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Chapter 1

Introduction

1.1 Purpose and motivation

Artificial Intelligence pays more and more attention to human reasoning under uncer-
tainty. This concern is all the more important that there is a real need for softwares
capable of performing automatically tedious tasks while respecting users preferences.
Let us cite for instance spam filters which must be able to determine that a given e-mail
is of no interest for the user, or intrusion detection systems which must classify internet
packets according to what a system administrator might judge as a normal traffic or as
an attempt to break into or to corrupt the system. We may also cite internet search en-
gines that need isolate the data that are of interest to users. One of the common features
of the above applications is that they must reason under uncertainty. For instance, an
internet packet sent to a web server is, in itself, innocuous. However, if one million
such packets are sent at the same time, this shall be judged as an attempt to perform
a Denial of Service and thus the packets should be filtered before they reach the web
server. Of course, in practice, determining the right action to take is less obvious as
the data available to the software are more ambiguous. For instance, there exist some
applications helping students learning various concepts like how to use properly the
Unix system [Jam96], how to repair the hydraulic system of the F15 plane [MG96].
In such applications, when the student does not solve properly the problem he/she is
asked to solve, the computer must try to understand what erroneous reasoning the user
is having. Naturally, there may be several different erroneous reasonings and so the
application must determine which one caused the failure and decide what is the best
strategy to help the user even though it does not know with certainty what concept the
user failed to understand. [PW95, FHKRO95] describe another application where deci-
sions must also be taken although the data available are imperfect: the plan of a driver
must be detected simply by observing the movements of the car. All such problems
require having a good model of the uncertainties they have to handle.

Different practical situations usually require different models of uncertainty as the
amount and the quality of the data available vary from one application to the other.
Hence, depending on the data, uncertainty may be dealt with using belief functions



4 Chapter 1. Introduction

[Sha76], fuzzy set theory, possibility theory, probability theory, etc. For instance, in
medical decision making, large databases highlighting the connections between dis-
eases and clinical reports are not uncommon, and probability theory is certainly a good
uncertainty model for this case [FSMB91]. Other practical situations may suffer from
a lack of data and, then, other alternative uncertainty models should be preferred. Yet,
when there is sufficiently enough data and these are of good quality, probability the-
ory should be used as: 1) it has strong mathematical foundations; ii) it is easy to use;
and iii) the conclusions that can be reached using this model are sound. Hence, in this
thesis, for the management of uncertainties, we will abide to the laws of probability.

However, until a recent past, the computations of probabilities in complex situations
proved to be impractical for two reasons: i) they were stored in extension, that is, the
whole joint probability distributions had to be stored in computers, which was impos-
sible for highly combinatorial spaces; ii) computing even a marginal probability over
one random variable could take an unreasonable amount of time as too many computa-
tions were involved. Pearl [Pea88] realized that both problems could be fixed simply by
decomposing the joint probability distributions, storing compactly the pieces involved
in this decomposition and providing a clever way to combine the pieces when needed
for computations. This led to Bayesian networks. These are graphs —actually directed
acyclic graphs (DAG)— whose vertices represent random variables and whose arcs
represent probabilistic dependencies between vertices/random variables. In itself the
graphical structure of the Bayesian network represents the decomposition of the joint
probability distribution of its vertices/random variables as the product of the conditional
probabilities of each node conditionally to its parents in the graph. Using this decom-
position and taking advantage of the graphical structure, efficient algorithms have been
designed that can compute any joint, marginal or conditional probability of the random
variables. These algorithms can even compute a posteriori probabilities, that is they
can infer the impact of some evidence on the random variables of the network.

Although these algorithms differ widely from one another, they all share one com-
mon feature: their computations are achieved via a message passing scheme along
the edges of a graph. In this respect, they can be called propagation algorithms as
they propagate informations or the impact of evidence along the graph. In the 90’s
two broad classes of propagation methods emerged: 1) those propagating messages
along the arcs of oriented networks (the so-called Pearl’s propagation scheme, see
[KP83, Pea88, PS91, SCI0]; and ii) those that first transform the Bayesian network
into a non-oriented clique tree and, then, propagate evidence in this tree [LS88, Jen96,
JLO9Y0, MJ99, SS90b, She97]. Among the latter, the most popular are certainly Jensen’s
and Shafer-Shenoy’s methods.

The undirected methods have superseded directed ones, especially after Shachter,
Andersen and Szolovits showed in 1994 [SAS94] that, when Bayesian networks con-
tain loops, all the known directed propagation methods were bound to be outperformed
by undirected ones. This property resulted from the observation that the way Pearl’s-
like methods coped with cycles was a particular and inefficient subcase of Jensen’s and
Shafer-Shenoy’s cycle management methods. Unfortunately, in most practical situa-
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tions, Bayesian networks contain cycles. However, directed methods have advantages
over undirected ones: the directed graphical structure contains more informations about
independencies between random variables and these can be used to significantly reduce
the computational burden of propagation. Hence, in this thesis, we are interested in
improving Pearl’s-like methods so that their cycle management is competitive with
Jensen’s while preserving the directed nature of the graph. Upon success, such an al-
gorithm would not only be competitive with the state of the art propagation methods, it
would even outperform them.

1.2 Thesis contribution and organization

As mentioned above, the aim of this thesis is to improve Pearl’s algorithm to make it
competitive with or even faster than undirected methods. The latter do not perform di-
rectly computations on the Bayesian network but rather they construct a more efficient
undirected structure and, then, the computations are conducted using this structure.
The latter is called a junction tree in Jensen’s scheme and a join tree in Shafer-Shenoy’s
method. The basic idea underlying our improvement of Pearl’s algorithm is to adapt the
construction of this secondary structure to directed graphs. Thus our secondary directed
structure should be as efficient as junction/join trees and, as it is directed, the indepen-
dence informations contained in the graphical structure can be best exploited to reduce
computations by avoiding those that are unnecessary. As our modification of Pearl’s
algorithm sort of unifies it with undirected methods, any improvement in undirected
methods can be adapted to our method and, conversely, improvements stemming from
Pearl can benefit to undirected methods. In this thesis, we provide two such improve-
ments: we show how binary join trees can be adapted in our algorithm and, studying the
relationships between conditioning and triangulations —the methods initially used for
coping with loops by Pearl and Jensen respectively— we show how triangulations can
be improved by breaking the Bayesian network into small parts, constructing junction
trees for each small part and aggregating these separate junction trees to form a global
junction tree. All these results are presented as follows:

Chapter 2 provides an overview of the theories dealing with uncertainty, and it
justifies the use of probability theory as a preferred one. After a brief survey of the
basic properties of probabilities, the chapter ends with an introduction to Bayesian
networks.

In the third chapter, we detail how computations are done by Pearl in the Bayesian
network. We first show how prevision and Diagnostic can be performed and, unifying
them, we obtain Pearl’s polytree algorithm [KP83, Pea88, PS91]. Unfortunately, this
one can only be applied on singly-connected networks and, as mentioned above, most
Bayesian networks are multiply-connected. Hence techniques for coping with loops
have been designed. At the end of chapter 3 we study two such methods, namely
Global Conditioning [Pea88] and Local Conditioning [Die96, FJ00].

Chapter 4 presents an overview of undirected propagation methods. These heav-
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ily rely on Markov properties, so the beginning of the chapter is devoted to Markov
properties and Markov networks. Then it is shown how the latter can be mapped into
junction trees or join trees. Finally, propagation methods taking advantage of these tree
structures are described, including Jensen’s algorithm [JLO90, Jen96], Shafer-Shenoy’s
algorithm [SS90b] and even Shafer-Shenoy’s algorithm for binary join trees [She97].

The fifth chapter can be thought of as a transition between the state of the art review
and our own results. It discusses the advantages and drawbacks of Pearl’s algorithm as
compared to that of Jensen. Mainly, it explains why junction trees deal more efficiently
with cycles than conditioning, but also why directed graphs are advantageous compared
to undirected ones for determining whether evidence affect some random variables, thus
making it possible to avoid unnecessary computations.

In the sixth chapter, we present our first improvement of Pearl’s algorithm: that
which makes the latter competitive with Jensen’s algorithm. The chapter is organized
as follows: first we show how a secondary structure similar to the triangulated Markov
tree underlying Jensen’s method can be obtained. We call this secondary directed graph
a triangulated Bayesian network or TBN. This graph induces a new decomposition of
the joint probability distribution of the random variables, so we describe how the con-
ditional probabilities involved in this new decomposition can be retrieved. Finally, we
show that the application of Pearl’s algorithm with local conditioning in this structure
has the same computational complexity as Jensen’s algorithm.

Actually, the inference method presented in Chapter 6 is closer to Shafer-Shenoy
than to Jensen. Indeed, no division is ever performed by our algorithm —or by Shafer-
Shenoy— whereas there are some divisions in Jensen’s method. Moreover, like Shafer-
Shenoy, when our algorithm passes a message from a node X to a node Y, the latter is
computed as some product involving messages sent to X by all of its neighbors except
Y. It was shown that, although Shafer-Shenoy is as efficient as Jensen in complexity
on every join tree, the latter usually performs fewer arithmetic operations, unless the
join tree is binary [She97], in which case both algorithms perform the same amount of
operations. Our algorithm suffers from the same problem: it is equivalent to Jensen in
complexity but not in the number of arithmetic operations it performs. Hence we show
in the seventh chapter how binary join trees can be adapted to our algorithm and thus
the latter becomes as efficient as both Shafer-Shenoy and Jensen (both in the number
of operations and in complexity).

In the eight chapter we study how triangulations can be improved. A toy example
shows us that even state of the art triangulation methods used in the Bayes net com-
munity fail to detect that some of the edges they add to Markov trees are unnecessary.
These edges unfortunately complexify the junction trees obtained from the Markov
trees and decrease the efficiency of junction tree-based propagation algorithms. How-
ever, looking at the original Bayesian network, it can be easily seen that edges whose
extremities do not belong to the same cycles can be dispensed with. Thus Chapter 8
presents a triangulation method avoiding such unnecessary edges. The underlying idea
of the algorithm consists in breaking the Bayesian network into small parts, triangu-
lating separately each part and computing their corresponding junction tree. Then it is
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shown how these small junction trees can be combined to form an overall junction tree
of the original Bayesian network. Empirical results show that this technique is very

effective.
Finally, the last chapter concludes this thesis and suggests some perspectives for

future research.
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Chapter 2

Uncertainty representation

For about two thousand years, uncertainty has raised the interest of many philosophers
— including Aristotle — and of mathematicians — like Cardano (1501-1576) and De
Moivre (1667-1754) — who studied uncertainty through hazard games. Their studies
led in the seventeenth and eighteenth centuries to the development of the probability
theory (see Pascal (1623-1662), Bernoulli (1700-1782) or Laplace (1749-1827). And,
of course, their concerns led them to base Probability Theory on infinitely reproducible
experiments. It was not before the 20th century and Kolmogorov’s axiomatization that
Probability Theory became established in a more general framework where the states
of nature could be, for instance, infinite.

Although Kolmogorov’s theory was very attractive as it was not based on infinitely
reproducible experiments, in practice, up to a recent past, estimating the probability of
any event still required the observation of an infinite number — or at least a large num-
ber — of identical experiments. But in many practical situations, such a requirement
could simply not be fulfilled. For instance, how can the probability of an earthquake
in San Francisco be determined? In 1974, De Finetti [dF74] proposed an attractive
solution: instead of observing the frequency of occurrence of events, probabilities can
be estimated by experts. This led to subjected probability theory. Using some games
involving some money aspect, the experts need assert probabilities correctly to expect
maximizing the amount of money they get at the end of the game. Thus, in this theory,
even probabilities of rare event can be estimated.

However, representing uncertainty by probabilities — either objective or subjective
— still requires many informations and, in practice these may lack. For instance, the
famous Ellsberg’s urn problem cannot be represented by probabilities: in this problem,
we know that an urn contains black, white and red balls and that one third are red
and two third are white or black. As the proportion of white against black balls is
unknown, no probability can be inferred. For such problems, alternative uncertainty
representations exist that represent different knowledge. Let us cite for instance fuzzy
logic, belied functions, etc.
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2.1 Some uncertainty models

In this section, we recall briefly some classical models for representing uncertainty.

2.1.1 Certainty factors

The basic idea behind certainty factors is to allow the use of values between true and
false in the interval [0,1]. Inference is applied with operators called T-norms defined as
the product or the minimum of the certainty degrees.

Example 2.1 If proposition P1 is true with degree x and proposition P2 is true with
degree y then proposition (P1 and P2) is true with degree min(x,y) or with
degree x x . ¢

Certainty factors served in the 80’s as the foundation for well known Expert systems
or the rule-based systems such as MYCIN [Sho76]. However, they were were criticized
by many researchers —including [Pea88]— as their conclusions could be inconsistent.

2.1.2 Fuzzy logic

Sometimes we use qualitative terms like almost, rather, enough, etc that reflect impreci-
sion rather than uncertainty, and we need a model to represent this kind of information:
it is almost empty, it is great enough.

Fuzzy Logic tries to cope with imprecision and proposes new operators occurring
on fuzzy sets and extends the interval [0,1] of classical set theory.

2.1.3 Belief function

In 1976, Shafer [Sha76] generalized probability theory, which resulted in belief function
theory ak.a. theory of evidence or Dempster-Shafer theory. The approach has many
interpretations: Lower probability model [Jaffray, 1989; Walley, 1991]: where beliefs
are represented by families of probability functions, Dempster’s model [Kohlas and
Monney, 1995]: derived from probability theory too, and Transferable belief model
[Smets and Lennes, 1994; Smets 1998]: beliefs are quantified by belief function (BEL),
not by probability.

According to the nature of the knowledge we have about the states of nature (or the
events), uncertainty can be represented more faithfully by a model or another. However,
Probability has very attractive mathematical foundations and, when enough information
is available, it can be modeled and manipulated efficiently.

In the next section, we present and define probabilities, assuming that distribution
of a random variable is known by repetitive observations or given by an expert.
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2.2 Probability theory

In Probability Theory — at least the subpart we use in this thesis —, a random vari-
able representing an event has a finite and discrete set of elementary values, e.g., the
random variable representing the possible values obtained throwing a die may have the
following support: {1,2,3,4,5,6}.

Definition 2.1 (Probability) Let §2 be a finite nonempty set, A a o-algebra of 2, and
P a numerical function defined on A.
P is a probability on (2, A) if it satisfies the following three axioms:

VX € A, P(X) > 0; 2.1)

P(Q) = 1; P(0) = 0; 2.2)
VX,Y,€A, ifXNY =0, then P(XUY) = P(X)+P(Y). (2.3

In the following, we call event any element of A, the intersection between X and Y’
is denoted indistinctly by XY, X, Y or X NY, and the union is denoted by X U Y.
is the certain event and () is the impossible event. Events X are called elementary when
there do not exist “smaller” events in .4 the union of which is X.

According to Definition 2.1, it is possible to compute the probability of any event
from the probabilities of elementary events. However, in practical situations, the events
themselves are not of interest to the user but it is rather some function of the events —
for instance their consequences — that are of interest.

Example 2.2 Assume you own $1000 and let us play to the following game: I select
arbitrarily 3 cards from a 32 cards deck and, depending on the cards that obtain,
I give you or take from you the following amounts of money:

e if 3 kings obtained, you win $2000;
e if 2 kings obtained, you win $500;
e if 1 king obtained, you neither win nor lose any money;

e if no king obtained, you lose $1000.

In this game, the events correspond obviously to the set of triples of cards
than can obtain. Now, think about what is of concern to the player of this game.
Is this the very triple that obtain or rather the amount of money he/she will get
eventually? Of course, the second option seems more probable. In this case, the
events of the game are not of interest but rather their (economic) consequences.

¢

It could thus be interesting to work directly with the gains rather than with the
triples that can obtain. The tool for linking different related probabilistic spaces is
called a random variable:
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Definition 2.2 (Random variable) Let Q) be a universe endowed with a probabil-
ity P(-) and let Q' another set. Let A and A’ denote the o-algebras of 2 and
respectively. A random variable is a function " : A — A’ such that:

r'(A)yeA vA e A.
A probability P'(-) over A’ can then be defined as:
P(A)=P(I7(A)) VA eA.

P'(+) is called the probability distribution of random variable T. A’ is called the
support of T and for any v € A’, P'(I' = ~) denotes the quantity P (T ~'(~)).

Definition 2.3 (probability distributions) Ler (2, A, Q) be a probabilistic space.

o I[f X and Y are two random variables defined on X and ) respectively, then
Joint probability distribution of X and Y is the function defined on X x Y
by:

PH{X =z} n{Y =y}) = QX (2) NY'(y)).
For simplicity of notation, it is usually denoted by P(x,y). Since probabilities

are additive, we can deduce from joint probabilities, the marginal probabilities.

o I[f X and Y are two random variables defined on X and ) respectively, then
the marginal probability distribution of X is the function defined by:

P(X =12)=> P(xy).

yey

o If X and Y are two random variables defined X and ) respectively, and if
P(Y) > 0 then the conditional probability distribution of X given a value
of Y is the function defined by:

P(XNY)
PX|Y) = ———
(X = =55
The last definition, when used recursively on a set of random variables { X1, ..., X,,},

yields the well known chain formula:

Definition 2.4 (chain formula)

P(X,....X,) = P(X1) x [[P(Xil X1, ..., Xica).
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2.2.1 Marginal independence

Up to a recent past, the computer representation of probabilities was largely inspired
from Kolmogorov’s probability definition (Definition 2.1), that is, only the probabil-
ities of elementary events were actually stored and they were used to compute any
(marginal, conditional, joint) probability of interest. Unfortunately, the size required
for such a representation grows exponentially with the number of random variables.
For instance, the probability distribution over a set of n variables, each having a m-
size support, requires the storage of m™ different values. As practical situations often
involve numerous random variables, such a representation is often inadequate.
Reducing drastically the storage space is fortunately possible using independence
relationships between random variables. Assume for instance that X and Y are inde-
pendent, then it is well known that the joint probability P (X, Y") is equal to the product
of marginal probabilities of X and Y, thatis P(X,Y) = P(X)P(Y). Thus, applying
this property recursively and assuming all the random variables are independent, it is no
longer necessary to store m" different values but only the m x n values of the marginal
probabilities of the random variables. Then the probability of each elementary event
can be computed as the product of the marginal probabilities of the random variables.

Example 2.3 Consider 100 dice with 10 faces each. The size of the space of all the
sequences of the dice results is equal to 10'°°, However, knowing that dice are
independent, only the marginal probability of each die need be stored — which
amounts to storing 100 x 10 = 1000 values — and the probability of any elemen-
tary event can be computed as the product of these marginal probabilities. For
instance, the probability of having a sequence constituted only by 1’s is equal to
the product of each die being equal to 1. ¢

However, in practice, the random variables of interest are seldom independent and
thus marginal independence is too strong a condition to be applied. Fortunately, another
form of independence called conditional independence often holds and, although being
weaker than marginal independence, it will enable us to store probabilities even in very
complex practical situations.

2.2.2 Conditional independence

Definition 2.5 (conditional independence) Let X, Y, and Z be three random vari-
ables, and P(Z) > 0. X is independent from Y conditionally to (or given) Z,
denoted by (X 11Y | Z), if P(X|Y, Z) = P(X|Z2).

Intuitively, this means that if the value of Z is known, X and Y become indepen-
dent, or equivalently that our knowledge about X is not changed by adding some new
information about Y to the information given by the value of 7.

The combination of conditional independence and of the chain formula (see Det-
inition 2.4) can prove to be very powerful as the latter can be drastically simplified
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in practical situations. Indeed, if, for a given ¢ € {2,...,n}, {1,...,i — 1} can be
partitioned into two sets, say K; and L; such that K; N L; = () and such that the ran-
dom variable X; is independent of the X;’s, [ € L;, conditionally to the set of random
variables { X} : k € K}, then

Thus the chain formula can be restated as:

P<X17 - 7Xn) = P<X1> X HP(XZ‘XIWI{; € K2)7

=2

and, in practical situations, as the right hand side of the above equation usually in-
volves only small sized K;’s, the probability of even very complex problems involving
numerous random variables can be stored into nowadays personal computers. As an
illustration, let us see a toy example due to Lauritzen and Spiegelhalter [LS88]:

Example 2.4 (dyspnoea) Shortness-of-breath (dyspnoea) (D) may be due to tubercu-
losis (7"), lung cancer (L) or bronchitis (B), or none of them, or more than one
of them. A recent visit to Asia (A) increases the chances of tuberculosis, while
smoking (,5) is known to be a risk factor for both lung cancer and bronchitis. The
result of a single test chest X-ray (.X') does not discriminate between lung cancer
and tuberculosis, as neither does the presence or absence of dyspnoea.
According to the chain formula alone:

P(A,S,T,L,B,D,X)=P(A)P(S | A)P(T | S,A)P(L | A,S,T)
P(B|A,ST,L)P(D| A, ST,L,B)
P(X | A, ST, L,B,D).

