any job Ji of J (SD2)\J (Sl1,2): pi > y.

Proof. By contradiction, suppose that pi ≤ y. Let us consider SD2 , and suppose that we

remove from it all the jobs, except Ji and the jobs of Sl2 (J (Sl2) ⊆ J (SD2) by Lemma 5).

We obtain a feasible (partial) schedule. If the remaining jobs are then right-shifted so

that the last one completes at D2, the schedule still remains feasible. Moreover, the

102 4. Solving the single machine problem with two delivery dates

obtained schedule S includes Ji and the jobs of Sl2, and starts at B(Sl2)−pi ≥ Cmax(Sl1),

because pi ≤ y (see Figure 4.21). Therefore, Sl2 can be replaced by S in Sl1,2, and

|J (S)| > |J (Sl2)|. This leads to a contradiction with Property 1 on Sl2.

��
��
��

��
��
��

����
����
����

����
����
����

����
����
����

����
����
����

������
������
������

������
������
������

D2

0

Sl1

D1

Sl1,2

y

Ji

Cmax(Sl1) B(Sl2)

(a) (Partial) schedule Sl1,2, and job Ji, which is not in the schedule, and
whose processing time is shorter than y.

������
������
������

������
������
������

����
����
����

����
����
����

��
��
��

��
��
��

����
����
����

����
����
����

������
������
������
������

����
����
����
����

��
��
��
��

����
����
����
����

����
����
����

����
����
����

��
��
��

��
��
��

���
���
���

���
���
���

������
������
������

������
������
������

D2

0

D1

Ji

D2

0

D1

Ji

D2

0

D1

JiS

SD2

(b) From top to bottom: (partial) schedule SD2 , an intermediate
partial schedule, partial schedule S.

����
����
����

����
����
����

��
��
��

��
��
��

���
���
���

���
���
���

������
������
������

������
������
������

D2

0

D1

JiSl1

Cmax(Sl1)

Sl1.S

(c) (Partial) schedule Sl1.S.

Figure 4.21: Example for Lemma 6.

In order to prove the result of Theorem 5, i.e. that |J (SD2)| ≤ |J (Sl1,2)|+ 1, we will

proceed by contradiction, and suppose, from now on, that |J (SD2)| ≥ |J (Sl1,2)|+ 2. We

introduce now some necessary notations, before introducing partial schedule Smid.

4. Solving the single machine problem with two delivery dates 103

Notations. Let l be the number of jobs of J (SD2)\J (Sl1,2) = {Je1 , . . . , Jel} (Je1 ≺ERD
. . . ≺ERD Je

l
, i.e. e1 < . . . < el). Let d be the number of jobs of J (Sl1,2)\J (SD2) =

J (Sl1)\J (SD2), by Lemma 5. Since |J (SD2)| ≥ |J (Sl1,2)|+2, we have: 0 ≤ d ≤ l−2. Let

l2 = |J (Sl2)|, and Jf1 , . . . , Jfl2 be the jobs of Sl2 (Jf1 ≺ERD . . . ≺ERD Jfl2). Jf1 , . . . , Jfl2 ∈
J (SD2), from Lemma 5. On Figure 4.22 an example is given, where l = 6, d = 4 and l2 = 5.

The same example will be used in the rest of the proof to illustrate it.

���
���
���
���

���
���
���
���

���
���
���

���
���
���

�����
�����
�����

�����
�����
�����

�����
�����
�����
�����

�����
�����
�����
�����

0 D1

y Sl
2︷ ︸︸ ︷

D2

0 D1 D2

Sl
1︷ ︸︸ ︷

Sl1,2

SD2

Jf5

Jf2 Je2 Jf3Je1Jf1 Je5Je4Je3

Jf4Jf3Jf2Jf1

Jf5Jf4 Je6

Figure 4.22: On top, the schedule represents Sl1,2, while the schedule at bottom represents SD2 ,

for the same instance. In both schedules, the striped jobs belong to J (Sl1)∩J (SD2). In Sl1, the
white jobs belong to J (Sl1)\J (SD2). On this example, we have: l = 6 (the number of Jei jobs),
d = 4 (the number of white jobs in Sl1), l2 = 5 (the number of Jfj jobs).

J (SD2)∩J (Sl1,2) and J (SD2)\J (Sl1,2) constitute a partition of J (SD2). Moreover,

since J (Sl1) and J (Sl2) constitute a partition of J (Sl1,2), J (SD2)∩J (Sl1) and J (SD2)∩
J (Sl2) constitute a partition of J (SD2) ∩ J (Sl1,2). Therefore, a partition of J (SD2) is

constituted of the three sets of jobs:

• J (SD2) ∩ J (Sl1),

• J (SD2) ∩ J (Sl2) = J (Sl2) = {Jf1 , . . . , Jfl2},

• J (SD2)\J (Sl1,2) = {Je1 , . . . , Jel}

Then, J (SD2)\J (Sl1) = {Jf1 , . . . , Jfl2} ∪ {Je1 , . . . , Jel}. Hence, |J (SD2)\J (Sl1)| =

l + l2 ≥ d+ 2.

Notations. Let G be the set of the d+ 1 first jobs of J (SD2)\J (Sl1) in ERD order. G is

also the subset of jobs of J (SD2)\J (Sl1) with the d+1 smallest indices1. Moreover, the jobs

of G are also the d+1 earliest scheduled jobs of J (SD2)\J (Sl1) in SD2 , from Property 3 on

SD2 . On the example of Figure 4.22, there are d+ 1 = 5 jobs in G: Jf1 , Je1 , Jf2 , Je2 , Jf3 .

Let Ge = G ∩ {Je1 , . . . , Jel} and Gf = G ∩ {Jf1 , . . . , Jfl2}.
1All along the proof, when we will refer to indices, we will mean the indices of the jobs, and never the

subindices. For example, for a given job Jei we will always refer to the index ei and never to i. Indeed,
indices of job reflect ERD order.

104 4. Solving the single machine problem with two delivery dates

Ge and Gf constitute a partition of G, since G ⊆ J (SD2)\J (Sl1), and the two sets

{Je1 , . . . , Jel} and {Jf1 , . . . , Jfl2} are a partition of J (SD2)\J (Sl1). Therefore, |Ge| +
|Gf | = |G| = d+ 1.

Since the jobs of G have the smallest indices among the jobs of J (SD2)\J (Sl1), we

deduce that {Je1 , . . . , Jel}∩G = {Je1 , . . . , Je|Ge|} (since e1 < . . . < e|Ge| < . . . < el), and

{Jf1 , . . . , Jfl2} ∩G = {Jf1 , . . . , Jf|Gf |} (since f1 < . . . < f|Gf | < . . . < fl2).

On the example of Figure 4.22, Ge = {Je1 , Je2} and Gf = {Jf1 , Jf2 , Jf3}.
We introduce now a new partial schedule Smid that is necessary for the proof of

Theorem 5. Smid is an intermediate feasible partial schedule between Sl1,2 and SD2 :

Smid contains all the jobs of J (Sl1,2) ∩ J (SD2) and some other jobs of SD2 . By the

means of Smid, we show that, if |J (SD2)| ≥ |J (Sl1,2)| + 2, then there must be a job of

J (SD2)\J (Sl1,2) whose processing time is shorter than y = B(Sl2)−Cmax(Sl1). Thus we

find a contradiction with Lemma 6.

The partial schedule Smid

We first show how Smid is constructed, then prove some properties of Smid and SD2 ,

and finally show that Smid is feasible.

The partial schedule Smid is constructed in the following way, starting from Sl1,2
(see Figure 4.23). Smid is composed of two subschedules Smid1 and Smid2 . Smid1 is a

left-shifted subschedule obtained from Sl1 by removing the d jobs of J (Sl1)\J (SD2), and

by adding the d + 1 jobs of G to Sl1, while maintaining the order of increasing indices

(ERD order) guaranteed by Property 3 in Sl1. Smid2 is the schedule obtained by removing

Jf1 , . . . , Jf|Gf | from Sl2.

Remark: Until now the notation S1 designed a subschedule where all the jobs com-

plete at or before D1. However, for Smid, we use this notation to design the first

(left-shifted) part of the schedule, even if some jobs of Smid1 complete after D1.

We now introduce some properties of Smid.

Feature 1. Smid1 is left-shifted.

Proof. By construction.

Feature 2. Smid2 is a right-shifted block that completes at D2.

Proof. Smid2 is the second part of the schedule Sl2, which is also a block that completes at

D2. More precisely, Smid2 is the block that corresponds to the sequence (Jf|Gf |+1
, . . . , Jfl2)

and that completes at D2 (see Figure 4.23).

Feature 3. |J (Smid1)| = |J (Sl1)|+ 1.

Proof. By construction: to obtain Smid1 , d jobs were removed from Sl1, while d+ 1 were

added (i.e. the d+ 1 first jobs of G).

4. Solving the single machine problem with two delivery dates 105

���
���
���

���
���
���

���
���
���

���
���
���

��
��
��

��
��
��

�����
�����
�����

�����
�����
�����

�����
�����
�����

�����
�����
�����

�����
�����
�����

�����
�����
�����

0 D1

y Sl
2︷ ︸︸ ︷Sl

1︷ ︸︸ ︷
D2

0 D1 D2

0 D1 D2

︸ ︷︷ ︸

Cg B(Smid2)

Smid
1︷ ︸︸ ︷ Smid

2︷ ︸︸ ︷
rf1 re1 rf2

Cmax(Sl1) B(Sl2)

Cmax(Smid1)

Smid

Sl1,2
Jf5Jf3Jf2Jf1

Jf5Jf4

Jf5

Je1 Je2

Jf1 Je1 Jf2 Je2 Jf3

Jf1 Jf4Jf3Jf2

Jf4

Figure 4.23: Starting from Sl1,2, we obtain Smid: the d = 4 jobs of J (Sl1)\J (SD2) are removed

from Sl1; the |Ge| = 2 jobs of G ∩ (J (SD2)\J (Sl1,2)) are added to Sl1, and the |Gf | = 3 jobs of

J (Sl2) ∩G are moved from Sl2 to Smid1 .

Feature 4. J (Smid) ⊆ J (SD2).

Proof. By construction: to construct Smid we removed from Sl1,2 the jobs that were not

in SD2 and we added the jobs of G ⊆ J (SD2).

Notation. We denote by Cmax(Smid1) the completion time of the last job of Smid1 .

Feature 5. Cmax(Smid1) > D1.

