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Chapter 1

Introduction

Articulated object tracking has now become a very active research area in the field of

computer vision. One of its applications, i.e. human tracking, is used in a variety of

domains, such as security surveillance [11], human computer interface, gait analysis

[103, 106],... The problem is also of interest from the theoretical point of view. Some

of its challenges include, for example, the high dimensionality of state spaces, self-

occlusions, kinematic ambiguities or singularities, making it hard to solve and hence,

attractive for the tracking community.

Particle Filter (PF) [40, 29] has been shown to be an effective method for solving

visual tracking problems. This is due to its ability to deal with non-linear, non-

Gaussian and multimodal distributions encountered in such problems. The key idea

of particle filter is to approximate the posterior distribution of the target object state

by a set of weighted samples. These samples evolve using a proposal distribution and

their weights are updated by involving new observations. Under some assumptions, it

can be shown that the distribution estimated by particle filter converges in a statistical

sense to the target distribution [27, 21]. Unfortunately, in high dimensional problems,

such as articulated object tracking problems, the number of samples required for ap-

proximating the target distribution can be prohibitively large since it grows exponen-

tially with the number of dimensions (e.g., the number of parts of the object), making

the particle filter impractical. To reduce the complexity of tracking algorithms in such

problems, various methods have been proposed [64, 108, 90, 44, 80, 107]. One family

of approaches that has attracted many researchers is based on the decomposition of

the state space into smaller dimensional subspaces where tracking can be achieved

using classical methods [64, 80, 7, 18, 47]. This results in tracking algorithms that

are linear instead of exponential in the number of parts of the object.

Bayesian Networks (BN) offer a very effective way to represent articulated objects

and to express the relationship between their different parts since the object can be
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naturally modeled by graphs where each part of the object is represented by a node

and the physical link between two neighbor parts is represented by an edge. Most of

conditional independence relationships induced by the structural constraints of the

articulated objects can be easily encoded in BN. This kind of graphical model has been

exploited for articulated object tracking in many works [72, 83, 108, 80, 18] and has

been shown to be a powerful tool for modeling the tracking problem in decomposition

approaches.

In this thesis, we focus on articulated object tracking and decomposition tech-

niques to deal with the high dimensionality of the state space describing the prob-

lem. Our first approach is based on the state-of-the-art algorithm for articulated

object tracking: Partition Sampling (PS) [64]. First, we develop an algorithm called

Swapping-Based Partitioned Sampling (SBPS) [39, 31, 33]. In this algorithm, the

prediction/correction step of PF is performed for a group of parts in parallel instead

of part after part as in PS [39]. We also introduce an operation called swapping which

produces better particles, i.e., particles that are nearer to the modes of the target dis-

tribution, after the correction step of the algorithm [31]. We provide a principled way

to select the set of parts processed in parallel and to perform the swapping operation

so that the posterior distribution is correctly estimated. This approach enables to

reduce the number of resampling steps of PS and to increase the tracking accuracy

due to the higher number of particles near the modes of the posterior distribution

obtained by the swapping operation.

Because the swapping operation generates more particles near the modes of the

posterior distribution, this might lead to a situation where the posterior distribution

is represented by only a few distinct particles, that induces a loss of particle diversity,

resulting in tracking failure in some cases, e.g. when there is a sudden change in

movements of the object. To address this problem, we introduce an algorithm called

DBN-Based Combinatorial Resampling for articulated object tracking [32]. Adding

this resampling scheme into a particle filter produces a new algorithm called Particle

Filter with Combinatorial Resampling (PFCR). Instead of aiming to find the best

swapping, we create a particle set which contains particles generated from all pos-

sible permutations, implicitly constructed to avoid resampling over a particle set of

exponential size. This approach allows increasing the number of particles near the

modes of the posterior distribution but also the diversity of particles as compared to

SBPS, thus improving the tracking accuracy and reducing tracking failure.

Our third approach for articulated object tracking, introduced in this thesis, is

based on a hierarchical search and Particle Swarm Optimization (PSO) [48]. This

approach called Hierarchical Annealed Particle Swarm Optimization Particle Filter
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(HAPSOPF) aims to increase the tracking accuracy and reduce the computational

cost of the tracking algorithm by integrating the benefits of these two methods. First,

the searching efficiency is improved by performing PSO in subspaces whose dimension

is much lower than that of the original space and therefore the tracking accuracy is

increased. Second, the search is performed in the same manner as PS, leading to a

reduced number of particles required for tracking. As a result, the computational cost

of the tracking algorithm is reduced. Moreover, some important factors are introduced

into the update equations of PSO to deal with the problem of noisy observation in

articulated object tracking.

This thesis is organized as follows. In Chapter 2, we present the visual tracking

problem and the PF’s framework dedicated to this task. We also discuss some major

challenges of articulated object tracking related to high dimensional state spaces. In

Chapter 3, we give a non-exhaustive review of approaches for articulated object track-

ing, and we concentrate on those close to our approach. In Chapter 4, we introduce

the theory of the swapping operation and Swapping-Based Partitioned Sampling. We

provide a formal proof of correctness of our algorithm and an experimental comparison

of our algorithm with PS-based algorithms. In Chapter 5, we introduce DBN-Based

Combinatorial Resampling and its associated filter, Particle Filter with Combinato-

rial Resampling (PFCR). An experimental comparison of our algorithm with some

classical resampling algorithms and with some filters are provided. In particular,

we compare our two filters SBPS and PFCR. In Chapter 6, we explain Hierarchical

Annealed Particle Swarm Optimization Particle Filter (HAPSOPF) and provide an

experimental evaluation to compare it with some existing approaches for articulated

object tracking. Finally, we draw some conclusions and directions for future research

in Chapter 7.
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Chapter 2

Problem and Methodological

Framework

This chapter presents the articulated object tracking problem, the theoretical frame-

work of particle filter and the challenges in applying it to this problem.

2.1 Articulated object tracking

The goal of tracking in video sequences is to infer the position of some moving objects

by using the images obtained from one or several cameras. The objects can have

a simple form, e.g., rigid objects, or a sophisticated form, e.g., articulated objects

which consist of a number of rigid parts linked by joints. In the case of tracking

an articulated object, the problem is known as the articulated object tracking. It

consists of estimating the position and/or the orientation (2D or 3D) of all rigid parts

(a) (b)

Figure 2-1: Examples of visual tracking. (a) Rigid object tracking. (b) Articu-
lated object tracking (figures reproduced respectively from [75] and [87]).
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of the object. An example of such a problem is given in Figure 2-1(b).

Articulated object tracking has a wide range of applications in many areas like

human-machine interaction, medicine, security surveillance... In interactive game

applications, the players, instead of pressing buttons, must use different gestures that

are recognized by the application by measuring the hand configuration at each time.

In human gait analysis, a human motion tracking system can provide the 3D position

of several points of the human body in order to detect a tendency towards the fall of

a senior, while observing his daily activities at home [82]. In sports science, a body

part tracking system can help improving the performance of athletes during their

competition [20]...

Articulated object tracking is one of the most challenging problems in visual track-

ing. In human tracking, some problems, such as different appearance of people, self-

occlusion, complexity of human motion, complex background, various illumination

conditions. . . make it hard to solve with satisfactory results. Without taking into ac-

count the characteristics for a particular application, the most challenging difficulty

that has to be solved in this problem is the complexity incurred by the numerous

degrees of freedom (DOFs) of the articulated object. Various approaches have been

proposed to address this challenge [64, 108, 90, 44, 9, 80, 107, 24, 52, 47, 17]. The

aim of this thesis is to propose some solutions to alleviate the high complexity of the

articulated object tracking problem.

2.2 Particle filter

One of the original PF algorithms, also known as Sequential Importance Resampling

(SIR), has been introduced in [40]. It then has been used and extended in different

domains like signal and image processing, data analysis, forecasting, robotics, track-

ing, etc. PF for visual tracking, also known as Condensation, was first introduced

by M. Isard [45]. It has been successfully applied and has been shown to be a very

powerful method for visual tracking problem.

2.2.1 Filtering problem

From a Bayesian perspective, the tracking problem can be formulated as follows:

Denote xt the state of the target object at time t, and yt an observation of xt at time

t, let y1:t = {y1, ...,yt}. The evolution of the state and the relation between the state

and its observation can be described by the following equations:

xt = ft(xt−1,n
x
t ) (2.1)
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yt = ht(xt,n
y
t ) (2.2)

where ft: Rdx × Rdnx → Rdx , ht: Rdx × Rdny → Rdy are possibly nonlinear functions

of the state and of the observation, respectively; dx, dy, dnx , dny are the dimensions

of the state space, the observation space, the process noise and the observation noise,

respectively. In the context of visual tracking, ft and ht are usually represented in the

probabilistic forms p(xt|xt−1) and p(yt|xt), which are respectively called transition

density and likelihood density.

Example of head tracking with PF. Consider the problem of tracking the head

of a person moving in a video sequence. In Figure 2-1(a), a rectangle specified by

its center and size is used to model the head.

State space and its dimension. At any time t, the rectangle can be defined by

4 parameters ut, vt, wt, ht, which are the coordinates of its center, its width and

its height, respectively. Then the state vector is given by xt = [ut, vt, wt, ht]. The

state space X of the problem contains all state vectors xt, t = 1, . . . , T , and its

dimension is 4 in this example.

Usually, ft and ht are vector-valued and time-varying functions and nx
t and ny

t

are independent and identically distributed noise sequences. The evolution of such

system can be modeled in a probabilistic way by a Markov chain as in Figure 2-2.

....x1

y1 y2

x2

yt

xt

Figure 2-2: Evolution of a dynamic system represented by a Markov chain.

Given the two assumptions encoded by the above Markov chain, at any time

slice, the state of the target object depends only on that at the previous time slice

and the observation of the state depends only on that state. Inferring about such

dynamic system involves estimating the posterior distribution p(x0:t|y1:t) at any time

t = 1, ..., T , with the assumption that the prior p(x0) is available. In the context

of visual tracking, this is equivalent to estimating the whole trajectory of the target

object from the first time slice to time t, given all observations until time t. Typically,

one only need to estimate the state of the target object at time t, given all observations

until time t, which resorts to estimating p(xt|y1:t). This is known as the filtering

distribution and the corresponding problem is known as filtering problem.

The filtering problem is solved in two main steps by using the Bayes’ theorem.
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First, in a so-called prediction step, the density function p(xt|y1:t−1) is computed:

p(xt|y1:t−1) =

∫
xt−1

p(xt|xt−1)p(xt−1|y1:t−1)dxt−1, (2.3)

with p(xt|xt−1) the transition density related to dynamics function ft. Then, a cor-

rection step is applied to compute p(xt|y1:t):

p(xt|y1:t) ∝ p(yt|xt)p(xt|y1:t−1), (2.4)

When ft(xt−1,n
x
t ) is linear in xt−1 and nx

t , ht(xt,n
y
t ) is linear in xt and ny

t , and

when nx
t and ny

t follow Gaussian distributions, it can be shown [66] that p(xt−1|y1:t−1),

p(xt|y1:t−1) and p(xt|y1:t) are all Gaussians and can be computed analytically using

a Kalman filter. In this case, Equations 2.1 and 2.2 can be written as:

xt = Fxt−1 + nx
t

yt = Hxt + ny
t

where F and H are known matrices, nx
t ∼ N (0,Qt), ny

t ∼ N (0,Rt), N (0,Qt) and

N (0,Rt) are Gaussian densities with mean 0 and covariances Qt and Rt , respectively.

The initial state x0, the process noise nx
t and the observation noise ny

t are assumed

to be mutually independent.

It can be shown [66] that:

p(xt−1|y1:t−1) = N (xt−1|t−1,Σt−1|t−1)

p(xt|y1:t−1) = N (xt|t−1,Σt|t−1)

p(xt|y1:t) = N (xt|t,Σt|t)

where:

xt|t−1 = Ftxt−1|t−1

Σt|t−1 = Qt + FtΣt−1|t−1F
T
t

xt|t = xt|t−1 + Kt(yt −Htxt|t−1)

Σt|t = Σt|t−1 −KtHtΣt|t−1

The problem then consists of estimating the means and covariances of densities.

The choice of values for the initial state estimate x0|0 and the initial state covariance

Σ0|0 is based mainly on intuition or on expert’s beliefs. In the above equations, Kt is

12



the Kalman gain which is given by:

Kt = Σt|t−1H
T
t (HtΣt|t−1H

T
t + Rt)

The Kalman gain plays a key role in the filter’s behavior. A high gain causes the

filter to give more importance to the observation while a low gain makes the filter

trust more the model prediction and follow it more closely.

Unfortunately, most vision tracking problems involve non linear dynamics func-

tions and non linear, non Gaussian and multimodal likelihood functions. In such

cases, tracking methods based on PF [19, 40], also called Sequential Monte Carlo

(SMC) methods, can be applied. PF is based on the sequential importance sampling

technique that is explained in the next section.

2.2.2 Monte Carlo methods

Assume we need to approximate a probability density p(x). If we can sample N

independent random variables x(i) ∼ p(x), i = 1, ..., N , then an approximation of

p(x) can be given by:

p̂(x) =
1

N

N∑
i=1

δx(i)(x),

where δx(i)(x) denotes the Dirac delta mass located at x(i).

One particular application of the Monte Carlo method is for approximating the

expectation of any function f : X → R, given by:

Ep(f) =

∫
f(x)p(x)dx

A Monte Carlo approximation of the above integral can be given by:

EMC
p (f) =

1

N

N∑
i=1

f(x(i))

When p(x) is difficult to sample from, one can use Importance Sampling (IS) [8]

to get a sample set approximating p(x). This method is described next.

2.2.3 Importance Sampling (IS)

Assume we need to approximate a probability density p(x) which is difficult to sample

from but easy to evaluate using Monte Carlo simulations. IS consists of drawing

13



samples from a density q(x),x(i) ∼ q(x), i = 1, ..., N , where q(x) is called the proposal

density or importance density, and then of estimating p(x) as follows:

p̂(x) =
N∑
i=1

w(i)δx(i)(x)

where w(i) ∝ p(x(i))

q(x(i))
is the normalized importance weights of the ith sample.

It should be noted at this point that IS suffers from the curse of dimensionality.

More precisely, in high dimensional problems one needs a large number of samples to

achieve a good approximation of the target distribution.

2.2.4 Sequential Importance Sampling (SIS)

If we want to infer a dynamic state whose evolution is characterized by Equations 2.1

and 2.2 by estimating the posterior distribution p(x) = p(x0:t|y1:t), then p(x) could be

a very complex and high dimensional distribution which cannot be well approximated

by Monte Carlo methods like IS. To deal with this problem, one must use Sequential

Importance Sampling (SIS). SIS approximates the posterior distribution p(x0:t|y1:t)

by using the proposal density q(x) of the form q(x) = q(x0:t|y1:t). In order to avoid

sampling in high-dimensional spaces, a common choice of q(x)’s form is the following

factorized form:

q(x0:t|y1:t) = q(xt|x0:t−1,y1:t)q(x0:t−1|y1:t−1).

One then can sample x
(i)
0:t from q(x0:t|y1:t) by sequentially sampling x

(i)
t from the

proposal density q(xt|x(i)
0:t−1,y1:t) at each time t, which greatly reduces the dimension-

ality of the problem. An estimation of p(x0:t|y1:t) can be given by:

p̂(x0:t|y1:t) =
N∑
i=1

w
(i)
t δx(i)

0:t
(x0:t)

where w
(i)
t , i = 1, . . . , N, are normalized importance weights which are computed

using the principle of IS, w
(i)
t ∝

p(x
(i)
0:t|y1:t)

q(x
(i)
0:t|y1:t)

, i = 1, ..., N .

As a corollary, the filtering distribution can be approximated by:

p̂(xt|y1:t) =
N∑
i=1

w
(i)
t δx(i)

t
(xt) (2.5)
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2.2.5 Particle filter for visual tracking

We can now establish a theoretical framework of particle filter (PF) for the visual

tracking problem. As stated in Section 2.2.1, in tracking problems, one needs to

estimate the filtering distribution p(xt|y1:t) at each time t (from this point on, we

refer to this distribution as the posterior distribution, except when explicitly stated

otherwise). In this case, the proposal density should be of the form [29]:

q(xt|x0:t−1,y1:t) = q(xt|xt−1,yt)

PF [27, 29] approximates the two probability densities in Equations 2.3 and 2.4 by

a set of weighted samples, where each sample corresponds to an hypothesized state

realization, also called particle. Particles with large weights indicate that they are near

the modes of the target density while those with low weights indicate that they are

near the tails of the target density (see Figure 2-3). Given a particle set {x(i)
t−1, w

(i)
t−1},

i = 1, . . . , N, at time t− 1 which approximates the probability density p(xt−1|y1:t−1),

the key idea of PF is to generate new particles {x(i)
t } and to compute their weights

{w(i)
t }, i = 1, . . . , N, by using Equations 2.3 and 2.4 so that the new particle set

{x(i)
t , w

(i)
t }, i = 1, . . . , N , approximates the probability density p(xt|y1:t). PF consists

of two main steps. First, a prediction of the object state (using previous observations)

is computed. It consists of sampling a new particle set {x(i)
t }, i = 1, . . . , N , according

to a proposal density q:

x
(i)
t ∼ q(xt|x(i)

t−1,yt).

Figure 2-3: Approximation of a distribution by a particle set. Particle weights
are shown at the bottom, where ellipses of large size indicate particles with high weight
(figure reproduced from [62]).
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The prediction step is followed by a correction of this prediction (using new avail-

able observations) by updating the weights of new particles using the principle of IS.

It can be shown [5] that:

w
(i)
t ∝ w

(i)
t−1p(yt|x

(i)
t )

p(x
(i)
t |x

(i)
t−1)

q(x
(i)
t |x

(i)
t−1,yt)

, (2.6)

where
∑N

i=1 w
(i)
t = 1, w

(1)
t , . . . , w

(N)
t are normalized importance weights of particles,

p(xt|x(i)
t−1) and p(yt|x(i)

t ) are the transition density and the likelihood density as men-

tioned previously. The likelihood measures how well a hypothesized state x
(i)
t matches

the true state after its transition. We will discuss more about the likelihood function

in Section 2.2.5.3.

An estimation of the posterior distribution is then given by Equation 2.5. The

best estimation of the state can be computed in different ways. For example, one can

use the estimation of the expectation E(xt|y1:t), or the particle x
(i)
t with the highest

weight i = arg maxj{w(j)
t }Nj=1.

Example of head tracking with PF (continued):

- Transition density: in the simplest setting, one can use a random walk

p(xt|x(i)
t−1) = N (x

(i)
t−1,Σ)

where Σ is the maximum deviation of the person’s head between two consecutive

time slices. This transition density is often used when we have no assumption on

the specific kind of movement of the objects.

- Proposal density: the general setting consists of choosing q(xt|x(i)
t−1,yt) =

p(xt|x(i)
t−1). In such cases, the current weights become proportional to the likeli-

hood.

- Likelihood density: histograms can be used to construct this density (see

Section 2.2.5.3).

A common problem of PF (and SIS-based methods) is the degeneracy phenomenon

[59] where, after a few time slices, all but one particle have weights close to zero. In

this situation, only one particle actually contributes to the approximation of the

posterior distribution and this often leads to poor approximations. A naive approach

to reduce this phenomenon is to increase the number of particles over time to get a

sufficient number of particles with substantial weights, but this approach is clearly

impractical due to the tremendous increase of computation over time. We thus rely
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on other methods to cope with this so-called degeneracy problem, that are discussed

next.

2.2.5.1 Resampling and effective sample size

Resampling

The first method to reduce the degeneracy phenomenon is to add a resampling step in

which particles with highest weights are duplicated and particles with lowest weights

are discarded in such a way that the posterior distribution is not altered after resam-

pling (this is known as the unbiasedness property). An estimation of the posterior

distribution can then be given as follows:

p̂(xt|y1:t) =
1

N

N∑
i=1

δ
x̄
(i)
t

(xt), (2.7)

where x̄
(i)
t , i = 1, ..., N, are the particles resulting from resampling.

One of the first resampling algorithms, multinomial resampling, was proposed in

[34]. It consists of selecting N numbers ki, i = 1, . . . , N , w.r.t. a uniform distribution

U((0, 1]) on (0, 1]. Then, sample S = {x(i)
t , w

(i)
t } is substituted by a new sample

S ′ = {x(D(ki))
t , 1

N
} where D(ki) is the unique integer j such that

∑j−1
h=1w

(h)
t < ki ≤∑j

h=1 w
(h)
t . If (n1, . . . , nN) denotes the number of times each of the particles in S

are duplicated, then (n1, . . . , nN) is distributed w.r.t. the multinomial distribution

Mult(N ;w
(1)
t , . . . , w

(N)
t ).

Although resampling reduces the effects of the degeneracy phenomenon, it does

actually add an extra noise to the variance of the estimator of the posterior distri-

bution [29, 21]. In other words, the variance of the estimator in Equation 2.7 is

often higher than that of Equation 2.5. After the introduction of the multinomial

resampling algorithm, many other resampling algorithms have been proposed that

aim to reduce this extra noise. Next, we only detail the unbiased and most popular

resampling algorithms found in the literature, namely stratified resampling, system-

atic resampling and residual resampling. The weighted resampling algorithm [63] will

be discussed in Section 3.1.2.

Stratified resampling [50]. The method selects randomly the ki’s w.r.t. the uniform

distribution U(( i−1
N
, i
N

]). Then, sample S = {x(i)
t , w

(i)
t } is substituted by a new sample

S ′ = {x(D(ki))
t , 1

N
} where D(ki) is determined as in multinomial resampling.

Systematic resampling [50]. Some number k is drawn w.r.t. U((0, 1
N

]) and the ki’s

are defined as ki = i−1
N

+ k. Then, sample S = {x(i)
t , w

(i)
t } is substituted by a new

sample S ′ = {x(D(ki))
t , 1

N
} where D(ki) is determined as in multinomial resampling.
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Residual resampling [57]. The method is performed in two steps. First, for every

i ∈ {1, . . . , N}, n′i = bNw(i)
t c duplicates of particle x

(i)
t of S are inserted into S ′. The

N −
∑n

i=1 n
′
i particles still needed to complete the N -sample S ′ are drawn randomly

using the multinomial distribution Mult(N −
∑n

i=1 n
′
i;Nw

(1)
t − n′1, . . . , Nw

(N)
t − n′N).

The weights assigned to all the particles in S ′ are 1/N .

Another practical issue introduced by resampling algorithms, i.e. duplicating

particles with highest weights and eliminating particles with lowest weights, is the

sample impoverishment problem, a situation in which very few different particles

have high weights. This causes a loss of diversity among the particles and can lead

to tracking failures. That is why we introduce next the effective sample size.

Effective sample size

The degeneracy phenomenon of PF has been shown to be unavoidable [29], and the

idea of reducing it by using resampling is to adaptively perform resampling whenever

a significant degeneracy is observed. A measure named effective sample size has been

proposed in [51, 58] for this purpose. It is defined as follows:

ESSt =
N

1 + varq(x0:t|y1:t)(w
∗
t (x0:t))

where w∗t (x0:t) = p(x0:t|y1:t)
q(x0:t|y1:t)

is referred to as true weight and varq(x0:t|y1:t)(w
∗
t (x0:t)) is

the variance of w∗t (x0:t) that is computed w.r.t. q(x0:t|y1:t).

By comparing ESSt with some threshold ESSthreshold, resampling is performed

whenever ESSt < ESSthreshold. However, it is impossible to evaluate ESSt exactly

in real problems. Instead, one can use another measure called survival diagnostic [64]

(also named estimated effective sample size [26]) which is easy to compute and is a

good estimation of ESSt. This measure also provides a good way of assessing the

quality of PF methods. The survival diagnostic is defined as follows:

Dt(N) =
1∑N

i=1(w
(i)
t )2

(2.8)

The intuition behind it is that it corresponds to the number of particle surviving

the resampling, those that actually contribute to the discrete representation of the

posterior distribution. If Nmin is the minimum survival diagnostic to ensure an ac-

ceptable performance of PF methods, then one must have Dt(N) > Nmin. In other

words, if the survival diagnostic is low, the method is supposed to be inefficient.
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2.2.5.2 Choice of the proposal density

The degeneracy problem can also be reduced by choosing a good proposal density.

In fact, the choice of the proposal density is very crucial in PF methods. One needs

to take into account two criteria to design it: the easiness to sample from it and the

ability to compute the importance weights given in Equation 2.6. A general setting

consists of taking q(xt|x(i)
t−1,yt) = p(xt|x(i)

t−1). The drawback of this proposal density

is that the states are sampled from the prior distribution, without taking into account

the current observation. In the cases where the observation density p(yt|xt) is sharply

peaked in the tails of p(xt|y1:t−1), this leads to a situation where only few particles

will have high weights after the correction step of PF. Those will be duplicated by

resampling, resulting in the sample impoverishment problem. It has been shown [29]

that the optimal proposal density (in terms of minimizing the variance of importance

weights conditioned upon x
(i)
t−1 and yt) is p(xt|x(i)

t−1,yt). In this case, the formula of

the importance weights in Equation 2.6 becomes:

w
(i)
t ∝ w

(i)
t−1p(yt|x

(i)
t−1) = w

(i)
t−1

∫
p(yt|xt)p(xt|x(i)

t−1)dxt (2.9)

One thus needs to compute the integral
∫
p(yt|xt)p(xt|x(i)

t−1)dxt and to sample from

p(xt|x(i)
t−1,yt), which is not an easy task, often impossible in visual tracking problems.

A good proposal density thus must be close enough to the optimal one while remaining

tractable. Many approaches have been proposed that aim to efficiently incorporate the

current observations into the proposal density. One example of those is the auxiliary

particle filter [76].

2.2.5.3 Likelihood function

In the context of visual tracking, the likelihood function is constructed using some

features extracted from images, such as foreground silhouette [80, 7, 47, 112], edge

[24, 47, 112], color [75, 61, 56, 65, 6], texture [111, 104, 3] or optical flow [14, 85, 100].

In this section, we briefly introduce some of the features commonly used in articulated

object tracking, and chosen for some tests in this thesis. They include foreground

silhouette, edge and color.

Foreground silhouette and edge

A popular method that uses foreground silhouette and edge to construct the likeli-

hood function has been proposed in [24]. These features are widely used for visual

tracking [80, 7, 47, 112]. Their advantage is that they can be used to track objects
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(a) (b) (c)

Figure 2-4: Likelihood function constructed from foreground silhouette and
edge features. (a) Original image. (b) Foreground silhouette image. (c) Edge
image.

whose shape can change with time. In human tracking, the foreground silhouette

provides very important information for the 3D reconstruction of the body [2]. These

features, however, are often costly to compute compared to color features. Their

main limitation is that they do not provide depth information, which is very impor-

tant when tracking under occlusion. An example is shown in Figure 2-4, where the

observation provided by the foreground silhouette image is ambiguous. In this case,

it is difficult to localize the correct position of the right leg by only using foreground

silhouette.

Color

Color features have also been widely used for visual object tracking [61, 65, 6, 22]. In

articulated object tracking, it is useful when dealing with self-occlusion since different

body parts usually have different color distributions. Some advantages of this feature

are its computational simplicity, robustness under rotations and changes in resolution.

One simple method to build the likelihood function using color is to compute the

histogram of colors of the region around the hypothesized state and then to compare

this histogram with the reference one (which is computed at the first time slice, or

updated while tracking). One example is shown in Figure 2-5. The dissimilarity

between two histograms can be computed by a variety of distance measures, such as

Bhattacharyya distance, Chi-squared distance, etc. Histograms can also be computed

in different color spaces. Two commonly used color spaces are RGB [99] and HSV
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(a) (b)

Figure 2-5: Likelihood function constructed from color histogram. (a) Ref-
erence histogram computed from the region around the initial position. (b) His-
togram computed from the region around the hypothesized position (figure repro-
duced from [75]).

[35]. Each color space has its own limitations. For instance, the RGB color space is

not suitable for tracking under lighting change conditions [30], while the HSV color

space is more robust to these kinds of lighting changes but sensitive to noise [89].

Algorithm 2.1 gives an overview of PF, which combines all the aforementioned fea-

tures.