Smoking does not seem to have any connection with visiting Asia, hence it is
reasonable to assume that P(S | A) = P(S). Similarly, tuberculosis may be due
to visiting Asia but it has no correlation with smoking, so P(T" | S, A) = P(T|A).
As lung cancer may be caused by smoking but is unrelated to visits in Asia and
tuberculosis, P(L | A,S,T) = P(L | S). Now, it can be proved statistically that
bronchitis and lung cancer are probabilistically dependent. A thorough analysis
shows that this is due to that fact that smoking both increases the risk of bronchitis
and lung cancer. But conditionally to the fact that we know someone smokes or
does not smoke, they become independent. Hence P(B | A, S,T, L) = P(B|S).
The same kind of reasoning can be applied to show that P(D | A, S,T, L, B) =
P(D|T,L,B)andthat P(X | A,S,T,L,B,D) = P(X | T, L). Consequently
the joint probability over A, S, T, L, B, D, X can be expressed as:

P(A,S,T,L,B,D,X) = P(A)P(S)P(T | A)P(L | T)P(B | S)
P(D|T,L,B)P(X | T, L).
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Note that if each random variable can take 10 values, then storing P via its value
for every elementary event requires storing 107 values whereas storing only the
conditional probabilities in the right hand side of the above equation requires only
11320 values. ¢

In conclusion, the combination of the chain formula and conditional independence
enables the storage of probabilities of even very large spaces. Of course, as the joint
probability distribution is factorized, the computations of probabilities of interest (con-
ditional, marginal, joint, etc) are more complicated to conduct and, at first sight, seem
less obvious to automatize. Fortunately, representing the dependencies between ran-
dom variables through graphs and applying techniques borrowed from graph theory,
computations can be performed in a very systematic way, hence enabling computer
programs to do them. The graphs we will study in this thesis are sometimes called
Bayesian networks, or Bayesian belief networks, or even probabilistic networks.

2.3 Bayesian networks

Of course, many different kinds of graphs may be used to represent the dependen-
cies between random variables, but the most basic idea would be to create a graph the
nodes of which would represent the random variables and, for each pair of dependent
variables, there would exist an undirected edge (why should the edge be directed as
probabilistic dependence is a symmetric concept?). However, the following examples
show that such graphs might prove to be misleading:

Example 2.5 A very serious empirical study shows that there is a strong dependence
between people’s reading ability (variable Ability) and their shoe sizes (variable
Shoes). Although surprising at first sight, the mystery disappears when another
variable is taken into account, that is, the age of the person. Of course, young chil-
dren have very small shoes and are not very good at reading whereas older people
have larger shoes and may be expected to read better. Consequently, Ability and
Shoes are dependent only through Age and the following relations should hold:

Ability 11 shoes | Age and Ability IShoes. 2.4)

As Ability and Shoes are dependent only through Age, an intuitive graphical
representation would be that of Figure 2.1(a). ¢

Example 2.6 Consider now two dice D1 and D2. We throw them and denote by Sum
the sum of their values. If the dice are not loaded, it is quite reasonable to assume
that they are independent, that is knowing the value of one of them does not give
any information about the value of the other one. However, knowing the value of
Sum, they become dependent. Indeed, knowing that sum = 4, thenif D1 = 1 we
know for sure that D2 = 3. Representing graphically the dependencies between
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(a) Ability and Shoes example

C DI >———CSum >———C D2 >

(b) Sum of Dices

Figure 2.1: Some graphs representing dependencies/independencies between random
variables.

D1, D2 and Sum seems quite trivial: D1 (resp. D2) is of course related to Sum,
but D1 and D2 are not related, thus the graph of Figure 2.1(b) should represent
perfectly the dependencies:

D1 ID2 | Sum and D11 D2. (2.5)

¢

Now the problem raised by the above two examples is that Equation (2.4) is the
opposite of Equation (2.5) and yet both equations lead to the same graph. Consequently,
undirected graphs — at least those of the above kind — are not sufficient to represent all
the informations we have about probabilistic dependencies. To discriminate between
Example 2.5 and Example 2.6, a basic idea — that will fortunately work in all practical
situations — is to add directions to edges (arcs). For example, the graphs of Figure 2.1
could be advantageously replaced by those of Figure 2.2.

Note that, according to the chain formula,

P(Age, Ability, Shoes) = P(Age)P(Ability|Age) P(Shoes|Age, Ability)
and, by Equation 2.4, P(Shoes|Age, Ability) = P(Shoes|Age). Thus
P(Age, Ability, Shoes) = P(Age) P(Ability| Age) P(Shoes| Age).

In the graph of Figure 2.2(a), the joint probability distribution can thus be expressed
as the product of the probabilities of each node/random variable conditionally to its
parents in the graph. Similarly, according to Equation 2.5,

P(D1, D2, Sum) = P(D1)P(D2)P(Sum|D1, D2),
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Age

(a) Ability and Shoes example

CDI>————=CSum D= D2 D

(b) Sum of Dices

Figure 2.2: Examples of directed graph.

which corresponds again to the product of the probabilities of each node conditionally
to its parents in the graph.

This suggests the concept of a Bayesian network: this is a graph G = (), A) con-
taining a finite set of nodes V representing random variables, and a finite set A of
directed edges linking pairs of variables in V. Once the BN is designed, each node of
V stores its probability conditionally to its parents and the product of these conditional
probabilities is equal to the joint distribution of the random variables in ). Thus the
graph contains a complete description of the joint probability distribution. It can then
be used to compute any marginal, joint or conditional probability.

More formally, let V = { X, ..., X,,} be a set of random variables. As mentioned
above, the chain formula states that:

P<X17"'7Xn) :P(Xl) X HP(XZ‘XbaXZfl)

=2

and, if forevery i € {2,...,n},{1,...,7 — 1} can be partitioned into two sets, say K;
and L; such that K; N L; = () and such that the random variable X; is independent of
the X;’s, [ € L;, conditionally to the set of random variables { X} : k € K}, then

P(Xy,...,X,) = P(Xy) x [[ P(Xi| Xy | € K3).

=2

If graph G = (V, A) is designed so that A = {( X, X;) : i € {1,...,n}, k € K;}, then
the joint probability distribution of V is equal to:

n

P(Xy,.... X)) = P(X1) x [[P(Xi | (Xp, k € {K : (X, X;) € A})).

=2
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(Xk, k € {K' : (Xw, Xi) € A}) represents the set of variables having some outgoing
arc toward X;. They are also called parents of X; and denoted by Pa(X;). Then, our
joint probability over V can be formulated as:

P(Xi,...,X,) = P(Xy) x [[ P(Xi| Pa(Xy)).

1=2

This leads to the definition of Bayesian networks:

Definition 2.6 (Bayesian network) A Bayesian network (BN) is a triple (V, A, P)
such that:

1.V ={Xy,..., X, } is a set of random variables;

2. A C VxVisasetof arcs which, together with ), constitutes a directed acyclic
graph (DAG), G = (V, A);

3. P is the set of conditional probabilities of each node in V given its parents in
the graph G, i.e., P = {P(X; | Pa(X;)) : X; € V}.

Example 2.4 (continued) Remember that, in the dispnoea example, the joint proba-
bility distribution can be expressed as:

P(A,S,T,L,B,D,X) = P(A)P(S)P(T | A)P(L | T)P(B | S)
P(D|T,L,B)P(X | T, L).

Usually, in this example, to avoid cycles, a new variable F is introduced, that
represents an “or” operation between boolean variables 7" and L. Then the joint
probability distribution can be factorized as:

P(A,S,T,L,E,B,D,X)=P(A)P(S)P(T | A)YP(L | T)P(B|S) 2.6)
P(E|T,L)P(D | E,B)P(X | E). '
The idea, here, is that the introduction of E still further reduces the space required
to store the conditional probability tables (if every random variable can take 10
different possible values, we just need 2330 real numbers to store the conditional
probability tables instead of 11320 numbers needed before the introduction of
FE). The Bayesian network corresponding to the factorization of Equation (2.6) is
thus given by the graph of Figure 2.3. ¢

Bayesian networks are thus very compact representations of joint probability dis-
tributions. As we will see in the next chapter, they are also very powerful in that their
graphical structure can be exploited to derive very efficient algorithms for computing
any probability (conditional, marginal, joint).
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Figure 2.3: The dyspnoea example.
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Chapter 3

Computations in Bayesian network

We showed in the preceding chapter that Bayesian networks hold an accurate decom-
position of joint probabilities over sets of random variables. However, we did not show
how these networks could be used in order to perform probabilistic computations. This
is the object of the present chapter. In particular, we detail the different computations
required to determine both a priori or a posterior probabilities. The latter corresponds
to conditional probabilities given some new piece of information. For instance, in the
dispnoea example (Example 2.4), P(T') is an a priori probability, it reflects the proba-
bility of any person in the world to have a tuberculosis, whereas P(T'|A = true) is an
a posteriori probability: it simply corresponds to the probability of a person having a
tuberculosis when the person is known to have gone to Asia.
Roughly speaking, a Bayesian network can be used for two main purposes:

e performing prevision: if the arcs of the Bayesian network are oriented in the
direction of causality, that is arc (X,Y’) means that X is a cause of Y, then
computing the probability of some node at the bottom of the network (for instance
D in the graph of Figure 2.3) given some knowledge about a node at the top
of the graph (for instance A) consists in inferring the impact of a cause to a
consequence. It thus corresponds to a prevision that the cause will have such or
such consequence.

o performing diagnostic: diagnostic is exactly the converse: if we observe some
consequence, can we find its cause? In Bayesian networks terms, can we infer
the impact of lower nodes in the network to the upper nodes?

Section 3.1 illustrates on an example the computations occurring for prevision pur-
poses and Section 3.2 restates these computations in terms of graphical operations.
Sections 3.3 and 3.4 are similar but illustrate diagnostic computations instead of pre-
visions. All these computations will be generalized in a single algorithm introduced
by Pearl [Pea88]: the polytree algorithm. Unfortunately this algorithm does perform
consistent computations only in singly-connected networks, that is, networks without
cycles. Hence Section 3.6 will conclude this chapter with extensions of the polytree
algorithm capable of coping with multiply-connected networks.

21
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3.1 Prevision computations

Consider the decomposition of the joint probability induced by the graph of Figure 3.1,
that is:
P(A,B,C,D,E,F,G)=P(A)P(B)P(C | A,B)P(D | C)

P(E| C)P(F | C)P(G | E). G-1)

®

©

Figure 3.1: Decomposition of a joint probability.

Computing the marginal probability of any random variable simply amounts to sum
out over the other variables P(A, B,C, D, E, F,G). Thus

P(G)= Y  P(ABC,DEFQG)
A,B,C,D,E,F

As mono-processor computers can only perform one operation at a time, this summa-
tion can be completed as:

P(G)= Y P(A,B,C,D,E,FG)
A,B,C.D,E,F (3.2)

=>O_0_0_0O__PA,B,C,D,EFQ))).

C D F B

Computing P(G) thus naturally leads to the following computations:

1. We begin by summing out A from P(A, B,C, D, E, F,G):

> P(A,B,C,D,E,F,G)=| Y _P(A)P(C | A B) | P(B)

P(D| C)P(E | CYP(F | C)P(G | B).
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As A and B are independent (see the graph), P(A) = P(A | B) and, conse-
quently,

ZP P(C'| A,B) = ZPA\B (C'| A, B)
_ZPCA|B) P(C'| B).

Thus:
a=> P(A,B,C,D,E,F,G)=P(C | B)P(B)P(D | C)

A

P(E|C)P(F|C)P(G | E).
2. We can now sum (aggregate) on B:
B=> a= (Z P(C] B)P(B)> P(D[C)P(E|C)P(F | C)P(G | E)
ZPC’B P(D | C)P(E | C)P(F | C)P(G | E)
=P( JP(D[C)P(E|C)P(F | C)P(G | E).
3. Then, we marginalize on F"
v = Zﬁ (ZP (F|C) ) P(C)P(D | C)P(E | C)P(G | E)
=P(C)P(D | C)P(E|C)P(G | E).
4. Similarly, summing over D results in:
5_27_ (ZP (D | C’) C)P(E | C)P(G | E).
=PO)P(E|C)P(G | E).

5. Summing over C' amounts to compute:

6_25_<ZP E|C> P(G| E)
(ZPEC) (G| E) = P(E)P(G | E).

6. Finally, summing over F results in

ZE_ZP P(G|E)=>)_ P(E,G)=P(G).

E
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3.2 Prevision using the graphical part of the BN

In this section, we show the relationship between the computations performed in the
preceding section and the graphical structure of the Bayesian network. We know that
initially each node in a Bayesian network stores its conditional probability given the
values of its parents (see Figure 3.2).

P(FIC)

P(A)

P(CIA,B)
P(EIC) P(GIE)

©

P(DIC)

Figure 3.2: The conditional probabilities stored into the network.

1. The first computation performed in the preceding section was:
> P(A)P(C| A, B).
A

In the graph of Figure 3.2, P(A) is stored into node A and P(C|A, B) is stored
into C'. Hence none of these node has sufficient knowledge to perform the above
product and summation. To do so, either A should send information P(A) to C
or C should send P(C|A, B) to A. Here the former will be applied. Hence A
sends some message P(A) to C' which, in turn, can compute and store P(C|B) =
Y A P(A)P(C | A, B). This message is illustrated on Figure 3.3(a).

2. Summing over B involved computing:

> P(C| B)P(B).
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Here again, probability P(B) is stored into B and P(C' | B) is stored into C'
Thus, B will send a message P(B) and C' will be able to compute the prod-
uct and summation and will store the result, i.e., P(C'). This is illustrated on
Figure 3.3(b).

3. Summing over F' amounted to compute » . P(F' | C'), which can be performed
simply by F' since P(F' | C) is stored into F'. In matrix terms, > . P(F' | C) is
equal to a vector of size |C| constituted only by 1’s.

4. Similarly, summing over D, which only amounts to compute >, P(D | C),
which results in a vector of size |C| constituted only by 1’s.

5. The summation over C'is performed by:
Y P(C)P(E|C).
c

As P(C) is now stored into C' and P(E | C) is stored in E, either C' must send a
message to £/ or £ must send a message to C. Here, C' will send message P(C)
to E. To bring the message passing algorithm closer to the polytree algorithm,
C will in fact receive the messages of size |C| from F' and D, it will multiply
these messages by the value it already stored, i.e., P(C'), and then it will send the
resulting message, i.e., P(C) to E. Now E can perform the product P(C)P(F |
(') and sum it over C, hence resulting in P(F). The process is illustrated on
Figure 3.3(c).

6. summing over £ yields computing >, P(E)P(G | E). Thus E needs sending
message P(F) and G can finally compute both the product and the summation.
See Figure 3.3(d).

As can be seen, we can deduce that prevision is based on a node elimination pro-
cess. Indeed, summing out a given variable can be thought of as eliminating the corre-
sponding node from the Bayesian network (as shown in Figure 3.3).

3.3 Diagnostic computations

In this section, we consider computations conducted in the other direction of the edges,
i.e., messages are transmitted from the leaves (the nodes at the bottom of the graph) to
the roots (the upper nodes). If the edges are not only interpreted in terms of probabilistic
dependencies but also in terms of causal relationships, that is, an edge (X, Y’) means
that X is a cause of Y, then sending messages from the “lower” nodes to the upper
ones can be interpreted as computing the probabilities of “causes” given some known
consequences, or equivalently as performing a diagnostic task.

Thus, assume some piece of information on the lower nodes is inserted into the
network. Say for instance that new informations (a.k.a. evidence) e;’s with respect to
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P(FIC) P(FIC)

(E) (F)
X S /
P(CIB) (C)——(E)——(G) P(C) (C——Er——-(G)

P(EIC) P(GIE) P(EIC) P(GIE)

o D o

P(DIC) P(DIC)

(a) Elimination of A (b) Elimination of B

P(C)

y P(E) P(GIE)

(d) Elimination of C
PO C——B——@
P(EIC) P(GIE)
1 P(E)
c —©
P(G)
(¢) Elimination of F and D (e) Elimination of E

Figure 3.3: The prevision computations performed on the graphical structure.

nodes X;’s are known. Let e = {¢;}. The diagnostic task simply consists in computing
for every node X (and especially the upper ones) probability P(X|e). The computation
we will perform will be based on the following quite “natural” assumption:

Hypothesis 3.1 Let e; be an evidence on node/variable X;. Then e; is independent
from the rest of the graph and the other evidences conditionally to X ;.

This hypothesis seems quite reasonable since it can be restated as: once the value of
X; is known, V\{X,} is independent from e;. But if you already know the value of X,
which evidence e; can give you additional probabilistic information about X;? None
since the most informative piece of information about X, that is its value, is already
known. Thus, once the X;’s value is known, e; does not bring any further information
to the rest of the graph, hence ¢; IT (V\{X;})|X;.

As for the prevision process, we illustrate the probabilistic computations in Fig-
ure 3.4, and we suppose that GG receives evidence eg, so that the a posteriori joint
probability corresponds to the expression given in the following equation:
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®
@

E—+©
©

Figure 3.4: New evidence entries.

P(A,B,C,D,E,F,G,ec) = Plec | A,B,C, D, E,F,G)P(A, B,C, D, E, F,G).

Since by Hypothesis 3.1 e is independent from {A, B, C, D, E, F'} conditionally
to (7, the above equation simplifies to:

P(A,B,C,D,E,F,G,ec) = Pleg | G)P(A,B,C,D,E, F,G).

Now, one may wonder what kind of information is contained into P(eg | G). Usu-
ally, e simply states that some values that could potentially be taken by random vari-
able GG cannot obtain anymore — sometimes, the evidence may even be so informative
that there remains only one possible value for the random variable and the latter is thus
known for sure. Assume for instance that e states that variable G that, previously,
could take values 1,2, 3,4, 5 cannot take values 1 and 2 anymore, i.e., eg = “G can
only take values 3,4,5”. P(eq|G = 1) corresponds to the probability of observing
evidence e when the value of G is 1. Thus P(eg|G = 1) = 0 since it is not possi-
ble to observe that G cannot take value 1 when it actually has this value. Conversely,
P(eq|G = 3) = 1 since the information that G cannot take values 1 and 2 holds when
it is known that the value of G is actually 3. Consequently P(eq|G) is a vector of size
|G| filled with values 0 and 1: (0,0,1,1,1).

As for section 3.1, we shall see how computations of the a posteriori probability of
a random variable can be performed using the decomposition of the joint probability
distribution. So consider the distribution illustrated on Figure 3.4, that is:

P(A,B,C,D,E, F,G) = P(A)P(B)P(C|A, B)P(D|C)P(E|C)P(F|C)P(G|E).
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Let us compute P(Alec). We know that P(Aleq) = P(A,eq)/P(ec) and that
P(eq) =>4 P(A, eq). Hence:

(A, 6(;)

Pldlec) = SBTA, ca)

Moreover,

P(Ajeg)= > P(AB,C,D,E,F,G,ec)
B,C,D,E,F.G

S(x(S(s(s(Srusersrea))))

D F E

and, according to the decomposition of the joint probability distribution,

P(Aec) =Y > > Y > > P4 P(C|A, BYP(D|C)P(E|C)

B C D F FE G

P(F|C)P(GE)P(ec|G).
The computations of these summations can thus be performed as follows:

1. Summing out G amounts to calculate:

o= ZP A,B,C,D,E,F,G,ec) (ZP G|E)P eG|G)> P(A)P(B)
P(C|A, B)P(D|C)P(E|C)P(F|C).
But as e is independent of £ conditionally to G (this is hypothesis 3.1),
P(G|E)P(ec|G) = P(GIE)P(ec|G, E) = P(G,eq|E).
Hence ) . P(G|E)P(e¢|G) = P(eg|E) and:
a = P(eg|E)P(A)P(B)P(C|A, B)P(D|C)P(E|C)P(F|C).