Proof. By contradiction, assume that Cmax(Smid1) ≤ D1: since |J (Smid1)| = |J (Sl1)|+ 1

(cf. Feature 3), it means that |J (Sl1)|+ 1 jobs of J all can be scheduled in [0, D1], which

is in contradiction with Property 1 on Sl1.

Notation. Let Jg be the job of G that has the greatest index (i.e. the last job of G in

ERD order). It is also the last job of G being scheduled in Smid1 (see Figure 4.23, where

Jg = Jf3).

Feature 6. The jobs that are scheduled later than Jg in Smid1 all belong to J (Sl1):

(J +
g ∩ J (Smid1)) ⊆ J (Sl1).

106 4. Solving the single machine problem with two delivery dates

Proof. By construction of Smid1 , the only jobs of Smid1 that do not belong to Sl1, are the

jobs of G. Since the last scheduled job of G in Smid1 is Jg (by definition of Jg), the jobs

that are scheduled later in Smid1 all belong to Sl1. Moreover, since by construction the

jobs in Smid1 are ordered by increasing indices, J +
g ∩ J (Smid1) is actually the set of jobs

scheduled after Jg in Smid1 .

Notation. Let ΓD2
g be the sequence of jobs that are scheduled between 0 and Cg(S

D2)

in SD2 ; and Γmidg the sequence of jobs that are scheduled between 0 and Cg(S
mid
1) in Smid1 .

Feature 7. Γmidg = ΓD2
g .

Proof. First, note that Jg ∈ G ⊆ J (SD2). From Property 3 on SD2 , J (ΓD2
g) = (J −g ∩

J (SD2)) ∪ {Jg}. Moreover, since the jobs of Smid1 are ordered by increasing indices (by

construction), J (Γmidg) = (J (Smid1)∩J −g)∪ {Jg}. Thus, showing that J (Γmidg)∩J −g =

J (ΓD2
g) ∩ J −g directly implies J (Γmidg) = J (ΓD2

g).

By construction of Smid1 , the two sets J (Sl1) ∩ J (SD2) and G constitute a partition

of J (Smid1). Therefore, J (Sl1) ∩ J (SD2) ∩ J −g and G ∩ J −g constitute a partition of

J (Smid1) ∩ J −g = J (Γmidg) ∩ J −g . Notice that these two sets are also a partition of

J −g ∩J (SD2) = J −g ∩J (ΓD2
g), since G∩J −g = (J −g ∩J (SD2))\J (Sl1). Hence, J (Γmidg)∩

J −g = J (ΓD2
g) ∩ J −g .

Furthermore, since the jobs in Smid1 , respectively SD2 , are ordered w.r.t. increasing

indices (by construction on Smid1 and from Property 3 on SD2), we deduce that the jobs

of ΓD2
g and Γmidg are in the same order.

Feature 8. J (Smid2) ⊆ J +
g .

Proof. J (Smid) ⊆ J (SD2) (cf. Feature 4). Then, since the jobs that precede Jg in Smid

are the same that the ones preceding Jg in SD2 (cf. Feature 7), we deduce that the jobs

that follow Jg in Smid are a subset of the jobs that follow Jg in SD2 . From Property 3

on SD2 , the jobs that follow Jg in SD2 are those of J +
g ∩ J (SD2). Then, since all the

jobs of Smid2 are scheduled after Jg in Smid (because Jg ∈ J (Smid1)), we deduce that

J (Smid2) ⊆ J +
g ∩ J (SD2) ⊆ J +

g .

Feature 9. In SD2, all the jobs of J +
g ∩ J (SD2) are scheduled after Cg(S

mid
1).

Proof. From Property 3 on SD2 , all the jobs of J +
g ∩ J (SD2) are scheduled after Jg.

Let us show that Jg cannot complete earlier than Cg(S
mid
1) in SD2 . From Feature 7,

the sequence of jobs scheduled in Smid1 between 0 and Cg(S
mid
1) is the same as that of

the jobs scheduled in SD2 between 0 and Cg(S
D2). Therefore, since Smid1 is left-shifted

(cf. Feature 1), Jg cannot complete earlier than Cg(S
mid
1) in SD2 . Consequently, all the

jobs that follow Jg in SD2 are scheduled after Cg(S
mid
1) in SD2 .

4. Solving the single machine problem with two delivery dates 107

Remark: In particular, the result of Feature 9 is true for any subset of jobs of

J +
g ∩J (SD2), and thus for J +

g ∩J (Smid) (cf. Feature 4): all the jobs of J +
g ∩J (Smid)

are scheduled after Cg(S
mid
1) in SD2 .

Feature 10. p(J +
g ∩ J (SD2)) ≤ D2 − Cg(Smid1).

Proof. Since, by Feature 9, all the jobs of J +
g ∩J (SD2) are scheduled between Cg(S

mid
1)

and D2 in SD2 , their total processing time must be less than or equal to D2−Cg(Smid1).

Remark 1: In particular, the sum of the processing times of the jobs of J +
g ∩J (Smid)

is also less than or equal to D2 − Cg(Smid1).

Remark 2: However, notice that even though J (Smid) ∩ J +
g ⊆ J (SD2) ∩ J +

g , the

sequence of the jobs of J (Smid) ∩ J +
g in Smid is not a subsequence of the sequence of

jobs of J (SD2) ∩ J +
g in SD2 . Indeed, the jobs scheduled after Jg in SD2 are scheduled

in the order of their increasing indices, while the jobs scheduled after Jg in Smid are

partitioned in two groups: the jobs of J (Smid1) ∩ J +
g , which are ordered by increasing

indices, and the jobs of Smid2 , which are also ordered by increasing indices; but there is

no guarantee that the jobs of (J (Smid1 ∩J +
g))∪J (Smid2) are scheduled in the increasing

order of their indices in Smid.

Feature 11. In Smid1 , there are no idle times between any pair of jobs of {Jg} ∪ (J +
g ∩

J (Smid1)).

Proof. By contradiction, suppose that there is an idle time in Smid1 between a pair of

jobs of {Jg} ∪ (J +
g ∩ J (Smid1)). Then, since Smid1 is left-shifted (cf. Feature 1) there is

at least one job Jq of J +
g ∩J (Smid1) that starts exactly at its release date rq. Moreover,

{Jq}∪ (J +
q ∩J (Smid1)) ⊆ J +

g ∩J (Smid1) ⊆ J (Sl1) (cf. Feature 6). Furthermore, the jobs

of (J +
q ∩J (Smid1))∪{Jq} are ordered by increasing indices both in Smid1 (by construction)

and in Sl1 (by Property 3).

Then, since Jq cannot start earlier than rq in Sl1, and since Smid1 is left-shifted (cf.

Feature 1), we deduce that Sl1 cannot complete before Cmax(Smid1) > D1 (cf. Feature 5),

which is clearly a contradiction with the definition of Sl1 (a partial schedule that schedules

jobs between 0 and D1).

Let us now show that Smid is feasible.

Proposition 11. Smid is feasible.

Proof. By construction, each job starts at or after its release date in Smid. Therefore,

schedule Smid is unfeasible if and only if Cmax(Smid1) > B(Smid2). Let us prove by

contradiction that Smid is feasible. We assume that Cmax(Smid1) > B(Smid2).

108 4. Solving the single machine problem with two delivery dates

Therefore, if we examine Smid between Cg(S
mid
1) and D2 (see Figure 4.24), we see

that the jobs of J +
g ∩J (Smid1) are left-shifted, starting from Cg(S

mid
1) in a unique block

(cf. Feature 11), hence Cmax(Smid1) = Cg(S
mid) +p(J +

g ∩J (Smid1)). On the other hand,

the jobs of Smid2 are right-shifted, completing at D2 in a unique block (cf. Feature 2),

hence B(Smid2) = D2 − p(J (Smid2)).

Cmax(Smid1) > B(Smid2) implies that p((J +
g ∩J (Smid1))∪J (Smid2)) = p(J +

g ∩J (Smid1))+

p(J (Smid2)) > D2−Cg(Smid1), which is in contradiction with Feature 10, since J (Smid) ⊆
J (SD2) (cf. Feature 4), J +

g ∩ J (Smid1) ⊆ J +
g and J (Smid2) ⊆ J +

g (cf. Feature 8). Con-

sequently, Smid is feasible.

��
��
��

��
��
��

�����
�����
�����

�����
�����
�����

0 D1 D2

pf2 + pf3

Cg

J (Smid
1)∩J+

g︷ ︸︸ ︷ Smid
2︷ ︸︸ ︷

rf1 re1 rf2

< y + pf1+Jg

Cmax(Smid1)
B(Smid2)

Jf5Jf4Jf1 Je1 Jf2 Je2 Jf3

Figure 4.24: Smid.

We can now prove the main result.

Theorem 5. |J (SD2)| ≤ |J (Sl1,2)|+ 1

Proof. We have the following partitions of J (SD2):

J (SD2) = (J (SD2) ∩ J (Sl1,2)) ∪ (J (SD2)\J (Sl1,2))

= (J (SD2) ∩ J (Sl1,2)) ∪ {Je1 , . . . , Jel}
= (J (SD2) ∩ J (Sl1,2)) ∪Ge ∪ {Je|Ge|+1

, . . . , Je
l
}

= J (Smid) ∪ {Je|Ge|+1
, . . . , Je

l
}

Hence, J (SD2)∩J +
g = (J (Smid)∩J +

g)∪{Je|Ge|+1
, . . . , Je

l
}, since {Je|Ge|+1

, . . . , Je
l
} ⊆

J +
g , since g < e|Ge|+1, by construction of G and by definition of g.

Notice that J (Smid) ∩ J +
g = (J (Smid1) ∩ J +

g) ∪ J (Smid2), since J (Smid2) ⊆ J +
g (cf.

Feature 8). Then, since the three sets J (Smid1)∩J +
g , J (Smid2) and {Je|Ge|+1

, . . . , Je
l
} are

disjoint, they constitute a partition of J (SD2) ∩ J +
g . Consequently, p(J (SD2) ∩ J +

g) =

p(J (Smid1) ∩ J +
g) + p(J (Smid2)) + p({Je|Ge|+1

, . . . , Je
l
}) ≤ D2 − Cg(Smid1), since all the

jobs of J (SD2) ∩ J +
g are scheduled after Cg(S

mid
1) in SD2 (cf. Feature 9). We have:

• p(J (Smid1) ∩ J +
g) = Cmax(Smid1) − Cg(S

mid
1), since the jobs of J (Smid1) ∩ J +

g

are scheduled without idle times between Cg(S
mid
1) and Cmax(Smid1) in Smid (cf.