Input: Particle set {x(i)
t−1, w

(i)
t−1}Ni=1 at time t− 1

Output: Particle set {x(i)
t , w

(i)
t }Ni=1 at time t

Compute ESSt using Equation 2.81

if ESSt < ESSthreshold then2

{x(i)
t−1,

1
N }

N
i=1 ← Resample{x(i)

t−1, w
(i)
t−1}Ni=13

for i = 1 to N do4

{x(i)
t }Ni=1 ← Propagate{x(i)

t−1}Ni=1 by x
(i)
t ∼ q(xt|x(i)

t−1,yt)5

Compute the unnormalized particle weight w
(i)
t using Equation 2.66

for i = 1 to N do7

Normalize the weight: w
(i)
t =

w
(i)
t∑N

j=1 w
(j)
t

8

return {x(i)
t , w

(i)
t }Ni=19

Algorithm 2.1: Particle Filter (PF).

In the particular setting where q(xt|x(i)
t−1,yt) = p(xt|x(i)

t−1), all steps of PF can then

be represented by the diagram in Figure 2-6. The “∼” represents the resampling step,

the “*” represents the application of the object’s dynamics (prediction step), the “×”

represents the correction step using the observation density.
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p(xt−1|y1:t−1) ∼ p(xt|y1:t)∗p(xt|xt−1) ×p(yt|xt)

Figure 2-6: Diagram of PF for visual tracking.

2.2.6 Particle filter for articulated object tracking

PF suffers from the curse of dimensionality and has usually been applied only for

problems in low dimensional state spaces. This makes it difficult to use for articulated

object tracking, especially in realistic real-world applications where a high level output

is required. Intuitively, the prediction step of PF is based on IS and therefore it

inherits its problem from IS. In fact, it can be shown [62] that the number of particles

required for tracking grows exponentially with the number of parts of the target

object. Let us introduce the survival rate [64], given by:

α =
(∫ p(x0:t|y1:t)

2

q(x0:t|y1:t)
dx0:t

)−1

The relation between the survival diagnostic (see Equation 2.8) and the survival

rate is D(N) ≈ Nα when N →∞.

Consider the problem of tracking an object defined in the state space X . Denote

Nmin the minimum survival diagnostic to ensure an acceptable performance, If N is

the number of particles used for this problem, then we must have Nα > Nmin, or

N > Nmin/α. Now, if we use the same tracker on the Cartesian product of d copies of

the configuration space X (in other words, the same implementation is used to track

d objects, each one with the state space X ), and N is the number of particles used

for this problem so as to have the same performance as in the previous problem, then

we have α = αd and one must have N > Nmin/α
d. In practice, it has been observed

that α� 1, then when d is high, N � Nmin. The problem is that in PF-based visual

tracking, the evaluation of the likelihood function which is usually time consuming

must be done for each particle at each time slice. It is clear that one cannot use PF

for high dimensional problems due to the prohibitively high computational cost of

performing the likelihood computations for a very large number of particles.

Example. To illustrate the problem of PF in high dimensional state spaces, we

conduct an experiment on a synthetic video sequence in which a rigid object and

an articulated object moving over time are tracked using PF. The rigid object

(see Figure 2-7(a)) is modeled by a rectangle whose state is represented by the

coordinates of its center and its orientation. The articulated object consists of a set

of 21 rectangles of the same size. For simplicity, we generated the video sequences
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(a) (b) (c)

Figure 2-7: Comparison of PF’s errors when tracking in low and high di-
mensional spaces. (a) and (b) respectively the rigid object and the articulated
object to be tracked. (c) Tracking errors obtained by PF for these 2 objects (in blue:
articulated object, in red: rigid object).

so that there is no self-occlusion between parts. We also suppose that the sizes

of all rectangles are known in advance and do not change during tracking. This

results in a 3-dimensional state space for the rigid object and a 23-dimensional

state space for the articulated object (3 degrees of freedom (DOFs) for the center

part, i.e. the location and orientation of the part, 1 DOF for each remaining

part which just corresponds to the part’s orientation). The likelihood functions

are constructed from histograms (see the example in Section 2.2.5). Since we

suppose there is no occlusion, the likelihood function for the articulated object

can be factorized as the product of the likelihood functions for its subparts. In

Figure 2-7, the tracking errors obtained by the PF tracker for the two objects are

compared. For the rigid object, this error is the sum of the distances between 4

corners of its estimation by PF and those of the ground truth. For the articulated

object, this error is the average of the previously described error over all of its

parts. In both cases, the tracking error is averaged over 10 runs. The number

of particles used for the rigid object and the articulated object is 50 and 2000,

respectively. In this experiment, even though the number of particles used for

tracking the articulated object is larger, the performance of the PF tracker is

worse than that of the rigid object.

Note that in real-world problems, e.g., human body tracking, the state of the

articulated object usually has at least 25 DOF [24] and, in the previous example,
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all challenging difficulties of the articulated object tracking problem related to the

presence of clutter, the occlusion problem, the lighting condition, etc, have been

ignored for simplicity. We thus only focus on the performance of the sampling step of

PF in high dimensional state spaces. This suggests that one needs a very large number

of particles for PF to achieve a reasonable performance when tracking articulated

objects, which makes PF impractical for real-world applications. A recent study [87]

has also shown that the performance in terms of processing time of the state-of-the-

art approaches for articulated object tracking (which uses the PF-based framework)

is far from the real-time requirement in real-world applications.

Therefore, the need for seeking effective methods that deal with the high dimen-

sional problems in visual tracking is clearly desirable, especially when tracking under

the PF framework. As we discussed in this section, one way to reduce the complexity

of PF in high dimensional spaces is to reduce the number of particles required for

tracking. This is the key idea of many PF-based approaches for articulated object

tracking. We will investigate these approaches in the following chapter.
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Chapter 3

Algorithms for Articulated Object

Tracking

This chapter gives a non-exhaustive review of the methods used for articulated object

tracking. These methods can be roughly classified into two categories: generative

methods and discriminative methods.

Generative methods (also known as model-based methods) define a model which

consists of a set of parameters describing the positions and orientations of parts of

the target object (in tree-based models, these parameters describe the position and

angle of the root part and the joint angles of the other parts with respect to theirs

parent parts in the tree). At each time step, tracking proceeds by fitting the model

to features observed in images, using some optimization scheme (stochastic or deter-

ministic optimization) to minimize some cost function which favors the matching of

the model with the image features. Generative methods can be further classified into

the following categories: decomposition and optimization methods. Decomposition

methods exploit the local structure of the articulated object to reduce the complexity

of tracking by modeling the articulated object tracking problem as one of inference

in a graphical model and then by solving this problem using some inference methods.

Optimization methods formulate the articulated object tracking problem as a high

dimensional optimization problem and then use some optimization frameworks (for

example, particle swarm optimization, gradient descent) in the whole state space of

the target object to search for its best estimate. Methods which combine optimization

with a hierarchical search to increase searching efficiency have also been proposed.

The advantage of generative methods is their generalization: they can be used to

track a wide range of motions. The drawbacks of these methods is that their compu-

tational cost is high (due to the evaluation of the cost function to be minimized), they

often require manual initialization and often cannot recover from tracking failures.
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Discriminative methods do not explicitly use a model but construct a mapping

from vectors representing image features (e.g. silhouette) to vectors representing

the configuration of the articulated object, by learning from a set of training data.

This mapping is used to recover the configuration of the articulated object at each

time step. In contrast to generative methods, discriminative methods can provide

automatic initialization, they require less computational cost and can recover from

tracking failures. Their disadvantage is that their application is limited to motions

which are similar or close to motions used for training.

It should be noted that many aforementioned generative (or discriminative) meth-

ods can be seen as hybrid methods because they use some learning tasks to build some

components required by inference or optimization algorithm in generative methods.

This chapter is organized as follows: decomposition and optimization methods

are presented in Section 3.1 and Section 3.2, respectively. Discriminative methods

are discussed in Section 3.3. Hybrid methods are mentioned in all of these sections,

depending on their relations with methods described in the same section.

3.1 Decomposition approaches

A wide range of decomposition methods for articulated object tracking have been

proposed in the literature [64, 108, 90, 44, 9, 80, 107]. Their key idea is to decompose

the state space of the target object into a set of subspaces where the particle filter

or a modified particle filter can be applied. Since the dimension of these subspaces

is smaller than that of the original state space, sampling in these subspaces is more

efficient than in the original space and, therefore, fewer particles are needed to achieve

good performance. This technique, however, must take into account the constraints

induced by the articulated structure of the target object in order to obtain a robust

solution to the tracking problem. Many of these methods [9, 107] consist of a set of

particle filters that interact with each other to obtain a collaborative solution.

Since graphical models allow to decompose a joint probability distribution as a

product of conditional probability distributions, they can naturally be used for this

kind of methods. For instance, Dynamic Bayesian Networks (DBNs) are used in

[108, 80], while Markov Random Fields (MRFs) are used in [90, 44, 9, 107]. Moreover,

in articulated object tracking, many structural constraints induced by the articulated

structure can be modeled as probabilistic dependencies, which can then be easily in-

corporated into graphical models for inference. In Sections 3.1.1 to 3.1.4, we present

DBNs and some DBNs-based decomposition approaches for articulated object track-

ing, while in Sections 3.1.5, 3.1.6 and 3.1.7, MRFs and some related decomposition
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approaches are discussed.

3.1.1 Dynamic Bayesian Networks (DBNs)

Definition 3-1 (Bayesian network (BN)) A BN is a pair (G,P) where G =

(V,A) is a directed acyclic graph (DAG), V and A are a set of nodes and a set

of arcs, respectively. Each node X ∈ V corresponds to a random variable1. P is the

set of the probability distributions of each node X ∈ V conditionally to its parents

pa(X) in G, i.e., p(X|pa(X)). The joint probability over all the random variables in

V is then the product of all these conditional distributions:

p(V) =
∏
X∈V

p(X|pa(X)).

BNs [73] can model the uncertainties inherent to object tracking problems: in

this case, V is the set of state variables {xt} and observation variables {yt}. The

probabilistic dependencies between these variables are then encoded by arcs in the

network. Figure 3-1 represents a generic BN designed for object tracking. For artic-

ulated objects, the state space X can be partitioned into X 1 × · · · × X P where each

X i, i = 1, ..., P , is the subspace corresponding to a part of the target object. In this

case, instead of having only one node xt per “time slice”, the BN contains one node

xit per X i and per time slice. The probabilistic relationships between these variables

are encoded by arcs. DBNs [67], or more precisely 2TBNs, are an extension of BNs

specifically designed to cope with time evolving systems:

Definition 3-2 (DBN: 2-slice Temporal Bayesian Network (2TBN))

A 2TBN is a pair (B1, B→) of BNs. B1 represents the BN at time slice t = 1 and

represents the joint probability p(x1,y1). The BN B→ defines the transition between

different time slices p(xt,yt|xt−1,yt−1). It is assumed that the BN in each time slice

t > 1 is identical to B→.

....x1

y1 y2

x2

yt

xt

Figure 3-1: A generic BN for object tracking.

1By abuse of notation, since there is a one-to-one mapping between nodes in V and random
variables, we will use interchangeably X ∈ V (resp. V) to denote a node in the network (resp. all
the nodes) and its corresponding random variable (resp. all the random variables).
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1

2 3

Figure 3-2: Upper body tracking. The body parts to be tracked are the torso, the
upper left arm and the upper right arm.

For instance, Figure 3-1 represents an unrolled 2TBN: B1 is constituted by a BN

x1 → y1, i.e., the BN at time slice 1, and B→ corresponds to the BN of the second

time slice (including the arcs from time slice 1 to time slice 2). For articulated object

tracking, the BN in each time slice can have several nodes. For instance, in Figure 3-

2, we assume that the tracked object is composed of 3 parts: a torso, a left arm and

a right arm. Let x1
t ,x

2
t ,x

3
t represent these parts respectively and y1

t ,y
2
t ,y

3
t represent

the observations on these nodes. Then the uncertainties about the body state can

be represented by the DBN of Figure 3-3. Indeed, in this figure, the arcs represent

the probabilistic dependencies between the nodes. For instance, there is a direct

dependence between torso x1
t and right arm x2

t , and the position of the torso at time

t has a direct influence on its position at time t+ 1, hence the arc x1
t → x1

t+1.

x2
t−1

y2
t−1

x1
t−1

y1
t−1

x3
t−1

y3
t−1

x2
t

x1
t

x3
t

y2
t

y1
t

y3
t

x2
t+1

x1
t+1

x3
t+1

y2
t+1

y1
t+1

y3
t+1

time slice t− 1 time slice t time slice t+ 1

Figure 3-3: A dynamic Bayesian Network for the body tracking problem of
Figure 3-2.

From a particle filtering perspective, the key feature of BNs and DBNs is their

graphical representation of probabilistic independences, which is called the d-separation

criterion [73].

Definition 3-3 (d-separation [73]) Two nodes xit and xjs of a DBN are dependent

conditionally to a set of nodes Z if and only if there exists a chain {c1 = xit, . . . , cn =

xjs} linking xit and xjs in the DBN such that the following two conditions hold:

1. for every node ck such that the DBN’s arcs are ck−1 → ck ← ck+1, either ck or

one of its descendants is in Z;
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2. none of the other nodes ck belongs to Z.

Such a chain is called active (else it is called blocked). If there exists an active

chain linking two nodes, these nodes are dependent conditionally to Z and are called

d-connected, otherwise they are independent conditionally to Z and are called d-

separated.

In Figure 3-3, consider the DBN that consists of only 3 time slices t− 1, t, t+ 1.

Assume that Z is the set of observation nodes. The chain x2
t−1 ← x1

t−1 → x1
t → x3

t is

active. Hence, x2
t−1 and x3

t are dependent conditionally to Z. If set Z now includes

x1
t , then this chain is blocked (by x1

t ). If {x1
t−1,x

1
t ,x

1
t+1} ∈ Z, then the two nodes

x2
t−1 and x3

t+1 are d-separated since any chain between them is blocked by one of the

three nodes x1
t−1,x

1
t ,x

1
t+1.

Sections 3.1.2, 3.1.3 and 3.1.4 are dedicated to approaches using DBNs for artic-

ulated object tracking.

3.1.2 Partitioned Sampling (PS)

Partitioned Sampling (PS) has been introduced by MacCormick [64]. It is an effective

PF designed for tracking complex objects with large state space dimensions using

only a reduced number of particles. Its key idea is to partition the state space into an

appropriate set of subspaces and to apply sequentially PF on each subspace. PS uses

a tailored sampling scheme, called “weighted resampling”, which ensures that the set

of particles resulting from the sequential applications of PF actually represents the

joint distribution of the whole state space and are focused on its peaks.

Definition 3-4 (weighted resampling [64]) Let g : X 7→ R be any strictly posi-

tive continuous function, where X denotes the state space. Given a set of particles

St = {x(i)
t , w

(i)
t }Ni=1 with weights w

(i)
t , weighted resampling proceeds as follows: let ρt

be defined as ρt(i) = g(x
(i)
t )/

∑N
j=1 g(x

(j)
t ) for i = 1, . . . , N . Select independently in-

dices k1, . . . , kN according to probability ρt. Finally, construct a new set of particles

S ′t = {x′(i)t , w′
(i)
t }Ni=1 defined by x′

(i)
t = x

(ki)
t and w′

(i)
t = w

(ki)
t /ρt(ki).

MacCormick [62] shows that S ′t represents the same probability distribution as St
while focusing the particles on the peaks of g.

PS’s key idea is to exploit some natural decomposition of the system dynamics

w.r.t. subspaces of the state space in order to apply PF only on those subspaces.

This leads to a significant reduction in the number of particles required for tracking.

So, assume that state space X and observation space Y can be partitioned as X =

X 1×· · ·×X P and Y = Y1×· · ·×YP respectively. For instance, a system representing
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a hand could be defined as X hand = X palm×X thumb×X index×Xmiddle×X ring×X little.

Assume in addition that the dynamics of the system follows this decomposition, i.e.,

that:

ft(xt−1, n
x
t ) = fPt ◦ fP−1

t ◦ · · · ◦ f 2
t ◦ f 1

t (xt−1), (3.1)

where ◦ is the usual function composition operator and where each function f it : X 7→
X modifies the particles’ states only on subspace X i 2.

The PF scheme consists of resampling particles, of propagating them using pro-

posal function ft and, finally, of updating their weights using the observations at

hand. Here, the same result can be achieved by substituting the ft propagation step

by the sequence of applications of the f it as given in Equation 3.1, each one followed

by a weighted resampling that produces new particles sets focused on the peaks of a

function g. To be effective, PS thus needs g to be peaked on the same region as the

posterior distribution restricted to X i. When the likelihood function decomposes as

well on subsets Y i, i.e., when:

p(yt|xt) =
P∏
i=1

pi(yit|xit), (3.2)

where yit and xit are the projections of yt and xt on Y i and X i respectively, weighted

resampling focusing on the peaks of the posterior distribution on X i can be achieved

by first multiplying the particles’ weights by pi(yit|xit) and, then, by performing a

usual resampling. Note that Equation 3.2 naturally arises when tracking articulated

objects. This leads to the condensation diagram given in Figure 3-4, where operations

“∗f it” refer to propagations of particles using proposal function f it as defined above,

“×pit” refers to the correction steps where particle weights are multiplied by pi(yit|xit)
(see Equation 3.2), and “∼” refers to usual resamplings. MacCormick and Isard

showed that this diagram produces mathematically correct results [64].

For instance, conditionally to states xit, observations yit of Figure 3-3 are indepen-

dent of the other random variables. Consequently, Equation 3.2 implicitly holds in

this DBN. In addition, by Definition 3-3, x1
t is independent of x2

t−1 and x3
t−1 condition-

ally to {x1
t−1}. Similarly, x2

t is independent of x3
t−1 conditionally to {x1

t ,x
2
t−1} and x3

t

is independent of x2
t conditionally to {x1

t ,x
3
t−1}. As a consequence, the condensation

diagram of Figure 3-4 can be exploited to track this object since the “probabilistic”

propagations/corrections of each part of the object only depend on this part and its

parents in the DBN. Therefore, by their d-separation property, DBNs provide a sound

2Note that, in [62], functions f i
t are more general since they can modify states on X i× · · · ×XP .

However, in practice, particles are often propagated only one X j at a time.
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∗f1t ×p1t

∗fPt ×pPt p(xt|y1:t)

∗f2t ×p2t

p(xt−1|y1:t−1)

· · ·

∼

∼

∼

Figure 3-4: Partitioned Sampling condensation diagram: PS starts with a
particle set estimating p(xt−1|y1:t−1). It first propagates particles using proposal
function f 1

t (applied on X 1), then it corrects them using function p1
t and resamples

them. Second, it propagates and corrects the second part of the resulting particle set
(over X 2) using f 2

t and p2
t respectively, and resamples the result. And so on. After

iterating over the P parts of the object, the particle set estimates p(xt|y1:t).

mathematical framework for proving the correctness of PS.

We now formalize PS in terms of operations over DBNs. For this purpose, for

any set J = {j1, . . . , jk}, let xJt denote the tuple (xj1t , . . . ,x
jk
t ), i.e., the tuple of the

states of the object parts in J . For instance, on Figure 3-5, if J = {2, 3}, then xJt
represents the state of the whole left arm. Similarly, let x

(i),J
t denote the tuple of

the parts in J of the ith particle. For instance, for J = {2, 3}, x
(i),J
t corresponds the

state of left arm as represented by the ith particle. In the rest of this thesis, we will

assume that the object is composed of precisely P parts (in Figure 3-5, P = 6). Now,

we shall describe a slight generalization of PS where PF is iteratively applied on sets

of object parts instead of just singletons like PS does. When PF is applied on a set,

it is applied independently (in parallel) on all its elements. We need to distinguish

at each step of such tracking algorithm the parts that were already processed by PF

from those that are not yet. Thus, for any step j,

• let Pj denote the set of object parts being processed at the jth step (in the case

of PS, Pj = {j});

• let Qj =
∑j

h=1 Ph denote the set of all the object parts processed up to (includ-

ing) the jth step;

1
2

3

4

5

6

Figure 3-5: Example of an articulated object modeling the upper part of
the human body.
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• let Rj =
∑P

h=j+1 Ph denote the set of the object parts yet to process after the

jth step is completed.

Figure 3-5 illustrates these notations: here, P1 = {1}, i.e., PF is first applied only

on the torso; P2 = {2, 4, 6}, i.e., at its second step, the tracking algorithm applies

PF in parallel on parts 2, 4 and 6 (which are supposed to be independent given the

position of the torso). Therefore, at the second step, parts Q2 = {1, 2, 4, 6} have been

processed and there remains to process parts R2 = {3, 5}. Thus, if PF has propagated

all the parts in Q2 from time t − 1 to t, in the particles, the parts in R2 still refer

to time t − 1. Let K denote the number of steps of the tracking algorithm, i.e., the

number of sets Pj (for PS, K = P ). PS now can be described in Algorithm 3.1.

Input: Particle set {x(i)
t−1, w

(i)
t−1} at time t− 1, image I

Output: Particle set {x(i)
t , w

(i)
t } at time t

Q← ∅; R← {1, . . . , P}1

for j = 1 to K do2

foreach k in Pj do3

Q′ ← Q ∪ {k}; R′ ← R\{k}4

{(x(i),Q′

t ,x
(i),R′

t−1 )} ← propagate the kth part in {(x(i),Q
t ,x

(i),R
t−1 )}5

{(w(i),Q′

t , w
(i),R′

t−1 )} ←6

correct the kth part in ({(x(i),Q′

t ,x
(i),R′

t−1 ), (w
(i),Q
t , w

(i),R
t−1 )}, I)7

Q← Q′; R← R′8

{(x(i),Q
t ,x

(i),R
t−1 ), (w

(i),Q
t , w

(i),R
t−1 )} ←9

resample ({(x(i),Q
t ,x

(i),R
t−1 ), (w

(i),Q
t , w

(i),R
t−1 )})10

return {x(i)
t , w

(i)
t }11

Algorithm 3.1: Partitioned Sampling PS.

Example: Figure 3-6 shows a comparison of PS’s and PF’s performance when

tracking an articulated object in a synthetic video sequence. PS starts tracking

the object from its center part, then the two neighbor parts of this part and so on.

In both cases, the number of particles used for tracking is 50. As can be observed,

by processing parts iteratively, i.e., by tracking iteratively in small subspaces, PS

is much more accurate than PF.
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(a) (b)

Figure 3-6: PS versus PF performances: (a) Tracked articulated object. (b)
Tracking errors (mean in pixels over 10 runs) obtained by PS (in red) and PF (in
blue). Note that PS significantly outperforms PF.

3.1.3 Partitioned Sampling plus Interval Particle Filter (PSIPF)

An approach similar to PS has been introduced in [80]. It uses a factorized repre-

sentation of the model and the likelihood function to reduce the number of particles

required for tracking. To improve the tracking accuracy and deal with the problem

of occlusion, a deterministic sampling technique has been used which generates more

particles around regions of high likelihood and ensures that the tracking does not

diverge in case of ambiguous observations.

A BN is used to represent the articulated object which consists of a set of joints

and segments (see Figure 3-7(a)). The segments of the model are estimated in a hier-

archical way: the first segment is projected into the current image and then compared

to the silhouette. The common pixel between the silhouette and the projection of this

segment is marked as mask and is used as reference for the estimation of the next

segment following the hierarchical order. In this way, the likelihood function can be

decomposed as follows:

p(yt|xt) =
P∏
i=1

p(yit|xit, pred(yit)),

where pred(yit) is the observation that precedes yit in the evaluation process (see

Figure 3-7(b)).

In the prediction step, the proposed approach uses the deterministic sampling

technique introduced in [82]. Assume that the state space X of the target object can
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(a) (b)

Figure 3-7: Human tracking with PSIPF: (a) The body model. (b) The DBN
for the lower parts of the body, that shows how the model and the likelihood function
can be factorized (figure reproduced from [80]).

be divided into two subspaces X = X L × XR, where X L is the subspace of interest.

Denote dL the dimension of X L. We attempt to derive a weighted particle set at time

slice t from the one at time slice t− 1. First, an interval is defined for each subspace

of X L which depends on the values of the particles on that subspace at time slice t−1

and the maximum angular velocity of joints in human motion. This interval is then

discretized into q values. The particle set for time slice t is generated by sampling the

subspaces X L and XR in two different ways: the subspace X L is sampled by taking

all possible combinations of values from dL intervals (resulting in qdL vectors), the

subspace XR is sampled from a Gaussian distribution (whose standard deviation also

depends on the joint speed limits of human motion) centered on the particles on XR

at time slice t − 1. In the resampling step, only a fixed number of distinct particles

with highest weights is kept for the next time slice. The proposed approach was

shown to be effective in reducing the tracking error and in recovering from ambiguous

situations (e.g., occlusion between limbs).

3.1.4 Rao-Blackwellized Particle Filter (RBPF)

RBPF was introduced in [28] as an approximate inference method in DBNs. Consid-

ering the problem of estimating the posterior distribution p(x0:t|y1:t). The method is

34



rt−1 rt+1

lt−1 lt+1

yt−1

lt

rt

yt yt+1

time t− 1 time t time t + 1

Figure 3-8: RBPF for DBN: rt, lt and yt represent the root variables, leaf vari-
ables and observable variables at time t, respectively. Given the value of r0:t, the
distribution p(l0:t|r0:t,y1:t) can be computed exactly using a Kalman filter.

motivated by the following decomposition:

p(x0:t|y1:t) = p(l0:t|r0:t,y1:t)p(r0:t|y1:t)

where xt is partitioned into two sets rt (root variables) and lt (leaf variables) (see

Figure 3-8).

Assume that the distribution p(l0:t|r0:t,y1:t) can be calculated exactly. Then, an

approximation of the distribution p(x0:t|y1:t) can be obtained via an approximation

of the distribution p(r0:t|y1:t), which can be done using Monte Carlo methods. The

filtering distribution p(xt|y1:t) = p(rt, lt|y1:t) can be obtained as a corollary. Since

the dimension of p(r0:t|y1:t) is smaller than that of p(x0:t|y1:t), the sampling step for

the former needs fewer particles and the variance of the estimation can be reduced

[21]. This method, however, cannot be applied for inference in general DBNs as the

required assumptions do not hold in this case.

In [108], RBPF has been exploited to track human body in 3D environments.

The 25-dimensional state xt of the target object is partitioned into two substates:

the substate rt consists of the global position and orientation, the head orientation

and the right-side poses (right hand, right leg), the substate lt consists of the left-side

poses (left hand, left leg). Using Partial Least Square (PLS) regression [81], a model

(linear function) is learnt to describe the correlation between the left-side poses and

the right-side poses. The basic assumption is that there exists a linear/Gaussian

relationship between the left-side pose and the right-side pose conditional on the

learnt model. Once the model has been learnt, the following steps are performed at

each time slice. First, the right-side pose is propagated using a dynamic model. Then,
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the left-side pose is predicted from the previously propagated right-side pose and the

learnt model, using a Kalman filter. Next, a correction step and a resampling step for

the particle set in which each particle represents the entire body pose are performed

as in PF. Finally, the left-side pose is corrected using its auxiliary observation, which

is approximated by its estimate at the previous time slice lt−1. This approach has

some limitations, however. First, it is based on the assumption that the left-side

pose and the right-side pose are highly correlated during tracking, which restricts

its application in many scenarios, since this assumption only holds in cyclic motion

activities like human walking or jogging. Second, the model is learnt to capture the

linear relationships between the left-side pose and the right-side pose, which is not

good enough to model the non-linear relationship in motion data.

In the next subsections, we discuss the Markov Random Fields (MRFs), an undi-

rected graphical model which is also widely used for articulated object tracking. We

restrict our attention to a particular class of MRFs, known as pairwise MRFs. This

class of MRFs is useful for applications in computer vision like human tracking since

inference is computationally efficient.