2. Summing out £ from « is computed by:

g = Za-(ZPeG|E E|C)> P(A)P(B)P(C|A, B)P(D|C)P(F|C).

Here again, it can be shown that e is independent of C' conditionally to F, so
that:
P(eg|E)P(E|C) = Pleg, E|C).

Hence ), P(eq|E)P(E|C) =) 5 Plec, E|C) = P(eq|C) and:
= P(eg|C)P(A)P(B)P(C|A, B)P(D|C)P(F|C).
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3. Let us now sum out F":

1= 5= (Z P<F|c>> P(ea|C)P(A)P(B)P(C|A, B)P(DIC)
F F
— 10P(ec|C)P(A)P(B)P(C|A, B)P(D|C),
where 1¢ is a vector of size |C| filled only with ones.

4. Summation over D:

§ = 27 = <ZP (D|C) ) 1cP(e|C)P(A)P(B)P(C|A, B)
— 11 P(e|C)P(A)P(B)P(C|A, B).

5. Summation over C':

e=Y 6= (Z 1e1eP(eg|C)P(CA, B)) P(A)P(B).

C

Here it may be worth mentioning that multiplying probability P(es|C') by vector
1 will result in P(eq|C) simply because this product — as well as all the other
products w.r.t. probabilities we perform — is a tensorial product. Hence:

€= (ZP e|C)P(C|A, B)) P(A)P(B).

Again, it can be shown that e is independent of A and B conditionally to C, so
that:

Y P(eg|C)P(C|A,B) =) P(ec|A, B,C)P(C|A, B)

C
= ZP(6G70|A73) = P<€G|A7 B)
C

Hence:
e = P(eg|A, B)P(A)P(B).
6. Finally, let us marginalize out B:
ZP (ec|A, B)P ZP (ec|A, B)P(A)P(B|A)
—ZP eq, B|A)P(A)
= PleclA)P(4) = Plec, 4).

Of course, computing P(B|e¢) would be performed similarly and, more generally,
this would apply to the computation of the a posteriori probability of any “cause”
conditionally to the observation of some consequence (symptom, etc).
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3.4 Diagnostic using the graphical part of the BN

As for section 3.2 the above computations can be illustrated on the graphical part of the
BN: see Figure 3.5.

®

\ /P( . C/C) /—@
C @ T— G ﬂ/P(eG /G)
P(e G /E)

©

(a) Elimination of G

®)
@ o
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P JAB) } Pe /A) “&T)
Pe /C) G
G / ©
X ®
@ (d) Elimination of C

(c) Elimination of B

(b) Elimination of F, D, then E

Figure 3.5: The diagnostic process.

Let us reconsider the computations of the preceding section in terms of messages
sent along the edges of the graph:

1. Summing out ' amounted to compute ) ., P(G|E)P(eq|G). Of course, since
both conditional probabilities are stored in G, no message need be sent and G
can perform the product, the summation and store the result in its node.

2. Summing out E corresponds to the computation of Y, P(eq|E)P(E|C). As
P(eg|E) is stored in G and P(E|C) is in E, either G or E needs sending a mes-
sage containing the conditional probability required by the other node to compute
the product and the summation. Here, G will send to £ a message containing
P(e¢|F) and E will perform the computation and store the result, i.e., P(eq|C),
in its node. This is illustrated on Figure 3.5(a).
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3. Let us now sum out F'. This corresponds to >, P(F|C). As this probability is
stored in F', the latter can compute the sum and store the result, i.e., 1o in F.

4. The summation over D (>, P(D|C)) is performed similarly in D, so that D
now stores vector lc.

5. The summation over C'is a little more tricky. It amounts to:

> “icieP(ec|C)P(C|A, B).
C

Vectors 1~ were those obtained from marginalizing out F' and D respectively.
Hence, before computation, they are stored in F' and D respectively. Moreover,
P(e¢|C) and P(C|A, B) are kept in E and C' respectively. So, to perform the
product/sum, one node, say C' must receive all the conditional probabilities stored
in the other nodes and, thus, D, E and F' will send to C' messages 1¢, 1¢ and
P(eq|C) respectively. C' will then multiply these messages with P(C|A, B),
sum over C' and keep the result, i.e., P(eg|A, B). The process is illustrated on
Figure 3.5(b).

6. Finally, marginalizing out B is achieved performing first ), P(e¢|A, B)P(B)
and then P(eg|A)P(A). In the first expression, P(B) belongs to node B and
P(eg|A, B) is keptin C, so B will send message P(B) to C' and C' will compute
> g Plec|A, B)P(B) = P(eg|A) (see Figure 3.5(c)). Then C' will send mes-
sage P(eg|A) to A and the latter will finally compute P(eg|A)P(A) = P(eg, A)
(see Figure 3.5(d)).

As can be seen, messages sent and computations performed during a diagnostic
inference process are quite similar to those of a prevision process. And, indeed, as we
shall see in the next section, a general inference (a.k.a. propagation) scheme can be
deduced from the above computations.

3.5 Pearl’s architecture: the polytree algorithm

In this section, we present a variant of Pearl’s algorithm [KP83] due to Peot and
Shachter [PS91] and capable of computing the a priori and the a posteriori marginal
probabilities of each node/variable in the network as long as this one is singly-connected.
We postpone the problems raised by multiply-connected networks to the next section.
Pearl’s propagation algorithm([KP83] and [Pea88]) can be explained in the sub-
graph of Figure 3.6. We assume that evidence e has been entered into the network. Con-
sider a node X whose parents and children are respectively Uy, ..., U, and Y7, ..., Y,,.
Assume messages Ay, (X) (resp. x (U;)) reflect how X is influenced by the subgraph
separated from it by Y; (resp. U;)!. More precisely, Ay, (X)) (resp. mx (U;)) transmits

'By convention, we will denote by 7’s messages sent to children and by \’s messages sent to parents.
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Figure 3.6: Messages during propagation.

to X all the informations coming from the lower part (resp. upper part) of the network
that can be gathered at Y; (resp. U;). For instance, Ay, (X) gathers the influences on X
of all the nodes in the shaded area of Figure 3.6. Knowing these influences, and assum-
ing they are independent, the probability of X given all the evidence entered into the
network can be computed using a formula which is simply a function of P(X|Pa(X)),
the Ay, (X)’s, and the mx (U;)’s:

P(Xle) = F(P(X|Pa(X)), A\vi(X), ..., Ay, (X), mx (Uh), ..., x (Un)).

Recall that Pa(X) denotes the set of parents of X. Thus, the algorithm proposed by
Pearl consists in sending 7- A messages to all the nodes in the network and then applying
the above formula to compute the a posteriori probability of every node.

What are exactly the content of these 7 — A messages? Evidence may have been
entered into several nodes of the network. So, let us call e} (resp. ey) the evidence
connected to X by its parents U;’s (resp. children Y;’s), e;}i  (resp. €xy, ) the evidence
contained in the subnetwork on the tail side of arc (U;, X) (resp. on the head side of arc
(X,Y;)). Peot and Shachter (see [PS91]) proved that using the following definitions for
the 7x (U;)-My, (X)) messages:

mx(Ui) = P(Usefx),
Av;(X) = Plexy,|X),

computing P(X, e) can be achieved by using the following combination of the 7 x (U;)-
Ay, (X)’s and P(X|Pa(X)):

-----

EX, ex) = Yovv, PX|UL . U) T mx (U3);

In turn, once X has received the mx(U;)-Ay,(X) messages it needed, it sends to its
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neighbors the following messages:

7TY]~(X) = W(X)Hk¢j>‘Yk(X>§
A(U) = S [AX) Lo, PO - Un) T (X))

.....

(3.3)

At first sight the above messages seem quite complicated to produce and especially
it is not very easy to see in which order they should be computed. However the fol-
lowing very simple scheme will i) ensure that all messages are sent appropriately and
ii) make the computation of the messages very easy:

Algorithm 3.1 (Pearl’s-like method)

1. Select an arbitrary node, say X, as the current node in the Bayesian network.
X, is called the root of the algorithm.

2. inward pass: the current node asks its adjacent nodes for their \ or ™ messages
depending on whether they are a child or a parent of the current node. In turn,
they recursively ask their other adjacent nodes for w-\ messages. When a node
has received all the messages it waited for it sends its own message.

3. outward pass: after the inward pass,node X; sends messages to its adjacent
nodes, they recursively send messages to their other adjacent nodes, and so
on.

A message sent by a node X; to one of its children (resp. parents) Xy, is the the sum
over all the variables except X; (resp. X},) of the product of P(X;|Pa(X,)) by all
the messages sent to X ; except that sent by Xj..

Note that the prevision computations of Section 3.2 precisely corresponds to the ap-
plication of the above algorithm with X; = G. Similarly, the computations performed
in Section 3.4 can be seen as an inward pass with X; = A.

Example 3.1 Consider the Bayesian network of Figure 3.7 and assume that evidence
e4 and e have been entered into nodes A and G. Let us apply Pearl’s algorithm
with X; = C.

During the inward pass, C' asks its adjacent nodes, i.e., A, B, D, E and F
for their messages. As A has no other neighbor, it sends its message 7o(A) =
P(A)P(ealA) = P(A,ey4). Similarly, B sends 7¢(B) = P(B). F and D send
messages A\r(C') and A\p(C') respectively. This is illustrated on Figure 3.8(a).

When E receives a query for a message, it cannot immediately send it as
it has another neighbor: GG. Hence £ asks G for its message. GG has no more
neighbors, so it sends message A\(E) = Y, P(G|E)P(eq|G) = Pleg|E) —
see Figure 3.8(b). Now, £ can sends to C' message > . P(E|C)P(eq|E) =
S P(EIC)Plec|B,C) = X3 P(E, ec|C) = P(eq|C) = Ap(C) — see Fig-
ure 3.8(c) — and the inward pass is completed as C' has received messages from
all of its neighbors.
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Figure 3.7: Example of Pearl’s algorithm.

The beginning of the outward pass consists in C' sending messages to A, B,
D, F and F'. The message sent to A is the sum over all the variables except A of
the product of the conditional probability P(C'|A, B) by the messages sent to C'
by all its neighbors except A i.e.,

Mo(4) = 57 P(CIA, Byre(B)Ab(CIAR(CIAR(C)

- Z P(C|A, BYP(B)1cP(eg|0)ic

— P(ec|A).

This is illustrated on Figure 3.8(d). Of course, the message sent to B — which is
illustrated on Figure 3.8(e) — is similar, i.e,

Ao(B) =) P(CIA, B)me(A)Ap(C)Ap(C)AR(C)

=Y P(C|A,B)P(A ea)icPlec|C)ic
AC
— P(eq|B).
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figure (e) figure (f)

Figure 3.8: Messages in Pearl’s algorithm.

the messages sent to [, [’ and FE are respectively:

ro(D) = 3 P(CIA, B)ro(A)ro(B)e(C)A(C),

= 3" P(CIA BYP(A ) PB)P(eciC)ic = P(C.caco).
reE) = 3 PCLA Bl A)re(BIA(CM(C)

- AZB P(C|A, B)P(A,e)P(B)icic = P(C,e4),
me (D) = 22 P(CIA, Byme(A)me(B)Ap(C)As(C),

=" P(C]A, BYP(A, e4)P(B)icP(eq|C) = P(C,encq).
A,B
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Finally, E sends the following message to G:

m6(E) =Y P(E|C)rp(C) =)  P(E|C)P(C,e4) = P(E, ).

Figure 3.8(f) shows all the messages that are sent during both the inward and
the outward phase. Note that, as was mentioned, on every arc (X, Y') the product
of the 7 and and A messages sent along this arc corresponds to P(X e), where e
denotes all the evidence entered into the network — here ¢ = {e 4, eg }. ¢

As mentioned, the algorithm produces correct values for the a posteriori probabil-
ities because the e}yj ’s and the e;}i s, 1.e., all the evidence surrounding node X, are
independent. This property always hold singly connected networks but is no more true
in multiply connected networks. Hence such networks deserve a special treatment that
shall be described in the next section.

3.6 Propagation in multiply connected networks

As we saw in Section 2.3 Bayesian networks are Directed Acyclic Graphs, that is,
a Bayes net G = (V,.A,P) may contain undirected cycles but not directed ones.
A directed cycle is a sequence of arcs {(X;,,X;.,) € A, j € {1,...,k}} such
that X;, = X, ,. Such directed cycles are forbidden for two reasons: i) because
they imply a recurrent situation that leads to take several times the same evidence
into account when computing a posteriori probabilities, thus preventing to obtain the
correct results; and ii) because the Bayesian network simply reflects a simplification
of the chain formula and, as the latter is obtained by applying recursively formula
P(A,B) = P(A|B)P(B) on every random variable, no variable A can belong to a
directed cycle. However, undirected cycles (a.k.a. loops) are allowed because they just
mean that a node X may influence several otherwise unrelated nodes that, in turn, have
some influence on another node Y. These “chains” of influence are thus represented on
the Bayesian network by different sequences of arcs (see Figure 3.9).

As we shall see in the following example, the propagation mechanism mentioned
in the preceding section has a serious drawback: when applied on a multiply-connected
network, i.e., a network containing undirected cycles, it will compute incorrect marginal
probabilities. The reason is quite simple: the algorithm assumed that all the messages
sent along the arcs of the network were independent, which does not hold when there
are cycles.

Example 3.2 Let us consider the Bayesian network of Figure 3.9, that obviously con-
tains the undirected cycle (loop) A, B,C, D. Assume that A is an arbitrary
boolean random variable with probability 0.5 to be either O or 1, that B is a vari-
able that always take the same value as A, and that C' is always equal to 1 — A.
Finally, let D be the sum of B and C. Of course, as B = Aand C =1 — A,
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e P(A)=(0.5,0.5)

B=C (B) (C) C=1-A

P(B)=(0.5,0.5) P(C)=(0.5,0.5)

@)

D=B+C

Figure 3.9: A graph with an undirected cycle.

D =A+1-— A =1. So, whatever the value of A, D should be equal to 1. Now,
let us apply Pearl’s algorithm for singly-connected networks and let us see that it
will predict that D can take values 0,1 and 2.

Assume that the root of the algorithm is D, so that our computation of P(D)
will only require the inward pass. First, D asks its neighbors, B and C, for
messages. In turn they ask A to send its message. Here, the algorithm should
loop since B asking a message to A, the latter should ask C' for a message before
sending its own, and the algorithm will never terminate as every node would
wait for another node to send a message before sending the one it was asked for.
However, it is not unreasonable to think that a variant of Pearl’s algorithm would
be able to detect such infinite recurrence and that it would prevent A from asking
for other messages before sending its own messages. Thus A would send to B
and C' a message containing P(A), or equivalently a vector (0.5,0.5). Now, B
can send its message:

P(B)=> P(B|A)P(A).

As B = A, probability P(B | A) is equal to 1 when B = A else 0. Thus
P(B=0)=) P(B=0]|A)P(A)
A

— P(B=0|A=0)P(A=0)+P(B=0/A=1)P(A=1)
—1x05+0x0.5=0.5.

Similarly, P(B = 1), so that P(B) = (0.5,0.5). In parallel, C' can send to D the
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following message:

P(C) =>4 P(C | A)P(A)
— P(C|A=0)P(A=0)+ P(ClA=1)P(A=1) = (0.5,0.5).

And D can thus compute its marginal a priori probability:

P(D)=Y_P(D|B,C)P(B)P(C).

But D is the sum of B and C, hence

B = B=1
C=0 C=1C=0 C=1

1 0 0 0 D=0

P(D|B,C) = 0 1 1 0 D=1

0 0 0 1 D=2

Consequently, P(D = 0) = 0.25, P(D = 1) = 0.5and P(D = 2) = 0.25,
which is obviously not the correct result as we known that D equals 1 for sure.
Why is there such a discrepancy between the correct result and the one obtained
by Pearl? Well, this can be seen when expanding the expression » - P(D |
B,C)P(B)P(C):

—~

P(D) =Y, P(D | B,C) [P(B,A=0)+ P(B,A=1)]
[P(C,A=0)+ P(C,A=1)]
=Y s P(D| B,C) [P(B,A=0)P(C,A=0)+
P(B,A=0)P(C,A=1)+
P(B,A=1)P(C,A=0)+
P(B,A=1)P(C,A=1)]

The expressions P(B, A = 0)P(C, A = 1) and P(B,A = 1)P(C,A = 0) are
incoherent because they state that A takes at the same time two different values, 0
and 1. This explains why the value obtained for P(D) is incorrect. The removal
of the incoherent terms in the above equation, i.e., P(B, A = 0)P(C, A = 1) and
P(B,A=1)P(C,A=0), would result in a correct value for P(D). ¢

Fortunately, several modifications of the polytree algorithm have been proposed

in the literature, that enable this algorithm to cope with loops. In the next section,
we describe the modification advocated by Pearl [KP83], i.e., the cutset conditioning
method, also called Global conditioning.

3.6.1 Global conditioning

Global conditioning consists in removing some arcs from the DAG, so that it contains
no more loops and applying the polytree algorithm formulas with slight differences.
Precisely, the dimension of messages are increased by that of the nodes at the tail of the
removed arcs (forming the cutset).
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Example 3.3 Consider the Bayesian network of Figure 3.10(a). As we saw, perform-
ing Pearl’s algorithm within this graph will result in inconsistent results. How-
ever, assume that the value of A is known. For instance, say A = a;. Then
the arcs outgoing from A become useless for the propagation process. Indeed,
consider arc (A,C): if A were to send a message to C, this message would
be P(A,es), where e4 = “A has the value a;”. But then arc (A, C) is use-
less, it is sufficient to substitute the conditional probability table stored in C' by
P(C|A)P(A, ea). Conversely, amessage from C' to A would be useless: it would
simply contain the influence of C' (and possibly some other nodes) on A. But
there cannot be any influence since the value of A is already known for sure, so
no new information is of any interest to A. Hence arc (A, C) is useless and can
safely be dispensed with. Similarly, arc (A, B) could also be removed. How-
ever, the inference/propagation process is usually easier to perform if we keep
the graph connected. Hence, here we can remove only arc (A, C') (but no infor-
mation will be passed from B to A during the inference process) and perform the
polytree algorithm.

®\A:(al, a2, a3)

®B) ©

®) ©
/ P(B,\a\k /P(C/al)
© ©

P(D)=P(D,al)+P(D,a2)+P(Da3) P(D,al)

Figure 3.10: Graph with undirected cycle.

Of course, in general, there is not much chance that enough nodes will be in-
stantiated for the graph to become singly-connected. However, if we observe that
P(D)= > ,P(D,A) = P(D,a1) + P(D,as) + P(D,as), then it is sufficient
to instantiate A successively to aj, as and as, to compute P(D,aq), P(D, as),
P(D, a3) and then to sum these values. All these operations can be performed in
one step simply by imposing that the sizes (dimensions) of the A — m messages
sizes be multiplied by |A|. Only at then end of the algorithm, when we multiply
m(X) by A(X), are we allowed to perform summations over A. ¢
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As a conclusion, the global conditioning method (GC) requires the choice of a sub-
set of arcs, the removal of which turns the graph into a polytree. Such a set always
exists, but choosing the best set has been proved to be a NP-hard problem [SC90], and
so heuristics have been proposed that produce good quality cutsets (see [BYGNR94],
[BGI6D)).

Property 3.1 Global Conditioning conditions each node in the Bayesian network by
the cutset, hence propagation is exponential in the cutset size.

This property is of course undesirable, all the more that even computations per-
formed in regions of the Bayesian network that do not belong to cycles are affected by
the increase in the size of messages. For instance, in example 3.10, the messages trans-
mitted along arc (F', A) would not be of size |F'| but of size | F'| x | A|. This seems quite
inefficient since increasing the size of the messages is just a trick to cope with cycles,
and (F, A) does not belong to any cycle. This led researchers to investigate other, more
efficient, types of conditioning and Local Conditioning quite naturally arose.