Feature 11); and

• p(J (Smid2)) = D2−B(Smid2), since the jobs of J (Smid2) are scheduled without idle

times between B(Smid2) and D2 in Smid (cf. Feature 2).

4. Solving the single machine problem with two delivery dates 109

We deduce that p({Je|Ge|+1
, . . . , Je

l
}) ≤ D2−Cg(Smid1)− (Cmax(Smid1)−Cg(Smid1))−

(D2 − B(Smid2)) = B(Smid2) − Cmax(Smid1); which can be written as:
∑l

i=|Ge|+1 pei ≤
B(Smid2)− Cmax(Smid1). Moreover, we have:

• B(Smid2)−Cmax(Smid1) < B(Smid2)−Cmax(Sl1) because Cmax(Sl1) ≤ D1 < Cmax(Smid1)

(cf. Feature 5); and

• B(Smid2) = B(Sl2)+
∑|Gf |

j=1 pfj , by construction of Smid (see Figure 4.23); and hence

• B(Smid2)−Cmax(Sl1) = B(Sl2)−Cmax(Sl1)+
∑|Gf |

j=1 pfj = y+
∑|Gf |

j=1 pfj , by definition

of y (see Figure 4.23).

From what precedes,
∑l

i=|Ge|+1 pei < y +
∑|Gf |

j=1 pfj , which can be written as:

∑l−|Ge|
i=1 pei+|Ge| < y +

∑|Gf |
j=1 pfj

Notice that l − |Ge| > |Gf |, since |Gf | = |G| − |Ge| = d + 1 − |Ge| and d ≤ l − 2.

Then, for all i ∈ {1, . . . , |Gf |}:

• Jei+|Ge| ∈ J (SD2)\J (Sl1,2)

• Jfi ∈ J (Sl2), and

• J +
fi
∩ J (Sl2) ⊆ J (SD2) (since J (Sl2) ⊆ J (SD2) by Lemma 5).

Therefore, by Lemma 4: ∀i ∈ {1, . . . , |Gf |}, pei+|Ge| ≥ pfi . Hence,
∑l−|Ge|

i=|Gf |+1
pei+|Ge| <

y; and this sum has at least one term, since l − |Ge| > |Gf |. Therefore, pe
l
< y, while,

from Lemma 6, pe
l
> y, which is a contradiction.

Corollary 1. Hence, the result of Theorem 4 can be generalized to the case where the

two values of the common stepwise payoff function are not 2 and 1, but any pair of values

v1, v2 such that v1 > v2. Then, Algorithm 9 yields a solution whose payoff v is such that

v ≥ OPT − v2.

Proof. The first assertion clearly holds, since the result of Theorem 5 is independent

from the payoffs of the jobs. Theorem 5 shows that Algorithm 9 yields a solution where

U1 jobs complete at or before D1, and at least U2 − 1 jobs complete at or before D2.

Therefore its payoff is at least (v1 − v2)×U1 + v2 × (U2 − 1), while the upper bound on

an optimal payoff is (v1 − v2)× U1 + v2 × U2. Hence the result holds.

110 4. Solving the single machine problem with two delivery dates

4.5 Conclusion

In this chapter, we presented a specific dominance rule for the single machine problem

with two delivery dates. Then, we proposed a pseudopolynomial time exact method,

based on dynamic programming which proves the weak NP-hardness of the two delivery

dates problem. Since this algorithm remains pseudopolynomial when K is fixed (K >

2), we also deduced the weak NP-hardness of the general problem where K is fixed.

Finally, we provided a polynomial time algorithm yielding a solution with an absolute

performance guarantee.

In the next chapter, we consider a flowshop problem with the same criterion based

on delivery dates and cumulative payoffs. For solving the flowshop problem we present

some heuristic methods: constructive heuristics, local search methods, and an upper

bound to evaluate the quality of the solutions.

Chapter 5
Flowshop problem
(Joint work with Luciana Pessoa1)

As seen in Section 1.1 (p. 3), the Banctec digitization process is mainly linear, and

composed of four main steps. Hence, it can be naturally modeled as a flowshop. So, in

order to get closer to the industrial issue, we consider in this chapter a flowshop problem

where
∑K

k=1 Vk must be maximized. However, we would like to point out that the work

on this problem is not finished yet, and thus that the results presented here are intended

as preliminary results.

We first introduce the studied flowshop problem, then we present some heuristic

methods for solving it: constructive heuristics, local search methods, and an upper

bound to evaluate the quality of the solutions. Finally, we present some experimental

results.

5.1 Definition of the problem and related works

As in the single machine problem, we consider a set of N jobs J all = {J1, . . . , JN},
where each job Ji has a release date ri ≥ 0. Each job must be sequentially processed

on each machine of a set {M1, . . . ,Mm} of m machines, i.e. each job Ji must first be

processed on machine M1, then it is processed on machine M2, and so on, until machine

Mm. The processing of job Ji on a machine must start after the completion of Ji on the

preceding machine. The processing time pil of job Ji on machine Ml is strictly greater

than zero. We denote by Cil(S) the completion time of job Ji on machine Ml in schedule

S. For shortness, we denote Cim by Ci, i = 1, . . . , N .

The payoff of a schedule is computed in the same way as for the single machine

problem (cf. Section 1.2, p. 6), i.e. as the sum of the jobs’ payoffs in the schedule, as we

1This chapter is the result of a joint work with Luciana Pessoa funded by Dem@tFactory project.

112 5. Flowshop problem

recall below.

Given a set of K delivery dates D1, . . . , DK , we set:

• D0 = 0,

• DK+1 = max(DK ,maxi=1,...,N ri) +
∑N

i=1

∑m
l=1 pil,

• Ik =]Dk−1, Dk], k = 1, . . . ,K + 1

The payoff of Ji in a given schedule is: v(Ji) = K − k + 1 if Ci ∈ Ik, k = 1, . . . ,K.

As a preliminary approach to the flowshop problem, we consider here a permutation

flowshop, i.e. each machine processes the jobs in the same order, as in the example of

Figure 5.1.

0 r1 r2 r3

0

0

r4

J2 J4 J1 J3

J2 J4 J1 J3

M2

M3

M1

J2 J4 J1 J3

Figure 5.1: A schedule for a permutation flowshop.

Extending the three-field notation of Graham et al. [11], this problem can be de-

noted as F |rj , perm|
∑K

k=1 Vk. F |rj , perm|
∑K

k=1 Vk is strongly NP-hard, since the single-

machine problem 1|ri|
∑K

k=1 Vk is strongly NP-hard in the general case. Moreover, the

special case with two machines, no release dates and a single delivery date F2|perm|V
is already NP-hard, as shown by Della Croce et al. [5]. Hence, it seems natural to tackle

this problem with heuristic approaches.

Let us introduce the following definition.

Definition 6. A “left-shifted” schedule is such that each operation of each job starts as

soon as possible, after:

• its release date, and

• the completion time of the preceding operation on the same machine, and

• the completion time of the previous operation of the same job on the preceding

machine.

Notice that since the optimization criterion is regular, left-shifted schedules are dom-

inant for F |rj , perm|
∑K

k=1 Vk. Moreover, a feasible left-shifted schedule can be repre-

sented as a sequence, since each machine processes the jobs in the same order. For

5. Flowshop problem 113

instance, the schedule of Figure 5.1 is a left-shifted schedule that can be represented by

the sequence (J2, J4, J1, J3). Hence, this problem can be modeled as an integer program

with a positional variables formulation.

According to Della Croce et al. [6] for the problem F2|perm|
∑
Cj , this formulation

is superior to other models based on disjunctive variables and constraints. Before giving

the model, let us introduce some necessary notations.

Notations. We denote by Cposjl (S) (Cposjl when no ambiguity is possible) the completion

time of the j-th scheduled job in S on machine Ml in S, j = 1, . . . , N , l = 1, . . . ,m. For

shortness, Cposj denotes Cposjm .

The mathematical formulation of F |rj , perm|
∑K

k=1 Vk is the following, where the

binary decision variable Xij is equal to 1 if job Ji is the j-th job of the sequence and

Xij = 0 otherwise.

max

N∑
j=1

F(Cposj) (5.1)

s.t.

N∑
i=1

Xij = 1, j = 1, . . . , N, (5.2)

N∑
j=1

Xij = 1, i = 1, . . . , N, (5.3)

Cposj1 ≥
N∑
i=1

(pi1 + ri)Xij , j = 1, . . . , N, (5.4)

Cposjl ≥ C
pos
j−1,l +

N∑
i=1

pilXij , j = 2, . . . , N, l = 1, . . . ,m, (5.5)

Cposj,l+1 ≥ C
pos
jl +

N∑
i=1

pi,l+1Xij , j = 1, . . . , N, l = 1, . . . ,m− 1, (5.6)

Cposjl ≥ 0, j = 1, . . . , N, l = 1, . . . ,m. (5.7)

Xij ∈ {0, 1}, i = 1, . . . , N, j = 1, . . . , N. (5.8)

The objective function is stated in (5.1), where:

114 5. Flowshop problem

F(Cposj) =



K if 0 < Cposj ≤ D1

...

2 if DK−2 < Cposj ≤ DK−1

1 if DK−1 < Cposj ≤ DK

0 if DK < Cposj

Constraints (5.2) and (5.3) ensure that each position is attributed to exactly one job

and each job is processed at exactly one position. Constraints (5.4) ensure each job Jj
to start not earlier than rj on the first machine. Constraints (5.5) forbid the overlapping

of any job with its own predecessor on each machine. Constraints (5.6) establish that a

job cannot be processed on a machine before its completion on the preceding machine.

To the best of our knowledge, no flowshop problem with stepwise job cost functions

has been studied yet. In the literature, the more closely related problems are flow-

shops with release dates and regular sum objective functions
∑N

i=1 fi(Ci). Rakrouki

and Ladhari [19] consider F2|ri|
∑
Ci for which they propose some Branch and Bound

methods, solving instances with up to 100 jobs for some classes of instances and 30

jobs for the hardest class of instances. Ladhari and Rakrouki [19] consider the prob-

lem F2|ri, perm|
∑
Ci, for which they develop lower bounds, heuristics and a genetic

algorithm.