3.1.5 Markov Random Fields (MRFs)

Definition 3-5 (Pairwise Markov Random Field (MRF)) A pairwise MRF is

defined by a pair (G,P) where G = (V,E) is an undirected graph, V and E are

a set of nodes and a set of edges, respectively. Each node corresponds to a random

variable3. The set of nodes V is partitioned into two sets VX = {xit} and VY = {yit},
corresponding to the set of hidden and observable variables respectively. The set of

edges E is also partitioned into two sets EX = {(xis,x
j
t)} and EY = {(xit,yit)}, which

correspond to the edges linking two hidden variables and linking one hidden node and

its observable node respectively. Finally, P is a set of nonnegative functions defined

as P = {ψijst(xis,x
j
t) : (xis,x

j
t) ∈ EX} ∪ {φit(xit,yit) ≡ φit(x

i
t) : xit ∈ VX}. Pairwise

functions ψijst are called compatibility functions or potential functions whereas unary

functions φit are called likelihood functions.

MRFs encode the joint probability over all the random variables in V as follows:

p(V) =
1

Z

∏
(xis,x

j
t )∈EX

ψijst(x
i
s,x

j
t)
∏

xit∈VX

φit(x
i
t), (3.3)

where Z is a normalizing constant that ensures that p(V) integrates to 1.

3As for BNs, by abuse of notation, we will use interchangeably X ∈ V (resp. V) to denote a node
in the network (resp. all the nodes) and its corresponding random variable (resp. all the random
variables).
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Figure 3-9: A pairwise Markov Random Field for the body tracking problem
of Figure 3-2 .

Like BNs, pairwise MRFs are often used to model the uncertainties in object track-

ing. In this case, VX is the set of state variables {xt} and VY is that of the observation

variables {yt}. The MRF thus encodes the probabilistic dependencies/independencies

between all the random variables in V. When dealing with articulated object track-

ing, each node of the MRF corresponds to a part of the target object. Figure 3-9

shows an example of the MRF used to model the upper body of Figure 3-2, where

x1
t ,x

2
t ,x

3
t represent the torso, the left arm the right arm respectively and y1

t ,y
2
t ,y

3
t

represent the observation on these nodes. Intuitively, the graph in one time slice

of Figure 3-9 expresses the fact that conditionally to the configuration of the torso,

the position and orientation of arm are statistically independent. The edges between

nodes in two consecutive time slices, e.g. x1
t−1 and x1

t express the temporal coher-

ences in the movements of body parts to be tracked. Pairwise potential functions

capture the constraints between different pairs of parts of the articulated object, such

as spatial constraints [46], temporal constraints [88], appearance symmetry (i.e. sim-

ilar appearance between arms or legs) [79, 97], kinematic constraints [97], occlusion

[46]. Note that higher order potential functions can also be used, which can express

more sophisticated constraints between different groups of parts, but in this case, the

inference algorithm in the MRF is more computationally expensive. Note also that,

unlike BNs, the MRF’s potential functions need not be conditional probabilities: they

just need to be nonnegative functions.

Approaches that use pairwise MRFs for articulated object tracking can be roughly

categorized into two classes: those which compute the marginal distributions (node’s

belief in the context of Belief propagation or Loopy Belief propagation) for all the

nodes in the MRF and those which compute the maximum a posteriori (MAP) solu-
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tion of the MRF. In MAP problems, the aim is to estimate the instantiation x of the

nodes of VX that maximizes the posterior distribution p(x|y) given some observa-

tions y over the variables in VY. In the next section, we investigate some approaches

in the first class. We first present the main ideas of the popular method for inference

in MRFs, known as Belief Propagation (BP) [73], which has been widely used for ar-

ticulated object tracking. We then discuss some approaches that use BP or a similar

principle for articulated object tracking. In Section 3.1.7, we review some approaches

in the second class that use MAP inference for articulated object tracking.

3.1.6 Loopy Belief Propagation (LBP)

Belief Propagation (BP) and its approximation scheme, Loopy Belief Propagation

(LBP), introduce auxiliary variables mij
st(x

j
t) that can be intuitively understood as

messages from some hidden node xis to one of its neighbor nodes xjt in EX. These

messages indicate which distribution state node xjt should follow. The key idea of BP

and LBP is to send such messages along the MRF in such a way that the marginal

posterior distributions of each hidden variable xit can be computed locally (i.e., by

considering only its neighborhood in the network). The difference between BP and

LBP is that BP can only be used in acyclic networks and, in this case, it provides

an exact computation of the posterior distributions. LBP, on the other hand, is an

approximation scheme used in cyclic networks. Basically, it consists of iterating BP

until some convergence criterion is met.

Let N(xis) denote the set of hidden neighbors of xis, i.e., N(xis) = {xjt : (xis,x
j
t) ∈

EX}. Then, in BP and LBP, messages are computed iteratively using the equation

below:

mij
st(x

j
t) ∝

∑
xis

ψijst(x
i
s,x

j
t) φ

i
s(x

i
s)

∏
xkr∈N(xis)\{x

j
t}

mki
rs(x

i
s). (3.4)

The marginal distribution of xis (the node’s belief) is estimated by:

p(xis) ∝ φis(x
i
s)

∏
xjt∈N(xis)

mji
ts(x

i
s). (3.5)

Messages mij
st are first initialized as vectors filled with ones. Then, they are updated

iteratively until convergence.

Example. Consider the MRF of Figure 3-10. Using Equation 3.5, the belief at
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node x1
t is given by:

p(x1
t ) ∝ φ1

t (x
1
t )m

21
tt (x1

t )

Using Equation 3.4 for m21
tt (x1

t ), we have:

p(x1
t ) ∝ φ1

t (x
1
t )
∑
x2
t

ψ21
tt (x2

t ,x
1
t )φ

2
t (x

2
t )m

32
tt (x2

t )

Using again Equation 3.4 for m32
tt (x2

t ), we have:

p(x1
t ) ∝ φ1

t (x
1
t )
∑
x2
t

ψ21
tt (x2

t ,x
1
t )φ

2
t (x

2
t )
∑
x3
t

ψ32
tt (x3

t ,x
2
t )φ

3
t (x

3
t )

∝
∑
x2
t ,x

3
t

φ1
t (x

1
t )φ

2
t (x

2
t )φ

3
t (x

3
t )ψ

21
tt (x2

t ,x
1
t )ψ

32
tt (x3

t ,x
2
t )

∝
∑
x2
t ,x

3
t

p(x1
t ,x

2
t ,x

3
t ) = p(x1

t )

The term on the right-hand side of the final equation is, up to a proportional

constant, exactly the marginal distribution of x1
t which needs to be computed.

x1
t x2
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t y3

ty1
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t )
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m32
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m12
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Figure 3-10: Message passing in LBP.

LBP is described in Algorithm 3.2. In acyclic graphs, LBP is guaranteed to

converge to a fix point in one pass (i.e., each message mij
st is computed only once). In

this case, it is precisely equal to BP and it computes exactly the marginal distributions

of each node xit. In graphs with cycles, there is no guarantee that the algorithm

converges, and, even if it does converge, there is no guarantee that the probabilities

obtained are correct [110]. The stopping criterion is usually either a maximum number

of iterations or a threshold on the change of marginal distributions (or both).

BP and LBP have been successfully applied for articulated object tracking prob-

lems. Ramanan [77] have learnt an appearance model for each body part and incor-

porated this model into potential functions of the MRF modeling the human body.

Andriluka et al. [4] used a similar approach, where a kinematic prior and an ap-
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Input: MRF (G,P)
Output: the marginal distributions of each hidden node
foreach edge (xis,x

j
t) ∈ EX do1

create messages mij
st and mji

ts filled with ones2

Let M be the set of all messages mij
st and mji

ts3

repeat4

foreach message mij
st ∈M do5

Mark mij
st as not updated yet6

foreach unmarked message mij
st ∈M do7

update mij
st(x

j
t) using Equation 3.48

mark mij
st as updated9

foreach node xis ∈ VX do10

compute p(xis) using Equation 3.511

until Stopping criterion is satisfied ;12

return {p(xis) : xis ∈ VX}13

Algorithm 3.2: Loopy Belief Propagation (LBP).

pearance models for body parts were learnt and then used as potential functions for

inference with BP. Shen et al. [83] used probabilistic variational analysis for BP’s

equations (3.4 and 3.5). The discretization of state vectors allows them to perform

BP and mean field (MF) algorithm on DBNs. In [71], a combination of BP and mean

shift (MS) was exploited for tracking multiple objects and articulated objects. At

each step, the proposed algorithm starts with a set of predicted states for each node.

Then a grid of samples is generated, centered on these predicted states. Using BP,

the weights of these samples are computed and then used in a MS procedure to move

them to new locations near the modes, considered as the new predicted state for each

node. The proposed approach considerably reduces the computational cost.

One limitation of BP and LBP is that they cannot be applied to computer vision

problems where the nodes of the MRFs are continuous. Thus, a variant of LBP

for continuous MRFs has been introduced in [44, 90], which is known as Particle

Message Passing (PAMPAS) or Nonparametric Belief Propagation (NBP). PAMPAS

alleviates the above problem by combining the ideas of LPB and PF, in which each

message and node belief are approximated by a particle set. At each update of a

message between two nodes, a new particle set for this message is sampled from some

proposal densities which is constructed by taking into account all messages associated

with the neighbor nodes. The assumptions required to make the computation feasible

are such that each message is represented by a mixture of Gaussians with a reasonably

40



Figure 3-11: Graphical model for human tracking by PAMPAS (figure repro-
duced from [88]).

small number of mixture components. The potential functions are also assumed to be

mixtures of Gaussians. The message updating process is thus equivalent to updating

the parameters of these mixtures until some stopping conditions are met. The major

disadvantage of this algorithm is the high complexity of the sampling algorithm for a

product of mixture of Gaussians: if we have D mixtures of T components, then the

complexity of the sampling algorithm is O(TD). One could get around this problem

by using a Gibbs sampler [90], in this case the complexity of the sampling algorithm

is O(MTD), where M is the number of iterations of the sampler.

PAMPAS has been exploited in [88] for human tracking. Figure 3-11 shows the

human body model used by this approach, where each body part has an associated

state vector defining its position and orientation. For each joint connecting two

neighbor parts, two conditional densities are learnt independently from human motion

data. These densities are then used as potential functions in PAMPAS. To provide

automatic initialization and failure recovery, a proportion of particle sets generated

during the message updating process are drawn from proposal densities obtained from

body part detectors. At each time slice, the prior information about the location and

pose of body parts provided by body part detectors is given to the tracker. These

information are encoded as local priors at nodes of the MRF and, then, are used in

the message updating process to assemble the full body. The tracking result from

some iterations of PAMPAS is illustrated in Figure 3-12.

A similar approach for articulated body tracking has been introduced in [42]. To

reduce the computational cost of the Gibbs sampler in PAMPAS, the proposed ap-

proach uses mode propagation and kernel fitting. This results in an algorithm whose
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Figure 3-12: Human tracking by PAMPAS. Samples for each body part are drawn
from the marginal distributions computed by PAMPAS for the first four iterations
(figure reproduced from [86]).

complexity is O(T 4(D − 1)). In [91], Sudderth et al. used PAMPAS to implement

a hand tracker. However, differently from the work in [88] which learns potential

functions from human motion data, the proposed approach encodes all local con-

straints into potential functions. In [92], PAMPAS was adapted to handle occlusions

for hand tracking. By augmenting the configuration of each node of the MRF with a

set of binary hidden variables and introducing potential functions which encode all of

the occlusion relationships between related nodes, the modified algorithm can track

hand configuration under occlusions robustly. The work of Wu et al. [107] has the

same spirit as PAMPAS, but use probabilistic variational analysis instead of BP to

derive a closed-form analytic solution for the tracking problem and then use mean

field (MF) iterations to obtain an approximate estimation. One limitation of PAM-

PAS is that at each update of a message, a new particle set must be generated. This

makes it computationally expensive due to the evaluations of the likelihood function

for new particles. A fast nonparametric belief propagation has been introduced in [9]

to reduce the need for these repeated evaluations. Drawing from the same ideas as

PAMPAS, the proposed approach has some major differences. First, it uses a par-

ticle set for directly representing the node’s belief. Second, only one particle set is

generated for each node’s belief. Once the particles of this set have been sampled,

their weights are recomputed through several iterations to better approximate the

node’s belief by taking into account links between neighbor nodes. Applied to upper

body tracking with stereo and color images, the resulting algorithm achieves quasi

real-time performance.

3.1.7 Maximum a posteriori (MAP) inference based approaches

Some approaches have formulated the articulated object tracking problem as one of

MAP inference on MRF and then solved this problem using exact or approximate

inference methods. Branch-and-Bound (BB) algorithms have been proposed to find

the MAP solution in pairwise MRFs for human tracking [93, 97]. In [93] the MRF
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model is relaxed into a mixture of star-models, where each star-model consists of a

node and its neighbors in the original MRF. The original MAP inference problem is

then solved by using a BB algorithm on each star-model to find the MAP solutions

of these models. The branching strategy of the proposed algorithm was based on the

evaluation of the likelihood of hypothesis space. Spaces which are unlikely to contain

the MAP solution are ignored to increase searching efficiency. Tian et al. [97] also

proposed an efficient BB algorithm which only takes constant time to evaluate the

bounds to search for the MAP solution in a tree model (the structure of the MRF is

a tree).

3.2 Optimization-based approaches

Optimization-based methods have also been shown to be effective for articulated

object tracking. Such methods can be classified into two classes: local optimization

methods and global optimization methods. Typically, these methods are based on

the optimization of an objective function which is the matching function between the

model and the image features observed. Since the objective function to be optimized

in such problems is usually multi-modal (and non-linear), the optimization process

tends to be trapped into local optima. To cope with this problem, many of these

methods use a particle-based stochastic framework to provide them with the ability

to handle multiple hypotheses.

In Sections 3.2.1, 3.2.2 and 3.2.3, we present some optimization methods which are

successfully applied for articulated object tracking with good results reported in the

literature, especially those that use a particle-based framework [24, 47] as mentioned

above.

It is worth mentioning that many optimization methods can be combined with a

hierarchical search to achieve a better performance in terms of speed and accuracy. By

using a hierarchical search in optimization steps and performing optimization for only

one subpart (or group of subparts) at each step, one can obtain a better estimation

with fewer particles. For instance, a combination of Annealed Particle Filter [24] and

PS [64] has been proposed in [7] and a combination of Particle Swarm Optimization

[48] and PS has been proposed in [47]. We will discuss these methods in Sections

3.2.4, 3.2.5 and 3.2.6.
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3.2.1 Annealed Particle Filter

Simulated Annealing (SA) [49] is a stochastic method to optimize a multi-modal

objective function. Its major advantage over other methods is its ability to avoid

being trapped into local optima. We first give the SA basics, then the way it was

introduced into PF’s framework.

Assume that we need to find solutions to a maximization problem with the objec-

tive function f(x). We turn this problem into the problem of sampling x(1), ....,x(N)

from the distribution:

p(x) ∝ e−f(x)

The solution of the maximization problem is obtained by taking:

x∗ = arg max{f(x(1)), ..., f(x(N))}.

x∗ is thus generated with a probability proportional to e−f(x∗). In order to increase the

chance of getting x∗ during the sampling process, SA uses the following distribution:

pλ(x) ∝ e−λf(x)

As λ → +∞, the probability of getting x∗ approaches 1. Then the sampling

process gives a sample which contains only x∗ or points very close to x∗. In the case

where f(x) has many isolated maxima, however, simply using a large value for λ and

sampling from pλ(x) yields poor results since the sample can easily become trapped

into a local mode of pλ(x). To alleviate this problem, SA proceeds with several layers.

At layer m,m = M, . . . , 0, it takes a sample from the distribution:

pλm(x) ∝ e−λmf(x)

where λ0 > λ1 > ... > λM . This set of values is known as the annealing schedule.

The value of λM is set to be small (in physical language, the temperature, which is

inversely proportional to λ, is initially high). The sample of the layer M is generated

from a flat distribution, that therefore results in a coarse exploration of the search

space. At the next layers, the value of λ is gradually increased, which increases the

peakiness of the distribution used for sampling. This helps moving the sample to

the regions that contain much of the probability mass of the distribution. When

the sampling process is completed at layer 0, the sample of this layer should be

concentrated around the peaks of good maxima.

SA was introduced into PF’s framework giving Annealed Particle Filter (APF) as
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described below.

APF has been introduced by Deustcher in [24] for articulated object tracking in

high dimensional state spaces. Unlike PF which aims to approximate the posterior

distribution of the state of the target object at each time slice, APF formulates the

tracking problem as one of maximizing the likelihood function p(yt|xt). It uses the

same idea as simulated annealing to deal with multi-modal likelihood functions. More-

over, it uses a particle-based stochastic framework to improve its ability of handling

multi-modal densities.

Recall that p(yt|xt) is the likelihood function and the goal is to estimate the state

of the target object at each time slice t by a set of N weighted particles. At each

layer m, m = M, . . . , 0, APF generates a particle set whose elements approach the

global optimum maxxt{p(yt|xt)} during the annealing process by sampling from:

pm(yt|xt) ∝ p(yt|xt)βm

where β0 > β1 > ... > βM .

The values of βM , ..., β0 are chosen similarly to SA: they gradually increase the

peakiness of the distribution used for sampling to avoid getting stuck into poor local

maxima. The principle is illustrated in Figure 3-13. On the left, the particles get stuck

in poor local maxima. On the right, the annealing process gradually increases the

peakiness of the distribution, which helps the particles to escape from local maxima.

In SA, the parameter λ at each layer plays a role of limiting the number of accepted

”bad” candidate points. If λ is small, many ”bad” candidate points are accepted, and

a large part of the solution space is accessed. If λ is high, we get the opposite effect,

fewer ”bad” candidates are accepted and ”good” candidates are more focused. In

APF, at each layer, the resampling step has an effect of multiplying particles with

high weights and eliminating particles with low weights. The particles which survive

this resampling step can be considered as accepted candidates for the next layer as

in SA. As discussed in Section 2.2, the number of such particles can be approximated

by using survival rate, which is defined as follows:

α =
1

N
∑N

i=1(w
(i)
t,(m))

2

where w
(i)
t,(m), i = 1, . . . , N, are normalized weights of the particle set at time t and

layer m, w
(i)
t,(m) ∝ p(yt|x(i)

t,(m))
βm , x

(i)
t,(m), i = 1, . . . , N, are particles at time t and layer

m.

One can see that α is a function of βm, α = α(βm) which is a monotonic decreasing
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Figure 3-13: Principle of SA applied into PF’s framework. Each dot represents
a particle. The larger the dot, the higher the weight of the particle. On the left, SA
is not used and on the right, SA is used which gradually increases the peakiness of
the distribution. (figure reproduced from [36]).

function. Then by varying the value of βm, one can figure out a value so that α(βm)

approaches a desired value αdesired (this can be done via gradient descent methods),

which is called rate of annealing. The values of β0, ..., βM can thus be computed for

each time slice.

At time slice t, denote Swt,(m) the set of N weighted particles at layer m, m =

M, . . . , 0.

Swt,(m) = {x(i)
t,(m), w

(i)
t,(m)}

N
i=1

APF is described in Algorithm 3.3.
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Input: Particle set {x(i)
t−1,(0), w

(i)
t−1,(0)}Ni=1

Output: Particle set {x(i)
t,(0), w

(i)
t,(0)}Ni=1

for i = 1 to N do1

{x(i)
t,(M)}Ni=1 ← Propagate{x(i)

t−1,(0)}Ni=1 by x
(i)
t,(M) = f(x

(i)
t−1,(0)) + B02

Compute the normalized particle weight w
(i)
t,(M): w

(i)
t,(M) ∝ p(yt|x(i)

t,(M))3

for m = M downto 1 do4

Compute βm so that α(βm) = 1

N
∑N
i=1((w

(i)
t,(m)

)βm )2
= αdesired

5

for i = 1 to N do6

Update the annealed particle weight: w
(i)
t,(m) = (w

(i)
t,(m))

βm7

for i = 1 to N do8

Normalize the weight: w
(i)
t,(m) =

w
(i)
t,(m)∑N

j=1 w
(j)
t,(m)

9

{x̄(i)
t,(m),

1
N
}Ni=1 ← Resample{x(i)

t,(m), w
(i)
t,(m)}Ni=1.10

{x(i)
t,(m−1)}Ni=1 ← Propagate{x̄(i)

t,(m)}Ni=1 using: x
(i)
t,(m−1) = x̄

(i)
t,(m) + Bm, where11

Bm ∼ N (0,P(m)).

for i = 1 to N do12

Compute the normalized particle weight w
(i)
t,(m−1) of x

(i)
t,(m−1):13

w
(i)
t,(m−1) ∝ p(yt|x(i)

t,(m−1))

return {x(i)
t,(0), w

(i)
t,(0)}Ni=1

14

Algorithm 3.3: Annealed Particle Filter.

In Algorithm 3.3, f is the dynamic function and B0 ∼ N (0,P(0)). When no

dynamic function is available, we set f(x
(i)
t−1,(0)) = x

(i)
t−1,(0). At time slice t, the optimal

configuration of the target object is estimated by using Swt,0 as follows:

x̂t =
N∑
i=1

w
(i)
t,(0)x

(i)
t,(0)

APF also needs other parameters to work, including the number of layers M ,

the covariance matrices P(m),m = M, . . . , 0, and the rates of annealing αM , ...α1.

The number of layers and the rates of annealing are empirically determined. The

covariance matrix P(m),m = M, . . . , 1, can be computed by using a deterministic

method [24] as follows:

P(m) = αM × ...× αm ×P(0)
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where P(0) is a covariance matrix whose diagonal elements are fixed to the half the

maximum expected movement of the corresponding model parameter over one time

slice. In [25], P(m) is computed differently, so that:

P(m) ∝
1

N

N∑
i=1

(x
(i)
t,(m) − xmeant,(m) ).(x

(i)
t,(m) − xmeant,(m) )T

where xmeant,(m) is the sample mean of the particle set Swt,(m) and (x
(i)
t,(m) − xmeant,(m) )T is the

transpose of (x
(i)
t,(m) − xmeant,(m) ).

Figure 3-14: The effectiveness of the annealing process in APF for human
tracking. (figure reproduced from [78]).

Example. Figure 3-14 shows an example of human tracking by APF during one

time slice. In this example, six layers were used to search for the global optimum

poses. At each layer, the particle set where each particle represents a hypothesized

pose of the tracked body is drawn to visualize the effectiveness of the annealing

process in APF. At the first layer (m = 5), the particle set spreads over the

search space and contains many incorrect poses. At the next layers, the particle

set is gradually focused on correct poses thanks to the annealing process. At the

final layer (m = 0), the particle set contains only particles which are close to the

correct pose, giving a good estimation of the tracked human body.
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Initialization:1

{x(i)
(0)}Ni=1 are randomly drawn from X , {v(i)

(0)}Ni=1 are randomly drawn from [0, 1]2

s(i) = x
(i)
(0), i = 1, . . . , N3

sg = arg max{f(s(i))}Ni=14

m = 05

repeat6

Update {v(i)
(m+1)}Ni=1 using Equation 3.67

Update {x(i)
(m+1)}Ni=1 using Equation 3.78

Update s(i), i = 1, . . . , N9

Update sg10

m = m+ 111

until Stopping criterion is satisfied ;12

Algorithm 3.4: Particle Swarm Optimization.

3.2.2 Particle Swarm Optimization (PSO)

Particle Swarm Optimization (PSO) is a population based optimization technique

introduced in [48] which was first used for simulating social behavior. It was later

modified by several researchers to improve its search capabilities and convergence

properties. PSO has recently been applied for human tracking [52, 47] with good

empirical results.

We search for x ∈ X that maximizes a fitness function (cost function) f : X → R,

subject to the constraint a ≤ x ≤ b. A swarm consists of N particles, each particle

representing a candidate solution to the search problem. Denote x
(i)
(m) the ith particle,

x
(i)
(m) = (x

(i),1
(m) , . . . ,x

(i),P
(m) ) ∈ X . Unlike evolutionary algorithms, each particle in PSO

is given a velocity v
(i)
(m) = (v

(i),1
(m) , . . . ,v

(i),P
(m) ) ∈ X and has the ability of memorizing

its best state s(i) computed so far, s(i) = (s(i),1, ..., s(i),P ) ∈ X . Let sg be the current

global best state, i.e. sg = arg max{f(s(i))}Ni=1.

The evolution of particles in PSO is described by the 2 following equations:

v
(i)
(m+1) = v

(i)
(m) + β1r1(s(i) − x

(i)
(m)) + β2r2(sg − x

(i)
(m)) (3.6)

x
(i)
(m+1) = x

(i)
(m) + v

(i)
(m+1) (3.7)

where β1, β2 are constants, r1, r2 are random numbers drawn from [0,1].

The right-hand side of Equation 3.6 consists of three terms which can be intuitively

interpreted as follows: the first term means that the velocity of a particle at each time

slice depends on that at the previous time slice; the second term is a cognitive part
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which represents the strategy of the particle to get close to the optimal position,

based on its own experience (local search); the third term is a social part which

represents the strategy of the particle to get close to the optimal position, based on

the experience of the global population (global search).

All stages of PSO are given in Algorithm 3.4, where the stopping criterion is

usually either a maximum number of iterations or a threshold on the improvement of

sg.

PSO has the ability of balancing between the local and global search strategies

of the particles by setting the appropriate values for the constants β1, β2. PSO with

inertia weight [84] was introduced to add a new parameter in Equation 3.6 as follows:

v
(i)
(m+1) = wv

(i)
(m) + β1r1(s(i) − x

(i)
(m)) + β2r2(sg − x

(i)
(m)) (3.8)

where w is the inertia weight and wv
(i)
(m) is the inertial velocity.

A large inertia weight results in an exploration of the search space (global search)

while a small inertia weight limits the search around the globally best particle (local

search). The value of w can be fixed or adaptively changed throughout the search.

PSO has been integrated into PF’s framework in [52] for human tracking. The

tracker is indeed a particle filter with an additional step processed via PSO after

the prediction step to shift the particles toward more promising regions in the search

space. PSO has also been successfully applied for hand tracking [68] where the prob-

lem is formulated as an optimization problem.

The idea of APF was also incorporated into PSO to strengthen the searching capa-

bilities of PSO in human tracking, [112]. For that, some modifications of Equation 3.8

were proposed. First, because the use of inertial velocity given in Equation 3.8 often

results in impossible human poses, it is replaced for each iteration m with a covari-

ance matrix P(m), whose terms gradually decrease with PSO iterations (APF layers)

as follows:

P(m) = α0 ∗P(m−1)

where α0 is a constant, The covariance matrix is initialized such that diagonal ele-

ments have values equal to the maximum expected movement of the corresponding

model configuration parameters over one time step. Second, it was also observed that

the local and global optima are no longer trustable when the particle swarm is near

the global optima (at the end of PSO’s iteration) due to the presence of noise in im-

ages: it should then have less impact on guiding the swarm. That is why Equation 3.8
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is now modified as follows:

v
(i)
(m+1) = r0P(m) + β0exp(1−

m

M
)r1(s(i) − x

(i)
(m)) + β0exp(1−

m

M
)r2(sg − x

(i)
(m)) (3.9)

where r0 is a random number drawn from [0,1].

PSO is easy to implement and is a powerful method for multi-dimensional non-

linear optimization. Its convergence, however, is difficult to analyze since it depends

on the choice of the fitness function. It suffers from the same problem as any other

search algorithm in high dimensional search space: it becomes computationally ex-

pensive. In Section 3.2.5, we briefly describe a method which uses a hierarchical

search with PSO to reduce the number of particles required for tracking.

3.2.3 Other optimization-based approaches

Gradient descent has also been successfully applied for articulated object tracking.

In [12], a stochastic meta descent (SMD) has been introduced for 3D hand tracking.

Tracking proceeds by optimizing the difference between the hand model and the depth

maps generated by a structured light sensor. Hand constraints are incorporated into

the optimization process through constrained gradients. To avoid getting stuck into

local minima, the set of points used to evaluate the objective function are selected

randomly at each iteration. In [13], the work is extended by adding surface orientation

terms to the objective function to increase the robustness of the tracker. In [43], SMD

is combined with PF to implement a multiple hypotheses tracker, called smart particle

filter. Gall et al. [37] introduced a multi-layer framework for human tracking. At

the first layer, a global optimization is used to obtain an estimate of human body,

that is then refined by smoothing, followed by a local optimization step. Pantrigo

et al. [70] combined PF and population-based metaheuristics for articulated object

tracking, consisting of two stages. At the first stage, a particle set is propagated and

corrected via PF. At the second stage, a fixed number of particles are selected from

the previous particle set and are combined to obtain higher weighted ones using Path

Relinking [38] or Scatter Search [53] approaches.