3.6.2 Local conditioning

Peot and Shachter [PS91] introduced two important improvements to the polytree al-
gorithm. They defined a knot as a portion of the network that cannot be made uncon-
nected by removing only one edge. They proved that cutset conditioning need not be
performed on the whole BN, but that it could be conducted separately on each knot.
Thus, in their method, each knot is endowed with a cutset of its own, and an algorithm
is introduced that computes probabilities using knot-cutsets.

Knot Conditioning (KC) is an improvement of global conditioning since cutset vari-
ables are used only in knots and not in the whole graph. Diez [Die96] later noticed that
this local property could be further generalized by observing that even within knots
some cutsets did not affect the whole knot but only part of it. This led to the concept of
Local Conditioning (LC), which was later justified mathematically by [FJOO].

[FJOO]’s algorithm is similar in spirit to the global conditioning method, i.e., it
amounts to apply algorithm 3.1 while keeping the dimensions related to some instan-
tiated variables. In other words, summations on those instantiated variables are per-
formed only at the end of the algorithm, when computing marginal probabilities as the
product of downward and upward messages. To understand what are precisely the mes-
sages dimensions and which summations shall be performed both in singly and multi-
ply connected networks, we will label arcs with the dimension of their corresponding
messages. First, remark that when the graph contains no cycle, for instance the graph
of Figure 3.11, my(X) and Ay (X) have only one dimension, that of X, since they
are equal to P(X, e%y ) and P(eyy|X) respectively, where e (resp. e, stands for
the evidence available on X’s (resp. Y’s) side of arc (X,Y). In a singly-connected
network, labels are thus similar to those of Figure 3.12(a).

In other words, if C'xy denotes the label of arc (X,Y), then Peot and Shachter’s
formula (Equation 3.3) can be expressed as follows:
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el

(a) a singly connected graph

Figure 3.12: Labeling arcs in the network.

(b) a multiply connected graph

Definition 3.1 (w — A messages in terms of labels)

o« Ty(X)= >

ZeW\Cxy L i=1

o« M(X)= > waY

ZEV\CXY L

k

(Y €y‘Pa

m

P(X,ex[Pa(X)) x [[7x(U3) x [ M, (X)

J=1

P

j=1

];

0|

In the case of multiply connected networks, as we saw in the preceding section,

enough cutset nodes must be selected to remove all cycles.

For instance, on Fig-

ure 3.12(b), we chose arbitrarily nodes A, B and D. Fay and Jaffray [FJOO] showed
that performing algorithm 3.1 (with labeled messages) using the labels provided by the
algorithm below (leading to the labels of Figure 3.12(b)) results in correct a posteriori

probabilities.

(A, B)’s label.

Algorithm 3.2 (labeling algorithm) Let (V, A, P) be a BN. Assign to each arc
(X,Y) of A label X. Then, while there remain cycles, select one of them and cut
one of its arcs, call it (A, B), and add to the labels of the other arcs of the cycle arc

Local Conditioning decreases messages dimensions of Global conditioning mes-
sages by avoiding unnecessary parameters. For instance, consider the graphs of Fig-
ure 3.13. We can notice that the labels induced by Global Conditioning (Figure 3.13(b))
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are supersets of those induced by Local Conditioning. Hence the latter will perform
computations faster than the former. Note that in both cases, we began by cutting the
loop ABCDEF atarc (B, C'), then we cut loop EFGHI at arc (F, E).

f@i/@
®)
©
D ©

(a) BN with two loops

(b) Parametrization with global conditioning

%@@“f/@a
'
S o

s 5

®

o

(c) Parametrization with

local conditioning

S

(d) Parametrization with local conditioning

at the top of loops

Figure 3.13: Resulting polytrees from a given BN.



Chapter 4

Undirected methods

In Chapter 2, it was shown that, as is, undirected graphs are not expressive enough to
represent faithfully probabilistic independencies since the same graph could represent
several incompatible sets of dependencies/independencies. Remember for instance the
two examples we used in Chapter 2:

1. people’s reading ability (variable Ability) and their shoe sizes (variable Shoes)
are dependent random variables. However, conditionally to variable Age, they
become independent.

2. Dy and D, are two dice. We throw them and denote by Sum the sum of their
values. The dice are not loaded and are independent. However, knowing the
value of Sum, they become dependent since knowing the value of one die results
in knowing the value of the other die.

The very basic idea consisting in adding edges between dependent variables led us to
the undirected graphs of Figure 4.1, which was not satisfying since the graphs were
identical and yet represented incompatible sets of dependencies/independencies. This
led us to add orientations to edges so as to be able to discriminate between these dif-
ferent sets. However, this is not the only way such discrimination can be achieved and,
in this chapter, we shall see that modifying slightly the undirected graphs of Figure 4.1
also enable the aforementioned discrimination.

Consider again the problem of the dice. As we saw Figure 4.2(a) could not be used
because it already represented the set of dependencies/independencies of the age/ability/
shoe problem. However, adding a new edge between die D, and die D, produces a
graph that is not conflicting with that of age/ability/shoe and we will see in this chapter
how this can be generalized to apply to any set of dependencies/independencies.

To do so, we will first review some basic Markov properties. Then these properties
will be exploited to produce join trees and junction trees. Finally it will be shown how
these trees can be used to perform evidence propagation.

43
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(a) Ability and Shoes example

C DI >———CSum >———C D2 >

(b) Sum of Dices

Figure 4.1: Some graphs representing dependencies/independencies between random
variables.

o CONNNGY o2
(o)

(a) Sum of dice (b)Modified graph

Figure 4.2: Modified undirected graph.

4.1 Markov Networks

Before explaining how the construction of graphs such as those of Figure 4.2(b) can
be done, one must wonder why the simple graph of Figure 4.2(a) could not faithfully
represent the set of dependencies/independencies of the dice example. When we de-
signed it in chapter 2, we tried to represent independence between pairs of variables by
a lack of edge between these variables and, conversely, dependence between pairs of
variables by edges. However, such method does not take full advantage of the expres-
sive power of graphical representations in that the structure of the graph has no special
significance except that connected pairs are dependent whereas unconnected ones are
independent. Yet this structure should offer a distinction between direct and indirect
connections: for instance, in Figure 4.1(a), the graphical representation should tell us
intuitively that the reading’s ability is found to be related to shoe size because both
variables depend on the age of the person but it should also tell us that, when the age
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is known, there is no relation between ability and shoes. This suggests that the graph-
ical structure should represent conditional independencies, that is, the lack of an edge
between two nodes/variables should indicate an independence between these variables
conditionally to the variables that are in between (here the age). Such graphs will be
called Markov networks and this section is devoted to their study.

As we are about to represent sets of independencies by graphs, we should first give
a few words about probabilistic independencies. Let ) be a set of random variables
and let X,Y, Z be a partition of V. Let us denote the independence of sets X and
Y conditionally to set Z by I(X,Z,Y)p. Then I(,-,)p satisfies the following well-
known properties [Lau82]:

Property 4.1 (Conditional independence)

(XY, Z)p < P(X,Y|Z)=P(X|Z)P(Y|Z) @.1)
(XY, Z)p < 3f.g: P(X,Y,Z) = f(X,Z)g(Y, Z) 4.2)
(XY, Z)p < P(X,Y,Z)=P(X|Z)P(Y,Z) 4.3)

As mentioned above, we would like to represent sets of conditional independencies
by an undirected graph G = (V, £) such that if Z is a set of nodes between sets X and
Y — actually if all paths between any node in X and any node in Y pass through a node
in Z — then it means that (X, Z,Y)p. Let us denote the fact that 7 is “in-between”
X and Y by (X|Z|Y)g. Then, our aim is to create a graph G such that:

[(X,Y, 2)p <= (X|Z|V)q. (4.4)

Unfortunately, a result by Pearl and Paz [PP85] shows that no graphical structure can
satisfy the above equation but there do exit graphical structures satisfying:

I(X,Y,2)p +— (X|Z|Y)g. 45)

These are called I-maps [Pea88]. Of course, Equation (4.5) is less satisfying than Equa-
tion (4.4) since it states that if set Z intercepts all paths between the nodes in X and the
nodes in Y, then X and Y are independent conditionally to Z, but it does not guarantee
that if there exist some paths between nodes in X and nodes in Y that are not inter-
cepted by Z then X and Y are dependent conditionally to Z whereas Equation (4.4)
offers this guarantee. As a consequence, /-maps guarantee that nodes separated by
some set Z are indeed independent conditionally to Z but there may exist connected
nodes that are truly independent.

As I-maps do not encode all independencies, a given set of conditional independen-
cies I(X, Z,Y)p’s may be representable by different I-maps. For instance, the com-
plete graph G = (V, £), i.e., the graph in which for every pair of node in V there exists
an edge in & linking these nodes — is an /-map for any set of conditional independen-
cies since it states that every pair of nodes may be dependent. Hence it is legitimate
to wonder if there exists for any set of probabilistic conditional independencies a min-
imal /-map (in the sense that removing any edge from the graph would make it cease



46 Chapter 4. Undirected methods

to be an I-map). The answer was given by Pearl and Paz [PP85] for strictly positive
probabilities:

Theorem 4.1 Any strictly positive distribution P has a unique minimal I-map
G = (V, &) produced by connecting only those pairs of nodes X,Y in 'V for which
I(X,V\{X, Y}, Y)p is false, ie.,

(X,Y) & E = I(X,V\{X,Y),Y)p.

Using this theorem, we can now create the minimal /-map for the dice problem:
we know that not(/ (D1, Sum, Ds)p) since knowing the value of the sum of the dice
gives us the value of Dy when we know the value of D;. Consequently, edge (D1, D)
should exist. Naturally, not(I(D;, Dy, Sum)p) and not({(Dz, Dy, Sum)p) also hold
since, when the value = of one die is known, Sum is equal to = plus the value of
the other die. Consequently, our minimal /-map should contain edges (D;, Sum) and
(Do, Sum). This is precisely what we obtained on Figure 4.2(b).

Naturally, as for Bayesian networks, once the structure of the graph has been es-
tablished, there remains to quantify the strengths of the dependencies represented by
the edges. The solution to this problem is provided by the theory of Markov fields
[Ish81, Lau82] and the following algorithm:

Algorithm 4.1 Let V = { X}, ..., X,,} be a set of random variables.

1. Identify the cliques of the I-map G = (V, £), i.e., the largest subgraphs whose
nodes are all adjacent to each other.

2. For each clique C;, assign a nonnegative compatibility function g;(c;), which
measures the relative degree of compatibility associated with the value assign-
ment c; to the variables included in C;.

3. Form the product [, g;(c;) of the compatibility functions over all the cliques.

4. Normalize the product over all possible value combinations of the variables in
the graph. The normalized product constitutes a joint probability distribution
of V that satisfies all the conditional independencies in the undirected graph:

ng‘(ci)
PV) = =

Z Hgi(ci).

Tl 0

The above algorithm provides a safe way to retrieve a probability distribution that
is compatible with the I-map G, i.e., this distribution encodes a compatible set of con-
ditional independencies. However, it is not very satisfying because the interpretation of
the g;(C;)’s is not always straightforward. Indeed, consider the following example:

Example 4.1 Let A, B,C, D be four people. A is friend with B and C, B is friend
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with A and D, C'is friend with A and D as well, and D is only friend with B and
C, so that the relations between these four individuals can be represented by the
graph of Figure 4.3.

A contagious disease appeared in the region where the four individuals live
and we may wonder what is the probability that a given person will catch this
disease. Assume that there is a joint probability distribution P over A, B, C, D
of catching the disease and that this distribution is equal to:

91(A, B)ga(A, C)g3(B, D)ga(C, D)
Y 91(A, B)ga(A, C)gs(B, D)gs(C, D)

A,B,C,D

P(A,B,C,D) = (4.6)

which is compatible with the I-map of Figure 4.3. Now, extracting functions
g:(+)’s from a database or from an expert is not a trivial task. Indeed, g;(A, B)
should reflect the risk of the pair A, B catching the disease, but it is not easy to
isolate this risk from the risk involved by the rest of the population as A often sees
C, and B often sees D (see Figure 4.3). Hence an expert would find it difficult
to estimate functions g;(-)’s. Even computing these functions from a database
would be difficult as Equation (4.6) is a nonlinear equation. ¢

Figure 4.3: The relations between A, B, C' and D.

However not all sets of independencies/Markov networks suffer from this quantifi-
cation problem: as described in the theorem below, when Markov networks are chordal,
the g;(-)’s can be interpreted as probabilities, which usually simplifies their elicitation.

Definition 4.1 (chordality) An undirected graph G = (V, E) is said to be chordal if
every cycle of length four or more has a chord, i.e., an edge linking two nonadjacent
nodes in the cycle.

Definition 4.2 (decomposability) Let P be a probability distribution. P is said to be
decomposable if it has a minimal I-map that is chordal. P is said to be decomposable
relative to an undirected graph G if G is an I-map of P and G is chordal.

Theorem 4.2 Let P be a probability distribution decomposable relative to a graph G
then the joint distribution of P can be written as a product of the cliques of G divided
by a product of the distributions of their intersections.
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Example 4.2 Consider the chordal graph of Figure 4.4. The cliques of this graph are:
AB, BCD, CDE, EF and EG. Here, the intersections between cliques are B
(this is the intersection between AB and BC'D), C'D (intersection of BC'D and
CDEFE) and FE (intersection between CDFE, E'F and EG). Hence Theorem 4.2
guarantees that any probability distribution over A, B, C, D, E, F, G compatible
with this graph can be decomposed as:

P(A,B)P(B,C,D)P(C, D, E)P(E, F)P(E,G)
P(B)P(C, D)P(E)

P(A,B,C,D,E,F,G) =

Algorithm 4.1 stated that there exist functions g;(-)’s such that:

P(A,B,C,D,E,F,G) x g1(A, B)gs(B,C, D)gs(C, D, E)g4(F, F)gs(E, G).

By assigning:
93(C, D, E)= P(E|C, D) gis(E,F)=P(E,F,G),
it can easily be seen that both expressions of P are similar. ¢

Figure 4.4: A chordal I-map.

4.2 From Markov networks to join trees and junction
trees

Naturally, not all probability distributions are decomposable, but we shall see in this
section how, dropping some independencies, that is, occulting the knowledge that they
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do exist, we can transform any probability into a decomposable one. This transforma-
tion will be performed by triangulating an /-map of the distribution. However, although
I-maps encode many independencies underlying the joint probability distribution, they
are not very well suited for evidence propagation because these independencies are
not readily available from these graphs but need be extracted from them (for instance
finding the cliques of the network). Hence, it is often a good idea to transform these
undirected graphs into secondary structures more suited for evidence propagation. In
Shafer-Shenoy’s algorithm [Sha96] the secondary structure is called a join tree and in
Jensen’s scheme it is called a junction tree. Both structures result from a triangulation
process: an undirected graph G = (V, £) is said to be triangulated if and only if it is
chordal. As shown in [Ros70], triangulating a graph amounts to apply the following
algorithm:

Algorithm 4.2 (Triangulation)

Let G = (V,&) be an undirected graph, where V = {X,...,X,}. Denote by
adj(X;) the set of vertices adjacent to X;. A vertex X; € V is said to be eliminated
from graph G when:

1. the edges (adj(X;) x adj(X;))\E are added to & such that adj(X;) U {X;}
becomes a clique;

2. the edges between X; and its neighbors are removed from &,
as well as X; from V.

Let o be a permutation of {1,...,n}. Let us eliminate X1y, Xo(2), - - - Xo(n) SUC-
cessively and call Er the set of edges added to graph G by these eliminations. Then
graph Gr = (V,E U Er) is chordal.

Thus triangulating a graph simply amounts to applying an elimination sequence.
As an illustration, applying sequence S, C, G, R, T, B, D, H, F, A on the undi-
rected graph of Figure 4.5(a) results in the triangulated graph of Figure 4.5(b). Note
that applying elimination sequence o to a graph already triangulated by o keeps the
graph unaffected. Of course, different sequences induce different triangulated graphs.
The elimination sequence shall thus be carefully chosen. Finding the best one is un-
fortunately NP-hard [Yan81], but heuristics exist that usually provide good sequences
[Kj&90, BG96b, BG96a, SGI7].

Note that Figure 4.5(a) simply states that the joint probability distribution over ran-
dom variables A, B,C, D, F, G, H, R, S, T can be decomposed as:

P(A,B,C,D,F,G, H7 R, SyT) = fl(AvB7D)f2(Avc)f3(BvF)f4(Cv G) (4 7)
f5(D7H)f6(F7R)f7(G7 H7 S)fS(Ha R7T)7 '
whereas Figure 4.5(b) states that P(A, B,C, D, F,G, H, R, S,T) is decomposable as:

P(A,B,C,D,F,G,H,R,S,T) :gl<A7B7D7F)g2(A7C7G>g3(G7H>S)
g4(A7 G7H)g5<H7 F7 R7 T)gﬁ(AaDuFa H)
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@vﬁ)

(a) original undirected graph (b) triangulated graph

Figure 4.5: The moralization and triangulation steps.

Note that the latter decomposition is compatible with that of Equation (4.7). Indeed, if:

hd gl(A7B7D7F) = fl(A7B7D)f3(BvF)a

gQ(Av Ca G) = fQ(Av C)f4(cv G)’

g3<G> H, S) = f7<G> H, S>’

o g,(A,G,H)=1,

g5(H7 F, R>T) = f6<F> R)fS(I_L R>T),
e g6(A7D>F>H> = f5(D7H>’

then the latter decomposition of P(-) equals that of Equation (4.7).

From chordal graphs we can extract elimination trees and junction trees that are
very convenient for evidence propagation:

@ @@ @
Gud)  GorD (THE)
(ar)

(b) elimination graph (c) a junction tree

(a) a triangulated graph

Figure 4.6: Elimination and junction trees.
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Definition 4.3 (Elimination tree) Let G = (V,Er) be a chordal graph produced
by an elimination sequence o. Let D,y = adj(X,a)) U {Xo@)} be the clique adja-
cent to X, ;) in Gr just before X, ;) is eliminated, and let D = { Dy, ..., Do }-
The elimination tree of Gr is graph G = (D, Ag), where Ag is the set of arcs
(Dg(i), Da(j)), 1 < j, such that j = mm{k : Xg(k) € Dg(i)\{XJ(Z—)}}. Each arc
(Dg(i), DJ(]—)) € Ag, © < j, which is called the separator arc of node D, is la-
beled by D,;y N Dy (), which is called its separator content.

Definition 4.4 (Junction tree) Let C be the set of cliques of a triangulated graph Gr.
A junction tree of Gy is a tree G; = (C, ;) having the running intersection property,
i.e., such that for any pair C,Cy € C, C; N Cy C C; for all the nodes C; € C on
the unique path in G; between C and Cs. For any two adjacent nodes C,Cs € C,
C1 N Cs is called the separator of nodes C and Cs.

Elimination trees are similar in spirit to junction trees except that some of their ver-
tices may be nonmaximal complete subgraphs of Gr. Note that for a given triangulated
graph, there exists only one elimination tree whereas there may exist different junction
trees. However, as shown in [JJ94], all these junction trees contain precisely the same
cliques and separators. As an illustration, Figure 4.6 represents the elimination tree and
one possible junction tree for the triangulated graph of Figure 4.5(c).

The way we derived junction trees, one of their key aspects of is that they represent a
decomposition of a joint probability. Indeed, it can be shown [CDLS99, chapter 5] that
ifG; = (C,&y) and G = (D, Ag) are respectively a junction tree and the elimination
tree of a triangulated graph Gy = (V, £), then the joint probability on V is equal to the
product of the joint probabilities of the cliques divided by those of the separators, i.e.,

I Py [T Py

C;eC D;,eD
P(V) — 7 — 7 .
Il P@incy Il PwinD

(Ci,CH)EE (Di,Dj)EAE

As the decomposition of the joint probability distribution is strongly related to both
Bayesian networks and junction trees, it is legitimate to wonder whether the latter can
be derived from Bayesian networks (and conversely). The answer consists in applying
three steps:

1. the Bayesian network is moralized, hence resulting in a new graph called the
moral graph — actually, this is an /-map;

2. the moral graph is triangulated;

3. the triangulated graph is transformed into a junction tree.
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Algorithm 4.3 (Moralization) Let G = (V, A) be a directed graph. The moral
graph G' = (V, €) results from the the application of the following two steps:

1. for any vertex X in 'V, add (undirected) edges between all pairs of parents of
XinA;

2. replace all remaining arcs (X,Y')’s by (undirected) edges (X,Y)’s.