Other related problems are flowshop problems with regular sum objective functions∑N
i=1 fi(Ci), but without release dates. Della Croce et al. [6] propose a matheuristic

for solving the two machine flowshop problem F2||
∑
Ci; Della Croce et al. [5] solve

F2|di = d|
∑
Ui with a Branch and Bound method; and Vallada et al. [33] compare

several heuristics for solving F ||
∑
Ti.

In the remaining part of the chapter, we present the proposed heuristic methods,

immediately followed by the corresponding experimental results.

In the next section are described the experimental settings.

5.2 Experimental settings

Instances generation We generated 400 test instances for the problem addressed in

this work. Each instance contains 100 jobs which must be processed on 2 machines.

The processing times are integers drawn randomly from a uniform distribution in the

interval [1, 100]. The number K of delivery dates varies in {1, 2, 3, 5}. Delivery dates for

each instance are defined as follows. Let C be the makespan of a schedule obtained by

using Johnson’s rule [2] while ignoring release dates. Then, D1 = b(A × C)/Kc, where

5. Flowshop problem 115

A is a parameter with values in {0.5, 0.8, 1.0, 1.2}. The other delivery dates are Dk =

k ×D1, 1 < k ≤ K. Release dates are chosen in a similar way as for the single machine

problem: each one is picked randomly in one of the intervals Rk = [Dk, Dk + R ×D1],

for k = 0, . . . ,K, where R ∈ {0.1, 0.3, 0.5, 0.7, 1.0}. The choice of the interval Rk is also

random (each with probability 1/K).

The same instances are used for all the experiments of this chapter. The computa-

tional experiments were performed on a 3.16GHz Intel Core2-Duo processor with 4 GB

RAM computer. Each run was limited to a single processor. All codes were implemented

in C++.

Solution quality evaluation. Two metrics were used to compare the proposed meth-

ods.

• Time is the CPU time, in seconds.

• Gap is the relative gap between the solution payoff provided by the considered

heuristic and an upper bound on the optimal payoff of F |ri, perm|
∑K

k=1 Vk (de-

scribed below).

The results of each heuristic are summarized according to K firstly, then to A and

finally to R, by giving the average value and the standard deviation, for both Gap and

Time.

An upper bound on the optimal payoff of F |ri, perm|
∑K

k=1 Vk is obtained by con-

sidering the relaxed problem where the first machine has infinite capacity. This relaxed

problem is equivalent to the single machine problem where the release date of job Ji is

equal to ri + pi1 and its processing time is equal to pi2, for all i ∈ {1, . . . , N}. As seen

in Section 3.3.2, Algorithm 3 (p. 43) provides an upper bound on the optimal payoff of

1|ri|
∑K

k=1 Vk. Since an upper bound on the payoff of a relaxed problem yields an upper

bound on the payoff of the original problem, applying Algorithm 3 on the relaxation of

F |ri, perm|
∑K

k=1 Vk where the first machine has infinite capacity yields an upper bound

on the optimal payoff of F |ri, perm|
∑K

k=1 Vk.
2

5.3 Constructive Heuristics

Four constructive heuristics were evaluated for F |rj , perm|
∑K

k=1 Vk. In this section, we

present three heuristics found in the literature, and describe a new greedy constructive

heuristic.

2In order to evaluate the proposed heuristics, we attempted to compute optimal solutions with the use
of Cplex on the positional variables formulation described above. However, after 6 hours computation,
the gap was closed only for a few instances. The gaps between the proposed upper bound and these few
optimal solutions were all greater than 20%.

116 5. Flowshop problem

The instance described in Table 5.1, with four jobs and two delivery dates on two

machines, will be used to illustrate the constructive heuristics.

ri pi1 pi2
J1 1 2 5
J2 3 3 3
J3 4 2 1
J4 6 2 2

D1 = 9; D2 = 11

Table 5.1: An instance of F2|ri, perm|
∑
Vk.

ERDH This heuristic produces a left-shifted schedule where jobs are ordered w.r.t.

nondecreasing release dates. Potts [24] uses this heuristic for the makespan minimiza-

tion problem on a two-machine permutation flowshop. The schedule obtained with this

heuristic for the instance of Table 5.1 is illustrated in Figure 5.1.

0 r1 r2 r3

0

r4

M2

M1
J1 J2 J3 J4

J1 J2 J3 J4

D1 D2

Figure 5.2: The schedule obtained with ERDH heuristic for the instance of Table 5.1,
of payoff 3.

ECT This heuristic produces a left-shifted schedule where jobs are ordered w.r.t. their

earliest possible completion time Ei = ri +
∑m

l=1 pil. This O(NlogN) algorithm was

proposed by Ladhari and Rakrouki [19] for the minimization of the total completion

time on a two-machine flowshop problem with release dates.

For the instance of Table 5.1, we have: E1 = 8, E2 = 9, E3 = 7, E4 = 10. Hence,

the schedule constructed with ECT corresponds to the sequence (J3, J1, J2, J4), and is

illustrated in Figure 5.3.

NEH The steps of the NEH-based algorithm are the following:

1. Sort the jobs in the increasing order of Ei = ri +
∑m

l=1 pil

2. Consider the two jobs Ji1 , Ji2 with the smallest values of Ei. Among the two left-

shifted partial schedules corresponding to sequences (Ji1 , Ji2) and (Ji2 , Ji1), choose

the one with the greatest payoff as the current schedule.

5. Flowshop problem 117

0 r1 r2 r3

0

r4

M2

M1
J3 J1 J2 J4

J3 J1 J2 J4

D1 D2

Figure 5.3: The schedule obtained with ECT heuristic for the instance of Table 5.1, of
payoff 2.

3. Repeat until all jobs are scheduled: Let Je be the unscheduled job with the smallest

value of Ei. Update the current schedule, by inserting Je, in the position that

maximizes the payoff, while keeping a left-shifted partial schedule.

For the example of Table 5.1, we first compare the two sequences (J1, J3) and (J3, J1)

(see Figure 5.4). (J1, J3) is chosen, since it has the greatest payoff. Among the remaining

jobs, J2 has the smallest value of Ei. Thus, we attempt to insert J2 in all the possible

positions, and compare the payoffs (see Figure 5.5).

The sequence providing the best payoff is (J1, J3, J2). Starting from this sequence,

in the last step we compare the different positions for inserting J4 (see Figure 5.6).

Finally, the best schedule of the last step is the final solution. On the example, it is

the schedule corresponding to the sequence (J1, J3, J4, J2).

0 r1 r2 r3

0

r4

M2

M1
J3

0 r1 r2 r3

0

r4

M2

M1
J3 J1

J3

J1

J1 J3

(J1, J3)

(J3, J1)

D1

D1 D2

D2

J1
Payoff: 2

Payoff: 4

Figure 5.4: First step of NEH heuristic for the instance of Table 5.1.

Step 3 concentrates the largest computational effort of the algorithm. For each

tentative position, the method evaluates the solution cost in O(Nm) steps. As each job

can be inserted in O(N) positions, the complexity of NEH heuristic for the problem

under consideration is O
(
N3m

)
.

118 5. Flowshop problem

0 r1 r2 r3

0

r4

M2

M1

0 r1 r2 r3

0

r4

M2

M1

0 r1 r2 r3

0

r4

M2

M1
J2

J2

J1 J3

J1 J3

J1 J2 J3

J1 J3J2

J1 J3 J2

J1 J3 J2

(J2, J1, J3)

(J1, J2, J3)

(J1, J3, J2)

D1

D1

D1 D2

D2

D2

Payoff: 2

Payoff: 3

Payoff: 4

Figure 5.5: Insertions of J2 at different positions.

The NEH heuristic, originally proposed by Nawaz et al. [22] for a flowshop problem

without release dates, was modified by Ladhari and Rakrouki [19] by considering the

sorting criterion described above. The method described in [19] is easily adapted for our

problem by simply changing the payoff evaluation.

IECT Following the ideas of NEH and ECT methods, we developed a new iterative

constructive heuristic. The initial partial schedule is left-shifted and schedules the job

with the smallest value of Ei. In the following iterations, the value of Ei is reevaluated

for each unscheduled job. Indeed, the earliest possible completion time of a job must

now take into account the already scheduled jobs. Then, the job with the smallest Ei is

inserted at the end of the current partial schedule. Algorithm 13 describes this O
(
N2m

)
algorithm.

Let us give an example on the instance of Table 5.1. The first step yields a left-shifted

partial schedule scheduling job J3, since it is the job with the smallest value of Ei (see

Figure 5.7). Then, the value of Ei is reevaluated for each of the remaining jobs, as shown

in Table 5.2, by taking into account the completion times of job J3 on both machines.

The job with the smallest value of Ei2 (here, J4) is inserted at the end of the partial

schedule (see Figure 5.8). Afterwards, the values of E1 and E2 are reevaluated, as shown

in Table 5.3. Since E2 < E1, the final sequence is (J3, J4, J2, J1) (see Figure 5.9).

5. Flowshop problem 119

0 r1 r2 r3

0

r4

M2

M1

0 r1 r2 r3

0

r4

M2

M1
J1 J3 J2

J1 J3 J2

(J1, J3, J4, J2)

(J1, J3, J2, J4)

D1

D1

D2

D2

J4

J4

J1 J3 J4 J2

J1 J3 J2J4

0 r1 r2 r3

0

r4

M2

M1

(J4, J1, J3, J2)

D1 D2

J4

J4

0 r1 r2 r3

0

r4

M2

M1

(J1, J4, J3, J2)

D1 D2

J1 J4 J3 J2

J1 J4 J3

J1 J3 J2

J1 J3 J2

J2

Payoff: 1

Payoff: 4

Payoff: 5

Payoff: 4

Figure 5.6: Insertions of J4 at different positions.

0 r1 r2 r3

0

r4

M2

M1
J3

J3

Figure 5.7: First step of IECT heuristics, for the example of Table 5.1.

Ei1 = max{ri, C3,1 + pi1} Ei2 = max{C3,2, Ei1}+ pi2
J1 6 + 2 = 8 8 + 5 = 13
J2 6 + 3 = 9 9 + 3 = 12
J4 6 + 2 = 8 8 + 2 = 10

Table 5.2: The reevaluation of Ei (Ei2) for the unscheduled jobs.

Experimental results for the constructive methods

The results are summarized according to K firstly, then to A and finally to R, by

giving the average value and the standard deviation, for both Gap and Time. 100

120 5. Flowshop problem

0 r1 r2 r3

0

r4

M2

M1
J3

J3

J4

J4

Figure 5.8: Insertion of J4 in the partial schedule.