Jiang et al. [46] formulated the human tracking problem as a linear integer pro-

gramming one. Various types of constraints, such as spatial constraints, appearance

symmetry constraints, position symmetry constraints, are expressed as constraints of

the integer linear program, and then relaxed into a mixed integer linear program and

solved using a Branch-and-Bound algorithm.

Tran et al. [98] combined dynamic programming with exhaustive search to solve

the problem of upper body tracking. They constructed an energy function correspond-
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ing to a weighted linear combination of unary and pairwise functions (appearance and

spatial relations between all pairs of body parts to be tracked). The weights of differ-

ent functions were pretrained using structure learning [94]. Upper body configuration

is found by first optimizing the energy function to search for the best candidates of

the triple (right arm, torso, left arm) and then by performing local search to improve

the estimates and search for the remaining upper body parts.

In Sections 3.2.4, 3.2.5 and 3.2.6, we discuss some approaches which combine

optimization with a hierarchical search for articulated object tracking.

3.2.4 Annealed Particle Filter plus Partitioned Sampling

A combination of APF and PS has been proposed in [7]. By partitioning the state

space of the target object into subspaces and performing APF for each subspace in

a hierarchical order as in PS, the proposed method aims to integrate the benefits of

both methods. One common problem of PS is that its performance highly depends

on the hierarchical order in which the subparts of the target object are estimated.

This hierarchical order thus must be adapted to a specific problem and should not

be fixed during the tracking in order to achieve the best performance. The proposed

method then uses different hierarchical orders for PS, each order generates a sub-

set of particles which are then combined and resampled according to their weights

to form the new particle set for the next search of PS. This ensures that the new

particle set will be collected from the best particles generated by each hierarchical

order. This makes the method more stable and insensitive to a specific order in which

the subparts of the target object are estimated.

3.2.5 Hierarchical Particle Swarm Optimization (HPSO)

Hierarchical PSO for human tracking combines PSO and a hierarchical search and has

been introduced in [47]. In this approach, the human body is modeled by a kinematic

tree containing 13 nodes. Each node corresponds to a specific body joint. The root

node has 6 DOF which describe the global translation and orientation of the person.

All other nodes can have up to 3 DOF (orientation of body joints), resulting in a

31-dimensional state space model.

The tracking with HPSO is automatically initialized. At the first frame, a set of

particles and their velocities are initialized as in PSO. HPSO then starts searching

the optimal configuration of the person for this frame. The search is processed in a

hierarchical manner: starting with the torso and then proceeding towards the limbs.

The search space is split into 12 different subspaces which are hierarchically optimized.
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Figure 3-15: Scalable human body model. (figure reproduced from [17]).

At each optimization step for a subspace, the previous subspace in the hierarchical

order of the same time slice is used to constrain the search. To reinforce the spatial

constraint when optimizing in a subspace, the next subspace in the hierarchical order

in the previous time slice is also used as an additional constraint. In this way, the

hierarchical search is more efficient since the spatial constraints in the kinematic

structure are propagated in two directions. Once the initial configuration at the first

frame has been estimated, the initial particle set for the next frame results from

a sampling from a Gaussian distribution centered in the current best estimate and

the search for the optimal configuration of this frame is repeated. By the use of

hierarchical search, the proposed method greatly reduces the number of particles

used for tracking and performs well with a reasonable number of particles for the

31-dimensional state space model. With a limited number of particles, it can also

recover from wrong estimates thanks to its ability to explore the search space.

3.2.6 Hierarchical Structure based Annealed Particle Filter

(HSAPF)

An annealing strategy for human tracking has also been exploited in [17]. Instead of

using a set of smoothed versions of the likelihood function to concentrate particles

around its peaks, the proposed method uses a set of progressively refined human body

models leading to the concept of structural annealing. In this approach, a human

body model is composed of a root segment (torso) and a set of open kinematic chains

modeling the head, arms and legs. Each kinematic chain can contain a different

number of body parts. A scalable human body model (SHBM) is defined by: M =

{H1,H2, ...,HM}, where M is the number of human body models inM. An example

of SHBM is given in Figure 3-15, where the human body model H1 contains only

parameters describing the torso and more details of the human body are added into

the human body models H2 and H3 for the full body tracking.
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The key idea is to refine the human body models inM in a coarse-to-fine manner.

For this purpose, M is defined such that H1 contains only parameters for the torso,

Hi, i ≥ 2, contains more details about the entire human body than Hi−1, and HM

contains all parameters describing the whole human body. Denote XHi , i = 1, . . . ,M,

the state space of the human body model Hi. Then the following conditions hold:

XH1 ⊂ XH2 ⊂ . . . ⊂ XHM .

A particle set SHi is maintained for each human body model Hi in M. At each

time slice, the proposed algorithm consists of two stages. During the forward stage,

the human body model is refined from model H1 until reaching model HM . Starting

from model H1, the particle set for this model is propagated and corrected and then

combined with those for the model H2 to generate an improved initial particle set

for H2. This procedure is repeated until reaching the model HM . At any step, the

particle sets for model Hi and for model Hi+1, i = 1, . . . ,M − 1, are combined using

an operator Gforward. During the backward stage, the particle set obtained for the

last human body model HM is back propagated to previous human body models in

M using an operator that first sorts SHM and then simply generates a resampled set

from SHM for each human body model Hi, i = 1, ...,M − 1. An improved particle set

for Hi can then be obtained by keeping only variables in each particle that belong to

Hi.

The proposed approach has been shown to be effective in tracking human with

missing data. For example, when the observations of limbs are missing, it can track

the torso thanks to model H1.

3.3 Discriminative approaches

A variety of regression approaches have been proposed for human estimation [2, 69]. In

[1], images from a set of training images are encoded into 100-dimensional histograms.

Using a non linear regression, the authors learn a mapping function between these

histograms and a 55-dimensional pose vector which is then used to recover the 3D

human pose. A more general approach is also introduced for dealing with cluttered

backgrounds. Each image from a set of training images without cluttered backgrounds

is divided into a grid of points. Overlapping image patches from this grid of points are

then obtained and encoded into a 128-dimensional vector containing local gradient

orientation histograms [60]. Non-negative matrix factorizations [55] are then used to

obtain feature vectors which are more compact representations of these vectors (with

only 30-40 dimensions). Finally, a mapping function from feature vectors to the pose

vector is learnt by linear regression and used to recover the 3D human pose. In [69],
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similar poses from a set of training poses are first clustered using k-means algorithm.

A Support Vector Machine [15] classifier is then used for discriminating these pose

clusters. The 3D human pose is recovered by a linear regressor which is learnt for

each pose cluster.

In human pose estimation and human tracking, if we have prior knowledge about

the performed actions, this can be exploited to reduce the high dimensionality of the

state space. Many techniques, known as dimensionality reduction techniques, have

been widely applied in human pose estimation and human tracking [54, 105]. The

basic assumption is that body part movements are mutually dependent and therefore

lie in a low-dimensional manifold. The original state space can thus be represented

using only a smaller number of degrees of freedom than for the original articulated

object. This can by achieved by learning the low-dimensional manifold (latent space)

from the original state space (data space) using training data for a specific human

activity.

In addition to the latent space, some learning methods, such as Gaussian Pro-

cess Latent Variable Models (GPLVM) [54], Gaussian Process Dynamical Models

(GPDM) [105] also provide a mapping from the latent space to the data space. This

is particularly interesting for the PF’s framework since we can reduce the number of

particles required for tracking by sampling into the low-dimensional manifold and,

then, by projecting back into the original space to evaluate the likelihood of particles.

In [96], the proposed approach reduces the dimensionality of the problem by using

GPLVM to learn a mapping from a 2-dimensional latent space to the data space and

then directly applying PF to this latent space. The sampling step and resampling

step is performed as in PF. In the correction step, the likelihood of a point in the

latent space is evaluated by projecting this point to a point in the data space using

the mapping learnt from GPLVM, and then evaluating the likelihood of the obtained

point in the data space. To obtain an estimation of the target person at each time

slice, the mean of the particle set in the latent space is calculated and then projected

to the data space using the mapping. By learning from a training dataset of feasible

poses, the efficiency of the sampling step is improved since the sampled poses are

focused in regions of interest. This method, however, is based on the key assumption

that human body poses that are similar in the data space tend to be mapped close to

each other in the latent space, which is not always true, as pointed out in [41, 78]. A

similar approach has been introduced in [109]. To reduce the computational cost and

avoid getting trapped into local minima while learning with GPLVM, the authors de-

veloped an incremental learning algorithm for the GPLVM using stochastic gradient

descent. Instead of applying PF into the latent space learnt by GPLVM, Raskin et
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al. [78] proposed to perform APF in this latent space. In this approach, the state

of the human body is divided into two parts. The first part consists of the global

position and orientation. The second part consists of the joint angles describing the

human pose. The latent space and the mapping between it and the original joint

angles is learnt using only the second part. The state of the human body can thus

be represented by a reduced vector consisting of the global position and orientation

and the latent vector. At each time step, APF is performed in this vector space. To

evaluate the weight for each pose, the joint angle vector is obtained by projecting the

latent vector using the learnt mapping, the full state is then a concatenation of this

joint angle vector with the vector describing the global position and orientation, and

the evaluation of the weights is processed as in PF.

Urtasun et al. [102, 101] formulate the tracking problem as a nonlinear least-

squares optimization problem whose objective function is constructed using GPLVM.

Tian et al. [95] use the same idea to solve the problem of estimating the 2D pose of

a person from silhouettes.

The main limitation of learning-based approaches is their lack of generality. The

learnt model can only be used for tracking some action-specific motions. This is due to

the fact that the amount of training data must be limited and therefore cannot account

for the variability in appearances, lighting changes, clothes and limbs deformation, . . .

Moreover, in order to obtain a good model, the size of the training set is often large

and the computational cost of the learning algorithm can be expensive.

As mentioned in Chapter 1, the main goal of this thesis is to develop new de-

composition approaches to deal with the problem of high dimensional state spaces in

articulated object tracking. In the next chapters, we propose three decomposition-

based approaches. In Chapter 4, we introduce a novel approach that exploits the

conditional independences encoded by the DBN modeling the articulated tracking

to improve the tracking performance and computation time of PS, notably by in-

troducing a new operator “swapping” particles. In Chapter 5, we develop a novel

resampling approach that takes advantage of this swapping operator to resample over

an implicitly created sample of an exponential size better representing the density

to estimate. Finally, in Chapter 6, we propose a novel approach, based on PSO and

hierarchical search, to reduce the computational cost of PSO and tackle the problem

of noisy observations in articulated object tracking.
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Chapter 4

Swapping-Based Partitioned

Sampling

In this chapter, we present a new approach based on PS for articulated object tracking.

Recall that an articulated object consists of P parts and its state at time t, xt, is

decomposed as {x1
t , . . . ,x

P
t }. The first step of our approach consists of parallelizing

PS’s propagations/corrections among sets of object parts xit in such a way that the

new propagations/corrections scheme does not alter the posterior density. These sets

of object parts are selected using d-separation analysis in the DBN modeling the

tracking problem. Next, we introduce a new operation called swapping that permutes

some subsamples of the object parts processed in parallel so that the best subsamples

are combined into new particles while still guaranteeing that the posterior density is

correctly estimated. There are two advantages to this approach as compared to PS.

First, it reduces the number of necessary resamplings since a set of parts instead of one

part is processed at each propagation/correction, hence reducing the noise produced

by resampling. Second, the swapping operation creates some particles which are more

focused near the modes of the posterior density. Consequently, our approach is better

than PS both in terms of tracking accuracy and of computation time.

The chapter is organized as follows. Section 4.1 presents our idea of parallelizing

PS’s propagations/corrections. In section 4.2, we explain how permutations over some

subsamples of the object parts processed in parallel can improve the estimation of the

posterior density. Section 4.3 provides an efficient way of implementing our algorithm.

Section 4.4 contains an extensive experimental comparison, which demonstrates the

interest of the swapping operation as well as the robust tracking achieved by our

algorithm. Finally, Section 4.5 offers some conclusions.
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4.1 A d-separation-based parallelization of PS

Our approach is based on the assumptions that the proposal transition function of

a given part xit of the object at time t depends only on that part in time t − 1

(and possibly on other parts in time t) and the observations depend only on their

corresponding state. Note that the first assumption is rather mild for object tracking

and it holds in most applications. The second assumption holds when there is no

occlusion between parts of the target object. For instance, both assumptions hold in

the example in Figure 4-1. More formally, this leads to the following definition:

Definition 4-1 (Object Tracking DBN – OTDBN) An OTDBN is a 2TBN ([67],

Chapter 3) defined over random variables {xit,yit}, where xit and yit represent the state

and observation of part i in time slice t. OTDBNs satisfy the following four condi-

tions:

1. there does not exist any arc xis → xjt with s < t− 1 or s > t;

2. for every i and t > 1, there exists an arc xjt−1 → xit if and only if j = i;

3. for each node xit, there exists a node yit whose only parent is xit;

4. nodes yit have no children.

1

2 3

Figure 4-1: Upper body tracking. The body parts to be tracked are the torso, the
upper left arm and the upper right arm.
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Figure 4-2: A dynamic Bayesian network for body tracking in Fig 4-1.
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In Figure 4-2, by d-separation ([74], Chapter 3), it can be proved that x3
t is in-

dependent of x2
t−1 conditionally to {x1

t ,x
3
t−1} and observations yit are independent of

the other random variables conditionally to states xit. This implies that the propa-

gations/corrections of x2
t and x3

t can be performed in parallel since none of them has

any impact on the other one. Thus, this suggests the new condensation diagram of

Figure 4-3 where object parts x2
t and x3

t are processed in parallel. The advantage of

this diagram is that it performs fewer resamplings compared to the diagram of PS

where one resampling step is performed after the correction of each part. Thus the

new diagram introduces less noise in the estimation caused by these resampling steps.

∗f1
t ×p1t ∼

∗f2
t ×p2t

∗f3
t ×p3t

∼ p(xt|y1:t)

p(xt−1|y1:t−1)

Figure 4-3: Condensation diagram exploiting conditional independences.

Now, let us extend the condensation diagram of Figure 4-3 for arbitrary OTDBNs.

Let Xt denote a generic node of an OTDBN G in time slice t (so either Xt = xit or

Xt = yit for some i). Let pa(Xt) and pat(Xt) denote the set of parents of Xt in G
in all time slices and in time slice t only respectively. For instance, in Figure 4-2,

pa(x2
t ) = {x1

t ,x
2
t−1} and pat(x

2
t ) = {x1

t}. Similarly, let an(Xt) and ant(Xt) be the set

of ancestors of Xt in all time slices and in time slice t only respectively. Assume that

the probabilistic dependences between all random variables xit and yit, i = 1, . . . , P ,

are represented by an OTDBN G. Let {P1, . . . , PK} be a partition of {1, . . . , P}
defined by:

• P1 = {k ∈ {1, . . . , P} : pat(x
k
t ) = ∅};

• for any j > 1, Pj = {k ∈ {1, . . . , P}\ ∪j−1
h=1 Ph : pat(x

k
t ) ⊆

⋃j−1
h=1

⋃
r∈Ph{x

r
t}}.

Intuitively, P1 is the set of indices k of the object parts xkt that have no parent in

time slice t; P2 is the set of indices of the object parts whose parents in time slice t all

belong to P1, and so on. According to this definition, P1, . . . , PK follow the kinematic

chain of the articulated object to be tracked. Consider again the human body model

in Figure 4-1. In this example, P1 contains the root of the kinematic chain, P1 = {1};
P2 contains the parts which follow the root of the kinematic chain, P2 = {2, 3}. In the

sequel, we will also use the following notations that were introduced in Section 3.1.2:

for any j = 1, . . . , K − 1, let Qj = ∪jh=1Ph and Rj = ∪Kh=j+1Ph, i.e., Qj and Rj

represent the set of parts processed up to the processing of parts Pj and those still

to be processed respectively. Let Q0 = RK = ∅.
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It is not hard to see that, by d-separation, all the nodes xkt of a given Pj are

independent conditionally to their parents pa(xkt ). Consequently, PS can propa-

gate/correct all these nodes independently (in parallel) and produce a correct estima-

tion of the posterior joint density p(xt|y1:t). This suggests the condensation diagram

of Figure 4-4 where, for every j ∈ {1, . . . , K}, Pj = {i1Pj , . . . , i
kj
Pj
} and each object

part x
ihPj has its own proposal function f

ihPj
t and its own correction function p

ihPj
t (as

described in Equation 3.2). In this diagram, all the propagations and corrections of

the object parts in a given set Pj are thus performed in parallel and, subsequently, a

resampling is performed over all these parts. The correctness of the diagram follows

from Proposition 4-1.

.....

.....

.....

∗f
i1P1
t ×p

i1P1
t

∗f
i
k1
P1
t ×p

i
k1
P1
t

∗f
i1PK
t ×p

i1PK
t

×p
i
kK
PK
t∗f

i
kK
PK
t

∼ p(xt|y1:t)

∼p(xt−1|y1:t−1)

Figure 4-4: Parallelized Partitioned Sampling condensation diagram.

Proposition 4-1 The set of particles resulting from the diagram of Figure 4-4 rep-

resents probability distribution p(xt|y1:t).

Proof of Proposition 4-1: By abuse of notation, for any set H ⊆ {1, . . . , P}, let

xHt denote the set of nodes {xkt : k ∈ H}.
First, let us prove that, for every j ∈ {1, . . . , K} and every k ∈ Pj, we have:

xkt⊥⊥
⋃

h∈Pj\{k}

{xht } ∪ x
Qj−1

t ∪ x
Rj−1

t−1 ∪ y1:t−1 ∪ y
Qj−1

t | pa(xkt ). (4.1)

If there existed in the OTDBN an active chain {c1 = xkt , . . . , cn} between xkt and one

of the nodes in the independent part of Equation 4.1, its first arc would necessarily

be c1 → c2 since c1’s parents are the conditioning set. Let cV denote the last node

such that, for all 2 ≤ h ≤ V , the arcs of the chain are ch−1 → ch. By definition of

sets Pj’s, none of the nodes xht ∈ x
Pj
t \{xkt } is a descendant of xkt . In addition, by

definition of OTDBNs, nodes in time slice t − 1 cannot be some descendant of xkt .

Consequently, cV 6= cn and, thus, the active chain contains arcs cV−1 → cV ← cV+1.

As cV is a descendant of xkt , neither it nor its descendants are in the conditioning set

and, by d-separation, the chain cannot be active and Equation 4.1 holds.
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Assume now that, before processing parts Pj, the particle set represents proba-

bility distribution p(x
Qj−1

t ,x
Rj−1

t−1 |y1:t−1,y
Qj−1

t ). Note that this is the case just before

processing part P1 since this distribution is equal to p(xt−1|y1:t−1). Let us show that,

after the parallel propagations “∗f
ikPj
t ”, the particle set represents probability distri-

bution p(x
Qj
t ,x

Rj
t−1|y1:t−1,y

Qj−1

t ). Operation “∗f
ikPj
t ” corresponds to multiplying the

distribution represented by the particle set by p(x
ikPj
t |pa(x

ikPj
t )) and integrating out

variable x
ikPj
t−1. Overall, the parallel propagations in Pj correspond to computing:∫

p(x
Qj−1

t ,x
Rj−1

t−1 |y1:t−1,y
Qj−1

t )
∏
k∈Pj

p(xkt |pa(xkt )) dx
Pj
t−1 (4.2)

because Equation 4.1 implies that no operation “∗fkt ” depends on x
Pj\{k}
t . Now, since

for all k ∈ Pj, pa(xkt ) ⊆ x
Qj−1

t ∪ x
Rj−1

t−1 , Equation 4.1 implies that:

p(xkt |pa(xkt )) = p(xkt |
⋃

h∈Pj\{k}

{xht },x
Qj−1

t ,x
Rj−1

t−1 ,y1:t−1,y
Qj−1

t ).

By the well-known chain rule formula, the above equation thus implies that:

∏
k∈Pj

p(xkt |pa(xkt )) = p(x
i1Pj
t , . . . ,x

i
kj
Pj

t |x
Qj−1

t ,x
Rj−1

t−1 ,y1:t−1,y
Qj−1

t )

= p(x
Pj
t |x

Qj−1

t ,x
Rj−1

t−1 ,y1:t−1,y
Qj−1

t ).

Therefore, Equation 4.2 is equivalent to:∫
p(x

Qj−1

t ,x
Rj−1

t−1 |y1:t−1,y
Qj−1

t )p(x
Pj
t |x

Qj−1

t ,x
Rj−1

t−1 ,y1:t−1,y
Qj−1

t ) dx
Pj
t−1

=

∫
p(x

Pj
t ,x

Qj−1

t ,x
Rj−1

t−1 |y1:t−1,y
Qj−1

t ) dx
Pj
t−1.

As Qj = Qj−1 ∪ Pj and Rj−1 = Pj ∪ Rj, the above equation is equivalent to

p(x
Qj
t ,x

Rj
t−1|y1:t−1,y

Qj−1

t ).

Now, let us show that after the parallel corrections “×p
ikPj
t ”, the particle set esti-

mates distribution p(x
Qj
t ,x

Rj
t−1|y1:t−1,y

Qj
t ). These operations correspond to perform-

ing, up to a constant:

p(x
Qj
t ,x

Rj
t−1|y1:t−1,y

Qj−1

t )×
∏
k∈Pj

p(ykt |xkt ). (4.3)

By definition of OTDBNs, nodes ykt have no children and only one parent: xkt . Hence,
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by d-separation, they are independent of the rest of the network conditionally to this

parent. Therefore, as in the preceding paragraph, we can easily prove that:∏
k∈Pj

p(ykt |xkt ) = p(y
Pj
t |x

Qj
t ,x

Rj
t−1,y1:t−1,y

Qj−1

t ).

Therefore, Equation 4.3 is equivalent to p(x
Qj
t ,x

Rj
t−1,y

Pj
t |y1:t−1,y

Qj−1

t ), which, when

normalized, is equal to p(x
Qj
t ,x

Rj
t−1|y1:t−1,y

Qj−1

t ,y
Pj
t ) = p(x

Qj
t ,x

Rj
t−1|y1:t−1,y

Qj
t ). The

last step of the processing of Pj is a resampling that does not alter this distribu-

tion. Finally, note that this probability is precisely that assumed at the begin-

ning of the proof. Hence, after processing all the Pj’s, the particle set estimates

p(xQKt ,xRKt−1|y1:t−1,y
QK
t ) = p(xt|y1:t). 2

4.2 Swapping-Based Partitioned Sampling (SBPS)

There are two major differences between the diagrams of Figures 3-4 and 4-4: the

latter performs fewer resamplings, thus it introduces less noise in the particle set

and, more importantly, it enables to produce better fitted particles by swapping their

subparts. Actually, consider again our body tracking example and assume that we

generated the 3 particles x
(i)
t of Figure 4-5(a) where X 1 represents the torso and X 2

and X 3 represent the left and right hand respectively, and where the shaded areas

represent the body’s true state. According to the OTDBN of Figure 4-2, for fixed val-

ues of x1
1:t, the sets of left and right parts of the particles represent p(x2

t ,y
2
1:t|x1

1:t) and

p(x3
t ,y

3
1:t|x1

1:t) respectively (summing out variables x2
1:t−1,x

3
1:t−1 from the OTDBN).

Hence, after permuting the values of the particles on X 2 (resp. X 3) for a fixed value of

x1
1:t, distribution p(x2

t ,y
2
1:t|x1

1:t) (resp. p(x3
t ,y

3
1:t|x1

1:t)) remains unchanged. A fortiori,

this does not affect the representation of the joint posterior distribution:∫
p(x1

1:t,y
1
1:t)p(x

2
t ,y

2
1:t|x1

1:t)p(x
3
t ,y

3
1:t|x1

1:t)dx
1
1:t−1 = p(xt,y1:t)

x
(2)
t x

(3)
tx

(1)
t

x′t
(1)

x′t
(2)

x′t
(3)

a)

b)

Figure 4-5: The particle swapping scheme: (a) before swapping; (b) after swap-
ping

On Figure 4-5(a), particles x
(1)
t and x

(3)
t have the same state on X 1. Thus their
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right parts can be permuted, resulting in the new particle set of Figure 4-5(b). Remark

that we substituted 2 particles, x
(1)
t and x

(3)
t , which had low weights due to their bad

estimation of the object’s right or left part states, by one particle x′t
(1) with a high

weight (due to a good estimation of all the object’s parts) and another one x′t
(3)

with a very low weight. After resampling, the latter will most probably be discarded

and, therefore, swapping will have focused particles on the peaks of the posterior

distribution. Note however that not all permutations are allowed: for instance, none

can involve particle x
(2)
t because its center part differs from that of the other particles.

The SBPS algorithm introduces these swappings into the diagram of Figure 4-4,

which leads to that of Figure 4-6, where operations “
Pj” refer to the particle subpart

swappings briefly described above. Remark that, after the resampling operation of

part Pj, the particles with high weights are duplicated, enabling swapping when

processing next part Pj+1.

.....

.....

.....

∗f
i1P1
t ×p

i1P1
t

∗f
i
k1
P1
t ×p

i
k1
P1
t


P1 ∼

∗f
i1PK
t ×p

i1PK
t

×p
i
kK
PK
t∗f

i
kK
PK
t


PK ∼ p(xt|y1:t)

p(xt−1|y1:t−1)

Figure 4-6: Swapping-based Partitioned Sampling (SBPS) condensation di-
agram.

Swappings need however to be further formalized. As Qj = ∪jh=1Ph and Rj =

∪Kh=j+1Ph, particle (x
(i),Qj
t ,x

(i),Rj
t−1 ) now represents the state of the ith particle after j

steps of SBPS and, as shown in the proof of Proposition 4-1, {(x(i),Qj
t ,x

(i),Rj
t−1 ), w(i)} es-

timates p(x
Qj
t ,x

Rj
t−1|y1:t−1,y

Qj
t ). Similarly, when needed, for any set H ⊆ {1, . . . , P},

x
(i),H
1:t will refer to the whole trajectory of the parts in H of the ith particle, i.e.,

their values from time slice 1 to time slice t. Now, to guarantee that swapping

operations 
Pj do not alter the estimated distributions, it is not sufficient to per-

mute only the subparts in Pj. The reason why can be easily understood using the

OTDBN: the network encodes the joint distribution using conditional densities of

the type p(xht |pa(xht )), hence permuting only the elements of some subpart xkt in

sample {(x(i),Qj
t ,x

(i),Rj
t−1 )} will change the parents’ values of any child xrt of xkt , and

thus the sample will no longer estimate correctly p(xrt |pa(xrt )) nor the joint proba-

bility p(x
Qj
t ,x

Rj
t−1|y1:t−1,y

Qj
t ). To avoid this, we need to permute {x(i),r

t } similarly to

{x(i),k
t }. More generally, it is compulsory to permute all the nodes that are linked to

xkt by chains that do not pass through xkt ’s ancestors. More formally, to guarantee
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that the estimation of the densities is unaltered by swappings, the set of subparts to

permute similarly to xkt is called a “swapping set”:

Definition 4-2 (Swapping set) Let {(x(i),Qj
t ,x

(i),Rj
t−1 )} be the particle set at the jth

step of SBPS. Let k ∈ Pj and let Linkt(x
k
t ) denote the set {xkt } ∪ {xrt : there exists

a chain between xkt and xrt passing only by nodes in time slice t and by no node in

the ancestor set ant(x
k
t )}. In addition, let Link

Qj
t (xkt ) = {xrt ∈ Linkt(x

k
t ) : r ∈ Qj}

and Link
Rj
t−1(xkt ) = {xrt−1 : xrt ∈ Linkt(x

k
t ) and r ∈ Rj}. Then, the set Link

Qj
t (xkt ) ∪

Link
Rj
t−1(xkt ) is called a swapping set.