Moralizing a Bayesian network naturally transforms it into an /-map. For instance,
the graph of Figure 4.7(a) decomposes the joint probability distribution as:

P(V) = P(T|H, R)P(S|G, H)P(R|F)P(H|D)P(G|C)
P(F|B)P(D|A, B)P(C|A)P(B)P(A),

By assigning:
a(T,H,R) = P(T|H, R) b(S,G,H)=P(S|G,H)
¢(R,F)= P(R|F) d(H,D)= P(H|D)
e(G,C) = P(G|C) f(F,B)=P(F|B)
g(A,B, D)= P(D|A, B)P(B)P(A) h(C,A) = P(C|A),

P(V) = a(T, H, R)W(S, G, H)e(R, F)d(H, D)e(G, C)
f(F,B)g(D, A, B)h(C, A),

which corresponds precisely to the decomposition represented by the moral graph of
Figure 4.7(b).

(a) A BN with two loops (b) the moral graph (c) the triangulated graph

Figure 4.7: The moralization and triangulation steps.

Of course, steps 2 and 3 of the BN-junction tree conversion are just the transforma-
tion of the /-map into an /-map of a decomposable probability.

Now we shall see in the next sections how these graphs can be exploited to perform
evidence propagations.
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4.3 Jensen’s inference method

Assume now that we have constructed a junction tree representing a probability dis-
tribution P. As we saw in the preceding section, the joint distribution P is equal to
the product of the joint probabilities of the cliques divided by those of the separators.
Hence assume that we populate cliques and separators with their corresponding joint
probabilities hereafter called potentials. Here we will denote by ¢ (resp. 1) the poten-
tials of the separators (resp. of the cliques).

To understand Jensen’s inference engine, consider the part of a junction tree of
Figure 4.8. Assume that the potentials in C;, C; and S are:

W(CG) = PG,
v(C)) = P(Cy),
¢(5) = P(5)

respectively. Since S is a separator, S = C; N C; and consequently:

o) = 3 P = 3 POy,

Ci\S Cj\S

Y(c ) b (s) ey

Figure 4.8: Jensen’s (HUGIN) propagation algorithm.

The junction tree can be said to be in equilibrium in the sense that the potentials in
cliques and separators are consistent. Now, new evidence can be entered into the net-
work. This can be a piece of information ex indicating that a variable X, the possible
values of which were a priori z4, ..., xx, cannot have value x; anymore, or the obser-
vation that Y has only one possible value left: y. In any case, as for Chapter 3, we will
always assume the following holds:

Hypothesis 4.1 Any evidence ex related to a random variable X is independent of
the other variables of the network conditionally to X.

Assume now that taking into account a new evidence on a variable in clique C;
leads to change ¢(C;) into ©*(C;). The equilibrium of the junction tree is lost since:

B(S) # Y v (Ch).

Ci\S
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To restore it, it is sufficient to apply the following two steps, that are called absorption
of C; from C;:

Algorithm 4.4 (absorption of C; from ()

1. potential ¢(S) associated to S is replaced by ¢*(S) = Z v (Cy);
Ci\S

¢*(5)
¢(5)

Jensen’s inference algorithm consists in applying in a systematic way the above
absorption process. [Jen96] proves that the equilibrium can be restored in the whole
junction tree by selecting arbitrarily a clique, say C', and applying successively on this
clique the two functions Collect-Evidence and Distribute-Evidence below. Once the
junction tree is again in equilibrium, a posteriori marginal probabilities of each random
variable X; can be computed by selecting any clique C' containing X; and computing:

p(®)

C\{X:}

2. potential 1(C};) associated to C} is replaced by 1" (C;) = ¥ (C;) x

or any separator .S containing X; and computing:

> #7(9).

S\{X;}

Algorithm 4.5 (Collect-Evidence on clique C;) For all cliques C; adjacent to C;
except, if any, that which called Collect-Evidence on C';, do:

1. call Collect-Evidence on C},

2. perform the absorption of C; from C;.

Algorithm 4.6 (Distribute-Evidence on clique C;) For all cliques C; adjacent to C;
except, if any, that which called Distribute-Evidence on C';, do:

1. perform the absorption of C; from C;,

2. call Distribute-Evidence on C';.

Note that the complexity of the absorption process corresponds to the size of the
cliques, so that the complexity of the overall inference algorithm is the sum of the sizes
of all the cliques of the junction tree.

To complete this section, there remains to describe how junction trees are initial-
ized: indeed until now we have always supposed that the potentials of the junction trees
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used for evidence propagation initially contain joint probabilities. However, in practi-
cal situations, these are not available upon the start as all that is known at the beginning
is a Bayesian network, and hence only a set of conditional probabilities is available.
Fortunately [Jen96] shows that application of the following algorithm results in all the
potentials being equal to joint probabilities:

Algorithm 4.7 (Junction tree initialization)
1. Fill all potentials with 1’s.

2. For each conditional probability in the Bayesian network, find a clique con-
taining all the variables of this probability and multiply the potential of this
clique by this conditional probability.

3. Select a clique arbitrarily, say C, and apply Collect-Evidence on C' and then
Distribute-Evidence on C.

Example 4.3 Consider the Bayesian network of Figure 4.9(a). The result of the mor-
alization and triangulation processes (using elimination sequence H, G, F, E,
D, C, B, A) is the Markov network of Figure 4.9(b). Finally, the junction tree of
Figure 4.9(c) is constructed from the Markov network. After performing step 1
of Algorithm 4.7, we may have the following potentials:

W(ABC) = P(B|A)P(C|A)P(A) = P(A, B,C)

) = gb(BC) =lpc
»(BCD) = Pp(D|C) ¢(BD) =1pp
“(BDE) = Pp(E|B) $(DE) = ipg
Y(DEF) = Pp(F|D) ¢(EF) =1pF
Y(EFG) = Pp(G|E) ¢(FG) =1rc
G(FGH) = P(H|F,G),

where, for any set X of random variables, 1x denotes a vector/matrix of size | X|
filled only with 1’s and where P x (Y |Z) stands for the matrix of size | X | x |Y| x
| Z| filled with | X| replicas of conditional probability P(Y'|Z).
Let ¢*(ABC) = (ABC) = P(A, B,C) and ¢*(FGH) = ¢(FGH) = P(H|
F, G). Applying Collect-Evidence on clique BDFE results in the following com-
putations:

e separator BC: ¢*(BC) =) ,v*(ABC)

=Y., P(A, B,C) = P(B,C);
e clique BCD: *(BCD) =¢(BCD) x 259

@(BC)

= Py(D|C) x HE4 — p(B,C, D);

S (BCD)
= Zc P(B, C, D) = P(B, D);

e clique BDE: ¢/(BDFE) =¢(BDE) x dggzl))))

= Pp(E|B) x S22 = p(B, D, E);

e separator BD: ¢*(BD)
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P(CIA)P(A)
(&) | Py (ABO) (FGH) P(HIF,G)

“"‘3
O ®) P(DIC) (BCD) (EFG) P(GIE)
® © BD]
0
P(EIB) (BDE) (DEF) P(FID)
(a) original BN (b) triangulated [-map (c) junction tree

Figure 4.9: Junction tree initialization.

e separator F'G: ¢*(F'G) =) ¢ (FGH)
=2y P(H|F,G) = ipc;
o clique EFG: ¢*(EFG) = (EFG) x S22
= Pp(G|E) x £ = Pp(G|E) = P(G|E, F);
e separator LF: ¢*(EF) =) ,V*(EFQ)
=2 Pr(G|E) = 1gF;
o clique DEF: ¢*(DEF) =¢(DEF) x Z20
= Pp(F|D) x t2£ = Py(F|D) = P(F|D, E);
e separator DE: ¢*(DE) =) .Y*"(DEF)
=> p Pe(F|D) =1pg;
o clique BDE: ¢*(BDE) =¢/(BDE) x £{54
= P(B,D,E) x 22 = P(B, D, E).
Let **(BDE) = ¢*(BDE) = P(B, D, E). Applying Distribute-Evidence on
clique BDF results in the following computations:
e separator BD: ¢**(BD) =) ,¢*(BDE)
=>_pP(B,D,E) = P(B,D);
e clique BCD: *(BCD) =¢*(BCD) x 2-5D)

¢*(BD)

= P(B,C,D) x 522 = P(B,C, D);

P.p)
>_p ¥ (BCD)
=> ,P(B,C,D)=P(B,C);

e clique ABC: ¢*™(ABC) =¢*(ABC) x Q;::gcc))

= P(A,B,C) x ng:g; — P(A,B,C);

e separator BC: ¢**(BC)




Section 4.4. Shafer-Shenoy’s inference method 57

e separator DE: ¢**(DE) =)z (BDE)
=> 5 P(B,D E) P(D, E);

o clique DEF: **(DEF) =y*(DEF) x S+ 2
- P(F|D, E) x @ = P(D, E, F);

e separator EF: ¢**(EF) Yo p U (DEF)
=>p P(D,E, F) = P(E, F);

e clique EFG: Y™ (EFG) =¢*(EFG) x ¢** (EF)

*(EF)
= P(G|E,F) x EED _ p(p,F,q);
e separator F'G: ¢**(FG) =) oV (EFG)
=>_pP(E,F,G) = P(F,G);

e clique FGH: v**(FGH)=¢*(FGH) x ¢*((£((;;))

= P(H|F,G) x <jGG> P(F,G, H).
As we can see, at the end of the Distribute-Evidence process, all potentials
contain joint probabilities. ¢

4.4 Shafer-Shenoy’s inference method

At the end of Section 4.2 we described how a Bayesian network could be converted
into a junction tree (a.k.a. join tree). The first step, that is the moralization, ensured that
the conditional probabilities stored into each node of the Bayes net could also be stored
into a compatibility function in the resulting I-map. If we refer again to the Bayesian
network of Figure 4.10(a), the joint probability distribution P can be decomposed as:

P(V) = P(T|H, R)P(S|G, H)P(R|F)P(H|D)P(G|C)
P(F|B)P(D|A, B)P(C|A)P(B)P(A)

and, if we assign the following values to the compatibility functions of the moral graph
of Figure 4.10(b) (the resulting /-map):

a(T, H,R) = P(T|H, R) b(S,G, H) = P(S|G, H)
¢(R,F)=P(R|F) d(H,D) = P(H|D)
e(G,C) = P(G|C) f(F,B) = P(F|B)

9(A,B,D) = P(D|A,B)P(B)P(A) hC, A) = P(C|A),

the joint probability distribution can also be expressed as the product of the compati-
bility functions, that is:

P(V) = (T, H, R)b(S, G, H)e(R, F)d(H, D)e(G, C)
F(F, B)g(D, A, B)h(C, A).

The graph resulting from triangulation, i.e., that of Figure 4.10(c), has fewer cliques
but they contain the cliques of the I-map of Figure 4.10(b) — actually, the new cliques
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() (B)
—f
© (©) (F)

© @
(a) A BN with two loops (b) the moral graph (c) the triangulated graph

Figure 4.10: From a Bayesian network to a triangulated /-map.

are RI'FH,SGH,CAG, GHA, ABDF, ADF H — hence the conditional probabili-
ties of the Bayesian network can still be included in the compatibility functions of the
triangulated graph. Indeed, if we assign:

(R, T, F, H) = P(T|H, R)P(R|F) b(S,G, H) = P(S|G, H)
c(A, D, F,H) = P(H|D) d(G, H, A) = P(A)
e(A, B,D,F) = P(D|A, B)P(F|B)P(B)  f(C,A,G)=P(G|C)P(C|A),

then the joint probability distribution can be expressed as the product of the compatibil-
ity functions of the triangulated graph. Now, remember that a junction tree (or join tree)
is a tree where the cliques (ellipses) correspond to the cliques of the triangulated graph
and the separators are the intersection between adjacent cliques (see Figure 4.11(c)).
Consequently, if the potentials we store in the cliques are equal to the compatibility
functions we assigned to the triangulated graph, the joint probability distribution P is
equal to the product of the potentials of the cliques of the join tree.

(b) elimination graph (c) a junction tree

(a) a triangulated graph

Figure 4.11: Elimination and junction trees.

Actually, if we fill the separators with vectors/matrices filled with 1’s, the joint
distribution over all the random variables represented by the join tree is the product
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of all the potentials of the cliques and separators in the graph. The idea in Shafer-
Shenoy’s propagation algorithm is to propagate evidence while preserving this property.
Consider for instance, the Bayesian network of Figure 4.12, which expresses the joint
probability distribution over A, C, D, F, G, I as:

P(A,C, D, F,G,I) = P(A)P(C|A)P(F|C)P(D)P(G|D)P(I|F,G).
@
© ©

/

Figure 4.12: A simple Bayesian network.

Triangulating this graph according to elimination sequence A,C, D, F,G,I and
constructing the join tree, we obtain the graph of Figure 4.13, where 1, 1 and 14
stand for vectors and matrices filled with 1’s. Note that the product of all these poten-
tials is indeed equal to P(A,C, D, F, G, I).

P(A)P(CIA) 1. P(FIC) 1. PUIF,G) 1, P(D)P(GID)
AO—ACcH—FO—F—Ir6>—6l—GD)

Figure 4.13: A join tree resulting from elimination sequence A, C, D, F, G, I.

Now, assume we want to compute the marginal probability of F'. Then we must
sum the joint probability distribution over A, C, D, GG, I. Consider summing over A:

ZP (A,C,D,F,G,I)= ZP P(C|A) ) P(F|C)P(D)P(G|D)P(I|F,G)
= P( JP(F|C)P(D)P(G|D)PI|F,G).

P(A)P(C|A) is stored into the leftmost clique of the join tree, so this clique can per-
form both the product and the sum, i.e., compute P(C'), and it can send this value to its
adjacent separator. Removing clique AC' from the join tree results in the graph of Fig-
ure 4.14. Note that the product of all the potentials is still equal to the joint distribution
of the random variables of the graph, i.e., P(C, D, F, G, I).

The same process can be used to sum over ("

ZPCDFGI ZP P(F|C) | P(D)P(G|D)P(I|F,G)
IP(F) (D)P(G|D)P(I|F,G).
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P(C) P(FIC) 1 P(F,G) l; P(D)P(GID)

[+ GoO—F—Gro—G—@D

Figure 4.14: The graph after removing clique AC'.

P(C) is stored into separator C' and P(F|C') is stored into clique F'C', hence separator
C will send a message P(C) to clique F'C. The latter now knows both P(C') and
P(F|C), hence it can compute ), P(C')P(F|C') = P(F) and send this probability to
its adjacent separator F'. Then, both the separator C' and clique F'C' can be removed,
thus resulting in the graph of Figure 4.15. Note that, again, the product of all the
potentials is equal to the joint distribution of the random variables of the graph, i.e.,
P(D,F,G,I).

P(F) P(IIF,G) l; P(D)P(GID)

[F—@Fro>—(c—GD

Figure 4.15: The graph marginalizing out C'.

The basic property preserved during the whole algorithm is always that the product
of all the potentials remaining after each sequence of marginalization is equal to a joint
probability distribution. For instance, if we decided to remove the two shaded areas
from the join tree of Figure 4.16, we would send the messages described in Figure 4.17
and the product of the remaining potentials would be:

P(C)P(F|C)1rP(I|F,G)P(G),

which is indeed equal to P(I, C, F, ), that is, the joint probability distribution of the
remaining variables.

P(A)P(CIA) 1
@o

P(FIC) 1,  PUIF,G) 1, P(D)P(GID)
EO—F—ro>—(c—GD)

Q

[A]

Figure 4.16: Removing parts of the join tree.

As a consequence, if we remove recursively the outer cliques —those that have
only one neighbor— as well as their adjacent separators, the last clique remaining must
contain the joint probability distribution of its own random variables. Then, if we are
interested only in the marginal probability of one of these variables, there just remains
to sum the clique’s potential over the other variables of the cliques. Naturally, no con-
straint is imposed on the choice of the last remaining clique, it can be any of those of
the original join tree. Hence applying this process sequentially for each of the cliques
in the original join tree ensures that the marginal probability of each random variable
can be computed. Now, consider the graphs of Figures 4.18 and 4.19. In these graphs,
we represented by arrows the messages sent between cliques and separators.
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P(A)P(CIA) 1,
A0 P(C)

P(C)

I; P(D)P(GID)
P(G)»—{G]+—GD)

P(G)

Figure 4.17: Messages in the removed parts of the join tree.

P(A)P(CIA) 1o P(FIC) 1,  PAIF.G) 1, P(D)P(GID)
AO—AC—FO—F—F6>—G—GD)
P(C) P(F) P(G)

Figure 4.18: Messages when the last remaining clique is / F'G.

It is noticeable that most messages are identical, so that applying the above elimi-
nation algorithm first to clique / F'G and then to clique F'C' is very inefficient as many
computations will be performed twice. Two remarks will help us factorize these com-
putations:

1. note that toward the end of the propagation algorithm, more specifically when
there remains only one clique — that of interest — and its adjacent separators,
the joint probability of the clique is equal to the product of the potential stored in
the clique by those sent by its adjacent separators. For instance, in Figure 4.18,
the joint probability P(I, F, ) is equal to the product of P(I|F, G) by P(F’) and
P(G). This property is local. Consequently, not deleting during the algorithm
the cliques/separators from the graph just after they send their messages does not
change the fact that the joint probability of the last remaining clique is equal to
the product of the potential stored in that clique by those sent by its adjacent
separators.

2. note that when a clique C; sends a message to a separator 5, this message is al-
ways the sum over the variables in C;\ S of the product of the potential stored in
C; by the messages sent by all separators adjacent to C; except S. As a conse-
quence, messages sent in opposite directions to a separator are independent. This
suggests that instead of keeping only one potential in each separator, we should
store two potentials: one for each message in each direction.

P(A)P(CIA) 1,  P(FIC) 1  P(IF,G) 1, P(D)P(GID)
@O—d—FoO—{F—@ro>—{c—GD
P(C) Ip P(G)

Figure 4.19: Messages when the last remaining clique is F'C'.
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The last remark suggests that if an algorithm can be found that ensures that both mes-
sages are computed, then, by remark 1, it will be sufficient to multiply, for each clique
of interest, the messages sent to this clique by its internal potential to get the joint
probability of the clique. In our example, this would lead to consider sending all the
messages of Figure 4.20 using only one algorithm.

P(A)P(CIA) P(FIC) P(1F,G) P(D)P(GID)
@O——c—FO—F—Fr6o>—G—GD

Figure 4.20: Efficient messages sent in the join tree.

The following algorithm [Sha96, SS90a, SS90b] will ensure that all separators will
receive messages in both directions:

Algorithm 4.8 (Shafer-Shenoy’s propagation method) Ler (V, A, P) be a
Bayesian network and let G = (C, £) be a join tree for this network.

1. Cligue initialization: store the conditional probabilities of the P’s decomposi-
tion into the potentials of the cliques of C (if some cliques received no proba-
bility, let their potential be filled with 1’s).

2. Separator initialization: assign to each separator 2 potentials, that is one for
each direction, filled with 1’s. Now, the product of all the cliques/separators
potentials should be equal to P.

3. Propagation: Each node (clique/separator) of the join tree sends messages
toward all of its neighbors using the following two rules:

(a) Before sending a message toward its neighbor X, node Y waits for mes-
sages coming from all its other neighbors;

(b) the message sent by clique Y to separator X is the sum over the vari-
ables in Y\ X of the product of the potential stored in'Y" by the messages
received by Y from all of its neighbors except X. The message sent by
separator X to a clique Z is simply the message it received from its other
neighbor.

To highlight the connection with Jensen’s algorithm, Shafer-Shenoy’s method can
be implemented by selecting arbitrarily a clique we will call the root and applying
functions Collect-Evidence and Distribute-Evidence below on this clique:
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Algorithm 4.9 (Collect-Evidence on clique C;)

1. For all cliques C; adjacent to a separator Sj; adjacent to C; except, if any, that
which called Collect-Evidence on C;, call Collect-Evidence on C';.