Ei1 = max{ri, C4,1 + pi1} Ei2 = max{C4,2, Ei1}+ pi2
J1 8 + 2 = 10 10 + 5 = 15
J2 8 + 3 = 11 11 + 3 = 14

Table 5.3: The reevaluation of Ei (Ei2) for the unscheduled jobs.

0 r1 r2 r3

0

r4

M2

M1
J3

J3

J4

J4

J2 J1

J2 J1

Figure 5.9: The schedule returned by IECT heuristic.

instances are considered for each value of K, and for each value of A. 80 instances are

considered for each value of R. Moreover, in the table displaying the gaps related to K,

the mean gap on all instances is given.

Tables 5.4 to 5.9 display summaries of the results obtained with the constructive

methods. We see that NEH gets the best gaps in all the tables, except when A = 0.5,

where IECT is the best. Moreover, IECT is the method that gives the best results, after

NEH.

We therefore chose to keep both NEH and IECT to be used in the local search

methods described in Section 5.4.

We also notice that, similarly to the single machine problem (see the results of the

Branch and Bound method, Section 3.5), the instances with a small value of A seem

harder to solve.

5.4 Local Search Methods

Local search methods attempt to find cost-improving solutions by exploring the neighbor-

hood of an initial solution. The characterization of a solution neighborhood is arbitrary,

and is the element that mainly defines a local search method. If none of the neighbors

of a solution has a greater payoff, then the search returns the initial solution as a local

5. Flowshop problem 121

1 S ← ∅;
2 J ← J all;
3 forall the Ji ∈ J do
4 Ei = ri +

∑m
l=1 pil;

5 end
6 Ei∗ ← min{Ei : Ji ∈ J };
7 S ← S.Ji∗ ;
8 J ← J \ {Ji∗};
9 while J 6= ∅ do

10 forall the Ji ∈ J do
11 Ei1 ← max{ri, Ci∗,1}+ pi1;
12 for l = 2, . . . ,m do
13 Eil ← max{Ci∗,l, Ei,l−1}+ pil;
14 end

15 end
16 Ei∗m ← min{Eim : Ji ∈ J };
17 S ← S.Ji∗ ;
18 J ← J \ {Ji∗};
19 end

Algorithm 13: Constructive Heuristic IECT.

ERDH NEH ECT IECT
K Gap Std dev Gap Std dev Gap Std dev Gap Std dev
1 14,03% 14,12% 10,22% 10,91% 13,01% 13,02% 11,64% 7,52%
2 14,82% 13,39% 10,25% 9,86% 13,83% 12,65% 12,30% 7,75%
3 15,27% 13,28% 9,79% 9,12% 14,21% 12,37% 12,92% 7,13%
5 15,96% 13,61% 10,08% 9,21% 15,19% 13,24% 14,04% 7,83%
all 15,02% 10,08% 14,06% 12,72%

Table 5.4: Summary of constructive methods (Gap related to K).

ERDH NEH ECT IECT
A Gap Std dev Gap Std dev Gap Std dev Gap Std dev
0,5 35,78% 4,33% 24,68% 5,20% 33,38% 5,34% 21,78% 5,22%
0,8 16,34% 3,81% 10,74% 3,30% 15,26% 4,09% 14,55% 3,64%
1 6,49% 3,16% 4,16% 2,60% 6,13% 3,13% 10,72% 3,53%
1,2 1,48% 1,69% 0,76% 0,96% 1,48% 1,81% 3,85% 3,03%

Table 5.5: Summary of constructive methods (Gap related to A).

minimum. Otherwise, if there exists a better solution in the neighborhood, a new initial

solution is chosen in the neighborhood, and the procedure repeats itself. There are at

122 5. Flowshop problem

ERDH NEH ECT IECT
R Gap Std dev Gap Std dev Gap Std dev Gap Std dev
0,1 14,86% 13,81% 7,50% 8,31% 11,59% 11,21% 9,36% 6,49%
0,3 14,73% 14,19% 9,60% 9,78% 13,40% 13,08% 11,02% 7,28%
0,5 15,26% 13,76% 10,26% 9,82% 14,85% 13,40% 12,75% 7,69%
0,7 15,19% 13,61% 11,34% 10,40% 15,23% 13,46% 14,72% 7,31%
1 15,07% 12,79% 11,73% 10,05% 15,23% 12,64% 15,77% 7,43%

Table 5.6: Summary of constructive methods (Gap related to R).

ERDH NEH ECT IECT
K Time Std dev Time Std dev Time Std dev Time Std dev
1 0.00 0.00 0.59 0.05 0.00 0.00 0.00 0.00
2 0.00 0.00 0.64 0.03 0.00 0.00 0.00 0.00
3 0.00 0.00 0.66 0.03 0.00 0.00 0.00 0.00
5 0.00 0.00 0.67 0.03 0.00 0.00 0.00 0.00

Table 5.7: Summary of constructive methods (Time related to K).

ERDH NEH ECT IECT
A Time Std dev Time Std dev Time Std dev Time Std dev
0.5 0.00 0.00 0.60 0.03 0.00 0.00 0.00 0.00
0.8 0.00 0.00 0.64 0.04 0.00 0.00 0.00 0.00
1 0.00 0.00 0.65 0.05 0.00 0.00 0.00 0.00
1.2 0.00 0.00 0.67 0.05 0.00 0.00 0.00 0.00

Table 5.8: Summary of constructive methods (Time related to A).

ERDH NEH ECT IECT
R Time Std dev Time Std dev Time Std dev Time Std dev
0.1 0.00 0.00 0.61 0.06 0.00 0.00 0.00 0.00
0.3 0.00 0.00 0.62 0.05 0.00 0.00 0.00 0.00
0.5 0.00 0.00 0.64 0.04 0.00 0.00 0.00 0.00
0.7 0.00 0.00 0.65 0.04 0.00 0.00 0.00 0.00
1 0.00 0.00 0.67 0.04 0.00 0.00 0.00 0.00

Table 5.9: Summary of constructive methods (Time related to R).

least two ways of selecting the new initial solution. The best improvement strategy [31]

chooses a neighbor with the best cost (or payoff) of the whole neighborhood. The first

improvement strategy [31] chooses the first found neighbor that has a better cost (or

payoff) than the initial solution.

5. Flowshop problem 123

5.4.1 Neighborhoods

The two neighborhoods explored in this work are based on the standard ones studied by

den Besten and Stützle [1] for scheduling problems. Recall that any feasible left-shifted

schedule of F |rj , perm|
∑K

k=1 Vk can be represented as a sequence.

• In the interchange neighborhood, a neighbor sequence is obtained by swapping

the two jobs at positions j and j′ of the initial schedule, j ∈ {1, . . . , N}, j′ ∈
{1, . . . , N}\{j}. The size of this neighborhood is thus N(N − 1)/2.

• The insert neighborhood constructs sequences where the job that is in position

j, j ∈ {1, . . . , N}, in the initial schedule is moved to a new position j′, j′ ∈
{1, . . . , N}\{j}. Hence, the jobs that were in some position j′′ ∈ {j+1, . . . , j′} are

now at position j′′−1 in the constructed sequence, while the positions of the other

jobs remain unchanged. To avoid identical neighbors, the first job can be moved to

N−1 positions, while the other jobs can only be moved to N−2 different positions.

Hence, the whole neighborhood of a sequence contains (N − 1)2 sequences.

For both methods, the cost of each neighbor is computed in Θ(Nm) steps, which

makes the local search running in O
(
N3m

)
.

Experimental results on local search

The results are summarized according to K firstly, then to A and finally to R, by

giving the average value and the standard deviation, for both Gap and Time. 100

instances are considered for each value of K, and for each value of A. 80 instances are

considered for each value of R. Moreover, in the table displaying the gaps related to K,

the mean gap on all instances is given.

The experiments described in this section aim to evaluate the impact of the local

search methods on the solutions obtained by the constructive methods. As said at the

end of Section 5.3, we evaluate the local search on the solutions obtained by both con-

structive methods NEH and IECT. Interchange (Itc) and Insertion (Ist) neighborhoods

were implemented by following the first improvement (fi) and the best improvement (bi)

strategies. Tables 5.10 to 5.15 show the results for NEH, while Tables 5.16 to 5.21 show

the results for IECT.

The solutions constructed with NEH algorithm were only slightly improved by the

local search. Moreover, starting from NEH solution, both neighborhoods (Ist and Ict)

and both improvement strategies (best and first) give similar results. As expected, the

best improvement strategy needs more computation time than the first improvement

one.

Visible improvements of the IECT solutions are, instead, produced by the local

search, especially with Ist neighborhood.

124 5. Flowshop problem

Itc-fi Itc-bi Ist-fi Ist-bi
K Gap Std dev Gap Std dev Gap Std dev Gap Std dev
1 9,54% 10,32% 9,54% 10,32% 9,43% 10,45% 9,45% 10,48%
2 9,57% 9,35% 9,58% 9,35% 9,44% 9,39% 9,45% 9,38%
3 9,15% 8,53% 9,19% 8,61% 9,31% 8,82% 9,31% 8,80%
5 9,37% 8,42% 9,33% 8,39% 9,57% 8,85% 9,57% 8,86%
all 9,41% 9,41% 9,44% 9,44%

Table 5.10: Summary of NEH local search (Gap related to K).

Itc-fi Itc-bi Ist-fi Ist-bi
A Gap Std dev Gap Std dev Gap Std dev Gap Std dev
0,5 23,00% 5,13% 23,01% 5,17% 23,50% 5,01% 23,52% 5,03%
0,8 10,09% 3,05% 10,10% 3,05% 10,01% 3,07% 10,02% 3,06%
1 3,85% 2,55% 3,85% 2,55% 3,57% 2,30% 3,58% 2,30%
1,2 0,70% 0,89% 0,69% 0,89% 0,66% 0,88% 0,66% 0,88%

Table 5.11: Summary of NEH local search (Gap related to A).

Itc-fi Itc-bi Ist-fi Ist-bi
R Gap Std dev Gap Std dev Gap Std dev Gap Std dev
0,1 7,12% 7,88% 7,09% 7,83% 7,31% 8,13% 7,31% 8,13%
0,3 8,90% 9,40% 8,88% 9,38% 8,94% 9,47% 8,94% 9,47%
0,5 9,53% 9,25% 9,51% 9,21% 9,69% 9,56% 9,70% 9,55%
0,7 10,31% 9,30% 10,38% 9,41% 10,30% 9,79% 10,35% 9,83%
1 11,18% 9,55% 11,20% 9,57% 10,94% 9,60% 10,93% 9,58%

Table 5.12: Summary of NEH local search (Gap related to R).