Link
Rj

t−1(x
k
t ) Link

Qj
t (xkt )

xkt

time t− 1 time ttime t− 2

Figure 4-7: Swapping sets.

For instance, in the OTDBN of Figure 4-7 (where observation nodes have not been

displayed to simplify the figure), the gray nodes represent the swapping set of node

xkt . We introduced swappings for fixed values of some nodes. As shown below, the

d-separation criterion imposes that they correspond to the values of some nodes over

all time slices. In other words, only admissible permutations guarantee that densities

are correctly estimated:

Definition 4-3 (admissible permutation)

Let k ∈ Pj and At = ant(x
k
t ) ∩ (∪xht ∈Linkt(xkt )pat(x

h
t )). Finally, let A = {xhs : xht ∈

At, 1 ≤ s ≤ t}. A permutation σ : {1, . . . , N} 7→ {1, . . . , N} is said to be admissible

if and only if x
(i),h
t = x

(σ(i)),h
t for all h ∈ A and all i ∈ {1, . . . , N}.

In Figure 4-8, set At corresponds to the two black nodes. In Figure 4-9, set A

corresponds to the two lines of black nodes in the dotted rectangle at the bottom of

the figure. Intuitively, the set A is chosen so that it d-separate Linkt and the rest of

the graph. In Figure 4-9, by d-separation it is easy to see that Linkt are independent

of the rest of the graph D conditionally to A.

64



time t− 1 time ttime t− 2

xkt

At

Figure 4-8: Admissible permutations: set At.

time t− 1 time ttime t− 2

xkt

A

Linkt

D

Figure 4-9: Admissible permutations: whole set A.

Proposition 4-2 For any j ∈ {1, . . . , K}, let 
Pj be a set of admissible permuta-

tions σk of subparts k ∈ Pj applied to the swapping set of xkt . Then the set of particles

resulting from SBPS represents p(xt|y1:t).

Proof of Proposition 4-2: Let k ∈ Pj and let σk be an admissible permutation

for xkt as described above. To prove the proposition, it is sufficient to show that, after

applying σk on all the nodes in the swapping set of xkt , the particle set still estimates

p(x
Qj
t ,x

Rj
t−1|y1:t−1,y

Qj
t ). Let us partition (x

Qj
t ,x

Rj
t−1) into the following sets:

• L = Link
Qj
t (xkt ) ∪ Link

Rj
t−1(xkt ), i.e., the set of nodes to permute;

• At as described in Definition 4-3, i.e., the set of nodes that separate L from the

rest of the OTDBN in time slice t− 1 : t;

• B1
t = x

Qj
t \(Link

Qj
t (xkt ) ∪ A

Qj
t ) and B2

t−1 = x
Rj
t−1\Link

Rj
t−1(xkt ).
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Duplicate these nodes over all times slices:

Link = ∪ts=1{xhs : xht ∈ Link
Qj
t (xkt )} ∪t−1

s=1 {xhs : xht−1 ∈ Link
Rj
t−1(xkt )},

A = ∪ts=1{xhs : xht ∈ At},

B = ∪ts=1{xhs : xht ∈ B1
t } ∪t−1

s=1 {xhs : xht−1 ∈ B2
t−1}.

Finally, consider the observations on these sets of nodes: let yA = {yhs : xhs ∈ A}, let

yB = {yhs : xhs ∈ B} and let yLink = {yhs : xhs ∈ Link}. Then:

p(x
Qj
t ,x

Rj
t−1,y1:t−1,y

Qj
t ) ∝ p(x

Qj
t ,x

Rj
t−1|y1:t−1,y

Qj
t )

= p(L,At, B
1
t , B

2
t−1,y1:t−1,y

Qj
t )

=

∫
p(L,A,B1

t , B
2
t−1,y1:t−1,y

Qj
t ) d(A\At)

=

∫
p(L,A,B1

t , B
2
t−1,y

Link,yA,yB) d(A\At)

=

∫
p(A,yA)p(L,yLink|A)p(B1

t , B
2
t−1,y

B|L,yLink, A)d(A\At) (4.4)

because, in OTDBNs, conditioning by A is equivalent to conditioning by A,yA due

to conditions 3 and 4 of Definition 4-1.

Let us now prove that (B1
t ∪B2

t−1 ∪ yB)⊥⊥L∪ yLink|A. Again by conditions 3 and

4 of Definition 4-1, it is sufficient to show that there exists no active chain between

one node of Link and one node of B. Suppose that there exists such an active

chain {c1, . . . , cn} with c1 ∈ Link and cn ∈ B. First, note that the chain cannot pass

through any node in time slice s > t because, since c1 and cn belong to time slices ≤ t

and due to condition 1 of Definition 4-1, there would exist a node ch = xws such that

ch−1 → ch ← ch+1 which would block the chain since neither xws nor its descendants

are in the conditioning set A. For the same reason, it is impossible that the chain

passes through a node in Link
Rj
t (xkt ) = Linkt(x

k
t )\Link

Qj
t (xkt ). Now, let ch = xvs be

the first node in the chain belonging to B. Assume that ch−1 = xwr ∈ Link. Then, by

definition of the arcs of OTDBNs, either (r = s) ∧ (v 6= w) or (r 6= s) ∧ (v = w).

First case: if r 6= s, then ch = xws is a duplicate of ch−1 in another time slice and,

by definition of Link, either ch ∈ Link, which leads to a contradiction since ch ∈ B
by hypothesis, or ch = xwt ∈ Link

Rj
t (xkt ) which is also impossible by the preceding

paragraph. Second case: if r = s, then, by definition of Link, xwt ∈ Linkt(x
k
t ) and,

by definition of OTDBNs, the arc between xwt and xvt exists in the OTDBN. Hence,

xvt ∈ Linkt(x
k
t ) and either ch ∈ Link or ch = xvt ∈ Link

Rj
t (xkt ) and, similarly to the
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first case, both conditions imply a contradiction. So ch−1 6∈ Link and ch−1 6∈ B.

Therefore, either ch−1 ∈ Link
Rj
t (xkt ) or ch−1 ∈ A. We saw above that the first case

leads to a contradiction, so ch−1 ∈ A.

So, for the chain to be active, since we condition on the nodes in A, necessarily

the chain has the following arcs: ch−2 → ch−1 ← ch. Let xuz = ch−2. Again, by

definition of OTDBNs, either (r = z) ∧ (u 6= w) or (r 6= z) ∧ (u = w). In the second

case, ch−2 is a duplicate of ch−1 in another time slice, hence ch−2 ∈ A and, by d-

separation, the arc ch−2 → ch−1 blocks the chain. In the first case, by definition of A,

ch−1 = xwr ∈ anr(x
k
r) and, since ch−2 is a parent of ch−1, ch−2 ∈ anr(x

k
r). This implies

that ch−2 6∈ Link. But, by assumption, ch is the first node in the chain belonging

to B. Hence, necessarily, ch−2 ∈ A and arc ch−2 → ch−1 blocks the chain. Overall,

{c1, . . . , cn} cannot be an active chain. Hence (B1
t ∪B2

t−1 ∪ yB)⊥⊥L ∪ yLink|A.

Now, exploiting this independence, Equation 4.4 becomes:

p(x
Qj
t ,x

Rj
t−1,y1:t−1,y

Qj
t ) =

∫
p(A,yA)p(L,yLink|A)p(B1

t , B
2
t−1,y

B|A)d(A\At).

Particles’ permutations over subparts L for fixed values of A do not affect distribution

p(L,yLink|A) since estimations by samples are insensitive to the order of the elements

in the samples. In addition, the estimations of p(A,yA) and p(B1
t , B

2
t−1,y

B|A) are

neither affected since conditionally to A, B is d-separated from L. Consequently, ap-

plying permutation σk over L does not alter the estimation of p(x
Qj
t ,x

Rj
t−1|y1:t−1,y

Qj
t ).

2

4.3 Swapping Based Partition Sampling in prac-

tice

It is important to note that, to be admissible, a permutation can only swap particles

having identical values for every object part in A. Actually, in theory, only considering

the current time slice may lead to incorrect results. For instance, in the DBN of

Figure 4-2, P2 = {2, 3}, i.e., object parts x2
t and x3

t are propagated/corrected in

parallel and, therefore, are good candidates for swapping. Now, Linkt(x
2
t ) = {x2

t},
At = {x1

t}. By d-separation, Linkt(x
2
t ) is not independent from x3

t conditionally to At

because the chain {x2
t ,x

2
t−1,x

1
t−1,x

3
t−1,x

3
t} is active. Hence, swapping over Linkt(x

2
t )’s

parts, some particles that have the same value on At but not on the rest of A, can

modify the estimation of the joint posterior density p(xt|y1:t) since the x3
t part is not

swapped accordingly.

However, in practice, whenever two particles have the same value on At, the
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continuous nature of the state space (location, angle,. . .) make it highly probable

that one particle is a copy of the other due to resampling. Hence, their values on the

whole of A should also be identical. In other words, due to the continuous nature of

the state space, whenever two particles have precisely the same values on At, they

should also have the same values on the whole of A. This leads to the following kind

of permutations:

Definition 4-4 (almost admissible permutation) Let k ∈ Pj. A permutation

σ : {1, . . . , N} 7→ {1, . . . , N} is said to be almost admissible if and only if x
(i),h
t =

x
(σ(i)),h
t for all h ∈ At and all i ∈ {1, . . . , N}.

Our implementation approximates the posterior distributions by performing swap-

pings 
Pj using almost admissible permutations. The advantage is that we do not

need to keep track of the trajectories of the particles from time slices 1 to t. Another

improvement can be made in the case where, considering only a single time slice, the

OTDBN is a tree or a forest. This corresponds to the case where the structure of the

articulated object (a group of articulated objects, in the case of forest) to be tracked

is a tree. This is precisely the case in Figure 4-2 and it is often the case in articulated

object tracking. In such setting, according to Definition 4-2, Linkt(x
k
t ) = {xkt } ∪ {

descendants of xkt in time slice t}. Since x
Qj
t ∩{ descendants of xkt in time slice t} = ∅,

we have Link
Qj
t (xkt ) = {xrt ∈ Linkt(x

k
t ) : r ∈ Qj} = {xkt }. In addition, Link

Rj
t−1(xkt ) =

{xrt−1 : xrt ∈ Linkt(x
k
t ) and r ∈ Rj} = {descendants of xkt−1 in time slice t − 1}. Ac-

cording to Definition 4-3, At = ant(x
k
t )∩(∪xht ∈Linkt(x

k
t )pat(x

h
t )) = pat(x

k
t ). So we shall

permute only particles with the same value of pat(x
k
t ). Note that, when the single

time slice subnetworks of OTDBNs are not trees or forest, there may exist some nodes

xkt and xht such that k, h ∈ Pj and Link
Qj
t (xkt ) ∩ Link

Qj
t (xht ) 6= ∅. This is for instance

the case of xkt and the nodes at the left of xkt in Figure 4-7. In this case, it is useless

to consider permuting particles first w.r.t. xkt and, then, w.r.t. xht , the second per-

mutation canceling the first one. In the case where single time slice subnetworks are

trees or forests, this problem cannot arise since, as shown above, Link
Qj
t (xkt ) = {xkt }

and Link
Qj
t (xht ) = {xht } and, therefore, Link

Qj
t (xkt ) ∩ Link

Qj
t (xht ) = ∅. Thus, in this

case, Link
Qj
t (xht ) can be safely swapped without affecting any previous or subsequent

swappings.

Finally, let us show how 
Pj can determine attractive swappings, i.e., how high-

peaked regions can be discovered. From the preceding paragraph, two particles with

the same value on some pat(x
r
t ) have most probably been generated from the dupli-

cation of the same particle during a resampling step. In this case, for all k ∈ Qj−1,

they also have the same value of xkt . We can then partition sample {(x(i),Qj
t ,x

(i),Rj
t−1 )},

i = 1, . . . , N , into subsets N1, . . . , NR such that the particles of a set Nr, r = 1, . . . , R,
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have the same value of xkt for all k ∈ Qj−1. It should be noted that in practice,

we do not need to check for all values of substates in Qj−1 to construct the sub-

sets N1, . . . , NR: it is sufficient to check for the value of only one substate k where

xkt = pat(x
r
t ) and r ∈ Pj. More precisely, whenever two particles x

(i)
t and x

(j)
t are such

that x
(i),k
t = x

(j),k
t where xkt = pat(x

r
t ) and r ∈ Pj, then they are in the same parti-

tion. Among each set Nr, all possible permutations are eligible. Let {r1, . . . , rs}
be the elements of Nr. For each k ∈ Pj, let σk be the permutation that sorts

weights w
(rh),k
t , h = 1, . . . , s, in decreasing order. By applying σk for all nodes in

Link
Qj
t (xkt ) ∪ Link

Rj
t−1(xkt ) and all k ∈ Pj, we get a permutation operation 
Pj that

assigns to the first particle the set of the highest weights, to the second one, the set

of second best weights, etc. Thus, the first particles have the highest weights, and

the last ones the lowest (they will thus be discarded at the next resampling step).

Consider the example in Figure 4-10, which corresponds to the human body model in

Figure 3-5, in which we omitted the head part for clarity reasons. The left table and

right table represent the particle set before and after swapping, respectively. Here, we

have a particle set of size N = 5. Assume that parts Pj = {3, 5}, i.e., the forearms,

have just been processed and swappings are now performed to obtain an improved

particle set. The initial particle set can be partitioned into R = 2 particle sets, where

N1 = {1, 2, 3} and N2 = {4, 5}, i.e., the first set contains the top 3 particles (rows)

and the second set the 2 particles at the bottom. Actually, the first 3 particles (resp.

the last 2) have the same values on parts 1, 2 and 4, which correspond to the values

of x
Qj−1

t . For k = 3, the swapping operation sorts the first 3 values in the column

corresponding to part 3 in decreasing order and also sorts the 4th and 5th values in

this column in decreasing order. The same procedure is performed for k = 5, i.e.,

in the column corresponding to part 5. This results in the particle set in the right

table of Figure 4-10, where the first particle in each partition is assigned the set of

the highest weights, the second particle in each partition is assigned the set of the

second highest weights, etc.
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Figure 4-10: Example before (left) and after swapping (right). Each row

represents a particle x
(i)
t and each number a value x

(i),j
t of part j of the particle.
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The following proposition shows that this process results in the permutation that

increases the more the sum of the particles (when function f is linear) and that this

tends to increase more the weights of particles with high weights (when function f is

strictly convex). This justifies that our swappings tend to move the particles toward

the modes of the distributions.

Proposition 4-3 Let f : R 7→ R be a strictly increasing convex function. Let

Pj = {i1, . . . , i|Pj |} be a set of conditional independent subparts and let {w(i),k},
i ∈ 1, . . . , N , k ∈ Pj, be the set of weights of N particles on subpart k. Let {v(i),k},
i ∈ 1, . . . , N , k ∈ Pj, be the weights resulting from the application of 
Pj on {w(i),k}.
Finally, let Σir , r ∈ {1, . . . , |Pj|}, denote the set of almost admissible permutations

over xirt and let Σ = Σi1 × · · · × Σi|Pj |
. Then 
Pj is the unique set of permutations

such that:

N∑
i=1

f

∏
k∈Pj

v(i),k

 = max
(σi1 ,...,σi|Pj |

)∈Σ

N∑
i=1

f

∏
k∈Pj

w(σk(i)),k

 (4.5)

Proof of Proposition 4-3: First, consider 2 particles a, b ∈ 1, . . . , N , whose weights,

say t(a) and t(b), are such that
∏

k∈Pj t
(a),k ≥

∏
k∈Pj t

(b),k and such that there exists

h ∈ Pj such that t(b),h > t(a),h. Let ρ = t(b),h − t(a),h and denote:

α =
∏

k∈Pj ,k 6=h t
(a),k × t(a),h β =

∏
k∈Pj ,k 6=h t

(a),k × ρ,
γ =

∏
k∈Pj ,k 6=h t

(b),k × t(a),h δ =
∏

k∈Pj ,k 6=h t
(b),k × ρ.

Then, let us show that f(α + β) + f(γ) > f(α) + f(γ + δ) or, in other words,

that swapping the hth weight between particles (a) and (b) strictly increases the

sum over these particles of f(weight). By hypothesis,
∏

k∈Pj t
(a),k ≥

∏
k∈Pj t

(b),k and

t(b),h > t(a),h, which implies that
∏

k 6=h t
(a),k >

∏
k 6=h t

(b),k. Hence β > δ. As f is

strictly increasing, f(α+β) > f(α+δ). Therefore, f(α+β)+f(γ) > f(α+δ)+f(γ).

Now, let us show that f(α+δ)+f(γ) ≥ f(α)+f(γ+δ). This is equivalent to showing

that f(α+δ)−f(α) ≥ f(γ+δ)−f(γ). It is well known that, for any convex function g,

and any x1 < x2 < x3, we have: g(x3)−g(x2)
x3−x2 ≥ g(x2)−g(x1)

x2−x1 . Now, γ < γ + δ ≤ α < α+ δ

because all these quantities are strictly positive and γ + δ and α are the weights of

particles (b) and (a) respectively. Hence, if γ + δ = α, then

f(α + δ)− f(α)

α + δ − α
≥ f(α)− f(γ)

α− γ
=
f(γ + δ)− f(γ)

γ + δ − γ
,
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else (i.e., when γ + δ < α):

f(α + δ)− f(α)

α + δ − α
≥ f(α)− f(γ + δ)

α− γ − δ
≥ f(γ + δ)− f(γ)

γ + δ − γ
.

Overall f(α + δ) − f(α) ≥ f(γ + δ) − f(γ) and, by transitivity, f(α + β) + f(γ) >

f(α) + f(γ + δ).

Let σ be a permutation maximizing
∑N

i=1 f(
∏

k∈Pj w
sk(i),k) over all permutations

(s1, . . . , s|Pj |) ∈ S. Denote by v(i),k the weights wσk(i),k resulting from the application

of σ on the original particle weights {w(i),k}. Without loss of generality, assume

that σ sorts the “total” particle weights in decreasing order, i.e., that
∏

k∈Pj v
(a),k ≥∏

k∈Pj v
(b),k ⇐⇒ a ≤ b. By the preceding paragraph, there cannot exist h ∈ Pj such

that there exists i ≥ 2 such that v(i),h > v(1),h, else by permuting v(i),h and v(1),h,

we would get a permutation strictly increasing the sum of f(weights). For the same

reason, there cannot exist h ∈ Pj such that there exists i ≥ 3 such that v(i),h > v(2),h.

By induction, we have that, for any r, there cannot exist h ∈ Pj such that there exists

i > r such that v(i),h > v(r),h. This precisely correspond to the permutation operation


Pj . Therefore, 
Pj is the unique permutation satisfying Equation 4.5. 2
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Figure 4-11: The human body model used for tracking.

Example. Considering the example of human body tracking in Fig 3-5. Fig 4-11

shows the DBN used for modeling this problem.

SBPS starts by processing part 1 (which includes the propagation, correction

and resampling of part 1). At the next step, SBPS processes the children parts

of part 1 in parallel, i.e. parts {2, 4, 6}. Figure 4-12 (first two rows) shows all

possible permutations after the propagations of {2, 4, 6}. At the final step, SBPS
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processes the children part of {2, 4, 6} in parallel, i.e. parts {3, 5}. Figure 4-12

(last row) shows all possible permutations after the propagations of {3, 5}.

    swapping

swapping swapping

swapping swapping

  (a)
(b)

Figure 4-12: Illustration of the swapping principle between two configu-
rations (blue and red). Top and middle lines: head, right arms and left arms
swappings with identical torso. Last line, left: right lower arm swapping with the
same value for the right forearms. Last line, right: left lower arm swapping with the
same value for the left forearms.

To conclude this section, note that the time complexity of the permutation algo-

rithm for all Pj is in O(PN(E+logN)), where E is the size of variables xkt . Actually,

for a given Pj, by using a hash table, the complexity of determining all sets Nr is

in O(N). For each Nr, we have to sort |Pj| lists, which can be globally done in

|Pj|N logN . Finally, applying permutations modify at most P |xkt | per particle and

is then in O(NPE).
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4.4 Experimental results

4.4.1 Video sequences

Our experiments are first performed on synthetic video sequences so that we do not

have to take into account specific properties of images (noise, etc.) and, additionally,

we can simulate specific motions. This thus allows to compare particle filters on the

sole basis of their estimation accuracy and computation times and, moreover, to focus

comparisons on different features. Therefore, we have generated our own synthetic

video sequences composed of 300 frames of 800 × 640 pixels. Each video displays

an articulated object randomly moving and deforming over time, subject to weak or

strong motions. Some examples are given in Figure 4-13. With various numbers of

parts, articulated objects are designed to test the capacity of particle filters to deal

with high-dimensional state spaces.

K = 3, |Pj | = 2 K = 3, |Pj | = 3 K = 6 , |Pj | = 4 K = 7 , |Pj | = 10

P = 5, |X | = 15 P = 7, |X | = 21 P = 21, |X | = 63 P = 61, |X | = 183

Figure 4-13: Examples of frames extracted from our synthetic video se-
quences (300 frames of 800 × 640 pixels). The features of the corresponding
articulated objects (number of arms |Pj|, j > 1, length of arms K − 1, total number
of parts P , and dimension of state space X ) are reported below.

4.4.2 Experimental setup

The tracked objects are modeled by a set of P polygonal parts (or regions): a central

one P1 (containing only one polygon) to which are linked |Pj|, j > 1, arms of length

K − 1 (see Section 4.1, and Figure 4-13 for some examples). State vectors contain

the parameters describing all the parts and are defined by xt = {x1
t , . . . ,x

P
t }, with

xkt = {xkt , ykt , θkt }, where (xkt , y
k
t ) is the center of part k, and θkt is its orientation, k =

1, . . . , P . We thus have |X | = 3P . A particle x
(i)
t = {x(i),1

t , . . . ,x
(i),P
t }, i = 1, . . . , N , is

a possible spatial configuration, i.e., a realization, of the articulated object. Particles

are propagated using a random walk whose variance has been empirically fixed for

all tests (σx = 1, σy = 1 and σθ = 0.025 rad).
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A classical approach to compute particle weights consists of integrating the color

distributions given by histograms into particle filtering [75]. In such cases, we measure

the similarity between the distribution of pixels in the region of the estimated part

of the articulated object and that of the corresponding reference region. The particle

weights are then computed by w
(i)
t+1 = w

(i)
t p(yt+1|x(i)

t+1) ∝ w
(i)
t e
−λd2

, with, in our tests,

λ = 50 and d the Bhattacharyya distance [10] between the target (prior) and the

reference (previously estimated) 8-bin histograms. For all the compared algorithms,

the tracking is manually initialized in the first frame of the tested sequence.

In order to show the effectiveness of SBPS and of its swapping operation, we

compare SBPS, PS, APF with 1 layer of annealing and a variant of APF which we

called SBAPF, which consists of adding a swapping after a layer of annealing. For all

the compared filters, the articulated object’s joint distribution is estimated starting

from its central part P1. Then, PS propagates and corrects particles polygon after

polygon to derive a global estimation of the object (see the condensation diagram

of Figure 3-4). Similarly, APF adds an optimization step (annealing) to estimate

the parts of the articulated object sequentially. Quite differently, SBPS and SBAPF

considers the object’s arms as independent conditionally to the central part, and

thus propagate, correct and swap simultaneously the Pj’s parts, the jth joints of all

the arms, for all j = 2, . . . , K (see Figure 4-6). SBPS, PS, SBAPF and APF are

compared w.r.t. two criteria: computation times and estimation errors. The latter

are given by the sum of the Euclidean distances between each corner of the estimated

parts and its corresponding corner in the ground truth we have generated with the

video sequences. All the results presented here are a mean over 250 runs performed

on a PC with a 3.07 GHz Intel Core i7.

4.4.3 Qualitative tracking results

This subsection is dedicated to visual tracking evaluation. Figure 4-14 and 4-15 shows

tracking results obtained with SBPS, PS, SBAPF and APF on two different video

sequences: estimations correspond to the white articulated object superposed to the

real images, and are the average (weighted sum) of all the particles. Only frames 50,

150 and 250 are displayed and, moreover, zooms focusing on the objects are made

to better distinguish the discrepancy between the estimated and the real objects. As

can be visually seen, SBPS (SBAPF) seems to be more robust than PS (APF) for

tracking these objects. In Figure 4-16, the five best particles (i.e. those with the

highest weights) are drawn in white. Here again, SBPS (SBAPF) concentrates more

the best particles around the object (i.e., around the modes of the distribution to

estimate) than PS (APF).
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PS

SBPS

APF

SBAPF

Figure 4-14: Qualitative tracking results. Sequence with object with K = 3,
|Pj| = 4 (|X | = 15), N = 50 particles. Estimated object (particles’ average) is
superposed in white on frames 50, 150 and 250.
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PS

SBPS

APF

SBAPF

Figure 4-15: Qualitative tracking results. Sequence with object with K = 2,
|Pj| = 6 (|X | = 15), N = 100 particles. Estimated object (particles’ average) is
superposed in white on frames 50, 150 and 250.
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PS

SBPS

APF

SBAPF

Figure 4-16: Qualitative tracking results. Sequence containing one object with
K = 3, |Pj| = 3 (|X | = 12). The five best particles (i.e. those with highest weights)
are superposed on the frame 50, 150 and 250 (zooms).
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All these qualitative results highlight the fact that, by embedding a swapping

step, SBPS (SBAPF), seems to be more robust than PS (APF). Finally, we show in

Figure 4-17 the effect of swapping: particles are more concentrated on the object, i.e.

on the modes of the density to estimate.

(a) (b) (c)

Figure 4-17: The effectiveness of the swapping operation. Figure (a) shows
the particle set obtained by PS after processing the center part. Starting from this
particle set, Figure (b) shows the particle set obtained by PS after processing the two
extremities sequentially and Figure (c) shows the particle set obtained by processing
the two extremities in parallel and then applying the swapping operation. The particle
set in (c) are clearly more focused on the mode of the posterior distribution of the
target object than that in (b).

The next subsections are dedicated to quantitative results and will confirm these

first observations.

4.4.4 Quantitative tracking results

Specific synthetic sequences have been generated in which the object is more strongly

deforming and moving during some time intervals ([80−120] or [200−250]). Figure 4-

18 shows the tracking errors over time for two objects defined in state spaces whose

dimensions are 28 and 35 respectively. As can be seen, SBPS (SBAPF) is less affected

than PS (APF) by strong motions of the object. This demonstrates the robustness

of the proposed approach, in particular of the swapping operation.

One of the main features of SBPS and SBAPF is their ability to simultaneously

deal with independent parts, making them effective for tracking in high-dimensional

spaces. We then have performed experiments varying the two factors that contribute

to increasing the state space dimensions: the number of parts that can be simultane-

ously treated (given by parameter |Pj|), and the length of the object’s arms (given by

parameter K). For a fair comparison, the number of particles used by methods are

determined so that they evaluate the same number of times the likelihood function at

each time step. For instance, if for PS and SBPS we have N = 100, then the number
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(a) (b)

Figure 4-18: Estimation errors for SBPS, PS, SBAPF and APF. Some interval
times are subject to strong motions and deformations of the object ([80 − 120] and
[200 − 250]). (a) Object with K = 5, |Pj| = 5 (P = 26, |X | = 28), N = 80. (a)
Object with K = 4, |Pj| = 8 (P = 33, |X | = 35), N = 100.

of particles used by SBAPF and APF with one layer is N = 50. Indeed, if SBAPF

and APF use L layers of annealing, the number of particles used by APF and SBAPF

should be divided by L+ 1, since the likelihood function is re-evaluated at each layer.

In the rest of this section, N will always correspond to the number of particles used

by PS and SBPS, and then APF and SBAPF use N/(L + 1) particles. By default,

both filters use L = 1 layer, and then N/2 particles.