2. If C; is not the root, let C}, be the clique that called Collect-Evidence on clique
C;. Compute the product of the potential in C; by the potentials sent by the
C;’s to the S;;’s and sum over C;\Cy. Send the result to Syy,.

Algorithm 4.10 (Distribute-Evidence on clique C)

1. For all cliques C; adjacent to a separator S;; adjacent to C; except, if any,
that which called Distribute-Evidence on C;, send a message to S;; that is the
sum over C;\S;; of the product of the potential in C; by messages coming from
every separator except Sj;.

2. Call Distribute-Evidence on every C’s.

Example 4.4 If we consider again the join tree of Figure 4.20, and if we select (ar-
bitrarily) I F'G to be the root, the collect phase above consists in [ F'G asking
cliques F'C and G D for messages. Rule (a) in Shafer-Shenoy prevents node F'C
to send any message. So, it must ask its adjacent node, i.e., AC, for a message.
As the latter has no more neighbors, it can send the message it was asked for (see

Figure 4.21(a)).
P(A)P(CIA) P(FIC) P(IIF,G) P(D)P(GID)
@O—c——FO—F—r>—(c—GD)
(a) first messages
P(A)P(CIA) P(FIC) P(IIF,G) P(D)P(GID)
@O—Ac—FO—AF—Fe>—Ac—GD

(b) last message

Figure 4.21: The collect phase.

As described in Algorithm Collect-Evidence, the message sent by clique AC
is equal to the sum over {A, C}\{C} = {A} of the product of the potential
stored in clique AC, i.e., P(A)P(C|A) by the messages sent by all the separators
adjacent to AC except the separator between AC' and F'C'. Here there is no other
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separator, hence AC' sends message:
Z P(A)P(C|A).

Similarly, GD sends to separator G message P(G) = Y, P(G|D)P(D). Now
F'C has received all the messages it was waiting for and, in turn, it can send its
own message to clique / F'G (Figure 4.21(b)). This message is equal to the sum
over { F, C}\{C} = {F'} of the product of its own potential, i.e., P(F'|C), by the
messages sent by all F'C’s adjacent separators except the one between F'C and
I FG. Here there is only one separator: C'. Hence F'C' sends message:

ZP P(F|C).

The distribute phase is similar: clique /F'G sends messages to its adjacent
nodes, i.e., to F'C' and G D, see Figure 4.22(a). The message sent to F'C' is equal

to:

ZPI|FG ZP[G\F 15
and that sent to GD is equal to:

ZP (I|F,G)P ZP I,F|G) =

Finally, F'C sends the following message to its neighbor (see Figure 4.22(b)):

> P(F|C)ip =) P(FIC) =

P(A)P(CIA) P(FIC) F P(1F,G) P(D)P(GID)
@oO—c—GFoO—F—F6o>—c—GD

l G

(a) first messages

P(A)P(C\A) le P(FIC) P(IIF,G) P(D)P(GID)
@O—c—FO—F GD

]
@]

(b) last message

Figure 4.22: The distribute phase.

If we write on the same graph all the messages sent by the collect-distribute
algorithm, we get that of Figure 4.23 which contains all the expected messages.

¢
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P(A)P(CIA) le P(FIC) I P(IIF,G) P(G) P(D)P(GID)

@O—c—Eo—F—@Fo>—Ic—GD

P(C) P(F) I,

Figure 4.23: All messages sent by the collect-distribute algorithm.

4.5 Binary join trees

A close observation of Shafer-Shenoy’s algorithm shows that it can be significantly
improved by factorizing some of its local computations. Consider for instance the join
tree of Figure 4.24(a) and let us denote by ¢¢;(.5;) the potential stored in separator .S;
to be sent to clique C; and by /(C}) the potential stored in clique C;. Then, in Shafer-
Shenoy’s algorithm, message from clique C' to clique C] is computed as follows:

¢y (S1) = Y (C)de(S2)ba(Ss)de(Si)do(Ss).

C\S

Similarly, a message sent by C' to .S; would be computed using the following expres-
sion:
b0y (S2) = D (C)de(S1)bc(S3)de(Sa)dc (S5).

C\Sa

C)—s ) C)—{5—o—s] 5 ©)

(a) a nonbinary join tree (b) a binary join tree
Figure 4.24: A nonbinary join tree, and a corresponding binary join tree.

Note that both messages require computing product ¢ (S3)pc(S4)Pc(S5). Hence
if during the distribute phase node C' needs sending messages to both C; and C; —and
possibly to other C;’s—, numerous identical multiplications will be computed several
times, thus limiting the efficiency of the algorithm. It would be more clever to compute
such products only once, store the products somewhere in the computer’s memory and
use them whenever needed. Binary join trees are a simple graphical tool for storing the
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results of these “temporary” multiplications. The idea is to modify the topology of the
join tree so that no clique has more than 3 adjacent separators. Consider for instance the
graph of Figure 4.24(b), where C' = C3UC,UC5 and (C") = i¢r, and C” = C,UCj
and ¢(C") = 1¢». The messages sent by C' to C and Cy are now

6o (S1) = Y W(C)ba(S2)do(S),

C\S

6c(S2) = Y W(C)be(S1)do(S)

C\Sa

respectively. There is no redundant computation. Actually, ¢ (S’) is equal to product
¢C(S3)¢C(S4)¢c(55). Indeed:

¢ (S") = Y $(C")den(Sa)don(Ss) and

C//\S//

$o(S) = D U(C)per(Ss)er(S”).

X
S” — C" N C" butas C" C C', §" = C”. Consequently,
¢cr(S") = ¢ (Sa)den (95) = do(Si)de(Ss).
Similarly, as ¢ = Cy U Cy U Cs:
¢c(S') = dcr(S5)cr(8") = der(S3)dc(S1)oc(Ss) = de(S3)dc(S1)dc(Ss).

Now, given an arbitrary join tree, is it possible to convert it into a binary join tree?
The answer is positive and Shenoy [She97] proposes the following algorithm:

Algorithm 4.11 (Conversion to a binary join tree) Let G = (C,E) be a join tree.
While there remains some clique C' whose neighbor set S = {C1, ..., Cy} has more
than 3 cliques, apply the following steps until |S| < 3:

1. Select arbitrarily two elements C; and C; in S such that for all pairs C,, C, €

2. Add a new clique Cyy = C; U C; and link it (through a separator) to C.

3. Let S; and S; be the separators between C and C;, and C' and Cj, respec-
tively. Remove edges (S;,C') and (S}, C) from G and add edges (S;, Cy) and
(Sj, Cw). Finally, remove C; and C; from S.

Actually, the above algorithm is not in general optimal because the new cliques
created at step 2 may be bigger than what is really necessary: to be optimal, ', should
be equal to [C; N Cj] U [(C; U C)) N (Ug,es\ic;,c;3Cp)]. However, the way Shenoy
constructs his join trees ensures that these two formulas give the same result.
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Example 4.5 Consider the join tree of Figure 4.25(a). It is not a binary join tree
since clique C' has 5 neighbors. Hence we shall apply the above algorithm to
transform it into a binary join tree. At the beginning of the algorithm, § =
{C1,Cy, Cs, Cy, Cs}. We compare pairs of cliques until we find cliques C;, C; €
S such that for all pairs C,,, C, € S, |C; U C;| < |C, U C,|. Assume that C; and
C'5 are such cliques. Then by step 1 we shall add clique C” = C; U C5 to G and
link it to C'. Moreover, by step 2, we shall substitute edges (S4, C') and (S5, C')
by edges (Sy, C") and (S5, C") (see Figure 4.25(b). As for S, we shall update it
by adding C” and deleting Cy and C5. Thus S = {C}, Cy, C3,C"'}.

S O—5H—O—5©
(a) the original join tree (b) after selecting C4 and C5
E—5 s 5@

(c) final binary join tree
Figure 4.25: From a join tree to a binary join tree.

|S| > 3, so we must apply the algorithm again. Assume that now C's and C”
are such that for all pairs C,,, C, € S, |C" U C3| < |C, U C,|. Then a new clique
C' = C3 U C” must be added to G and it must be linked through a separator,
say S’, to C. Step 2: edges (S”,C') and (S3, C) are substituted by (S”,C’) and
(S3,C"). Finally, S becomes {C7, Cy, C"}. As |S| < 3, the algorithm terminates
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and the resulting graph is a binary join tree.

¢



Chapter 5

A comparison between Pearl’s and
Jensen’s algorithms

The last two chapters described propagation methods based on very different concepts:
in Chapter 3 Pearl performed computations on a directed graph whereas in Chapter 4
Jensen used an undirected graph. Moreover, these propagation methods also man-
aged cycles in the Bayesian network very differently. Hence it is legitimate to won-
der whether one is better than the other. By better we mean a faster algorithm or an
algorithm using less memory storage. The answer to this question is not straightfor-
ward as both propagation methods have their own advantages and disadvantages. In
this section, we will compare both algorithms on two different aspects:

1. How do these algorithms manage cycles in the Bayesian network? Does one
method always outperform the other? This will be investigated in Section 5.1.

2. Can the graphical structure give us some clue as to which computations are nec-
essary for evidence propagation and which are not? This topic is developed in
Section 5.2.

5.1 Coping with loops in the Bayesian network

As a starting point consider a Bayesian network containing some loops, for instance
that of Figure 5.1.

Pearl’s algorithm copes with loops using local cutsets. Assume for instance that B
is chosen as the custset. Then this algorithm consists in sending through the Bayesian
network local messages the sizes of which are indicated on Figure 5.2(a). More pre-
cisely, if vertex D is chosen as the root of the algorithm, messages are computed as
described below and as illustrated on Figures 5.2(b) and 5.2(c): Vertices B and E first
send to A and G respectively messages:

Ap(A) = P(BlA),
te(E) = P(E|B).

69



70 Chapter 5. A comparison between Pearl’s and Jensen’s algorithms

(&)

©—Q
@—&

Figure 5.1: A Bayesian network containing a cycle.

BD BE I | PEIB) P(B.D)
P(FID) P(GIE)
BF BG I\ P(GIB) P(BF) Ny
P(HIF,G) Br Fo(B)
(a) size of messages (b) the collect phase (c) the distribute phase

Figure 5.2: A local Cutset and its collect/distribute phases.

Then A and G send to C' and H respectively messages:
mo(A) = P(A)As(A) = P(A)P(B|A) = P(A, B),
m(G) = ) P(G|E)na(E) =) P(G.E|B) = P(G|B).
E E

In turn, C' and H send to D and F respectively messages:

mp(C) = Y P(ClA)rc(A)=> P(A,B,C)=P(B,C),
Au(F) = Y P(H|F,G)my(G) =) P(H,G|B,F)=1pp.

The collect phase is completed when F' sends to DD message:

)\F(D) = ZP(F‘D)HBF =1lBp.
F

Now the distribute phase can begin with D sending to C' and F' the following messages:
Ap(C) = Y P(D|C)ipp = 1pc,

(D) = Y P(D|C)P(B,C)=)_P(B,C,D)= P(B,D).
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C and F send to A and H respectively messages:
)\C(A) = Z P<C|A)'HBC = ﬂAB’

C
mu(F) = Y P(FID)P(B,D)=>_ P(B,D,F)=P(B,F).

A sends to B message P(A)iap = P(A), where Pg(A) is a matrix of size |A| x | B
constituted by |B| replicas of vector P(A). Similarly, H sends to G the following
message:

Ai(G) = Y P(H|F,G)P(B,F)

= Y P(H|F,G)P(F|B,G)P(B) =Y _P(H,F|B,G)P(B) = Pg(B).

F.H F.H

And finally, GG sends to £/ message:

Mo(B) = 3" P(G|E)Po(B) = 15P(B) = Py(B).
G

Assume now that each random variable A, B, C, D ,E, I', G and H, can take
10 possible different values. Then the number of summations and products performed
by Pearl’s algorithm with local conditioning (and B as cutset) is summarized in the
table below and it amounts to an overall' of 28000 summations and 28200 multiplica-
tions.

computation nb X | nb+
Ag(A) = P(B|A) 0 0
m5(A) = P(A)iap 100 0
Ae(A) =), P(C|A)ipc 1000 | 1000
mo(A) = P(A)P(B|A) 100 0
Ap(C)=>_, P(D|C)ipp 1000 | 1000
mp(C) =>4, P(C|A)P(A, B) 1000 | 1000
Ar(D) =>4, P(F|D)igp 1000 | 1000
mr(D)=> . P(D|C)P(B,C) 1000 | 1000
Mao(E)=> o P(G|E)Pq(B) 1000 | 1000
me(E) = P(FE|B) 0 0
Au(F) =2 ¢y P(H|F,G)P(G|B) | 10000 | 10000
mu(F)=>.,P(F|D)P(B,D) 1000 | 1000
g (G) = ZFH P(H|F,G)P(B, F) | 10000 | 10000
mu(G)=>_, P(G|E)P(E|B) 1000 | 1000

"Here, for simplicity, even multiplications with vectors 1 were taken into account, although such
superfluous computations can be detected and avoided using a simple graph search based algorithm.
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Jensen’s algorithm on the other hand first transforms the original Bayesian network
of Figure 5.1 into a junction tree and then computations are performed in this secondary
structure. To do so, the Bayes net is moralized and triangulated (see Figure 5.3(a)) and,
then, a junction tree is constructed from this triangulated I-map (see Figure 5.3(b)).
Once the secondary structure is established, the conditional probabilities stored in the
original Bayesian network are inserted into the potentials of the cliques and separators
as described below:

Y(ABC) = P(B|A)P(C|A)P(A) = P(A, B, C)

) = S(BC) = 150
Y(BCD) = Py(D|C) ¢(BD) =1pp
W(BDF) = Py(F|D) $(BF) = 1pp
W(BEG) = P(E|B)P(G|E) = P(E,G|B) $(BG) = 16

W(BFGH) = Py(H|F,G)

(A) P(BIA)P(CIA)P(A) (ABC)

'

© ® P(DIC) (BCD) P(EIB)P(GIE)

G)

BD)
P(FID) (BDF)

(a) triangulated I-map (b) junction tree

Figure 5.3: A transformation of the Bayes net into a junction tree.

Assume that clique BDF' is chosen as the root of the collect and distribute algo-

rithms. The former amounts to performing the following operations:

e Lety*(ABC) =¢(ABC) = P(A,B,C);

e separator BC' computes ¢*(BC) =) , ¢ (ABC) P(B,C);

e clique BC'D computes *(BCD) = ¢(BCD) x ((gcc)) = P(B,C,D);

e separator 3D computes ¢*(BD) = > 4*(BCD) = P(B, D);

e Lety*(BEG) = ¢(BEG) = P(FE,G|B);

e separator BG computes ¢*(BG) = >, *(BEG) = P(G|B);

o clique BFGH computes v*(BFGH) = (BFGH) x 28 — P(G, H|F.

e separator BF' computes ¢*(BF) =, ;¢ (BFGH) = 1pF;

o clique BDF computes v*(BDF) = ¢(BDF) x 250 x 20 — P(B, D, F).
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The distribute phase is achieved by:
e Lety* (BDF) =*(BDF);
e separator BD computes ¢**(BD) = > . ¢**(BDF) = P(B, D);
e clique BC'D computes )**(BCD) = *(BCD) x ‘b**(BD)) = P(B C,D);
e separator BC' computes ¢**(BC') = >, v*(BCD) = P(

* clique ABC computes ¢~ (ABC) = ¢*(ABC) x S50 P( ,B,0);
e separator BF' computes ¢**(BF) =Y, ¢**(BDF) = (B F);
e clique BFGH computes ¢**(BFGH) = *(BFGH) x -1 = P(B, F,G, H);

e separator BG computes ¢**(BG) = >, ;v (BFGH) = P(B,G);

» clique BEG computes ¢**(BEG) = ¢*(BEG) x 5250 = P(B, E, G).

The overall number of operations performed by the collect and distribute steps
are 26000 additions, 28100 multiplications and 800 divisions. When compared to the
28000 summations and 28200 multiplications required by Pearl, we can conclude that,
for this particular cutset and triangulation Jensen’s and Pearl’s algorithms are roughly
equivalent.

Naturally, neither the cutset nor the triangulation are unique and, to complete our
comparison, we should study how the propagation algorithms behave using different
cutsets and triangulations. As all the variables can take exactly 10 possible values, it is
easily seen that whatever the cutset chosen, Pearl’s method will always perform 28000
summations and 28200 multiplications. On the contrary, depending on the triangula-
tion, Jensen can outperform significantly Pearl. Consider for instance the junction tree
of Figure 5.4(b) and the clique’s/separator’s potentials:

$(ABC) = P(B|A)P(C|A)P(A) = P(A,B,C)  ¢(BC) =150
»(BCD) = Py(D|C) ¢(BD) =1pp
G(BDE) = Pp(E|B) #(DE) = 1pg
Y(DEF) = Pp(F|D) ¢(EF) =1pF
Y(EFG) = Pp(G|E) ¢(FG) =1rc
W(FGH) = P(H|F,G).

Let F'G H be the root. The collect phase is achieved by:
o Let *(ABC) = (ABC) = P(A,B,C);
e separator BC' computes ¢*(BC) = >, v*(ABC) = P(B,(C);
e clique BC'D computes *(BCD) = ¢(BCD) x dg(BC) = P(
e separator 3D computes ¢*(BD) = "9 (BC’D) P(B, D),
e clique BDE computes v*(BDE) = ¢(BDE) x 5 = P(B, D, E);
e separator DE computes ¢*(DE) = > 51 (BDE) P(D,E);
o clique DEF computes *(DEF) = ¢:(DEF) x S22 = P(D, E, F);
e separator £ F' computes ¢*(EF) = > 51 (DEF) P(E,F),
* clique EFG computes ¢*(EFG) = (EFG) x S = P(E, F,G);
e separator F'G computes ¢*(FG) = > ¢ (EFG) P(F,G);

e clique F'GH computes *(FGH) = ¢(FGH) x ‘f;((]fg) = P(F,G,H).
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| P(BIA)P(CIA)P(A) (ABC) (FGH) P(HIF,G)

N

© ® P(DIC) (BCD) (EFG) P(GIE)
(E) © BD
H)
P(EIB) (BDE) (DEF) P(FID)
(a) triangulated I-map (b) junction tree

Figure 5.4: Another transformation of the Bayes net into a junction tree.

The distribute phase is achieved by:
oeLet " (FGH) =¢*(FGH);
e separator F'G computes ¢**(FG) = >, " (FGH) = P(F,G);
e clique EF'G computes **(EFG) = ¢*(EFG) x d’*:(lfg = P(E,F,G);
e separator [F' computes ¢**(EF) = "1 **(EFG

P(E, F);

e clique DEF computes 1**(DEF) = ¢*(DEF) x (55)) — P(D,E, F);

\/&

/\

e separator D E computes ¢**(DE) =", z/;**(DEF) P(D,E);
« clique BDE computes v**(BDE) = ¢*(BDE) x S5 = P(B, D, E);
e separator BD computes ¢**(BD) = > w**(BDE) P(B,D);
e clique BC'D computes )**(BCD) = *(BCD) x ¢ ! 5) = P(B,C,D);

e separator BC' computes ¢**(BC') = Y, ¢**(BCD) = ( ,O);

e clique ABC' computes )**(ABC') = ¢*(ABC) x (fb ((gg = P(A,B,C).

With this junction tree, Jensen’s algorithm requires only 10000 additions, 10000
multiplications and 1000 divisions. It thus outperforms significantly Pearl’s algorithm.
Actually, this is a general property: Shachter, Andersen and Szolovits [SAS94] have
shown that cutset conditioning is equivalent to a triangulation of a very special type?
and their conclusion was that Jensen’s algorithm was always as least as fast as Pearl’s al-
gorithm when applied on multiply-connected Bayesian networks (on singly-connected
networks, both algorithms are equivalent). The special type of triangulations mentioned
above corresponds to those where all fill-ins are adjacent to the cutset variable used by
Pearl (in our example, this corresponds to ), see Figure 5.3(a).