Itc-fi Itc-bi Ist-fi Ist-bi
K Time Std dev Time Std dev Time Std dev Time Std dev
1 0.97 0.20 1.05 0.32 5.18 2.20 4.42 2.34
2 1.10 0.26 1.17 0.37 5.72 2.77 5.07 3.38
3 1.14 0.25 1.22 0.34 5.29 2.35 4.68 2.95
5 1.26 0.36 1.45 0.64 6.13 2.63 5.53 3.50

Table 5.13: Summary of NEH local search (Time related to K).

5. Flowshop problem 125

Itc-fi Itc-bi Ist-fi Ist-bi
A Time Std dev Time Std dev Time Std dev Time Std dev
0.5 1.26 0.42 1.53 0.70 6.31 2.62 5.99 3.89
0.8 1.16 0.30 1.23 0.38 5.90 2.68 5.19 3.02
1 1.06 0.17 1.11 0.22 5.80 2.90 5.01 3.04
1.2 0.99 0.10 1.02 0.16 4.31 0.88 3.51 1.37

Table 5.14: Summary of NEH local search (Time related to A).

Itc-fi Itc-bi Ist-fi Ist-bi
R Time Std dev Time Std dev Time Std dev Time Std dev
0.1 1.02 0.26 1.11 0.45 4.50 1.40 3.72 2.27
0.3 1.12 0.29 1.23 0.41 5.63 2.22 5.04 2.71
0.5 1.14 0.32 1.28 0.58 5.44 2.36 4.73 3.00
0.7 1.19 0.33 1.30 0.49 6.35 3.17 5.77 3.70
1 1.12 0.22 1.19 0.32 5.97 2.75 5.37 3.26

Table 5.15: Summary of NEH local search (Time related to R).

Itc-fi Itc-bi Ist-fi Ist-bi
K Gap Std dev Gap Std dev Gap Std dev Gap Std dev
1 9,30% 7,36% 9,28% 7,27% 6,66% 5,49% 6,64% 5,51%
2 10,22% 7,33% 10,30% 7,29% 5,66% 5,18% 5,76% 5,15%
3 11,07% 7,06% 11,07% 7,05% 5,55% 4,89% 5,76% 4,78%
5 12,35% 7,66% 12,38% 7,68% 6,07% 5,82% 6,11% 5,52%
all 10,73% 10,76% 5,99% 6,07%

Table 5.16: Summary of IECT local search (Gap related to K).

Itc-fi Itc-bi Ist-fi Ist-bi
A Gap Std dev Gap Std dev Gap Std dev Gap Std dev
0,5 19,34% 5,60% 19,36% 5,56% 12,77% 4,88% 12,63% 4,73%
0,8 12,41% 4,05% 12,40% 4,03% 6,11% 3,25% 6,28% 3,30%
1 8,50% 4,27% 8,57% 4,19% 3,91% 2,28% 4,15% 2,14%
1,2 2,68% 2,73% 2,71% 2,72% 1,15% 1,25% 1,21% 1,29%

Table 5.17: Summary of IECT local search (Gap related to A).

5.4.2 Variable Neighborhood Descent

Neighborhoods can be combined, in order to better explore the solutions space. Variable

Neighborhood Descent (VND) [14] establishes an order in which the local search methods

will be applied. Starting from a solution generated by a constructive algorithm, and

126 5. Flowshop problem

Itc-fi Itc-bi Ist-fi Ist-bi
R Gap Std dev Gap Std dev Gap Std dev Gap Std dev
0,1 7,09% 5,98% 7,19% 6,06% 4,91% 4,74% 4,84% 4,48%
0,3 8,67% 6,84% 8,78% 6,81% 5,42% 5,57% 5,49% 5,38%
0,5 10,43% 7,19% 10,39% 7,19% 5,93% 5,42% 5,89% 5,32%
0,7 12,67% 7,31% 12,64% 7,23% 6,52% 5,49% 6,85% 5,48%
1 14,80% 7,18% 14,79% 7,17% 7,15% 5,36% 7,28% 5,23%

Table 5.18: Summary of IECT local search (Gap related to R).

Itc-fi Itc-bi Ist-fi Ist-bi
K Time Std dev Time Std dev Time Std dev Time Std dev
1 0.47 0.17 0.84 0.44 10.35 4.99 11.91 5.86
2 0.67 0.26 1.02 0.38 15.65 7.03 17.09 7.85
3 0.76 0.35 1.22 0.50 19.58 7.91 19.58 6.93
5 1.03 0.39 1.60 0.54 26.40 10.03 23.47 7.16

Table 5.19: Summary of IECT local search (Time related to K).

Itc-fi Itc-bi Ist-fi Ist-bi
A Time Std dev Time Std dev Time Std dev Time Std dev
0.5 0.64 0.26 1.11 0.44 15.45 5.49 18.50 6.21
0.8 0.77 0.31 1.28 0.49 22.12 9.32 21.68 7.16
1 0.82 0.35 1.30 0.53 22.35 10.47 20.48 7.64
1.2 0.69 0.47 0.99 0.64 12.05 8.43 11.39 7.35

Table 5.20: Summary of IECT local search (Time related to A).

Itc-fi Itc-bi Ist-fi Ist-bi
R Time Std dev Time Std dev Time Std dev Time Std dev
0.1 0.74 0.36 1.19 0.52 12.38 7.41 13.31 6.96
0.3 0.77 0.37 1.27 0.55 15.47 8.56 15.57 7.64
0.5 0.80 0.38 1.33 0.53 18.35 9.05 18.44 7.55
0.7 0.76 0.43 1.29 0.56 22.05 10.62 20.89 7.68
1 0.58 0.21 0.78 0.36 21.72 8.90 21.85 7.69

Table 5.21: Summary of IECT local search (Time related to R).

a sequence of q neighborhoods, a VND exploits the first neighborhood until a local

optimum is found. This solution becomes the initial solution to the next neighborhood,

and so on until the q-th neighborhood. If the solution returned by the q-th local search

is better than the initial solution at the beginning of the first local search, the procedure

restarts again from the first neighborhood. Otherwise, the search stops, and the returned

5. Flowshop problem 127

solution is the solution returned by the q-th local search.

The pseudocode of this method is given below. We suppose that LOC SEARCH(N , S)

is a function returning the solution found by a local search with neighborhood N starting

from solution S.

Input: N1, . . . ,Nn, S
Output: Sbest

1 Sbest ← S
2 S′ ← S
3 flag ← true
4 while flag do
5 for i = 1 to n do
6 S′ ← LOC SEARCH(Ni, S′)
7 if F(S′) = F(Sbest) then
8 flag ← false

9 else
10 Sbest ← S′

11 return Sbest

Algorithm 14: Variable Neighborhood Descent.

Experimental results on variable neighborhood descent

The results are summarized according to K firstly, then to A and finally to R, by

giving the average value and the standard deviation, for both Gap and Time. 100

instances are considered for each value of K, and for each value of A. 80 instances are

considered for each value of R. Moreover, in the table displaying the gaps related to K,

the mean gap on all instances is given.

In the next experiment, we combined the local searches Itc-bi and Ist-bi in a VND

method, so that two VND variants were created by changing the order of the interchange

and insertion local searches. We only applied VND on the solutions obtained by the

IECT constructive, since we saw in the previous experiments that local search has more

impact on the IECT solutions. The results are displayed in Tables 5.22 to 5.27.

The two VND methods are comparable regarding gaps. However, Itc-bi + Ist-bi is

faster.

Besides, by comparing these results with those of local search, we note there is not an

impressive improvement in solutions quality. Similar conclusions were presented by den

Besten and Stützle [1] about the VND application to the permutation flowshop problem

with the objective of minimizing makespan.

128 5. Flowshop problem

Itc-bi+Ist-bi Ist-bi+Itc-bi
K Gap Std dev Gap Std dev
1 6,27% 5,56% 6,24% 5,62%
2 5,63% 5,21% 5,56% 5,13%
3 5,58% 4,61% 5,59% 4,67%
5 6,08% 5,42% 5,97% 5,48%
all 5,89% 5,84%

Table 5.22: Summary of IECT-VND methods (Gap related to K).

Itc-bi+Ist-bi Ist-bi+Itc-bi
A Gap Std dev Gap Std dev
0,5 12,44% 4,46% 12,40% 4,67%
0,8 6,20% 3,34% 6,09% 3,33%
1 3,73% 2,42% 3,72% 2,28%
1,2 1,18% 1,28% 1,15% 1,30%

Table 5.23: Summary of IECT-VND methods (Gap related to A).

Itc-bi+Ist-bi Ist-bi+Itc-bi
R Gap Std dev Gap Std dev
0,1 12,09% 4,22% 11,99% 4,39%
0,3 8,11% 5,21% 8,15% 5,34%
0,5 4,89% 3,06% 4,79% 2,94%
0,7 2,89% 2,59% 2,83% 2,48%
1 1,46% 1,28% 1,44% 1,30%

Table 5.24: Summary of IECT-VND methods (Gap related to R).

Itc-bi+Ist-bi Ist-bi+Itc-bi
K Time Std dev Time Std dev
1 11.31 5.68 14.70 6.43
2 16.70 7.27 20.01 7.90
3 20.01 7.28 22.65 6.72
5 24.21 8.70 26.53 7.35

Table 5.25: Summary of IECT-VND methods (Time related to K).

5.5 GRASP heuristic

In order to attempt to improve the previous results, particularly the gap, we considered

the use of the following metaheuristic. A Greedy Randomized Adaptive Search Procedure

(GRASP) is a multi-start metaheuristic which consists of applying local search to feasible

5. Flowshop problem 129

Itc-bi+Ist-bi Ist-bi+Itc-bi
A Time Std dev Time Std dev
0.5 19.39 7.48 21.48 6.04
0.8 21.34 7.28 24.72 7.18
1 20.66 9.01 23.75 7.55
1.2 10.84 6.43 13.94 7.78

Table 5.26: Summary of IECT-VND methods (Time related to A).

Itc-bi+Ist-bi Ist-bi+Itc-bi
R Time Std dev Time Std dev
0.1 13.01 7.17 16.40 7.48
0.3 15.27 7.82 18.52 7.87
0.5 17.92 7.98 21.34 7.60
0.7 20.96 8.82 23.69 7.60
1 23.14 7.64 24.91 8.01

Table 5.27: Summary of IECT-VND methods (Time related to R).

starting solutions generated with a greedy randomized constructive heuristic. It was

introduced by Feo and Resende [9] for solving a set covering problem with unit costs.