4.4.4.1 Performances depending on K

In this set of experiments, |Pj| is fixed to 4 (i.e., objects have 4 arms), and K varies

from 2 to 8. Experiments were performed with various numbers of particles (N = 50,

N = 100, N = 200 and N = 300). Figures 4-19 and 4-20 show the estimation errors

and the standard deviations obtained for four methods. We can observe that SBPS

(SBAPF) always outperforms PS (APF) in terms of estimation errors. In addition,

the difference of estimation errors between SBPS and PS increases when the length of

the object’s arms K increases. SBAPF also outperforms APF. This is logical, because

SBAPF adds a swapping step after the annealing. Note that SBPS gives higher errors

than APF: when K increases, the swapping seems to be less robes than annealing for

large values of N .

The standard deviations of SBPS (SBAPF) tend to be lower than those of PS

(APF). When N increases, APF and SBAPF are more stable than other approaches,

and PS becomes totally destabilized. For any value of N , SBAPF has the lowest and
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most stable standard deviation. This shows the interest of the simultaneous inde-

pendent treatments since those both reduce the estimation errors and their standard

deviations. We will show in the next section that SBPS (SBAPF) also outperforms

PS (APF) in terms of computation times, so that the gain in accuracy is not made

at the expense of response times.
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Figure 4-19: Estimation errors of SBPS, PS, SBAPF and APF for tracking
an object with |Pj| = 4, depending on K. (a) N = 50. (b) N = 100. (c)
N = 200. (d) N = 300.

4.4.4.2 Performances depending on |Pj|

In this set of experiments, K is fixed to 4 (i.e. the length of arms is 3) , and |Pj|
varies from 3 to 8. Again, experiments were performed with various numbers of

particles (N = 50, N = 100, N = 200 and N = 300). Figures 4-21 and 4-22 show the

estimation errors and the standard deviations obtained by the four methods. We can
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Figure 4-20: Standard deviations of SBPS, PS, SBAPF and APF for tracking
an object with |Pj| = 4, depending on K. (a) N = 50. (b) N = 100. (c)
N = 200. (d) N = 300.

observe some differences with the previous experiments. First of all, for any value of

N , the two best filters are SBAPF and SBPS. This means that PS as well as APF

are very perturbed by the increase of |Pj|.

Concerning standard deviations (Figure 4-22), here again, more stable results are

obtained by SBPS and SBAPF. One can note that increasing |Pj| perturbs less all

methods than increasing K: standard deviations are divided by 3 or 4, and estimation

errors are also lower. This can be explained by the fact that the sequential scheme

adapted by all the approaches (inspired from PS’s scheme) add noise iteratively and,

thus, first parts in the process are better estimated than last parts: the longer the

arms, the higher the estimation errors and standard deviations.

The fact that SBPS outperforms APF in terms of both estimation errors and
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standard deviations shows that our swapping step is particularly effective when a lot

of parts can be computed in parallel, compared to an optimization approach.
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Figure 4-21: Estimation errors of SBPS, PS, SBAPF and APF for tracking
an object with K = 4, depending on |Pj|. (a) N = 50. (b) N = 100. (c)
N = 200. (d) N = 300.

4.4.4.3 Performances depending on N (convergence study)

We studied the convergence of SBPS, PS, SBAPF and APF in terms of the evolution

of the tracking errors and the standard deviations w.r.t. the number N of particles.

Figure 4-23 shows the estimation errors obtained for the four methods for two different

tracked objects: one with long arms (K = 8 and |Pj| = 4), the other one with a lot

a arms (K = 4 and |Pj| = 6). For both objects, we can observe that SBPS (SBAPF)

converges faster than PS (APF): we can see on both examples the interest of the

swapping step on PS and APF. As in the previous subsection, we observe that when
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Figure 4-22: Standard deviations of SBPS, PS, SBAPF and APF for tracking
an object with K = 4, depending on |Pj|. (a) N = 50. (b) N = 100. (c)
N = 200. (d) N = 300.
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Figure 4-23: Convergence study (estimation errors) for SBPS, PS, SBAPF
and APF. From left to right, an object with K = 8, |Pj| = 4 (P = 33, |X | = 35),
and an object with K = 4, |Pj| = 6 (P = 25, |X | = 27).

dealing with a lot of arms (i.e. a lot of parts are processed in parallel), SBPS becomes

equivalent to APF. SBAPF converges faster and better than all the other approaches:

we need less particles to achieve lower estimation errors.

The standard deviations of four methods are given in Figure 4-24. SBPS’s stan-

dard deviations converge at the same rate as that of PS when tracking object K = 8

and |Pj| = 4, and faster than PS when tracking object K = 4 and |Pj| = 6. SBAPF’s

standard deviation is always lower and more stable than the other approaches’ one.

Note here again the fact that increasing |Pj| increases the interest of using the swap-
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Figure 4-24: Convergence study (standard deviations) for SBPS, PS,
SBAPF and APF. Two objects in Figure 4-23 were used. (left) object with K = 8,
|Pj| = 4 and (right) object with K = 4, |Pj| = 6.
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ping step (the standard deviation for such cases is always lower for SBPS and SBAPF).

To conclude, we have shown that our approach, SBPS, consisting in swapping

independent subparts, decreases significantly the estimation errors as well as their

standard deviation compared to PS. We have also shown the interest of the swapping

operation when incorporating it into the APF framework, since in all experiments,

SBAPF outperforms APF in terms of both estimation errors and standard deviations.

The next section is dedicated to a comparison between an optimization process (i.e.

the annealing) and our swapping operation in terms of estimation errors.

4.4.4.4 Swapping versus Annealing

One important factor that impacts on the performances of APF is the number of layers

used for annealing. As shown previously, SBAPF, which incorporates a swapping

step into the APF framework, improves significantly the performance of APF. This is

however logical to think that adding swapping as a supplementary step after annealing

could improve the efficiency of APF. That is why we investigate more deeply in the

next paragraph the performances of APF in terms of number of layers and compare

its estimation errors with those of SBAPF.

We thus have made the number L of layers of APF vary and have computed the

estimation errors obtained for the two objects of the previous section (i.e. with K = 8,

|Pj| = 4 and with K = 4, |Pj| = 6). We compared the results with those obtained for

SBAPF with one layer. The number of particles N is fixed to 300 for SBAPF, and

N/(L+ 1) for APF. Figure 4-25 shows the corresponding estimation errors and their

standard deviations obtained by APF (depending on L) in comparison with those

by SBAPF (here L = 1). As can be observed, APF achieves its best performance

when the number of layers is two (when tracking the object with K = 8, |Pj| = 4) or

three (when tracking the object with K = 4, |Pj| = 6). In all cases, SBAPF always

outperforms APF in terms of both estimation errors and standard deviations. These

results show the interest of the swapping operation: adding one swapping step after

annealing is sufficient to achieve performances that APF will never reach. Moreover,

this figure also shows a strong disadvantage of APF: after two layers (when track-

ing the object with K = 8, |Pj| = 4) and three layers (when tracking the object

with K = 4, |Pj| = 6), the set of particles of APF get stuck into local optima and

thus cannot improve anymore the tracking performance (indeed, above 3 layers, the

performance tends to decrease). On the contrary, by permuting some subsamples of

the object parts so that the best subsamples are combined into new particles, the

swapping operation can shift the particle set toward the modes of the posterior dis-

tribution and thus improves significantly the performances.
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Figure 4-25: Role of the number of layers. Comparison between APF’s and
SBAPF’s performances. First row, from left to right: estimation errors and standard
deviations when tracking an object with K = 8, |Pj| = 4. Second row, from left to
right: estimation errors and standard deviations when tracking an object with K = 4,
|Pj| = 6.

In the next section, we show that all these improvements are not achieved at the

expense of computation times.

4.4.5 Computation times

The global computation time of the tracking is supposed to be measured by consider-

ing all the different steps of the algorithms: propagations, corrections and resampling

for classical approaches (PS and APF), plus our swapping step for SBPS and SBAPF.

For all of these methods, propagations and corrections (likelihood computations) take

the same time. Thus, we only need to consider resampling and swapping to compare
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computation times. In Section 4, we argued that, by simultaneously processing in-

dependent parts of the objects, SBPS reduces the number of resamplings compared

to PS (this is also true for SBAPF when comparing to APF). However, it also in-

troduces a new swapping step that may potentially increase the global computation

times. To show that this is not the case, as in the previous subsection, we studied the

behaviors of SBPS, PS, SBAPF and APF in terms of resampling computation times

and swapping computation times depending on K, |Pj| and N .

4.4.5.1 Computation times depending on K

Figures 4-26 reports the resampling times for all approaches depending on K, i.e., the

length of the |Pj| = 4 arms of an object tracked with N = 50, N = 100, N = 200 and

N = 300 particles. Note that for SBPS and SBAPF, swapping times are included in

these resampling times (see Figure 4-27 for more details). For any value of K, and

for the 4 values of N tested, we note that SBPS and SBAPF require less computation

times for resampling and swapping step than PS and APF need only for resampling.

Moreover, this difference increases with K. For example, with N = 300 and K = 9,

SBAPF is 1.2 second faster than APF (21% faster), and SBPS 0.6 second faster (10%

faster).

Figure 4-27 shows separately the resampling and swapping times for SBPS in

comparison with the resampling times for PS (those of SBAPF and APF are not shown

since the comparison gives the same conclusions). The most significant observation is

that when K increases, PS resampling times drastically increase compared to those

of SBPS. This is due to the swapping step, that enables to construct better particles

(i.e. with highest weights), located near the modes of the density to estimate, and

then to reduce the resampling times. We can conclude that adding the swapping step

does not increase the total computation times when K increases.

4.4.5.2 Computation times depending on |Pj|

Figures 4-28 and 4-29 show the curves for similar tests while making |Pj|, the num-

ber of arms of the tracked object, vary. In these experiments, we can observe that

the computation times of SBPS (SBAPF) are significantly lower than those of PS

(APF). While adding parts to compute in parallel to the articulated object drasti-

cally increases the resampling times of PS and APF, those for SBPS and SBAPF

increase very slowly. Note that SBPS and SBAPF give similar times. For example,

with N = 300 particles, and |Pj| = 8, SBPS and SBAPF are 1.5 second faster (65%

faster). In the same curve (Figure 4-29(d)), we can see that when |Pj| changes from
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Figure 4-26: Resampling times in seconds (resampling plus swapping steps).
Comparison between SBPS, PS, SBAPF and APF for tracking an object with |Pj| = 4
arms, depending on K. (a) N = 50. (b) N = 100. (c) N = 200. (d) N = 300.
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Figure 4-27: Resampling and swapping times (in seconds). Comparison be-
tween SBPS and PS for tracking an object with |Pj| = 4 arms, depending on K. (a)
N = 50. (b) N = 100. (c) N = 200. (d) N = 300.

89



3 to 8, times are multiplied by 7.2 for PS, 5.5 for APF and 4 for SBPS and SBAPF.

Although, compared to PS and APF, SBPS and SBAPF have additional swapping

steps, the latter are significantly faster than the former in terms of resampling’s and

swapping’s computation times. This is due to the fact that, by processing many dif-

ferent parts of the object simultaneously, SBPS and SBAPF reduce significantly the

number of resamplings performed. As swapping is a fast operation, the latter is not

sufficient to make SBPS’s (SBAPF’s) computations longer than those of PS (APF).
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Figure 4-28: Resampling times in seconds (resampling plus swapping steps).
Comparison between SBPS, PS, SBAPF and APF for tracking an object with K = 4
arms, depending on |Pj|. (a) N = 50. (b) N = 100. (c) N = 200. (d) N = 300.

The efficiency of the swapping operation in terms of computation time when |Pj|
increases is clearly shown in Figure 4-29. For example, when |Pj| changes from 3 to

8, resampling times are multiplied by 7.2 for PS and 4 for SBPS (swapping times are

also multiplied by 3).
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Figure 4-29: Resampling and swapping times (in seconds). Comparison be-
tween SBPS and PS for tracking an object with K = 4 arms, depending on |Pj|. (a)
N = 50. (b) N = 100. (c) N = 200. (d) N = 300.
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4.4.5.3 Computation times depending on N

Finally, Figures 4-30 and 4-31 highlight how the number of particles used to track an

object affects the computation times. In this experiment, two objects were tracked:

one with |Pj| = 6 and K = 4 (|X | = 27), the other with |Pj| = 4 and K = 8

(|X | = 35). Remark that swapping times are linearly related to N , and that the

differences of resampling times between PS and SBPS increase with N , as well as,

of course, total computation times. We can observe that SBPS and SBAPF are the

least drastically influenced by the increase of N . In Figure 4-30(b), we can see that

PS’s resampling times are multiplied by 60 when N increases from 50 to 1000, when

SBPS’s ones are multiplied by only 20.
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Figure 4-30: Computation times of SBPS, PS, SBAPF and APF (in seconds)
for tracking an object with K = 4 and |Pj| = 6. (a) Total computation times of
resampling and swapping step. (b) Computation times of resampling and swapping
step of SBPS and PS.

In this section, we provided deep qualitative and quantitative tests on the case of

single articulated object tracking to show that our algorithm outperforms the other

ones compared (PS and APF) both in terms of computation times and estimation

errors. The next section is dedicated to the specific case of multiple articulated object

tracking. We will see that, in such cases, our swapping is very efficient, because lots

of parts can be processed in parallel, increasing both the estimation accuracy and the

computation times.
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Figure 4-31: Computation times of SBPS, PS, SBAPF and APF (in seconds)
for tracking an object with K = 8 and |Pj| = 4. (a) Total computation times of
resampling and swapping step. (b) Computation times of resampling and swapping
step of SBPS and PS.

4.4.6 Extension to multiple articulated object tracking

In this section we address the multiple object tracking problem. There are two general

ways to deal with such a task: either one filter can be used for all the tracked objects

but, then, this filter has to deal with very high-dimensional state spaces, e.g., for M

objects, the number of dimensions of the state space is multiplied by M ; or one filter

can be used per object, and each such filter just works in the reduced state space

corresponding to the object it tracks. The goal of this subsection is to show that

using one SBPS filter for all the objects is at least as efficient as using one PS filter

per object: this will demonstrate the capacity of our approach to deal with high-

dimensional subspaces by taking into account all the independences in the tracking

problem.

Table 4.1 provides comparative results concerning the estimation errors and the

computation times for both PS and SBPS. Here, each tracked object is defined by

|Pj| = 4 and K = 3, and all objects are moving and deforming independently over

time. We tested cases with M = 2 or M = 3 objects. When only one filter is used

to estimate M objects, this one always uses N = 100×M particles. When M filters

are used (one per object), two configurations are tested: the case where each filter

uses N = 100 ×M particles and that where N = 100 particles are used per filter.

As each such filter tracks only one object, it should actually need fewer particles for

an accurate tracking. First, note that the lowest estimation errors result from SBPS
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Table 4.1: Estimation errors (e, in pixels) and computation times (in seconds, t total
computation time, r resampling time and s swapping time), for M objects with K = 3
and |Pj| = 4 (N is the number of particles used per filter).

1 PS M PS 1 SBPS M SBPS
N = M × 100 M × 100 100 M × 100 M × 100 100

M = 2

e 356 281 311 211 236 260
t 36.6 34.9 16.4 36.3 34.9 16.3
r 3.0 1.7 0.6 0.9 1.0 0.3
s - - - 1.1 0.5 0.2

M = 3

e 611 312 370 242 253 308
t 86.9 78.6 37.4 82.1 79.8 37.8
r 12.3 4.5 1.6 2.2 2.5 0.8
s - - - 3.0 1.3 0.5

(either one filter or M filters). Remark that using M PS filters is more interesting

than using one for all the objects. This holds for all the numbers N of particles tested

and it follows from the fact that the “lower” the dimension of the state space, the

more robust PS is known to be. Conversely, for SBPS, the estimation errors are lower

when using only one filter instead of M . This follows from the fact that increasing

state space dimensions also increase the efficiency of swappings (because the products

of the best weights w(i),k also tend to increase).

As for the response times, for a fixed number of particles, PS’s resampling times

are divided by M when dealing with one filter per object. This follows from the fact

that, although the number of resamplings is identical whether one or M filters are

used, the dimension of the state space for the single filter case is M times that of the

multiple filter case. Conversely, SBPS’s resampling times are equivalent when using

one or M filters because the M filters perform M times the number of resamplings

of the single filter but the latter are made in a space M times larger than those used

by the M filters. For the same reason, swapping times are equivalent for one and

M filters. Finally, when N decreases, all the computation times decrease, but the

estimation errors increase, so that this induces a trade-off between response time and

accuracy.

Overall, our approach produces more accurate results than PS and is also faster.

In addition, from the accuracy point of view, one single SBPS filter is better than

one SBPS filter per object. However, the latter requires much fewer particles and can

thus be significantly faster. This can prove to be particularly useful when dealing

with large-scale state spaces.
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4.5 Conclusion

In this chapter, we have presented a new approach for sequential estimation of densi-

ties that has two main advantages. First, it exploits the probabilistic independences

encoded into DBNs to apply particle filter computations on smaller subspaces. Sec-

ond, it swaps some subsets of particles so that they concentrate around modes of the

densities. We proposed a sound theoretical framework that guarantees that distribu-

tions are correctly estimated. In addition, we provided the time complexity of our ap-

proach. Experiments showed that our permutation operation is not time-consuming.

The combination of this swapping step with the parallel processing of conditionally

independent parts significantly reduces the number of required resampling steps, in-

ducing overall computation times that are often smaller than PS. Moreover, we have

shown that this gain of computation time increases with the state space dimension

(number of parts of articulated objects, number of objects), as well as with the number

of particles.

One of the limits of the proposed approach concerns the fact that swapping con-

structs very good particles (with high weights) as well as very bad ones (with low

weights): this causes an increase of the variance of the particle set after swapping,

that is observable for larges values of K or N for example. Another limit of the

approach is that, by swapping only w.r.t. one permutation (see Proposition 4-3), not

all the possible swappings are taken into account by our method, which could result

in some situations in some sample impoverishment. This is the reason why we in-

troduce in the next chapter another approach, called combinatorial resampling, that

considers all the possible permutations for swapping the particles. As their number

tends to increase exponentially, we show how to construct them and sample from

them implicitly, thus making the algorithm tractable even for large particle sets.
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Chapter 5

DBN-Based Combinatorial

Resampling for Articulated Object

Tracking

In this chapter, we introduce a new resampling method for articulated object tracking

called Combinatorial Resampling. Our method is motivated by the swapping oper-

ation that has been introduced in Section 4.2. Each admissible permutation creates

a new particle set of the same size as the original one, in which some particles are

more focused near the modes of the posterior density. By considering all admissible

permutations and aggregating all the particle sets resulting from their applications,

we get a particle set of exponential size that actually contains the best particles from

each permutation. Resampling from this set should thus not only allow to produce

particles with high weights but also to promote diversity among particles. Now, there

remains the question of how to resample over this particle set. Constructing it ex-

plicitly and resampling over it using some classical resampling algorithms is clearly

impractical due to the exponential size of this set. Consequently, we propose an ef-

ficient resampling algorithm that: 1) avoids the need to construct the particle set

explicitly from all admissible permutations; 2) guarantees that the posterior distribu-

tion is correctly estimated. In the rest of the chapter, we will however only consider

OTDBNs for which the structure in each time slice is a tree, i.e., contain no cycle.

As mentioned in the previous chapter, this hypothesis is rather mild for articulated

object tracking. The results presented here can certainly be extended to situations

where single time slice structures contain cycles, but, in this case, the formulas and

their evaluation shall certainly be much more complicated.

The chapter is organized as follows. Section 5.1 presents the idea of Combina-

torial Resampling and gives its theoretical soundness. Section 5.2 is dedicated to
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experimental results. We first give in Section 5.2.1 an experimental comparison on

synthetic video sequences of our combinatorial resampling with classical resampling

algorithms, namely, multinomial resampling, residual resampling, stratified resam-

pling, systematic resampling and weighted resampling. Then, in Section 5.2.2, we

compare Particle Filter with Combinatorial Resampling (PFCR) with other classical

filters, also on synthetic video sequences. Finally, in Section 5.2.3, we extend our

tests on real video sequences, showing the interest of our approach for real tracking

applications. Concluding remarks are given in Section 5.3.

5.1 Combinatorial Resampling (CR)

5.1.1 Definition

In this section we use the same notations as in Chapter 4. In this previous chapter,

we argued that all the permutations satisfying Proposition 4-2 could be applied to

the particle set without altering the estimation of the posterior density. For instance,

let x
(1)
t and x

(2)
t be two particles whose torso positions are identical, then swapping

their left arm and forearm positions cannot alter the density estimation. Similarly, the

latter is unaffected by duplications of all the particles within a particle set. Combining

these two features leads to Combinatorial Resampling, whose definition is given below.

Definition 5-1 (Combinatorial Resampling) Let S be the particle set at the jth

step of Algorithm 3.1. For any k ∈ Pj, let Σk be the set of permutations satisfying

Proposition 4-2. Let Σ =
∏

k∈Pj Σk. Let S ′ = ∪σ∈Σ{particle set resulting from the

application of σ to S}. Combinatorial Resampling consists of applying any resampling

algorithm over the combinatorial set S ′ instead of S.

To introduce the principle of CR, we now present an illustrative example.

5.1.2 Principle described in an illustrative example

Let us consider the example of Figure 5-1, and let x
(1)
t = 〈1, 2, 3, 4, 5, 6〉, x

(2)
t =

〈1, 2′, 3′, 4′, 5′, 6′〉 and x
(3)
t = 〈1′′, 2′′, 3′′, 4′′, 5′′, 6′′〉 be three particles, where each num-

ber, 1, 1′′, 2, 2′, 2′′, etc., corresponds to the state of a part in the human body model

in Figure 5-1. Assume that S = {x(1)
t ,x

(2)
t ,x

(3)
t } at the 2nd step of Algorithm 3.1,

i.e., the object parts just processed are P2 = {2, 4, 6}. Parts {2, 3}, {4, 5} and {6}
can be permuted in x

(1)
t and x

(2)
t because their torso, i.e. 1, are identical. Figure 5-2

shows an example of swapping right arms between particles with the same value for

the torso.
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Figure 5-1: A dynamic Bayesian network for human body tracking.
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Figure 5-2: Swapping right arms between two configurations with identical
torso.

Hence S ′, the combinatorial set defined in Definition 5-1, is the union of the result

of all such possible permutations over S and is thus equal to:

S ′ =

〈1,2 ,3 ,4 ,5 ,6 〉
〈1,2 ,3 ,4 ,5 ,6′〉
〈1,2 ,3 ,4′,5′,6 〉
〈1,2 ,3 ,4′,5′,6′〉
〈1,2′,3′,4 ,5 ,6 〉
〈1,2′,3′,4 ,5 ,6′〉
〈1,2′,3′,4′,5′,6 〉
〈1,2′,3′,4′,5′,6′〉

〈1,2′,3′,4′,5′,6′〉
〈1,2′,3′,4′,5′,6 〉
〈1,2′,3′,4 ,5 ,6′〉
〈1,2′,3′,4 ,5 ,6 〉
〈1,2 ,3 ,4′,5′,6′〉
〈1,2 ,3 ,4′,5′,6 〉
〈1,2 ,3 ,4 ,5 ,6′〉
〈1,2 ,3 ,4 ,5 ,6 〉

〈1′′,2′′,3′′,4′′,5′′,6′′〉
〈1′′,2′′,3′′,4′′,5′′,6′′〉
〈1′′,2′′,3′′,4′′,5′′,6′′〉
〈1′′,2′′,3′′,4′′,5′′,6′′〉
〈1′′,2′′,3′′,4′′,5′′,6′′〉
〈1′′,2′′,3′′,4′′,5′′,6′′〉
〈1′′,2′′,3′′,4′′,5′′,6′′〉
〈1′′,2′′,3′′,4′′,5′′,6′′〉

Constructing S ′ in extension is impossible in practice because |Σ| (see Definition 5-

1) tends to grow exponentially with N , the number of particles. Fortunately, we can

sample over S ′ without actually constructing it.

We shall explain the idea on the 5-sample particle set S illustrated on Figure 5-3,

which corresponds to the object of Figure 5-1 in which we omitted the head part for
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Figure 5-3: Example of configuration. Each row represents a particle x
(i)
t and

each number a value x
(i),j
t of part j of the particle.

clarity reasons. Assume that parts Pj = {3, 5}, i.e., the forearms, have just been

processed and we wish to sample over combinatorial sample S ′ induced by S. To

construct a new particle, the idea is to first select a value for the parts in Qj−1, i.e.,

those processed at previous steps by PF and in which no permutation will occur.

Here, Qj−1 = {1, 2, 4}. We thus first determine the different values of x
Qj−1

t in S and

partition S into sets S1, . . . ,SR such that all the particles in each set Sh have the

same value for x
Qj−1

t (see Figure 5-4). In this figure, S1 thus contains the first two

particles since their values on x
Qj−1

t = x
{1,2,4}
t , are both 〈1, 0, 3〉.
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1parts:
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Figure 5-4: Sets Sh.

To each such set Sh is assigned a weight Wh defined below so that picking the

value of x
Qj−1

t in Sh w.r.t. weight Wh results in a particle set estimating the same

distribution as that of S. As, by hypothesis, the structure of the OTDBN in each

time slice is a tree, once the value of x
Qj−1

t has been chosen, there just remains to

pick independently values for each part xkt , k ∈ Pj, and its descendants, that are

compatible with that chosen for x
Qj−1

t . Thus, for any h ∈ {1, . . . , R}, let Skh denote

the set of particles in S whose kth part value is compatible with the value of x
Qj−1

t

in Sh. By Proposition 4-2, Skh is the set of particles in S that have the same value of

pat(x
k
t ) as those in Sh. For instance, in Figure 5-5, S3

1 is the set of the first 3 particles

because all of them have value 1 on part 2.
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In the next section, we explain how the weights Wh are computed.

5.1.3 Computation of the sets’ weights

To determine the aforementioned weights Wh, there just needs to count how many

times the combinatorial set has duplicated Sh. So, let N1, . . . , NR and Nk
1 , . . . , N

k
R de-

note the sizes of S1, . . . ,SR and Sk1 , . . . ,SkR respectively. Let Nk = max{Nk
1 , . . . , N

k
R}

and, for any h ∈ {1, . . . , R}, let W k
h denote the sum of the weights assigned to the

kth part of the particles in Skh , i.e., W k
h =

∑
x
(i)
t ∈Skh

w(i),k. Then, as we shall prove

below, for any h,

Wh = Nh ×
∏
k∈Pj

Nk!

A
Nh

Nk
h

× ANh−1

Nk
h−1
×W k

h , (5.1)

where Akn = n!/(n − k)! stands for the number of k-permutations out of n ele-

ments. Resampling over S ′ can thus be performed efficiently as in Algorithm 5.1.

To scale-up to large particle sets, log(Wh) should be computed instead of Wh and

the weights used in line 2 of Algorithm 5.1 should be exp(logWh − logW ), where

W = max{W1, . . . ,WR}.

The global algorithm of CR and its proof of correctness are finally given in the

next section.

5.1.4 Algorithm and theoretical soundness

The global algorithm of the proposed resampling is given in Algorithm 5.1.

Proposition 5-1 Algorithm 5.1 produces a particle set estimating the same density

as that given in input.
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Input: A particle set S = {(x(i),Qj
t ,x

(i),Rj
t−1 ), w

(i)
t }Ni=1

Output: A new particle set {(x′′(i),Qjt ,x
′′(i),Rj
t−1 ), w

′′(i)
t }Ni=1

for i = 1 to N do1

h← sample {1, . . . , R} w.r.t. weights W1, . . . ,WR2

x
′′(i),Qj−1

t ← x
(z),Qj−1

t where x
(z)
t is any element in Sh3

w
′′(i)
t ← 14

foreach k in Pj do5

x
(r)
t ← sample from Skh w.r.t. weights {w(r),k

t }xrt∈Skh6

x
′′(i),k
t ← x

(r),k
t ; w

′′(i)
t ← w

′′(i)
t × w(r),k

t7

x
′′(i),Desct−1(xkt−1)

t−1 ← x
(r),Desct−1(xkt−1)

t−18

return {x′′(i)t , w′′(i)}Ni=19

Algorithm 5.1: Efficient resampling over S ′.