2In their paper, Shachter, Andersen and Szolovits only considered Global Conditioning, but the prop-
erty still holds for Local Conditioning.
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5.2 d-separation analysis

It is well-known that the sets of independencies representable by an /-map on one hand
and by a Bayesian network on the other hand are not identical: some independencies
are representable by an /-map but not by a Bayesian network (see Figure 5.5(a), where
BII C|(A, D) but B JIC|A) and conversely (see Figure 5.5(b), where B 11 C'|A but
B JIC|(A, D)). Hence a fortiori junction trees and Bayes nets do not encode the same
independencies. Of course, the latter can be used to reduce the computational burden
of evidence propagation by avoiding computations that are known to be unnecessary.
For instance, when we applied Jensen’s algorithm on the junction tree of Figure 5.4(b),
we could have avoided the distribute phase as it provided no new information (no po-
tential was affected by this phase). It is thus natural to wonder whether one graphical
representation is more prone than the other to provide informations that can be used to
reduce the computational burden of evidence propagation.

(a) an I-map (b) a Bayesian network
Figure 5.5: Independencies representable by I-maps and Bayesian networks.

To answer this question, let us consider the Bayesian network of Figure 5.6 and one
of its junction trees (Figure 5.7). The independencies represented by the structure of the
junction tree alone can be captured through its separators. Indeed, assume that evidence
ec has been entered into the tree and that it provides the information that C"s value is
known for sure, e.g., “C' = ¢;”. Let ¢(-) and 9(-) denote the potentials stored in the
separators and cliques respectively after Jensen’s algorithm has propagated evidence
ec. Then ¢(C') = P(C, ec). Now, let e/, be an additional piece of evidence concerning
node L and denote by ¢*(+) and ¢)*(-) the potentials taking into account both e and ey..
How do potentials ¢(-) and v(-) need be updated to get ¢*(-) and ¢*(-)? As random
variable L is only contained in clique H L, evidence e;, must be entered into this clique.
When propagating e;, throughout the junction tree, there is no need to compute anything
past separator C, that is cliques AC, ABJ, BK and BF, as well as separators A and B,
cannot be affected by e,. Indeed, before entering e, separator C' contained P(C e¢)
which stated that C' could only take value c;. Knowing the value of a random variable is
the maximal information that can be gathered on this variable, hence the new potential
to be stored in C' can only be ¢*(C) = P(C,ec,e) = P(C,ec) and this probability
simply states that C' can only take value ¢;. Consequently, the updating w.r.t. e, of the
potentials by Jensen’s algorithm does affect C’s potential. Thus 1)*( AC') that should be

equal to ¢(AC) Z((g must be equal to )( AC). By induction, the potential of separator
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A is kept unchanged as well as that of clique AB.J, of separator B and of cliques BK
and BE.

e - e

Figure 5.6: A simple Bayesian network.

Figure 5.7: A junction tree for the Bayesian network of Figure 5.6.

This is actually a general property: once the value of all the random variables of a
separator are known, during further updatings, no information can pass from one side
of the separator to the other and thus Jensen’s algorithm can be applied separately on
the subtrees on each side of the separator. As a consequence, knowing the value of C, it
can be deduced graphically —that is, prior to any quantitative computation— that only
random variables M, D, F', G, H and [ can be affected by evidence e. Naturally, when
evidence e is first entered into the graph, according to the junction tree, all random
variables can affected by ec since, prior to entering ec, C' is not known for sure and
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the potential in separator C'is vector 1 —that is, a vector filled with 1’s— instead of a
vector containing only 0’s except for one 1.

Now, is Pearl’s algorithm able to do better? Well, the answer is yes and can be un-
derstood intuitively using the following argument: Jensen’s algorithm encodes the in-
dependencies represented by a triangulated /-map, that is an undirected graph whereas
Pearl’s algorithm uses a directed graph. It turns out that the arc orientations is mean-
ingful and provides more informations than simply stating a dependence between two
random variables. Hence directed structures provide “more” independence informa-
tions and, thus, Pearl’s algorithm is more likely than Jensen’s method to exploit graph-
ical structure to reduce the computational burden of evidence propagation. As for the
independence informations provided by the Bayesian network, consider the possible
2-connections between three random variables. According to Section 2.3:

Figure 5.8(a): X II Yand X 1Y |Z;
any evidence on Z, even one that does not provides the exact value
taken by Z makes X and Y dependent.

Figure 5.8(b): X MY and X II Y|Z;
only an evidence specifying the exact value of Z makes X and Y inde-
pendent.

Figure 5.8(c): X MY and X IT Y|Z;
only an evidence specifying the exact value of Z makes X and Y inde-

pendent.
®\@ /®

(a) Convergent connection

X @ ©

(b) Serial connection

s T

(c) Divergent connection

Figure 5.8: Possible connections between random variables.

By induction on these three relations, given a Bayesian network G = (V, A) and a
set of evidence, the question of whether two arbitrary nodes X and Y are independent
can be answered graphically using the following definition [Pea88]:
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Definition 5.1 (d-separation) Ler G = (V, A) be a Bayesian network and let £ be
a set of evidence. Node/variable X is said to be d-separated from'Y given & —or
equivalently X is independent from Y — if for all trails between X and Y, that is, all
sequences of arcs linking X and Y, not taking into account the orientations of these
arcs, the following two conditions hold:

1. There exists no convergent connection on the trail, that is, the trail contains no
arcs (A, C) and (D, C), for some arbitrary A, B, C, such that C or one of its
descendants in the Bayes net received any evidence in E.

2. There exists a divergent or a serial connection, that is, the trail contains some
arcs (C, A) and (C, B), or (A, C) and (C, B), such that node C received some
evidence in £ specifying its exact value.

Now, let us come back to the Bayesian network of Figure 5.6. When propagating
ec into the network, using Definition 5.1, it can be deduced that there is no need to
compute messages Ag(J), A\;(G), Ag(D) and A\p (M) as random variables J, G, D and
M are independent from node C' conditionally to ec. Indeed, the trail between .J and
C passes through a convergent connection toward B and neither B nor its descendants
K and E received any evidence. Similarly, the trails between C' and G, C' and D, and
C' and M, pass through / which did not received any evidence. Thus, updating P(C)
to P(C, ec) can affect neither J, nor G, D or M. As a consequence, where Jensen’s
algorithm needed to send messages throughout the whole of the junction tree Pearl’s
algorithm can detect the unnecessary computations. The latter, if detected by Jensen’s
method, would have led to avoiding for instance computing all the messages between
clique F'G1 and separator (&, between separator G and clique DG, between clique DG
and separator D, and finally between separator D and clique D M.

Consider now adding new information ey, into the network. By Definition 5.1, it can
be easily seen that e;, can only affect nodes H, F'and /. Hence the updating by Pearl
only requires computing messages \r,(H), Ag(F') and 7;(F'). In comparison, even
if Jensen detects that no message is necessary beyond separator C, it still computes
messages between cliques F'GI and separator (&, between separator G and clique DG,
between clique DG and separator D, and between separator DD and clique DM.

Moreover, one of the main advantages of d-separation is that it can be used even
when there is no evidence or when evidence does not specify the exact value taken by
a random variable. In such cases, separators cannot used. For instance if e were the
information that C' = ¢; or C' = ¢y, then by rule 1 of Definition 5.1, it is still true that
random variables J, G, D and M are unaffected by e, and, when propagating both
ec and ey, it is still true that messages Ag(J), A\;/(G), A\g(D) and A\p(M) can be safely
dispensed with. On the other hand, when Jensen first propagates ec, it needs sending
messages everywhere in the junction tree. Worst, when updating the potentials to take
into account both e, and e, messages still need be sent throughout the whole junction
tree as, the value of C' being uncertain, separator C' cannot break the junction tree into
two separate parts.
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To conclude this section, d-separation is more powerful than separators to identify
in the graphical structure independencies used for propagation. This is especially true
when evidence does not provide the exact values taken by random variables or when
separators contain more than one random variable: passing messages from one side of a
separator to the other is unnecessary only if the exact values of all the random variables
are known for sure. So if only the value one variable is not known for sure, messages
need be sent throughout the separator. d-separation, by its very definition, avoids this
problem.

5.3 Conclusion

To summarize this chapter, the junction tree structure, by way of its triangulation pro-
cess, is more suited than cutset conditioning for coping with cycles in the Bayesian
network. This may be explained by the fact that the former is not afraid to change the
very structure of the network, that is, to modify the knowledge about the set of indepen-
dencies, whereas the latter is reluctant to do so. However, this is the right thing to do as
the computations needed to obtain marginal probabilities require multiplying indepen-
dent messages. But in multiply-connected networks, there is not enough independence
for this property to be naturally true. Hence local cutsets cut cycles, thus introducing
new independencies, and Pearl’s message-passing algorithm can be applied. Now, why
should there be only one cut in each cycle? Why not cutting part of the cycle with
one cutset and another part with another cutset? This is precisely what happens with
junction trees: to enable different cutsets, cycles are first broken into smaller cycles
by adding new edges —this is the triangulation process— and, when cycles are small
enough, some cutsets are chosen —these are the separators. As we saw in Section 5.1,
this proves to be a very efficient technique.

But is this technique only possible in undirected cycles? At first sight, there is no
obvious objection to apply it directly in Bayesian networks and, indeed, as we shall
see in Chapter 6, the triangulation technique used in Markov networks can be adapted
to Bayesian networks. Thus Pearl’s algorithm with triangulated BN should be able to
manage cycles as well as Jensen’s method. Now, what’s the point of trying to find
such an improvement Pearl’s algorithm? Well, Section 5.2 answered this question: d-
separation can be used by Pearl to reduce the computational burden of evidence prop-
agation by avoiding unnecessary computations. So, if we could triangulate Bayesian
networks, that is, perform a “directed” triangulation, we should be able to provide a di-
rected propagation method that is at least as fast as Jensen’s method. The next chapters
will explain in details how this can be achieved.
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Chapter 6

Triangulated Bayesian Network

As we saw in chapter 3, directed propagation methods — for instance the polytree
algorithm — use a message-passing scheme directly on the original Bayesian network
whereas undirected propagation methods first construct a secondary structure that is
more suited for the computations. This is the very use of this secondary structure
that makes undirected algorithms much more efficient than directed ones. Thus, one
may wonder whether a directed secondary structure similar — at least in spirit — to
join/junction trees may improve Pearl’s algorithm sufficiently to make it competitive
with Jensen’s algorithm. The aim of this chapter is to provide a positive answer to
this question. Thus, the new variant of Pearl’s algorithm we consider here performs
computations in two steps, exactly as in Jensen’s scheme:

1. Construction of a new directed graph,

2. Propagation based on local conditioning in this new structure.

6.1 Constructing a new DAG: the triangulated BN

In this section, it will be shown that for any elimination tree and any junction tree, there
exists a directed graph that precisely captures the same conditional independencies.
Although Jensen’s algorithm does not use elimination trees, those are important here
because the decomposition of the joint probability they provide is closely related to a
product of conditional probabilities, which is precisely what would be provided by a
directed acyclic graph.

By [CDLS99, p.59], if G = (V, &r) is a triangulated undirected graph induced by
an elimination sequence o, and if G; = (C,&;) and Gg = (D, Ag) are a junction tree
and the elimination tree of G respectively, then C C D. So, for simplicity of notation,
in the rest of this section, we assume the cliques in C and D are indexed similarly to the
node eliminated when they were created, e.g., C = U;en{Cy(;) } for some set N, where
Cy(iy was created by eliminating node X ;).

81
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Lemma 6.1 Let Gy = (V,Er) be a triangulated graph induced by an elimination
sequence o, and let G; = (C,&y) and Gg = (D, Ag) be a junction tree and the
elimination tree of Gr respectively. Consider the following expressions:

IT PCoi) II P(Doi)
Cg(i)EC Dg(i)ED

, g = .
[T P(CoiynCop)) [T P(Do N Dos))
(Co(1):Co(5))EES (Do (i)sDo(j))EAE

=
<

|

|

Then all the elements in the expression of 11; are also contained in the expression
of llg. Moreover, after removing from 1l all the elements of 11;, the remaining
expressions on the numerator of 11 are the same as those on the denominator, with
the same multiplicities.

Since I1; is known to be a decomposition of the joint probability on V (see [JLO90]
or [CDLS99, p.59]), the above lemma has the following consequence:

Corollary 6.1 Let Gy = (V, Er) be a triangulated graph induced by an elimination
sequence o, and let G; = (C,&y) and G = (D, Ag) be a junction tree and the
elimination tree of Gy respectively. Then the joint probability on ) factorizes as:

I P(Dsi)
Do(i)eD

PV) = .
II PN Do)
(Do'(i)vDo'(j))e-AE

Moreover, Gg captures precisely the same conditional independencies as G ;.

One key aspect of elimination trees that follows directly from their definitions is
that if (Dg(i),Do(j)) € Apg, then Dg(i) N Do(j) = Dg(i)\{Xo(i)} (see the proof of
property 1 of lemma 62) and P(DU(Z))/P<DJ(Z) N DJ(]—)) = P(XJ(Z-)‘DJ(Z-)\{XU@)}).
Moreover, nodes in D have at most one child. Consequently, as shown in the following
corollary, the decomposition provided by elimination trees is a product of conditional
probabilities, and thus can be precisely captured by a directed graph.

Corollary 6.2 Let Gy = (V,Er) be a triangulated graph induced by an elimina-
tion sequence o, and let G; = (C,&;) and Gg = (D, Ag) be a junction tree
and the elimination tree of Gr respectively. Then DAG G' = (V, A’"), where
A = {(Xo), Xot) + Xoj) € Do)\ {Xo@)}}, precisely captures the same con-
ditional independencies as Gg and G ;. Such a DAG will be called a “triangulated”
DAG.

This corollary provides a simple algorithm for constructing G': as D,(;)\{Xs(;) }
is the set of vertices in G adjacent to X, ;) before the latter is eliminated, A’ can
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be deduced from &7 by: i) setting A’ = &r and ii) orienting in A’ undirected edges
adjacent to each X,;), selected according to elimination sequence o, toward X, ;).

Example 6.1 The triangulated graph of Figure 6.1(a), resulting from elimination se-
quence S, C, G, R, T, B, D, H, F, A, yields both the junction tree of Fig-
ure 4.11(c) and the directed graph of Figure 6.1(b). Indeed, in the triangulated
graph, vertex S’s neighbors are G and H. Hence edges (G, S) and (H, S) are re-
placed by arcs (G, S) and (H, S) in the directed graph. C”’s elimination involves
replacing edges (A4, C') and (G, C') by arcs (A4, C') and (G, C'). When eliminating
G, we need only replace edges (A, G) and (H,G) because (G, C) and (G, S)
are already directed. The process goes on until all vertices have been eliminated
(according to the elimination sequence). ¢

©) ©)
(a) a triangulated graph (b) the corresponding DAG

Figure 6.1: From triangulated graphs to directed graphs.

Example 6.2 Consider the graph of Figure 6.2(b). It can be thought of as triangulated
since there does not exists any “undirected” cycle of length 4 or more without
chords. If this graph were undirected, it would correspond to a triangulated graph
resulting from an elimination sequence such as 0 = (G, F, A, C, B, D, F). Thus,
as shown by corollary 6.2, to get the orientations shown in Figure 6.2(b), it is
sufficient, for every node, say X, in ¢ and in the order specified by o, to orientate
each undirected edge adjacent to X toward X.

Let us compare the TBN to the junction tree of Figure 6.2(c). Note that both
graphs encode precisely the same conditional independencies. ¢

The directed acyclic graph obtained in corollary 6.2 has a serious drawback: the
conditional probabilities of its nodes given their parents differ from those stored in the
original BN. However they are needed to provide a complete description of the joint
probability of the random variables. Fortunately, the following section will provide a
way for retrieving these new conditional probabilities.



84 Chapter 6. Triangulated Bayesian Network

(a) Original BN (b) trianguled BN

(c) Junction tree of (a)

Figure 6.2: From BN to triangulated BN and to junction tree.

6.2 Arcreversal and the generation of new probabilities

To compute the new conditional probabilities mentioned in the preceding section, re-
mark that the differences between the original directed graph and the last one are:

1. the addition of some arcs;
2. the reversal of other arcs.

The update of conditional probabilities after arc additions is simple: their dimension
is increased and their content duplicated. For instance adding arc (X,Y’) changes
P(Y|A, B) into P(Y|A, B, X) and for all values =z of X, P(Y|A,B,X = z) =
P(Y|A, B). Arc reversals are more subtle to handle. Fortunately, the following theo-
rem due to [Sha86] indicates how the update shall be performed:
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Theorem 6.1 (Reversal of arc (X, Y)) Let (V, A, P) be a BN in which node X is a
parent of Y (see Figure 6.3.a) and in which there is no other path from X to'Y. Let
Pa denote the set of parents of a node in this BN, i.e., Pa(X) ={Z; :i € [} U{V;:
je€ JtandPa(Y) ={X}U{V,;:je€ JyU{W;: k€ K}. Then triple (V, A, P')
resulting from the reversal of arc (X,Y') into (Y, X) and from the addition of arcs
(Wi, X), k € K, and (Z;,Y), i € 1, is a Bayesian network. Moreover, if Pa' and P’
denote sets of parents and probabilities in the resulting BN, the following properties
hold:

o Pd(Y) = (Pa(X)UPa(Y)\{X};
e Pd/(X) = (Pa(X)UPa(Y)U{YH\{X};
e P/(Y|Pa/(Y ZP (Y|Pa(Y))P(X|Pa(X));

P(Y|Pa(Y) P(X|Pa(X))
P/(Y|Pa(Y))

o P/(X|Pa/(X)) =

Finally, both BN represent the same probability distribution, i.e., P'(V) = P(V) for
all values of the random variables in ).

(7 ey
& & @ & D

(a) before arc reversal (b) after arc reversal

Figure 6.3: The reversal of arc (X,Y).

At first sight, a recursive application of theorem 6.1 (and maybe the addition of a
few arcs) shall be sufficient to transform an original BN into a “triangulated” DAG.
This is true but care must be taken in the sequence of applications because arc reversal
cannot be performed if there exists multiple paths from X to Y (else this would create
directed cycles). Fortunately, the following proposition exhibits good candidates for
arc reversal:

Proposition 6.1 Let G = (V, A) be a DAG, V = {Xy,...,X,}, and let o be an
elimination sequence inducing an undirected and a directed triangulated graphs,
say Gp = (V, &) and Gy = (V, Ar). Let i be the highest index in {1,...,n} such
that, for all i < 1, the set of arcs adjacent to X ;) in A equals that in Ap. Assume
that Vi) = 1Y (Xo@o), Y) € A\Ar} is non empty. Then there exists a node
Z € Vy(iy) Without ancestor in Vy(;,) and theorem 6.1 can be applied in G on arc
(Xo(io): Z). Moreover, if the resulting graph is triangulated again with sequence o,
then the triangulated graphs obtained are still Gg and Gr.

A recursive application of this proposition justifies the following algorithm:
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Proposition 6.2 (Directed triangulation of a BN) Let G = (V, A) be a DAG, V =
{Xy,...,X,}, and let o be an elimination sequence inducing a directed triangulated
graph Gr = (V, Ar). Applying the function below successively to all the variables
in V in the order of their elimination transforms G into Gr:

function elimination(node X)

1 whileV' ={Y : (X,Y) € A\ Ar} is non empty do

2 choose any Z € V' without ancestor in V'

3 apply theorem 6.1 to reverse arc (X, Z) in A

4 update conditional probabilities according to the formulas of theorem 6.1

5 done

6 for all arcs (Y, X) € Ar\ A adjacent to X do

7 add these arcs to A

8  update X’s conditional probability table duplicating it as many times
as Y '’s number of values, i.e., add a dimension in 'Y to the table

9 done

Example 6.3 As an illustration of this proposition, let us transform the graph of Fig-
ure 6.4(a) into that of Figure 6.4(f). Remember that the latter resulted from elimi-
nation sequence S, C, G, R, T, B, D, H, F, A. Applying function “elimination”
on S neither reverses nor adds any arc since all the arcs adjacent to S are properly
directed. Applying “elimination” on C' reverses arc (C, (), thus implying the ad-
dition of a new arc: (A, G). Note that the resulting graph (Figure 6.4(b)) contains
no directed cycle. C’s conditional probability table is updated using the formulas
of theorem 6.1, i.e., P(C|A) becomes P(C|A,G). The application of function
“elimination” on GG does not reverse any arc, but it adds one: arc (H,G) was
indeed missing. Of course, GG’s conditional probability table must be updated ac-
cordingly, i.e., P(G|A) is duplicated to become P(G|A, H). Applying function
“elimination” on R results in the reversal of arc (R,7’), which in turn involves
the addition of arcs (F,T') and (H, R) (Figure 6.4(d)). Elimination on 7" keeps
the graph unchanged. The application of elimination on B reverses arcs (B, ')
and (B, D), which induces the addition of arc (A, B) (see Figure 6.4(e)). And so
on until elimination has been applied on all nodes, which results in the graph of
Figure 6.4(f). ¢

6.3 An efficient variation of the polytree algorithm

At this stage, we have a new multiply-connected Bayesian network with the appropri-
ate conditional probabilities. Propagating informations within this new network can
be performed using the algorithms described in Section 3, for instance using Local
Conditioning. Let us recall briefly how the latter works:
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O C) O
G@G@@G@
QG ®» ® G ®H @ ® @

© @ © O

(a) original network (b) after eliminating C (c) after eliminating G

(d) after eliminating R (e) after eliminating B (f) triangulated DAG

Figure 6.4: Applying arc reversal and arc addition.