In the constructive phase, an iterative procedure builds a solution from scratch,

adding one element at a time to a partial solution, until the solution is feasible. The

addition of each element is evaluated according to a greedy function that verifies the

benefit of including this element in the partial solution. If the function is purely greedy,

it chooses the element that represents the greatest benefit. Instead, GRASP uses a

randomized greedy procedure which keeps a restricted candidate list (RCL) formed by

the best elements. At each iteration, an element is chosen at random from the RCL.

After adding the chosen element in the partial solution, the remainder elements must be

reevaluated.

Solutions built with the randomized greedy algorithm are not guaranteed to be locally

optimal, even with respect to simple neighborhood structures. Therefore, the application

of local search to such a solution usually results in an improved locally optimal solution.

Starting from an initial solution, local search explores its neighborhood for a cost-

improving solution. If none is found, then the search returns the initial solution as a

local minimum. Otherwise, if an improving solution is found, it is made the new initial

solution, and the procedure repeats itself.

Algorithm 15 shows the pseudo-code for the GRASP procedure.

The GRASP heuristic developed for F |rj , perm|
∑K

k=1 Vk is based on the results

130 5. Flowshop problem

1 GRASP(StopCriterion, Seed)
2 z∗ ← 0;
3 while StopCriterion is not satisfied do
4 S ← GreedyRandomizedAlgorithm(Seed);
5 S ← LocalSearch(S);
6 if F(S) > z∗ then
7 S∗ ← S;
8 z∗ ← F(S);

9 end

10 end
Algorithm 15: Template of a GRASP heuristic for maximization.

presented in the previous sections.

The constructive phase of GRASP is a randomized variant of the IECT greedy algo-

rithm. At each iteration, the jobs not in the solution are still evaluated by the greedy

function Ej , as defined above. However, instead of choosing the job with the smallest Ei,

the randomized algorithm first identifies the minimum (E−) and maximum (E+) greedy

function values of the candidate elements. Then, a restricted candidate list (RCL),

formed by all candidate elements whose greedy function value is greater than or equal

to E+ − α(E+ − E−), is built. A job index jr is chosen at random from the RCL and

the corresponding job Jjr is inserted in the scheduling at the end of the sequence. The

chosen value of α is 0.1, since we observed in some preliminary experiments that this

value led to the best results.

In the GRASP local search, the method Ist − bi is followed by Itc − bi in a VND

strategy. The stopping criterion is a time limit of 30 minutes. For each instance, four

initial randomized solutions were generated. After the four corresponding local search

iterations, the best solution is kept.

Experimental results for GRASP

The results are summarized according to K firstly, then to A and finally to R, by

giving the average value and the standard deviation, for both Gap and Time. 100

instances are considered for each value of K, and for each value of A. 80 instances are

considered for each value of R. Moreover, in the table displaying the gaps related to K,

the mean gap on all instances is given.

The experimental results on GRASP heuristic are summarized in Tables 5.28 to 5.30.

Unfortunately, GRASP does not improve dramatically the gaps of the obtained solutions.

5. Flowshop problem 131

K Gap Std dev
1 5,28% 5,22%
2 5,30% 5,07%
3 5,36% 4,61%
5 5,92% 5,54%
all 5,46%

Table 5.28: Summary of grasp (Gap related to K).

A Gap Std dev
0,5 11,89% 4,61%
0,8 5,56% 3,28%
1 3,32% 2,41%
1,2 1,08% 1,28%

Table 5.29: Summary of grasp (Gap related to A).

R Gap Std dev
0,1 11,3%5 4,24%
0,3 7,51% 5,55%
0,5 4,41% 3,15%
0,7 2,70% 2,46%
1 1,35% 1,30%

Table 5.30: Summary of grasp (Gap related to R).

Overall, local search has provided a noticeable improvement in gaps: the best con-

structive heuristic has a mean gap of 10.08%, while the best local search has a gap of

5.84%. As for GRASP, it only yields little improvement: from 5.84% to 5.46%. How-

ever, we tested here one possible configuration for GRASP: deeper experimental analysis

would be necessary to find the tunings that would give the best results.

5.6 Conclusion

In this chapter, we studied a permutation flowshop problem, which is strongly NP-

hard, as it is a generalization of the single machine problem. We tackled this problem

with several heuristic methods: four constructive heuristics, three of them found in

the literature, and a new one; and some local search methods, based on the classical

Interchange and Insertion neighborhoods (simple local search, variable neighborhood

search, and GRASP). The experimental results show that the simple local search and

the variable neighborhood search provide good solutions in a reasonable time.

132 5. Flowshop problem

Conclusion and research issues

Starting from a real world digitization workflow issue, we identified a scheduling problem

with a new criterion involving common delivery dates for the jobs. In order to focus on

the optimization criterion/release dates pair, for characterizing structural properties of

the optimal solutions, we considered a single machine problem.

In the studied problem, each job has its own processing time and release date. Ad-

ditionally, all the jobs share K common delivery dates. The objective is to attain some

target quantities (fixed by the client) of digitized books at each delivery date, while

maximizing the payoff of the manufacturer. In order to take into account both aspects,

the considered objective function aims to maximize the number of jobs processed be-

tween time 0 and each delivery date. Hence, we have a cumulative aspect, since the jobs

processed before a given delivery date are also processed before the subsequent delivery

dates, and may thus be counted several times when computing the total payoff. The

same objective function can alternatively be represented as a sum of stepwise payoff

functions associated to the jobs. Each job has the same fixed decreasing stepwise func-

tion, whose values range from K if the job completes at or before the first delivery date,

to 0 for a completion after the last delivery date, and decreases by 1 at each delivery

date.

Though problems considering a generalization of this criterion have been studied

already, we attempted here to precisely delimit the frontiers of the complexity classes.

For this purpose, we established the complexity of the general problem (strongly NP-

hard) and of some special cases. Among them, we showed that the problem with fixed

K is weakly NP-hard, and that the problem with a single delivery date is polynomial.

For solving the Single Delivery Date problem, we provided a polynomial algorithm,

which besides enables the computation of efficient bounds for the general problem. More-

over, we established some dominance rules. With these tools, we have been able to

provide a fast Branch and Bound algorithm for the general problem.

We have also considered the weakly-NP hard problem with two delivery dates, for

134 Conclusion

which a pseudopolynomial algorithm based on dynamic programming has been provided.

Moreover, we established a dedicated dominance rule for this problem. Thanks to this

dominance rule, we have been able to improve the dynamic programming algorithm.

Finally, we showed a polynomial algorithm yielding feasible solutions with an absolute

performance guarantee of 1.

Lastly, we presented some heuristic algorithms for the permutation flowshop prob-

lem with the same criterion: constructive heuristics, one of which is new, local search

methods, and a GRASP algorithm.

All the mentioned algorithms were implemented. The dynamic programming algo-

rithm can solve in a reasonable time instances with up to 60 jobs (less than 12 minutes).

With the Branch and Bound algorithm, we tackled instances with up to 20 delivery

dates and 2000 jobs: 85% of all the tested instances were optimally solved in less than

2 minutes; while the mean gap over all instances unsolved after 15 minutes is less than

0.5%. Finally, the best heuristic methods for the flowshop problem yield solutions with

gaps inferior to 6% in less than 25 seconds, for instances with 100 jobs and up to 5

delivery dates.

As the problem comes from a real world issue, several extensions of the problem can

be considered, which take into account different constraints of the real problem that

were not considered in this first study. We describe some of these extensions below.

First, it is worth investigating if the polynomial algorithm with approximation guar-

antee for the two delivery dates case can be extended to the general case. Besides the

possibility of rapidly obtaining a good solution for the original problem, it would also

enable to tackle the problem of retreating jobs when the quality control is not satisfy-

ing, in the industrial workflow. In this case, a good solution must indeed be instantly

recalculated in order to reschedule the affected jobs.

Another aspect that was not yet considered is the following: the manufacturer must

satisfy the delivery dates according to the number of books, however its payment is

proportional to the number of digitized pages. A possible way of tackling this problem

is to assign weights, proportional to the number of pages, to each job, and to integrate

them in the cumulative objective function. Hence, the payoff of a job Jj with weight wj
is simply wj times the payoff of a job in the unweighted version of the problem. With

the introduction of weights, we lose part of the structure of the original problem, since

there is no more symmetry between the jobs, while many results of this work were based

on the number of jobs. Moreover, the idea of an adaptation of SDD-algorithm, in order

Conclusion 135

to have a basic polynomial algorithm for the weighted problem, is not possible. Indeed,

the weighted single delivery date problem is equivalent to 1||
∑
wiUi (as the unweighted

problem is equivalent to 1||
∑
Ui), which is NP-hard. Hence, it seems unlikely to obtain

as good bounds for the weighted problem as for the unweighted problem. The weighted

problem is also a particular case of the problem considered by Detienne et al. [7], hence

their method is directly applicable to the problem. Their more general formulation can

thus be a possible starting point for a dedicated exact method for the weighted problem.

However, we must also point out that aggregating weights with the delivery dates

objective function can give unbalanced solutions, i.e. where one among the client and

the manufacturer is poorly satisfied. For instance, it could happen that at a given

delivery date, a few jobs with large weights are scheduled: in this case the number of

processed jobs can be quite far from the target quantity of jobs. A natural answer to

this issue is to introduce a multicriteria aspect (bicriteria here), where the balance of

the solution can be explicitly controlled by choosing good compromise solutions among

the Pareto optima. In this case, the payoff of a job would have two components: the

first one identical to the payoff of the unweighted problem, while the second one would

be a function of its weight.

Furthermore, another possible aspect to consider, related to the industrial issue, is

the fairness aspect: the manufacturer has several clients, and must attempt to serve

them in such a way that they are all rather satisfied, if possible. This would introduce

non-linear aggregation functions on the satisfaction-based utilities of the clients, like for

instance OWA [34].

Finally, the study of the flowshop problem with delivery dates and cumulative payoffs

is certainly relevant, since it reflects the real structure of the workflow. The current work

on the permutation flowshop needs to be enhanced by attempting to identify structural

properties, and especially designing good upper bounds (for more than two machines) in

order to evaluate the heuristic methods. Moreover, in addition to the already presented

heuristic methods, other metaheuristics, such as Iterated Local Search [20], seem worth

considering.