Proof of Proposition 5-1: Let S = {(x(i),Qj
t ,x

(i),Rj
t−1 )}Ni=1 and S ′ its combinatorial

set (see Definition 5-1). In lines 2–3, Algorithm 5.1 selects which central part Qj−1

particle x′′t should have. By definition, this amounts to selecting one set Sh w.r.t. the

sum of the weights of the particles in S ′ having the same central part as those in Sh.
Let us show that this is achieved using the weights described in Equation 5.1.

In Definition 5-1, Σk is the set of all the possible permutations of the kth part of the

particles in S. Clearly, within each set Skh , all the Nk
h ! permutations of the kth part of

the particles of this set are admissible. They form the cycles within the permutations

of Σk and, as such, a given permutation σ over Skh shall appear many times within Σk.

There is no need to count precisely how many times σ is repeated, what is important

is that the repeated sets of particles estimate the same density as S. To do so, remark

that Nk = max{Nk
1 , . . . , N

k
R} is the size of the biggest set Sk1 , . . . ,SkR. Applying all

the permutations over this set multiplies its size by Nk!, so the size of all the other

sets should be multiplied by the same amount. Duplicating Nk!/Nk
h ! permutation

σ guarantees that all the Qj−1-central parts of the particles in S are duplicated the

same number of times. Now, the particles in Sh also belong to Skh . As |Sh| = Nh,

there are ANh
Nk
h

different possibilities to assign some k-part of Skh to the particles of

Sh. The number of times these permutations are repeated within those over Skh is

thus Nk
h !/ANh

Nk
h

. Hence, duplicating (Nk!/Nk
h !) × (Nk

h !/ANh
Nk
h

) = Nk!/ANh
Nk
h

times the

permutations over Sh ensures that the particle set estimates the same density as S.

The same applies to all the other parts in Pj, hence the product in Equation 5.1.

Now, let us compute the sum of the weights of the particles resulting from all the

permutations over Sh. Each such permutation generates a new set of Nh particles.
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By symmetry, if W is the sum of the weights of the first particle in each set, call it

x
(i)
t , then the overall sum we look for is Nh ×W . As permutations over the parts in

Pj are independent, W is equal to the product over parts k ∈ Pj of the sum W k of

the weights induced by all the permutations over the kth part, i.e., the permutations

over Skh . By symmetry, any weight in Skh can be assigned to x
(i)
t , hence W k is equal to

the sum of all these weights, W k
h , times the number O of occurrences of each weight

induced by all the permutations over Skh . For instance, if there are 3 weights 1,2,3,

then there are O = 2 permutations where the first particle has a weight of 1: 〈1, 2, 3〉
and 〈1, 3, 2〉. Once particle x

(i)
t has been assigned a weight, there remains Nh − 1

weights to assign to the other particles from a set of Nk
h − 1 weights, hence there

are O = ANh−1

Nk
h−1

possibilities. Overall, W k is thus equal to W k
h × A

Nh−1

Nk
h−1

and we get

Equation 5.1.

So, lines 2–3 select correctly the Qj−1 part. Once this is done, by d-separation, all

the parts in Pj are independent and should be sampled w.r.t. p(xkt |pat(x
k
t )), which is

done in lines 5–8 since p(xkt |pat(x
k
t )) ∝ w

(i),k
t . 2

The next section is dedicated to the experimental results. We first compare CR

with other resampling approaches, then compare different particle filters. Tests are

made on synthetic and real video sequences, and the role of different parameters is

studied.

5.2 Experimental results

We use the same video sequences as in Section 4.4 for these experiments. Recall

that articulated objects are modeled by a set of P polygonal parts (or regions): a

central one P1 (containing only one polygon) to which are linked |Pj|, j > 1, arms

of length K − 1. Particles are propagated using a random walk with σx = 1, σy = 1

and σθ = 0.025. The particle weights are computed by w
(i)
t+1 = w

(i)
t p(yt+1|x(i)

t+1) ∝
w

(i)
t e
−λd2

, where the same parameters as in Section 4.4 were used, λ = 50 and d is

the Bhattacharyya distance between the target (prior) and the reference (previously

estimated) 8-bin 3-channel histograms. The articulated object’s distribution is esti-

mated starting from its central part P1. All the algorithms are manually initialized.

Results are compared w.r.t. three criteria: estimation errors, defined as the sum of the

Euclidean distances between each corner of the estimated parts and its sibling in the

ground truth, standard deviations and computation times. All the results presented

here are a mean over 250 runs performed on a PC with a 3.07 GHz Intel Core i7.

Let us first consider the articulated object of Figure 5-6, defined with K = 3 and

|Pj| = 2 (|X | = 15). We have drawn in gray the particle set before (Figure 5-6(a))
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and after (Figure 5-6(b)) the combinatorial resampling. One can see that, after the

combinatorial resampling, the particle set is more concentrated on the object (i.e.

the variance of the set was reduced by the process). The goal of this section is to

show the interest of our resampling approach compared to other ones, and how its

introduction into the particle filter framework can reduce estimation errors, while

keeping reasonable computation times.

(a) (b)

Figure 5-6: The effectiveness of combinatorial resampling. Figures (a) and (b)
show a particle set before and after applying combinatorial resampling, respectively.

In Section 5.2.1, we first present an extended experimental comparison with differ-

ent resampling methods. In Section 5.2.2, we provide a comparison of combinatorial

resampling introduced into a particle filter framework (i.e. PFCR) with different

filters, namely PS and APF, but also SBPS and SBAPF that were presented in

Chapter 4. Finally, we test our approach and compare it with others on real video

sequences.

5.2.1 Comparison with other resampling approaches

In this section, we work on the three sequences that are described in Figure 5-7.

We compare six different resampling approaches. The first five (multinomial,

systematic, stratified, residual and weighted resampling) are integrated into PS. PS

propagates and corrects particles polygon after polygon to derive a global estimation

of the object. For combinatorial resampling, the object’s arms are considered inde-

pendent conditionally to the central part as the Pj parts, j > 1, correspond to the

jth joints of all the arms. All the arms are thus processed in parallel as described in
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K = 4, |Pj| = 4 K = 6, |Pj| = 4 K = 4, |Pj| = 8
P = 13, |X | = 15 P = 21, |X | = 23 P = 25, |X | = 27

(a) (b) (c)

Figure 5-7: Tested synthetic video sequences (excerpts of frames). Features
of the corresponding articulated objects are given below (number of arms |Pj|, j > 1,
length of arms K − 1, total number of parts P , and dimension of state space X ).

SBPS. For weighted resampling, function g is set empirically to g(w) = e20w to favor

the selection of high-weighted particles over low-weighted ones.

5.2.1.1 Estimation errors

We first compared the estimation errors. Figures 5-8.(a-c) show a convergence study

of the resampling methods depending on the number N of particles for the 3 objects

of Figure 5-7. For all these tests, combinatorial resampling (CR) outperforms all the

other methods: i) it converges faster (about only N = 100 particles are necessary

to do so) when the other methods often require 300 particles to converge; ii) CR’s

error at convergence is much lower than that of the other methods. For instance,

in Figure5-8(a), CR reaches the convergence error of the other methods (about 230

pixels) with only N = 20 particles and, with 100 particles, its error decreases to 112

pixels. When the length of the arms (given by K − 1) increases (Figure 5-8(b)),

CR stays robust, whereas multinomial, systematic, stratified and residual resampling

tend to fail (estimation errors twice higher). Weighted resampling seems more stable,

but gives estimation errors 25% higher than those of CR. Finally, when the number

of parts treated in parallel increases (Fig 5-8(c)), CR stays stable: with only N =

20 particles, its estimation error is 2.5 to 3 times lower than the one of the other

resampling approaches.

5.2.1.2 Computation times

Resampling times (in seconds) over the whole sequences, are reported in Table 5.1 for

the estimation of the densities of the objects of Figures 5-7(a-c) with N = {100, 600}
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Figure 5-8: Comparison of convergence for different resampling approaches.
estimation of the density of objects depending on N : a with |Pi| = 4, K = 4 (object
of Fig. 5-7.(a)), (b) with |Pi| = 4, K = 6 (object of Fig. 5-7.(b)) and (c) with |Pi| = 8,
K = 4 (object of Fig. 5-7.(c)).
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particles. The first four resampling approaches have similar behaviors. Due to its

additional step ensuring that weights are equal to 1/N , which is required by Algo-

rithm 3.1, weighted resampling is longer. The best approach is CR when the number

of particles is high (600) and when the size of the Pj’s is high. For instance, when

tracking the object of Figure 5-7(c) (8 parts processed simultaneously), the resam-

pling times are considerably lower with CR than with the other methods. This is

due to the fact that, by processing several object parts simultaneously, the number of

resamplings performed is significantly reduced. Hence, even if performing CR once is

longer than performing another method, overall, CR is globally faster. Note also that

CR’s response times increase more slowly with N than the other methods. Finally,

when K increases (Figure 5-7(b)), our approach also provides significantly smaller

resampling times when N becomes high.

Table 5.1: Resampling times (in seconds) for the estimation of the density
of different objects, with N = {100, 600}.

Figure 5-7(a) Figure 5-7(b) Fig. 5-7(c)

100 600 100 600 100 600

Multinomial 0.5 17.1 1.3 46.9 1.8 79.6

Systematic 0.5 19.8 1.2 53.6 1.7 80.5

Stratified 0.5 16.9 1.3 44.8 1.7 74.9

Residual 0.5 20.3 1.3 55.7 1.8 83.4

Weighted 1.0 33.0 2.5 90.1 3.5 157.8

Combinatorial 0.7 10.6 1.5 26.3 1.5 22.3

In the next section, we now compare different kinds of filters, in particular we

show that embedding our CR into a particle filter framework provides good results.

5.2.2 Comparison with other filters

In this section, we introduce our combinatorial resampling into SBPS to give the Par-

ticle Filter with Combinatorial Resampling (PFCR). More precisely, we substitute the

permutation and resampling steps of SBPS by one Combinatorial Resampling oper-

ation. As we did in the previous chapter, we perform extended experimental tests to

show the superiority of PFCR as compared with APF (because PS always gave the

worst performances in Chapter 4 in terms on both computation times and estimation

errors, we have chosen not to include this filter into our error estimation comparative

tests in this chapter, but only for computation time comparisons). We also compare

PFCR with SBPS and SBAPF, also presented in Chapter 4. As previously, we com-

pare the behavior of the tested filters with respect to K, the length of arms, |Pj|,

107



the number of arms, and N the number of particles. Considering this experimental

setup, we compare the performance of PFCR in terms of estimation errors, standard

deviations and computation times with those of PS, SBPS, APF and SBAPF. Here

again, the number of particles used by the different filters is determined so that all of

them evaluate the same number of times the likelihood function (see Section 4.4.4).

When not specified, when PFCR and SBPS use N particles for tracking, SBAPF

(with 1 layer) uses N/2 particles, and APF uses N/(L + 1), with L the number of

layers of annealing (by default, L = 1, so APF uses N/2 particles). For the same

reasons discussed in Section 4.4, to compare the global computation times of PFCR

with the other methods, we only study resampling times.

5.2.2.1 Performances depending on K

In this set of experiments, |Pj| is fixed to 4, and K varies from 2 to 8. Experiments

were performed with various numbers of particles (N = 50, N = 100, N = 200 and

N = 300).

Estimation errors. Figure 5-9 shows the estimation errors obtained by SBPS,

SBAPF, APF and PFCR. Lower estimation errors are provided by PFCR. Moreover,

when K increases, the differences of estimation errors between PFCR and other filters

increases, especially when the number N of particles is small. For example, for

N = 50, when K varies from 2 to 8, PFCR’s estimation error is multiplied by 100,

and APF’s one is multiplied by 240. Here we observe the effect of the combinatorial

resampling, by just comparing SBPS and PFCR: the implicit set generated by CR

and the resampling over it allows to construct a better particle set, considerably

decreasing the estimation error. For example, for N = {50, 100, 200, 300}, and K = 8,

SBPS gives estimation errors approximately 2.6 times higher than PFCR. Finally, if

SBAPF improves APF by adding a swapping step after annealing, nevertheless, PFCR

outperforms SBAPF. This shows the interest of CR for high-dimensional state spaces

and its ability to concentrate particles around the modes of the density to estimate.

Errors’ standard deviations. Standard deviations obtained by PFCR, SBPS,

APF and SBAPF are given in Figure 5-10. As can be seen, PFCR also achieves lower

standard deviations. But the most interesting observation is that standard deviations

provided by PFCR are very stable and only slowly increase with K. For example,

for N = 50, when K varies from 2 to 8, PFCR’s standard deviation is multiplied by

20, and that of APF is multiplied by 250, and for N = 300, when K varies from 2 to

8, PFCR’s standard deviation is multiplied by 9 while that of APF is multiplied by
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Figure 5-9: Estimation errors of SBPS, APF, SBAPF and PFCR for tracking
an object with |Pj| = 4, depending on K. Tracking is performed with (a) N = 50,
(b) N = 100, (c) N = 200 and (d) N = 300.

28. A drawback of SBPS we highlighted in the previous chapter is the fact that the

performance of the swapping is highly dependent of the previous generated particle

set: very good and very bad particles can be constructed, increasing the variance

of the particle set. This problem is fixed by CR, as can be seen on the graphs of

Figure 5-10. Finally, here again, we note that PFCR outperforms SBAPF, showing

that using CR is more interesting than using a simple optimization approach followed

by the swapping step. All these observations highlight the efficiency of PFCR and its

capacity to generate the best particle set from all admissible permutations.

Resampling times. Resampling times of PS, SBPS, APF, SBAPF and PFCR

are shown in Figure 5-11. PFCR requires more computation times than SBPS and
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Figure 5-10: Standard deviations of SBPS, APF, SBAPF and PFCR for
tracking an object with |Pj| = 4, depending on K. Tracking is performed with
(a) N = 50, (b) N = 100, (c) N = 200 and (d) N = 300.

SBAPF, which are the fastest filters. However, one can notice that PFCR keeps

reasonable resampling times compared to APF, and, in particular, it requires more

resampling times than APF when N = 200 and N = 300, but less when N = 50

and N = 100. However, PFCR is still faster than PS, due to the reduced number of

resampling steps it performs (i.e. its capacity to treat in parallel some parts).

5.2.2.2 Performances depending on |Pj|

In these experiments, K is fixed to 4, |Pj| varies from 3 to 8, and the number of

particles used for tracking are N = 50, N = 100, N = 200 and N = 300 respectively.
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Figure 5-11: Resampling times of SBPS, APF, SBAPF and PFCR for track-
ing an object with |Pj| = 4, depending on K. Tracking is performed with (a)
N = 50, (b) N = 100, (c) N = 200 and (d) N = 300.

Estimation errors. Figure 5-12 shows the estimation errors obtained by SBPS,

SBAPF, APF and PFCR. Results show that PFCR gives lower estimation errors than

the other methods. Again, the differences between the estimation errors of PFCR and

those of SBPS, SBAPF, APF increase with |Pj|. Here, the worst approach is APF.

When increasing |Pj|, we increase the number of parts that can be treated in parallel,

also increasing the efficiency of the swapping process, that is why all the filters we

proposed in this thesis are efficient in such cases. CR shows again its robustness

compared to a “simple” swapping: it improves SBPS by reducing the estimation

errors up to 91%, in particular when |Pj| (and thus the dimension of the state space)

becomes high. It also shows its capacity to outperform an optimization approach

(APF), even if it is followed by a swapping step.
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Figure 5-12: Estimation errors of SBPS, APF, SBAPF and PFCR for track-
ing an object with K = 4, depending on |Pj|. Tracking is performed with (a)
N = 50, (b) N = 100, (c) N = 200 and (d) N = 300.

Standard deviations. Figure 5-13 shows the standard deviations obtained by

SBPS, SBAPF, APF and PFCR. Here we observe results similar to those of Sec-

tion 5.2.2.1: the standard deviations resulting from PFCR are always lower than

those of the other compared filters, they increase slowly with |Pj|, and are more

stable. Globally, APF gives the less stable standard deviations. This is due to the

optimization process, during which the solution can be trapped into a local maxima,

that can perturb the estimation process, and then increase the standard deviation.

Here, we also observe the superiority of PFCR over SBPS, as we analyzed previously,

because it drastically decreases the error’s standard deviation.
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Figure 5-13: Standard deviations of SBPS, APF, SBAPF and PFCR for
tracking an object with K = 4, depending on |Pj|. Tracking is performed with
(a) N = 50, (b) N = 100, (c) N = 200 and (d) N = 300.

Computation times. Figure 5-14 shows the computation times of PS, SBPS,

SBAPF, APF and PFCR. PS stays the slower approach. As previously, APF and

PFCR give equivalent computation times, except that the curves are inverted: PFCR

requires lower resampling times than APF when N = 200 and N = 300, but higher

ones when N = 50 and N = 100. The resampling times for PFCR are higher than

those of SBPS and SBAPF. When comparing with PS and APF, PFCR requires more

computation times when |Pj| is small. However, its resampling times increase more

slower than those of PS and APF, and it becomes faster than PS and APF as |Pj|
increases. Especially, it is faster than PS when |Pj| is high.
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Figure 5-14: Computation times of SBPS, APF, SBAPF and PFCR for
tracking an object with K = 4, depending on |Pj|. Tracking is performed with
(a) N = 50, (b) N = 100, (c) N = 200 and (d) N = 300.

5.2.2.3 Performances depending on N (convergence study)

We studied the convergence of PFCR, SBPS, APF and SBAPF in terms of the evo-

lution of the tracking errors and of the standard deviations w.r.t. the number of par-

ticles. Tests are made for two different tracked objects: one with long arms (K = 8

and |Pj| = 4), the other one with a lot of arms (K = 4 and |Pj| = 6).

Estimation errors. Figure 5-15 shows the estimation errors of PFCR in com-

parison with those of SBPS, SBAPF and APF for the two tracked objects. PFCR

converges faster than the other methods in terms of both estimation errors. This is

impressive to note that with only N = 50 particles, PFCR gives equivalent or lower

estimation errors (340 pixels car the first object, 288 pixels for the second object)
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that all the other filters with N = 300 particles (errors are 350 pixels for SBAPF, 370

pixels for APF and SBAPF 510 pixels for SBPS for the first object, and 280 pixels for

SBAPF, 340 pixels for APF and SBAPF 330 pixels for SBPS for the second object).

If we noticed that, in some cases, our PFCR can be slower than other filters when

using the same number of particles for tracking, however its rapidity of convergence

shows that it can perform well with only few particles, and then become faster.
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Figure 5-15: Convergence study (estimation errors) for SBPS, SBAPF, APF
and PFCR. From left to right, an object with K = 8, |Pj| = 4 (P = 33, |X | = 35),
and an object with K = 4, |Pj| = 6 (P = 25, |X | = 27).

Standard deviations. Figure 5-15 shows the standard deviations of PFCR in com-

parison with those of SBPS, SBAPF and APF when tracking two different objects.

We remark that PFCR achieves low standard deviations with only a small number

N of particles, and that they are relatively stable when N increases. This confirms

that PFCR is reliable even with a reasonably small number of particles: particles are

concentrated around the modes of the density to estimate, resulting in low standard

deviations. This can be explained by the fact that PFCR’s behavior guarantees an

efficient exploration of the search space even with a small number of particles, by

implicitly constructing a particle set of exponential size from all admissible permuta-

tions, and by selecting the best particles from this particle set.

Resampling times. Finally, Figure 5-17 reports the resampling computation times

of PFCR in comparison with those of PS, SBPS, SBAPF and APF. The fastest ap-

proaches are SBPS and SBAPF, and PS stays the slowest. PFCR produces resampling

times equivalent to those of APF for the object with a lot of arms (right of Figure 5-

17). This confirms the ability of CR to perform very well in such cases. For long
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Figure 5-17: Resampling times for PS, SBPS, SBAPF, APF and PFCR.
From left to right, an object with K = 8, |Pj| = 4 (P = 33, |X | = 35), and an object
with K = 4, |Pj| = 6 (P = 25, |X | = 27).
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arms (left of Figure 5-17), APF outperforms PFCR in terms of resampling times.

This confirms the results we obtained in the preceding sections. Note that, except

for PS, the slopes of the resampling time’s curve is relatively equivalent for the other

methods, i.e., for PFCR, SBPS, APF and SBAPF.

5.2.2.4 Combinatorial resampling versus annealing
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Figure 5-18: Comparison of the performance of APF, SBAPF and PFCR,
depending on the number of layers L. (a) and (b) provide the estimation errors
and standard deviations respectively of PFCR, APF and SBAPF when tracking an
object with K = 8, |Pj| = 4. (c) and (d) provide the estimation errors and standard
deviations respectively of PFCR, APF and SBAPF when tracking an object with
K = 4, |Pj| = 6.

Similarly to Section 4.4.4.4, we study in this section the impact of the number

L of layers of annealing on APF and compare the estimation errors and standard
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deviations compared to those of SBAPF and PCFR. We added the estimation er-

rors and the standard deviations of PFCR obtained when tracking the two objects

mentioned in the previous section into Figure 4-25 to compare PFCR’s performance

with those of SBAPF and APF, which results in Figure 5-18. Recall that the results

presented in this figure are obtained by fixing N = 300 and varying the number

of layers of APF from 1 to 5. Results highlight the robustness of PFCR, because

we note that APF never reaches the estimation errors nor the standard deviations

provided by PFCR. Instead of trying to construct the best particles from a particle

set resulting from only one admissible permutation, as SBPS does, PFCR stochasti-

cally draws particles from the particle set resulting from all admissible permutations.

This results in an increased number of particles near the modes of the target den-

sity. As a consequence, PFCR achieves more accurate tracking than SBPS, and, a

fortiori than APF, for any value of L. For example, the estimation error is reduced

from 450 pixels to 260 between SBAPF and PFCR for the first object, and from 280

pixels to 250 between SBAPF and PFCR for the second object. Similarly, the stan-

dard deviation is reduced from 20 pixels to 15 between SBAPF and PFCR for the

first object, and from 12 pixels to 8 between SBAPF and PFCR for the second object.

In this section, we have proposed a deep comparative study on synthetic video

sequences with different filters to show the interest of CR and its particle filter’s

embedded version, namely PFCR. First, PFCR always gives lower estimation errors,

and lower and more stable standard deviations. We have also shown that it does not

require a high computation time, compared to APF, in particular when the number

of parts that are treated in parallel is high (i.e. |Pj| high). In the next section, we

test our algorithm on a challenging real video sequence and show it is usable for real

applications consisting of tracking human body modeled by an articulated object.

5.2.3 Tests on a real video sequence

We tested our approach on a sequence from the UCF50 dataset1, to demonstrate the

efficiency of our combinatorial resampling to make the particle set better focus on

the modes of the densities to estimate. This feature holds even when there are wide

movements over time and when images have a low resolution. Qualitative results

are given by superimposing on the frames of the sequences a red articulated object

corresponding to the estimation derived from the weighted sum of the particles. For

this test, we fixed σx = σy = 2 pixels and σθ = 0.08 rad.

1http://server.cs.ucf.edu/∼vision/data/UCF50.rar
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Figure 5-19: Results on a real video sequence. Tracking results on JumpRope

sequence with N = 500 particles (frames 10, 50, 121 and 234). Left: using residual
resampling, right: using our combinatorial resampling.
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Figure 5-19 shows tracking results on the JumpRope sequence (containing 290

frames of 320×240 pixels) withN = 500 particles. In this sequence, a person is quickly

moving from left to right while jumping, and crossing/uncrossing his arms and legs.

For this test, we defined an articulated object with P = 12 parts, hence |X | = 36,

and we compared the estimations resulting from PS with a residual resampling (left

column) with those resulting from our proposed resampling approach (right column).

As can be observed, our approach produces better results: its estimations are more

stable along the sequence. For example, on the images of the 2nd and 3rd lines, we

can see that the estimation of the articulated object fails with residual resampling but

is correct with our combinatorial resampling. For this sequence, on average over 20

runs, our method needed 16 seconds while residual resampling needed 22. In addition,

our algorithm proved to be more robust and provided more accurate results. As for

synthetic sequences, our tests show that the higher the number of particles, the more

our algorithm outperforms residual resampling in terms of response time. It is also

always more accurate.

5.3 Conclusion

In this chapter, we have introduced a new resampling method called Combinatorial

Resampling. From a given sample S, this algorithm constructs implicitly a new

sample S ′ exponentially larger than S. By construction, S ′ is more representative

than S of the density over the whole state space and resampling from S ′ rather than

S produces much better results, as confirmed by our experiments. We proved the

mathematical correctness of the method and showed that it is effective for real time

tracking. Comparisons with other resampling schemes show the ability of our CR

to reduce the estimation errors, and to converge better and faster. When CR is

embedded into the SBPS framework, resulting in PFCR, it gives lower estimation

errors and standard deviations, without increasing drastically computation times.

For future researches, there remains to exhibit theoretical convergence results for

SBPS combined with this new resampling scheme. A deeper study of the sampling

quality should also be investigated. If we observed that CR and PFCR provide lower

estimation errors and standard deviations, we are did not prove yet that the modes

of the density to estimate are correctly sampled.

In this chapter and the preceding one, we investigated how classical particle filters

could be improved by exploiting d-separation, the independence property at the core

of OTDBNs. This property allowed us to introduce swappings within the particle
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filter framework, leading usually to a significant tracking improvement. However,

there exist cases where the likelihood functions provide misleading results, e.g., when

there are occlusions or clutter and, in these cases, swapping may fail to improve

tracking. In the next chapter, we investigate such cases and show how metaheuristics,

especially Particle Swarm Optimization, can be enhanced.
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Chapter 6

Hierarchical Annealed Particle

Swarm Optimization for

Articulated object tracking

In this chapter, we present a preliminary work that investigates the combination of a

decomposition scheme and Particle Swarm Optimization (PSO): we propose a novel

algorithm for articulated object tracking, based on a hierarchical search and particle

swarm optimization. Our proposed approach aims to reduce the complexity induced

by the high dimensional state space in articulated object tracking by decomposing the

search space into subspaces and then using particle swarms to optimize the estimation

into these subspaces hierarchically. Moreover, the intelligent search strategy proposed

in [112] is integrated into each optimization step to provide a robust tracking algo-

rithm under noisy observation conditions. We have compared the proposed algorithm

with other common existing algorithms, including partitioned sampling with anneal-

ing (APF), the classical particle filter with annealing (PFAPF), hierarchical particle

swarm optimization (HPSO) and annealed particle swarm optimization based parti-

cle filter (APSOPF). Our quantitative results on synthetic video sequences and on

real video sequences show the efficiency of the proposed approach in comparison with

these competing approaches.

6.1 Proposed approach

6.1.1 Motivation

The problem of noisy observation is known to be one of the most challenging in artic-

ulated object tracking, that should be taken into account to achieve a good tracking.
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Figure 6-1: Example of a rigid object tracking inside a noisy environment.
The tracked blue object’s boundary is represented by a white rectangle.

Some recent works have shown that PSO is an effective optimization approach for

dealing with noisy observations. Among these works, the approach proposed in [112],

called annealed particle swarm optimization based particle filter (APSOPF), which is

discussed in Section 3.2.2, is one of the most remarkable. In this approach, a sampling

covariance and some annealing terms are introduced into the PSO update equation.

The annealing terms help to reduce the impact of the global and local best particles

on the particle swarm when the search is focused on global optima, since in such situ-

ation, the global and local best particles are no longer trustable due to noise. In this

section, we first investigate the effectiveness of these terms. This leads to the conclu-

sion that it is important to reduce the impact of the global and local best particles in

PSO when noise is present. This motivates us to propose a novel approach based on

APSOPF, called Hierarchical Annealed Particle Swarm Optimization (HAPSOPF),

dedicated to the articulated object tracking into high dimensional state spaces and

noisy environments, that improves considerably its computational cost as well as its

tracking accuracy.

For this purpose, we conducted an experiment on a synthetic video sequence

where a rigid object is moving over time. The rigid object is modeled by a rectangle

whose state is defined by the coordinates of its center and its orientation. A cluttered

background was generated by randomly drawing squares and/or rectangles having

the same color as the rigid object (here blue) in the image sequences (see Figure

6-1). Color was used in this experiment to construct the likelihood function (see

Section 2.2.5.3): the reference color histogram of the target object is computed in

the first frame. In order to evaluate the benefit of incorporating the annealing terms

into the PSO update equation, we compared APSOPF and one its variant in which
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1 2 3 4 5 6

Figure 6-2: The effectiveness of annealing terms in PSO update equation.
From top to bottom, tracking results given by APSOPF and CAPSOPF during the
6 iterations (left to right). In white: the true state, in red: the local and global best
particles.

the annealing terms are replaced by a constant equal to 2, leading to the canonical

PSO proposed in [48], which is referred as CAPSOPF in the following. The number

of PSO iterations for both methods is 6. In Figure 6-2, the true object in different

frames is represented by white rectangles, while the global and local best particles

are symbolized by red rectangles. Results after each iteration given by APSOPF and

CAPSOPF are shown in the first and second rows respectively. Both methods start

the tracking with the same particle swarm, for which global and local best particles

get stuck into wrong positions. After the first iteration (first column in Figure 6-2),

the quality of particle swarm in both methods is not improved and the only difference

between them is due to the random process. During the five next iterations (the 2nd,

3th, 4th, 5th, 6th columns in Figure 6-2), the particle swarm of CAPSOPF (second

line) is still stuck into wrong positions and cannot track the target object due to the

wrong guide of the global and local best particles. In contrast, in APSOPF (first

line), the particles follow their own searching strategy at the end of iterations, giving

them more chance to get out of local maxima and to explore other regions of the

search space.

The above example shows the interest of annealing terms in PSO when dealing

with noise. We follow this idea to propose a new search strategy. In APSOPF, the

inertial velocity is replaced by a sampling covariance. The reason for using this term

instead of a inertial velocity, however, is less intuitive in [112] since the authors ob-

served that it helped to produce more plausible human poses. We show in Section 6.2
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that this sampling covariance helps to explore the search space more efficiently than

the inertial velocity does. In cases where information about the movements of objects

is available, and that motion priors can be learnt from it, an obvious advantage of us-

ing the sampling covariance is that it moves particles toward more promising regions

of the search space, thus increasing the searching efficiency of PSO and reducing the

number of particles required for successful tracking.

One limitation of APSOPF is that it performs PSO in the search space of the

target object, which makes it computationally expensive when the dimension of the

state space is very high. To alleviate this problem, we follow the methodology of

decomposition approaches for articulated object tracking and propose to combine

APSOPF with a hierarchical search. The proposed approach is introduced next.

6.1.2 Proposed algorithm

We propose to exploit the hierarchical nature of the kinematic structure of the ar-

ticulated object to improve tracking. First, the state space of the target object is

decomposed into lower dimensional subspaces. Then, optimal states are searched for

into these subspaces in the hierarchical order of the kinematic structure using Parti-

tioned Sampling (PS) [64]. These optimal states are then used to constrain the search

in the next subspaces in the hierarchical order.

At time t, let x
(i),k
t (resp. s

(i),k
t ) denote the kth substate of the ith particle x

(i)
t

(resp. the ith particle’s best state s
(i)
t ) and let sg,kt be the kth substate of the global

best state found so far. Recall that articulated objects are constituted of P parts.

Then, at the mth iteration, x
(i)
t,(m) = {x(i),1

t,(m), ...,x
(i),P
t,(m)}, v

(i)
t,(m) = {v(i),1

t,(m), ...,v
(i),P
t,(m)} and

s
(i)
t,(m) = {s(i),1

t,(m), ..., s
(i),P
t,(m)}. We follow the approach proposed in [112], and update the

velocity and the position of particles at each time step as follows:

v
(i),k
t,(m) = r0P(m−1) + β1r1(s

(i),k
t − x

(i),k
t,(m−1)) + β2r2(sg,kt − x

(i),k
t,(m−1)) (6.1)

x
(i),k
t,(m) = x

(i),k
t,(m−1) + v

(i),k
t,(m) (6.2)

where r0, r1, r2 are random numbers uniformly drawn from [0, 1]. Note that in [112],

they are the absolute values of some random numbers drawn from the Gaussian

distribution N (0, 1). However, we found that this way of generating r0, r1, r2 does

not give results as good as ours.

P(m−1) = α0 ∗P(m−2), m ≥ 2, is the sampling covariance, with α0 a constant, and

P(0) a covariance matrix whose diagonal elements are fixed with respect to the model

configuration parameters. We propose to compute factors β1 and β2 at each iteration

126



m using the annealing principle so that:

β1 = β2 = β0βmax

(
βmax
βmin

)−m
M

(6.3)

where β0, βmax, βmin are constants, 0 < β0 ≤ 1, βmin < βmax and M is the maximal

number of iterations.

The parameters βmax, βmin are used to control the annealing rate. β1, β2 start with

the value β0βmax at the first iteration (m = 0), then they are gradually decreased

until reaching the value β0βmin at the last iteration (m = M). Thus β0βmin should

be set to a reasonably small value (e.g. < 1) to reduce the impact of global and local

best particles at the end of iterations. In our experiments, we observed that the value

of β0βmax should be set in accordance with the maximal number of iterations M since

large values of β0βmax and M made the proposed approach unstable.

By combining PSO and hierarchical search, our approach aims to increase the

tracking accuracy and to reduce the computational cost of the tracking algorithm

by integrating the benefits of both methods. First, the search efficiency is improved

by performing PSO within lower dimensional subspaces, thereby increasing tracking

accuracy. Second, since the search is performed in the same way as PS, the number

of particles required and thus the computational cost of the tracking algorithm is

greatly reduced. Our proposed Hierarchical Annealed Particle Swarm Optimization

Particle Filter (HAPSOPF) is described in Algorithm 6.1, where x̄ is the estimated

state of the object at time slice t, w(.,y) is the cost function to be optimized by PSO,

and y is the current observation.

6.2 Experimental results

We compared our approach with PFAPF [25], APF [7], APSOPF [112] and HPSO

[47]. We also implemented a variant of our proposed approach (which we called

CHAPSOPF, for Canonical Hierarchical Annealed Particle Swarm Optimization Par-

ticle Filter) in which we replaced the sampling covariance in Equation 6.1 with the

inertia velocity proposed in [47]. The cost function w(x
(i),k
t,(m),y) to be optimized by

PSO measures how well a state hypothesis x
(i),k
t,(m) matches the true state w.r.t. the

observed image y, and is constructed using histogram and foreground silhouette [25].

An articulated object is described by a hierarchy of parts (a tree), each part being

linked to its parent in the tree by an articulation point. For instance, in the top

row of Figure 6-3, the blue polygonal parts are the root of the tree and the colored

rectangles are the other nodes of the tree. The root is described by its center (x, y)
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Input: {s(i)
t−1}Ni=1, α0, β0, βmax, βmin, P(0), M (number of iterations)

Output: {s(i)
t }Ni=1

Set π
(i)
t = 1, i = 1, . . . , N1

for k = 1 to P do2

Sample: x
(i),k
t,(0) ∼ N (s

(i),k
t−1 ,P(0)), i = 1...N3

for m = 0 to M do4

if m ≥ 1 then5

Compute P(m) and update β1, β26

Carry out the PSO iteration based on Equations 6.1 and 6.27

Evaluate: f(x
(i),k
t,(m)) = w(x

(i),k
t,(m),y), i = 1...N8

Update {s(i),k
t }Ni=1 and the kth part of the global best state sg,kt9

Evaluate particle weights: π
(i)
t = π

(i)
t × w(s

(i),k
t ,y), i = 1, . . . , N10

Normalize particle weights: π̄
(i)
t =

π
(i)
t∑N

j=1 π
(j)
t

, i = 1...N
11

return {s(i)
t }Ni=1, x̄ =

∑N
i=1 π̄

(i)
t s

(i)
t12

Algorithm 6.1: Our HAPSOPF algorithm.

and its orientation θ whereas the other parts are only characterized by their angle

θ. For all algorithms, particles are propagated using a random walk with standard

deviations fixed to σx = 2, σy = 2 and σθ = 0.05. For APSOPF and HAPSOPF, P(0)

is a diagonal matrix with the values of σx, σy and σθ. The values of β0, βmax and βmin

are empirically set as β0 = 0.5, βmax = 3 and βmin = 1. Our comparisons are based

on three criteria: estimation errors, standard deviations and computation times.

6.2.1 Tests on synthetic sequences

6.2.1.1 Video sequences

In order to demonstrate the robustness of the proposed approach to noise, we have

generated two sets of various synthetic video sequences composed of 200 frames of

640× 480 pixels (with ground truth). The video sequences in the first set contain no

noise whereas, in the second set, cluttered backgrounds were generated. The clutter

is made up of polygons and rectangles randomly positioned in the image. As defined

in the previous chapters, an articulated object is defined by its number |Pj| of arms,

and their length K − 1: some examples are given in Figure 6-3.
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(a)

(b)
K = 4, |Pj | = 4 K = 5, |Pj | = 5 K = 4 , |Pj | = 6 K = 5 , |Pj | = 7

Figure 6-3: Synthetic video sequences used for quantitative evaluation. The
number of arms |Pj| and the length of arms K − 1 are given below. Sequence (a)
without clutter and (b) with clutter.

6.2.1.2 Quantitative tracking results

The tracking errors are given by the sum of the Euclidean distances between each

corner of the estimated parts and their corresponding corner in the ground truth.

We used M = 3 layers for APF and PFAPF since it produces stable results for both

algorithms, and M = 3 maximal iterations for HAPSOPF, HPSO, APSOPF and

CHAPSOPF. Table 6.1 gives the performances of the tested algorithms for sequences

without or with noise (cluttered background). In our experiments, tracking in noisy

sequences is challenging due to the background. All tracking algorithms can lost

track of some parts of the target object during some interval of time providing tracking

failures. This can happen when these parts and their underlying background have the

same color: then the particle swarm gets stuck and cannot escape from that location.

In such cases, the annealing process of APF forces the particle set to represent one

Table 6.1: Tracking errors in pixels (average over 30 runs) and standard deviations
for synthetic video sequences, N is the number of particles used per filter.

|Pj | = 4,K = 4 |Pj | = 5,K = 5 |Pj | = 6,K = 4 |Pj | = 7,K = 5
N 50 200 50 200 50 200 50 200

HAPSOPF
No noise 110(2) 106(1) 214(5) 195(2) 243(11) 211(9) 312(7) 271(4)
Noise 204(39) 143(10) 227(56) 175(30) 322(67) 295(60) 553(194) 516(180)

APF
No noise 120(2) 114(1) 238(6) 208(4) 251(7) 218(3) 319(8) 278(4)
Noise 309(109) 221(94) 281(78) 219(48) 432(86) 388(75) 1008(232) 914(213)

HPSO
No noise 125(5) 119(2) 252(9) 227(5) 254(11) 213(6) 382(5) 315(3)
Noise 277(78) 194(65) 245(42) 201(26) 345(27) 295(10) 922(334) 731(259)

APSOPF
No noise 184(3) 169(2) 260(12) 241(10) 265(15) 257(12) 471(30) 439(21)
Noise 254(16) 227(8) 308(33) 291(25) 490(68) 474(47) 817(223) 785(169)

PFAPF
No noise 128(3) 109(2) 246(11) 221(9) 270(13) 236(11) 487(35) 412(24)
Noise 272(9) 258(5) 322(29) 309(18) 440(51) 429(40) 613(174) 592(156)

CHAPSOPF
No noise 129(4) 117(2) 265(16) 243(6) 280(51) 235(15) 432(29) 326(9)
Noise 235(87) 206(60) 262(46) 229(24) 336(73) 299(66) 749(259) 721(216)
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of the modes of the cost function, which also causes these parts to get stuck in that

wrong location. This problem of annealing approaches has been previously reported

in [16]. As can be observed, APF performs worst than HAPSOPF and HPSO in

these tests. This shows the shortcoming of APF-based approaches and highlights

the advantage of PSO-based approaches when tracking under noisy observations.

This problem has less impact on our HAPSOPF method than on HPSO: as we can

see, HAPSOPF outperforms HPSO and CHAPSOPF in terms of both estimation

errors and standard deviations in most experiments. This can be explained by the

contribution of two factors in HAPSOPF’s update equation: the sampling covariance

and the annealing terms. First, the annealing terms are gradually decreased during

the PSO search, which helps the particle swarm to follow its own searching strategy

at the end of iterations without being affected by any wrong guide of the local or

global best states. Second, the use of the sampling covariance leads to an efficient

exploration of the search space without losing the searching power of PSO. We can

also observe the benefit of hierarchical search in HAPSOPF, as it clearly outperforms

APSOPF in terms of both estimation errors and standard deviations.

Finally, Figure 6-4 gives comparative convergence results (error depending on the

number N of particles) and computation times for a synthetic sequence. Note that

our approach converges better and faster than the other methods. In particular, it is

much faster than APSOPF. This shows the interest of decomposition technique when

combining with APSOPF.

(a) (b)

Figure 6-4: Comparison tests for convergence and computation time when
tracking the object defined with |Pj| = 4, K = 4. (a) Convergence and (b)
Computation times (HPSO and our approach give the same curves).
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6.2.2 Tests on real sequences

6.2.2.1 Dataset

We used sequences S1 Gesture and S2 Throwcatch of the HumanEva-I dataset [87].

In this dataset, the ground truth is provided in motion capture data, which were

collected synchronously with the video data. Since cameras are calibrated, ground

truth data points can be projected on the image sequences to evaluate quantitatively

our proposed approach. Some extracted frames from these two sequences are given

in Figure 6-5.

Sequence S2 Throwcatch contains self-occlusions (hands and torso, left and right

hands, left and right legs) which complicate matters for the tracking algorithms.

Moreover, in both sequences, the lower right hand of the subjects performing actions

makes a lot of quick movements which makes it difficult to track.

(a) (b)

Figure 6-5: Extracted frames from tested sequences. (a) S1 Gesture. (b) S2

Throwcatch.

The searching order for APF, HPSO, and HAPSOPF is: torso, head, left thigh,

right thigh, left upper arm, right upper arm, left leg, right leg, left forearm, right

forearm. For a fair comparison, we fixed the number of evaluations of the weighting

function at each frame for all the algorithms to 2000, and tuned parameters {N,M},
where N is the number of particles and M is the number of PSO’s iterations for

each method so that they achieve the best performance while satisfying the above

constraint: {400, 5} for PFAPF, {40, 5} for APF, {200, 10} for APSOPF and {20, 10}
for HPSO and HAPSOPF.
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Figure 6-6: Ground truth for a tested sequence. The position of the 15 markers
used for quantitative evaluation.

6.2.2.2 Evaluation measures

We used the evaluation measure proposed in [87, 16]. Let x represent the state of

the body. We define M = 15 virtual markers as {mi(x)}, i = 1, . . . ,M}, where

mi(x) ∈ R is a function of the body state that returns the position of the ith marker

in the image (see Figure 6-6). The error between the estimated state x̄ and the ground

truth state x is expressed as the Euclidean distance between all virtual markers:

D(x̄,x) =
M∑
i=1

||mi(x)−mi(x̄)||

For the sequence of T frames we compute the average performance using the

following:

µ =
1

T

T∑
i=1

D(x̄,x)

6.2.2.3 Tracking results

Table 6.2 provides tracking errors (e, in pixels) and total computation times (t in

seconds) when tracking on the two sequences. As can be observed, our approach

gives the same computation times as those of HPSO but reduces the estimation error

and it outperforms the other approaches on both criteria. The difference of estimation

errors between our approach and those of the other approaches are larger for Sequence

S2 Throwcatch than for Sequence S1 Gesture, which suggests that our approach is

also robust to fast and erratic movements.

Figures 6-7 and 6-8 provide the corresponding qualitative tracking results. For

Sequence S2 Throwcatch, our approach always outperforms PSAPF and HPSO in
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Table 6.2: Tracking errors for full body in pixels (average over 30 runs), and total
computation times (in seconds), obtained when tracking on the two sequences.

HAPSOPF APF HPSO APSOPF PFAPF
e t e t e t e t e t

S1 Gesture 95(6) 287 99(11) 293 101(9) 287 102(4) 1348 105(2) 1412
S2 Throwcatch 212(10) 557 227(19) 579 232(12) 557 235(7) 2070 240(5) 2184

cases of self-occlusions (frames 275, 523) or fast motions (frames 160, 387), showing

its robustness.

Because our approach incorporates the annealing into each searching stage of the

hierarchical search, the problem of noisy observations is effectively alleviated. This

makes our approach more robust to self-occlusions.

6.3 Conclusion

In this chapter, we have introduced a new algorithm for articulated object tracking

based on particle swarm optimization and hierarchical search. We addressed the prob-

lem of articulated object tracking in high dimensional spaces by using a hierarchical

search to improve search efficiency. Furthermore, the problem of noisy observation

has been alleviated by incorporating the annealing factor terms into the velocity

updating equation of PSO. Our experiments on synthetic and real video sequences

demonstrate the efficiency and effectiveness of our approach compared to other com-

mon approaches, both in terms of tracking accuracy and computation time.
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Figure 6-7: Tracking results for frames 123,160,275,387,488,523 of sequence
S2 Throwcatch. PFAPF (1th row), APSOPF (2nd row), HPSO (3th row), APF (4th
row) and HAPSOPF (5th row).
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Figure 6-8: Tracking results for frames 76 and 110 of sequence S1 Gesture.
PFAPF (1th row), APSOPF (2nd row), HPSO (3th row), APF (4th row) and HAP-
SOPF (5th row).
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Chapter 7

Conclusion and Future Work

7.1 Conclusion

Tracking articulated structures with accuracy and within a reasonable time is chal-

lenging. One of the main difficulties lies in the high complexity incurred by the high

dimensional space of the problem. Moreover, an applicable and robust tracking algo-

rithm must have not only real-time performances but also a high accuracy. Various

existing approaches have shown their good performance in terms of accuracy, but their

high computational cost makes them impractical. Therefore, it is crucial to reduce

the complexity of the tracking algorithm for articulated objects to enable real-time

performance.

In this thesis, we proposed to exploit decompositions within the particle filter

framework to improve the performances of articulated object tracking. Particle fil-

ter provides an effective solution to the visual tracking problem since it can handle

non-linear, non-Gaussian and multimodal distributions which often occur in such

problems. The main advantage of the decomposition approaches is that their com-

plexity, with respect to the number of parts of the target object to track, becomes

linear instead of exponential, which reduces significantly the computation cost of

the tracking algorithm. In this thesis, we proposed three algorithms relying on the

decomposition principle.

Our first approach [31, 33], presented in Chapter 4, is directly inspired by the state-

of-the-art algorithm for tracking in high dimensional state spaces, Partition Sampling

(PS) [64], and by the independence property at the core of Bayesian networks, the so-

called d-separation. Using a d-separation analysis, we show that PS can be accelerated

by performing propagations/corrections for a group of parts in parallel, instead of part

after part, while still estimating correctly the target distribution [39]. Furthermore,

we introduced an operation called swapping to shift the particles toward the modes of
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the target distribution by permuting some subsamples of the object parts processed

in parallel so that the best subsamples (i.e. with highest weights) are combined to

form new particles. This led us to develop a new tracking algorithm called Swapping-

Based Partitioned Sampling (SBPS). SBPS first partitions the set of parts of the

target object into subsets, that are then processed sequentially. These subsets are

selected so that the parts of a subset are mutually independent conditionally to the

parts that were previously processed. At each step, when a subset is processed, its

parts are propagated, corrected and finally permuted using the swapping operation to

produce better particles, located nearer the modes of the target density. In SBPS, the

swapping operation is performed in a greedy manner, i.e., given a set of admissible

permutations at any time, it aims to combine the best subsamples into one particle

to produce the particle with highest weight. During the tests, SBPS gave most of the

time lower estimation errors and computation times, compared to other filters such

as APF or PS.

However, the major drawback of the swapping method in SBPS is that, by per-

muting subsamples w.r.t. only one possible permutation, it tends to produce small

sets of different particles with very high weights, the other particles having much

lower weights. As such, after the resampling step, only a few different high-weighted

particles remain. This can cause problems in some situations, when the tracker needs

to maintain multiple hypotheses to avoid tracking failure. To address this problem,

we introduced the second tracking algorithm, presented in Chapter 5, which we called

DBN-Based Combinatorial Resampling [32]. For this algorithm, the particle set pro-

duced by the swapping step is implicitly constructed by considering all the possible

permutations. This swapping method has some advantages as compared to the one

used in SBPS. It avoids the need for finding the best swapping. More importantly, it

creates a large set of diverse particles. Resampling from it thus produces many parti-

cles near the modes of the target distribution while maintaining a certain amount of

diversity among the particles. This new resampling scheme, introduced into the par-

ticle framework, and giving Particle Filter with Combinatorial Resampling (PFCR),

performs better, in terms of estimation errors, without increasing the computation

times, than other classical filters. Compared to SBPS, PFCR has shown its capacity

to produce better sets of particles with lowest error’s standard deviations. It has also

demonstrated its ability to focus on the modes of the density to estimate.

During our tests, we noticed that there exist cases where the likelihood functions

provide misleading results, e.g., when there are occlusions or clutter and, in these

cases, swapping may fail to improve tracking. We thus introduced in Chapter 6

a PSO-based approach for articulated object tracking, called Hierarchical Annealed
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Particle Swarm Optimization (HAPSOPF). In order to reduce the computational cost

and increase the searching efficiency of PSO in high dimensional spaces, the proposed

approach decomposes the search space into subspaces and then uses PSO to optimize

these subspaces hierarchically. Moreover, a sampling covariance and some annealing

terms are incorporated into the update equations of PSO at each optimization step

to tackle the problem of noisy observations and cluttered background, thus making

the proposed approach more robust in these situations.

7.2 Future Work

First, our different algorithms were essentially tested on synthetic video sequences.

The main reason was that it allowed us to control the different parameters inducing

the tracking complexity, such as the number of arms or their length, to analyze the

robustness of the proposed approaches. However, it would of course be important to

investigate more deeply the behavior and effectiveness of each of them in real-world

problems, and thus in real video sequences. Many public datasets for articulated

object tracking are now available, that would allow us to investigate the behavior of

the proposed algorithms in different conditions in real-world problems, e.g. occlusion,

cluttered background, lighting change, etc., and to compare them with other existing

approaches in such conditions. For example, the HumanEva dataset [87], which is

used in Chapter 6, has been widely adopted for quantitative evaluation of human

tracking approaches and could be considered for this purpose.

A nice property of our approaches described in Chapter 4 and Chapter 5 is that

they are based on d-separation analysis in DBNs, which provides a rigorous justifica-

tion for their correctness. As discussed previously, our proposed approaches maintain

the target distribution they estimate. In other words, one is guaranteed that the dis-

tribution estimated by these approaches converges to the target distribution as the

number of particles tends to infinity. However, their rates of convergence, which are

important to perform a theoretical comparison of the performances among different

PF-based approaches, have not been established in this thesis. Such a convergence

result for PF has been found in literature [23], while the same convergence result for

PS has never been stated. Therefore, one of the extensions of our work is to exhibit

these convergence property for Partition Sampling as well as for SBPS and PFCR.

Intuitively, PS consists of a sequential application of PF on subspaces of the original

state space of the target object and, therefore, PS’s convergence property should have

a strong relation with that of PF. For the same reason, the convergence property of

SBPS and PFCR should inherit from that of PF. Thus, the convergence result of PF
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should be a good starting point to achieve our goal. Another convergence property

of PF related to the variance of its estimations has been investigated in [21]. A study

of this convergence property for our approaches is also desirable. Again, this conver-

gence property of PF should provides a good basis for proving that of PS as well as

those of SBPS and PFCR.

Another possible extension of our work is to incorporate the swapping operation

into other existing decomposition approaches to improve their performance. In this

case, the convergence of the obtained approaches depends on the conditional inde-

pendence assumptions and also on the original approaches in which the swapping

operation is combined with. For instance, a straightforward extension of our work is

to combine the swapping operation into HAPSOPF to increase its tracking accuracy

and computation time.

Finally, the works in this thesis in Chapter 4 and Chapter 5 exploit the property

of the swapping operation and propose two swapping methods for better estimating

the target distribution. The swapping method, proposed in Chapter 4, improves

the tracking performances by generating the “best swap” at each time, while the one

proposed in Chapter 5 improves the tracking performances by exploiting the diversity

of the particle set generated from all possible permutations. Both methods have been

shown to be effective in reducing the estimation errors and standard deviations of

the tracking algorithm they were combined with. However, the questions of how to

perform swapping in an optimal way and of what is the criterion for determining if a

swapping method is optimal remain open research questions in this thesis and should

be addressed in our future work. For example, it would be interesting to study the

sampling properties, i.e. if the all the modes of the distribution are correctly sampled

or not.

140



Bibliography

[1] Agarwal, A., Triggs, B., 2004. 3D human pose from silhouettes by relevance

vector regression. In: IEEE Conference on Computer Vision and Pattern Recog-

nition. pp. 882–888.

[2] Agarwal, A., Triggs, B., 2006. Recovering 3D human pose from monocular

images. IEEE Transactions on Pattern Analysis and Machine Intelligence 28 (1),

44–58.

[3] Alt, N., Hinterstoisser, S., Navab, N., 2010. Rapid selection of reliable templates

for visual tracking. In: IEEE Conference on Computer Vision and Pattern

Recognition. pp. 1355–1362.

[4] Andriluka, M., Roth, S., Schiele, B., 2009. Pictorial structures revisited: People

detection and articulated pose estimation. In: IEEE Conference on Computer

Vision and Pattern Recognition. pp. 1–8.

[5] Arulampalam, M. S., Maskell, S., Gordon, N., Clapp, T., 2002. A tutorial

on particle filters for online nonlinear/non-Gaussian Bayesian tracking. IEEE

Transactions on Signal Processing 50 (2), 174–188.

[6] Bajramovic, F., Deutsch, B., Grabl, C., Denzler, J., 2008. Efficient adaptive

combination of histograms for real-time tracking. EURASIP Journal on Image

and Video Processing 2008, 1–11.

[7] Bandouch, J., Engstler, F., Beetz, M., 2008. Evaluation of hierarchical sampling

strategies in 3D human pose estimation. In: British Machine Vision Conference.

pp. 925–934.

[8] Bergman, N., 1999. Recursive Bayesian estimation navigation and tracking ap-

plications. Ph.D. thesis, Linkopings University.

141



[9] Bernier, O., Cheung-Mon-Chan, P., Bouguet, A., 2009. Fast nonparametric be-

lief propagation for real-time stereo articulated body tracking. Computer Vision

and Image Understanding 113 (1), 29–47.

[10] Bhattacharyya, A., 1943. On a measure of divergence between two statistical

populations defined by their probability distributions. Bulletin of the Calcutta

Mathematical Society 35, 99–109.

[11] Bodor, R., Jackson, B., Papanikolopoulos, N., 2003. Vision-based human track-

ing and activity recognition. In: Mediterranean Conference on Control and

Automation. pp. 18–20.

[12] Bray, M., Koller-Meier, E., Muller, P., Van Gool, L., Schraudolph, N. N., 2004.

3D hand tracking by rapid stochastic gradient descent using a skinning model.

In: European Conference on Visual Media Production. pp. 59–68.

[13] Bray, M., Koller-Meier, E., Schraudolph, N. N., Gool, L. V., 2004. Stochas-

tic meta-descent for tracking articulated structures. In: IEEE Conference on

Computer Vision and Pattern Recognition Workshop. pp. 7–14.

[14] Brox, T., Rosenhahn, B., Cremers, D., Seidel, H.-P., 2006. High accuracy optical

flow serves 3D pose tracking: exploiting contour and flow based constraints. In:

European Conference on Computer Vision. pp. 98–111.

[15] Burges, C. J. C., 1998. A tutorial on support vector machines for pattern recog-

nition. Data Mining and Knowledge Discovery 2 (2), 121–167.

[16] Blan, A. O., Sigal, L., Black, M. J., 2005. A quantitative evaluation of video-

based 3d person tracking. In: International Workshop on Performance Evalua-

tion of Tracking and Surveillance. pp. 349–356.

[17] Canton-Ferrer, C., Casas, J. R., Pardàs, M., 2011. Human motion capture using
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