Afterwards, the next step could be to consider a flowshop problem that is not a

permutation flowshop.

Additionally, by modeling the problem as a flowshop (for instance with four machines,

as there are four main steps in the digitization workflow), the following specification of

the real problem can be taken into account. Each book that is to be digitized must

be sent back to the client four weeks after receiving it, even if the whole process is not

completed. This means that there is an intermediate due date for each job for completing

the two first main steps (Digitization and Preliminary quality control), and if this due

136 Conclusion

date is not satisfied, there is a damage for the client, as its demand is not fulfilled (i.e.

having the book back at the due date). Hence, besides the cumulative objective function,

we can consider the intermediate due dates as hard constraints, or alternatively as soft

constraints, which generate penalties if they are not satisfied (it seems more likely that

some due date might not be satisfied, due to possibly several reprocessings).

Bibliography

[1] den Besten, M. and Stützle, T. (2001). Neighborhoods revisited: An experimental

investigation into the effectiveness of variable neighborhood descent for scheduling.

Proceedings of The Fourth Metaheuristics International Conference, 545–549.

[2] Brucker, P. (2007). Scheduling Algorithms. Berlin: Springer.

[3] Carlier, J. and Chrétienne, P. (1988). Problèmes d’ordonnancement: modélisation,

complexité, algorithmes. Masson.

[4] Curry, J. and Peters, B. (2005). Rescheduling parallel machines with stepwise increas-

ing tardiness and machine assignment stabimity objectives. International Journal of

Production Research, 43(15), 3231–3246.

[5] Della Croce, F., Gupta, J.N.D. and Tadei, R. (2000). Minimizing tardy jobs in a

flowshop with common due date. European Journal of Operational Research, 120(2),

375–381.

[6] Della Croce, F., Grosso, A. and Salassa, F. (2011). A Matheuristic Approach for the

Total Completion Time Two-Machines Permutation Flow Shop Problem. In Evolu-

tionary Computation in Combinatorial Optimization, LNCS, 38–47.

[7] Detienne, B., Dauzères-Pérès, S. and Yugma, C. (2011). Scheduling jobs on parallel

machines to minimize a regular step total cost function. Journal of Scheduling, 14(6),

523–538.

[8] Detienne, B., Dauzères-Pérès, S., and Yugma, C. (2012). An exact approach for

scheduling jobs with regular step cost functions on a single machine. Computers &

Operations Research, 39(5), 1033–1043.

[9] Feo, T.A. and Resende, M.G.C. (1989). A probabilistic heuristic for a computation-

ally difficult set covering problem. Operations Research Letters, 8(2), 67–71.

137

138 BIBLIOGRAPHY

[10] Garey, M. R., Johnson, D. S. and Sethi, R. (1976). The complexity of flowshop and

jobshop scheduling. Mathematics of Operations Research, 1(2), 117–129.

[11] Graham, R. L., Lawler, E. L., Lenstra J. K. and Rinnooy Kann A. H. G. (1979). Op-

timization and approximation in deterministic sequencing and scheduling: A survey.

Annals of Discrete Mathematics, 5, 287–326 .

[12] Hall,N. G., Lesaoana M. and Potts C. N. (2001). Scheduling with Fixed Delivery

Dates. Operations Research, 49(1), 134–144 .

[13] Hall, N. G., Sethi, S. P. and Sriskandarajah,C. (1991). On the complexity of general-

ized due date scheduling problems. European Journal of Operational Research, 51(1),

100–109.

[14] Hansen, P. and Mladenovic, N. (2003). Variable Neighborhood Search. Handbook of

Metaheuristics. New York: Springer.

[15] Janiak, A. and Krysiak, T. (2007). Single processor scheduling with job values

depending on their completion times. Journal of Scheduling, 10(2), 129–138.

[16] Janiak, A. and Krysiak, T. (2012). Scheduling jobs with values dependent on their

completion times. International Journal of Production Economics, 135(1), 231–241.

[17] Kellerer, H., Pferschy, U. and Pisinger, D. (2004). Knapsack problems. Berlin:

Springer

[18] Kise, H., Ibaraki, T., and Mine, H. (1978). A solvable case of the one-machine

scheduling problem with ready and due times. Operations Research, 26(1), 121–126.

[19] Ladhari, T. and Rakrouki, M. A. (2009). Heuristics and lower bounds for minimiz-

ing the total completion time in a two-machine flowshop. International Journal of

Production Economics, 122(2), 678–691

[20] Lourenco, H., Martin, O. and Stützle, T. (2003). Iterated Local Search. Handbook

of Metaheuristics. New York: Springer.

[21] Moore, J. M. (1968). An n Job, One Machine Sequencing Algorithm for Minimizing

the Number of Late Jobs. Management Science, 15(1), 102–109.

[22] Nawaz, M., Enscore, E. E. and Ham, I. (1983). A heuristic algorithm for the m-

machine, n-job flow-shop sequencing problem. Omega, 11(1), 91–95.

[23] Pinedo, M. (1995). Scheduling Theory, Algorithms, and Systems. Englewood Cliffs,

New Jersey: Prentice Hall.

[24] Potts, C.N. (1985). Analysis of heuristics for two-machine flow-shop sequencing

subject to release dates. Mathematics of Operations Research, 10(4), 576–584.

BIBLIOGRAPHY 139

[25] Rakrouki, M. A. and Ladhari, T. (2009). A branch-and-bound algorithm for mini-

mizing the total completion time in two-machine flowshop problem subject to release

dates. Proceedings of International Conference on Computers & Industrial Engineer-

ing, 80–85.

[26] Raut, S., Swami, S. and Gupta, J. N. D. (2008). Scheduling a capacitated sin-

gle machine with time deteriorating job values. International Journal of Production

Economics, 114(2), 769–780.

[27] Sahin, G. and Ahuja, R. K. (2011). Single-machine scheduling with stepwise tar-

diness costs and release times. Journal of Industrial Management and Optimization,

7(4), 825–848.

[28] Seddik, Y., Gonzales, C. and Kedad-Sidhoum, S. (2011). Single machine scheduling

with delivery dates and cumulative payoffs. Proceedings of the 5th Multidisciplinary

Scheduling Conference (MISTA), 261–274.

[29] Seddik, Y., Gonzales, C. and Kedad-Sidhoum, S. (2011). Solving the one-machine

scheduling problem with cumulative payoffs. 10th Workshop on Models and Algorithms

for Planning and Scheduling Problems (MAPSP 2011).

[30] Seddik, Y., Gonzales, C. and Kedad-Sidhoum, S. (2012). A Branch and Bound

method for a one-machine scheduling problem with cumulative payoffs. International

Symposium on Combinatorial Optimization (CO 2012).

[31] Talbi, E.-G. (2009). Metaheuristics - From Design to Implementation. Wiley.

[32] Tseng, C.-T., Chou, Y.-C. and Chen, W.-Y. (2010). A variable neighborhood search

for the single machine total stepwise tardiness problem. Proceedings of the 2010 Inter-

national Conference on Engineering, Project and Production Management, 101–108.

[33] Vallada, E., Ruiz, R. and Minella, G. (2008). Minimising total tardiness in the m-

machine flowshop problem: A review and evaluation of heuristics and metaheuristics.

Computers & Operations Research, 35(4), 769–780.

[34] Yager, R. (1988). On ordered weighted averaging aggregation operators in multi-

criteria decision making. IEEE Transactions on Systems, Man and Cybernetics, 18,

183–190.

[35] Yang, W.-H. (2009). Sequencing jobs subject to multiple common due dates. Pro-

ceedings of the 10th Asia Pacific Industrial Engineering & Management Systems Con-

ference, 1041–1050.

Résumé

Le problème étudié dans cette thèse est issu d’une problématique réelle, concernant

l’optimisation du processus de numérisation des ouvrages de la Bibliothèque Nationale de

France (BNF). La modélisation de ce problème met en évidence un critère d’optimisation

nouveau en ordonnancement, tenant compte de gains cumulatifs liés à des dates de livrai-

son communes à toutes les tâches. Dans le but d’identifier les structures des solutions

optimales liées à ce nouveau critère et à des dates de disponibilité des tâches, nous

nous sommes surtout concentrés sur un problème d’ordonnancement à une machine.

Nous avons identifié les classes de complexité de ce problème, et proposé une méthode

de résolution exacte de type Branch and Bound pour le problème général, s’appuyant

sur des bornes et des règles de dominance dédiées. Nous avons également considéré

le problème à deux dates de livraison (NP-difficile au sens faible), pour lequel nous

avons proposé un algorithme pseudopolynomial de programmation dynamique et un al-

gorithme d’approximation polynomial avec une performance de garantie absolue égale

à 1. Enfin, dans le but de nous rapprocher de la problématique industrielle, nous nous

sommes intéressés à un problème de flowshop de permutation, avec le même critère

d’optimisation. Pour ce problème, nous avons proposé plusieurs heuristiques : des al-

gorithmes constructifs, des algorithmes de recherche locale, et une métaheuristique de

type GRASP. Tous les algorithmes ont été implémentés, en particulier le Branch and

Bound pour le problème à une machine et la recherche locale pour le flowshop permettent

d’obtenir de bonnes solutions en temps raisonnable.

Mots-clés : Ordonnancement, dates de livraison, dates de disponibilité, gains cumu-

latifs, fonctions de gain en escalier, une machine, flowshop.

Abstract

Starting from a real world digitization workflow issue, we identified a scheduling problem

with a new criterion involving common delivery dates for the jobs. In order to focus on

this new criterion and on the jobs’ release dates, we mainly worked on a single machine

problem. We delimited the complexity classes of the problem, and provided a Branch

and Bound algorithm for the general problem, based on dedicated bounds and domi-

nance rules. We also considered the weakly NP-hard problem with two delivery dates,

for which we designed a pseudopolynomial dynamic programming algorithm and an ap-

proximation algorithm with an absolute performance guarantee of 1. Finally, in order

to consider a problem more closely related to the industrial issue, we studied a permu-

tation flowshop problem with the same criterion. For this problem, we proposed several

heuristic methods: constructive algorithms, local search, and a GRASP algorithm. All

the algorithms were implemented. In particular the Branch and Bound method for the

single machine problem and the local search algorithms for the flowshop provide good

solutions in a reasonable time.

Keywords: Scheduling, delivery dates, release dates, cumulatives payoffs, stepwise pay-

off functions, single machine, flowshop.