Algorithm 6.1 (polytree algorithm with local conditioning) Letr (V, A, P) be a
BN. To compute a posteriori marginal probabilities of all the random variables in V),
label the arcs using algorithm 3.2, choose arbitrarily a node R and apply succes-
sively to R functions Collect-Evidence and Distribute-Evidence below:
Collect-Evidence on node X:

1. for all nodes Y adjacent to X except, if any, that which called Collect-
Evidence on X, call Collect-Evidence on Y,

2. if X # R, send to the node Y that called Collect-Evidence on X message
my (X) (resp. Ax(Y)) if X is a parent (resp. a child) of Y (see below the
expressions for ™ and \).

Distribute-Evidence on node X: for all nodes Y adjacent to X except, if any, that
which called Distribute-Evidence on X, do:

1. send toY message my (X) (resp. \x(Y)) if X is a parent (resp. a child) of Y,
2. call Distribute-Evidence on Y.

using labeled m — \ messages (see Figure 6.5):

o Ty (X) = Z P(X,ex|Pa(X)) x H7TX ) X H)\y ]

ZeV\Cxy L

o \(X)= > |P(Y,ey|Pa(Y waY )XH)\S].(Y

ZeV\Cxy L

The \’s are messages from children to parents and the 7’s are messages from parents
to children.
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T‘-X/ g%\%%{%[]k) Ty ( X

Figure 6.5: A generic graph for the the 7 — A messages.

We will now show that the above algorithm applied on the triangulated DAG result-
ing from the application of proposition 6.2 has a complexity at most equal to that of
HUGIN. Since triangulated DAG usually contain cycles, we shall select variables for
cutset conditioning. To help us in this choice, remember that, for every node X;, X;
and its parents form a clique. Consider now a clique such as that of Figure 6.6(a). Since

(a) aclique (b) no cycle passes through E (c) the clique cutsets

Figure 6.6: Cutsetting within cliques.

the graph is directed and complete, there exists an order on the nodes (a node X is after
a node Y in this order if there exists an arc (Y, X)), here the order is A, B,C, D, E.
Since the graph is complete, there exist some arcs between all nodes in every triple of
nodes, in particular every triple containing nodes D and £: ADE, BDFE and CDE. It
is easily seen that after cutting arcs (A, F), (B, E) and (C, E), no more cycle passes
through E. It is remarkable that selecting these arcs does not affect the labels of any
other arc except the last remaining one adjacent to F (in Figure 6.6(b), labels are writ-
ten beside their associated arcs) and, moreover, the label of the latter is included in the
set of variables of the clique. This property always hold when cutting arc (X, Z) in
triples (X, Y, Z) such that X and Y are parents of Z and X is parent of Y. A process
similar to that used to remove cycles passing through F can be applied to the other
nodes, D, C, etc, and leads to the graph of Figure 6.6(c).

During the creation of the triangulated DAG, each time a node was eliminated, this
node as well as its parents formed a clique. Hence, applying the above paragraph to all
the nodes in the order of their elimination ensures that no cycle will remain. Moreover,
labels will be included in cliques, which will guarantee that the complexity of Fay and
Jaffray’s algorithm with these labels is at most equal to that of HUGIN. This motivates
the following proposition:
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Proposition 6.3 (A new variation of Pearl’s method) Ler (V, A, P), V =
{X1,...,X,}, bea BN and let o be an elimination sequence. Let G' = (V, A’) be the
triangulated DAG of proposition 6.2. The application on G’ of Collect-Evidence and
Distribute-Evidence together with the cutset algorithm below computes correctly a
posteriori marginal probabilities. Moreover, the computational complexity is at most
equal to that of HUGIN (with the same elimination sequence).

Cutset algorithm:
For i varying from 1 to n do
Let j be the smallest index such that arc (X,(j), Xo(:)) belongs to A’
in all cycles (triangles) X ;i) X o(j) Xo(k). Cut all arcs (X iy, Xo@)) s
done

Finally, messages m — X are equal to:

7Ty(X) = P(ny, G}Y) Cll’ld /\y(X) = P(@;(Y|ny).

The construction of our secondary structure relies more heavily on elimination se-
quences than junction trees. Consider for instance a complete graph of three nodes
A, B and C'. All elimination sequences will lead to clique ABC, but not to the same
DAG because the arc’s directions depend on the elimination order. Thus, for a given
junction tree, there may certainly be a “best” triangulated DAG, or equivalently a best
elimination sequence. Probably, this shall be that which changes as less as possible the
original network, as it both minimizes the effort to compute the required conditional
probabilities and it enables d-separation analysis (the analysis showing where informa-
tions have an impact in the network, that can be used to avoid unnecessary inference
computations). This shall be promising for future works.

The computations presented here are similar to those of [SS90b] in that they never
perform any division. In this respect, they outperform HUGIN. However, [SS90b]’s al-
gorithm may be thought of as better than the above one because it uses the conditional
probabilities of the original network whereas the above one requires a preprocess com-
puting those of the secondary structure. In terms of memory consumption, HUGIN out-
performs our method and [SS90b]’s, since it uses only one message per edge whereas
ours uses two messages per arc.
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6.4 Proofs

Lemma 6.2 (Properties of the elimination tree) Let G = (V,&r) be a trian-
gulated graph induced by an elimination sequence o, and let G; = (C,&;) and
Ge = (D, Ag) be a junction tree and the elimination tree of Gr respectively. Then
the following properties hold:

1. Forany D,; € D\C and any arc E = (Do), Dy(;)) € Ag, the content of I,
is equal to Doy \{ X0}

2. Let Dy(;) be a node in D\C. Then D, ;) has an ancestor in C;

3. Let Dy(;y be a node in D\C that has only one parent in Gg, say D, ;). Then
Do(i) = Do) \ {1 Xo) 5

4. Let D,y be a node in D\C that has multiple parents in Gg, say Dy, - ..,
Dy,). Then, there exists an index j € {1,...,p} such that, for all k €
{1, . ,p}, Dg(i)ﬂDU(ik) - Dg(i) ﬂDo(ij). Moreover Do(i) = Do(ij)\{XU(ij)}-

Proof of Proof of lemma 6.2.: 1/ We will prove property 1/ for all D,; € D. Let
E = (Da(i), Da(j)) € Ag. Then, by definition, 7 = min{k : Xa(k) S Da(i)\{Xa(z‘)}}-
Thus X, ) is the first node in D, ;) to be eliminated after X, ;) itself has been elim-
inated. When this happens, since no node in Dy(;)\{Xs(:), Xo(j)} has been removed
yet and since all the nodes in this set are adjacent (because D, ;) is a clique and only
edges adjacent to eliminated nodes are removed), D,y 2 Do) \{X@)}. Moreover,
Xo(i) € Do(j) because X, (;) is eliminated after X,(;). Hence Dy(;) N D,(;), the content
of F, equals D,;)\{Xs@)}-

2/ Let Dy(;y € D\C. Assume D, ;) has no parent in Gg. Let D’ be the set of cliques
in D containing D,;y. D' # () because D,y € D\C. Consider any D,(;y € D'. Then
7 <1, else XJ(Z-) ¢ Da(j). Since Da(i) is not a child of Da(j)’ r = min{k : Xg(k) S
D, ) \{Xs0) }} < i. Do;) being a clique, X, is adjacent to all the nodes in Dy ;),
and a fortiori to all the nodes in D, ;). Hence D,;) C Dy(). Consequently, if D, ;)
has no parent in Gg, for any j such that D, ;) € D', there exists v, j < r < i, such
that D,y € D’ which, by induction, proves to be impossible since D’ is a finite set. So
any D,y € D\C has at least one parent. G having a finite number of nodes and arcs,
Dy ;) must have an ancestor in C.

3/ Let D, ;) be a node in D\C that has only one parent, say D,;), in Gg. Assume that
D,y & Doy(jy. As for the proof of property 2, consider the set D’ of all the cliques in
D containing D, ;). Then D,y € D'. Now for any D,y € D', as there exists no arc
(Doky, Do(iy) € Ap, there exists an index r > k such that (Dy, Dy()) € Apg and
D,y C Dy since r < i, which is again impossible because D’ would be infinite.
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Hence D,(;) C D, ). Since we already know that D,y 2 Dy(jy\{Xs(;)} by definition
of the arcs in Ag, property 3 obtains.

4/ Assume that there exists no such j. Then there exist two different parents of D),
say Dy (;,) and Dy ;,), such that there exists no i;, # 4, such that Dy(;,yNDy(;)y © Dy )N
Dy and no iy, # i, such that D,y N Do) € Dg(iy) N Dy(iy, and of course Dy ;) N
D,y # Doiy) N Dogsy. By property 1, D,y 2 Srs = (Do(i,) U Dg(i)) \{ X (i) Xo(is) }-
There exist other cliques containing S, in D since D,;y € D\C. By the running
intersection property, the trail between D,(; and such cliques passes through Dg;)’s
child (because no parent of D, ;) contains the whole set S,), hence these cliques cannot
contain X, ;). So Dy(;) is the only clique in D containing both X, ;) and S, and thus
it belongs to C, a contradiction. So there exists j such that, for all £ € {1,...,p},
Doy N Do(iyy € Dogiy N Do)

By property 1, Do) N Doti;) = Dotiy) \{Xo(i)}s 50 Doty 2 Do) \{ Kot }-
Assume there exists a node X, ) in Dy(;) but not in Dy ;) then, by the preceding
paragraph, no parent of D,(; can contain it. Again, since D,; € D\C, there exist
other cliques that contain D, ;), which is impossible since the trail between D, ;) and
such cliques passes through D,;)’s child, preventing them to contain X, ;. Hence

Doy = Doiy) \{ Xoij) }- ¢

Proof of Proof of lemma 6.1.: In this proof, we will transform G into a junction tree
G’, satisfying the lemma’s property. Each step of the transformation will preserve prop-
erties 1 to 4 of lemma 6.2. By [JJ94, corollary 1], all junction trees have the same
cliques and the same separators (including multiplicity). Hence G; and Gg will also
satisfy the property.

Start from a graph G, = (D', A)) = Gg. Let

_ HDUU)ED’ P(Da(i)>
H(Do'(i)vDo'(j))e-Ai] P<DU(7‘) ﬂ DU(]))

IT;

By definition of the elimination tree, G’; has the running intersection property. Assume
there exist some nodes in D\C having at least two parents in .A’;. Then there exists a
minimal index r such that D, has this property. By property 4 of lemma 6.2, there
exists a parent D, ) such that Doy = D) \{Xs(s)}. Select this parent and another
one. Either they belong to C or, by property 2 of lemma 6.2, they have ancestors in
C. Hence, there exist two sequences of nodes N; = {Dg(il), Dogigyy - -+ Do(ip)} and
Ny = {Da(j1)> Dg(j2), ey Da(jq)} such that:

1. Dy(;,y and D,(;,) belong to C and all the other nodes belong to D\C;

2. Dg(ip) = Da( = DJ(T) and D Da(s);

Ja) o(jq—1) =

3. forall £, (DU(ik)7D0( )) S 'AZI and (Do(jk)7 DU(jk+l)) € 'AZI

Tk+1

By construction, when (D, ;), Do) € A’;, Dy belonging to D\C, then j < k.
Hence, since among the cliques that have multiple parents, r has the lowest index,
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no node in sequence { Doy (i), - - -, Dy(;,_;)} has more than one parent. Consequently,
removing all nodes D), ..., Do, ,) as well as their outgoing arc, and replacing
arc (Dy(iy), Do(is)) Y (Ds(iy), Do(jr)) does not change the connectedness of the graph.
Moreover, all arcs (Dy(j), Dor)) € A’; such that either D,y & C or Dy € C, still
satisfy j < k. If the new arc is labeled by Dy(;,_,)\{Xos(i,_,)}, then the running in-
tersection property is preserved. Indeed we know that cliques Dy ;,), - - ., Do(s,_,) have
only one parent so, applying recursively property 3 of lemma 6.2, Do) N Do, ) =
D,;,_,). Moreover, by property 1 of lemma 6.2, Dy, )N Do) = Do(ip_ 1) \{ Xo(,1)
hence, by the running intersection property, Do,y Dy(r) = Dogi,_1) \{ Xo(i,_1)}- Sim-
ilarly, by property 3 of lemma 6.2, D, (;,) N Do(j,_,) = Doj,_,) and by property 4 of
lemma 6.2, Dy(;,_,) N Doy = Doy so that, by the running intersection property,
Dyj1y N Do(ry = Dogry 2 Do) \{Xo(,_.)}- Consequently, by the running intersec-
tion property, Do) N Do(jy) = Dogi,_1)\{Xo(,_.)}- Note that the above modification
resulted in replacing product:

I P(Dg,) - 11 P (Do) P(Dyi,_,))
P<Do(zk) ﬂDo(ik+1)> P<D0(ik+1)) P<D0(ip—l)\{X0(ip—1)})

P(Dy(iy))
P(Doi, 1) \{Xoti, 1) })
in IT';, or in other words in removing all the P(D,;,))/P(Ds,)), k € {2,...,p — 1}.
Note also that if, after the modification in G';, D,y has only one parent left, then
property 3 of lemma 6.2 is preserved.

Applying recursively the above transformations guarantees that G/, has no more
clique in D\C having more than one parent. Thus by property 2 of lemma 6.2, all
cliques in D\C have exactly one parent in G’;. Assume now that there exist two cliques
Co;) and Cy(jy in C, i < j, that are joined by a trail containing only cliques in D\C,
say N = { Do) = Coti), Dotin) - - -+ Do) = Co)}- Then, since all cliques in
D\C have exactly one parent, this trail is a path from Cy(;) to C,(;). But then, as
in the above paragraph, removing all the nodes in {Dy,), ..., Dyg,_,)} as well as
their outgoing arc, and replacing arc (C,(;), Do(iy)) by an arc (Cy(), Co(j)) labeled
with Do, 1)\{Xo(i,_,)} keeps the running intersection property (see property 3 of
lemma 6.2) and modifies expression I1’; replacing

11 P(Doiy) m r (Do) . P(Dotiy)
P<D0(ik) ﬂDU(ikH)) P<D0(ik+1)) P<D0(ip—1)\{X0(ip—1)}>

by expression
P(D(iy))

P(Da(ipfﬂ\{XU(ipfl)}) ’

or in other words it removes all P(D,,))/P(Dsi,)’s, k € {2,...,p — 1}. Apply
recursively this paragraph to all such pairs of cliques (C,;), Co(j))-
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Now, assume there exists a clique in C, say Cy(;), the outgoing arc of which points
toward a clique in D\C. Then all the descendants of C, ;) belong to D\C (by the pre-
ceding paragraph) and form a path (since no node in D\C has more than one parent).
Let N = {DJ(“) Co(i)s Do(is)s - - -, Doi,) } be this path. Then removing all nodes
in { Do), - -, Dogy,) } as well as their outgomg arc (note that D,; ) is the only clique
without outgoing arc) keeps the running intersection property. Moreover the modifica-
tion resulting in II’; corresponds to replacing expression

-----

by P(Dy;,)). Applying recursively such modifications, there remains a graph G’ the
nodes of which are those in C (by property 2 of lemma 6.2) and having the running
intersection property, a junction tree. Hence the lemma holds. ¢

Proof of Proof of corollary 6.1.: It is well known that expression II; in lemma 6.1
factorizes the joint probability on V. By lemma 6.1 the factorization given in corol-
lary 6.1 thus obtains. Since the expressions of II; and Il are identical, except for
expressions in I1z that appear both at the numerator and the denominator, conditional
independencies between any pair of random variables in ) are similarly captured by G ;
and Gg. ¢

Proof of Proof of corollary 6.2.: By corollary 6.1, the joint probability P()) fac-

torizes as P(V) = [HDU(Z)E"D (Do )} / [H(Dam Dois)eAp P(Dg@iy N Dg(j))]. Note
that, in the elimination tree, a clique D,; has an outgoing arc if and only if it contains

at least two nodes. Hence, if D! = {D, ;) : Dy(iy = {X,(;)}} and D* = D\D?, then

P(Xo) (Dsti)
[1 Peew= 11 P( o(zﬂDo@))

Dg(i)€D? Dg(i)€D?

where, in the denominator of the right product, P(Dy; N Dy(j)) is the probability of
the label of edge (D, ), Do(j)) € Ag. But, by property 1 of lemma 6.2, Dy;y N D,y =
Do(z’)\{Xo(i)}- Hence:

= I P&ow)x I PXowlDow\{Xow}),

D, ;y€D? D, (;y€D?

which corresponds precisely to the factorization of the joint probability represented by
DAG ¢G'. ¢

Proof of Proof of proposition 6.1: Assume that V,,y # () and that there exists a
node X,y € Vs, such that arc (X, (), Xo(;)) cannot be reversed. By theorem 6.1,

there exists a path in the graph, say {7, = X,(), Z2, . . ., Z, = X,(;)}, different from
arc (X, (), Xo(j))» going from X, ;o) to X, ;). Note that j > 4, else by construction of
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Gr (see corollary 6.2) (X, (i), X»(j)) would belong to A7 since X,(;) would be elim-
inated before X, ;). Similarly, the existence of arc (Z,_1, Z,) implies that Z,_; is
eliminated after X,;,) else it would belong to {X,u) : k < do} but arc (Z,_1, Z),)
would not belong to A7, a contradiction. By induction, all the Z;’s, 7 > 1, are elimi-
nated after X, ;).

Since G is a DAG, there exists a node in V,;,), say Z, without ancestor in V, ;).
If there existed a path from X, ;) to Z different from arc (X, ), Z), the second node
of this path, say Z,, would also belong to Vg, since, by the preceding paragraph,
it would be eliminated after X, ;) and arc (X,;,, Z2) would belong to A\ Ap. This
leads to a contradiction since £ would be one of Z’s ancestors. Hence theorem 6.1 can
be applied and arc (X, ), Z) be reversed.

Now let us show that arcs added by arc (X,;,), Z)’s reversal correspond to edges
in £. These are illustrated in Figure 6.7: X,;,)’s (resp. Z’s) parents must become
Z’s (resp. X,(;,)’s) parents as well. Since before reversal X, ;,) and WW’s are parents

Fato)—(2) Coe L7

(a) before reversal (b) after reversal

Figure 6.7: The arcs added to the graph by arc (X, Y')’s reversal.

of Z, the moralization phase leading to Gy shall add edges in £ between all these
nodes. Hence arcs (W}, X)) added by arc reversal correspond to edges in £. Z,
Us’s, V;’s and W},’s are known to be eliminated after X, (see the construction of A’
in corollary 6.2). But during the triangulation process, when X, ;) is eliminated, edges
are added between all of its neighbors so as to form a clique. Hence £ contains edges
between the U;’s and Z. Hence all the arcs added by (X,;,), Z)’s reversal correspond
to edges in £. After arc reversal, X,(;,) and Z have new parents and we must check
that triangulating again will result in Gz. To do this, it is sufficient to show that edges
obtained by marrying X, ;,)’s parents and Z’s parents already belong to £. As the U;’s
and V}’s (resp. V;’s and W), ’s) were already X,(;,)’s (resp. Z’s) parents, by moralization
these parents were already married before reversal. We had already seen that X ;)
and the W}’s were among Z’s parents before reversal, hence by moralization, they
were married in £. During triangulation, when node X, ;,) is eliminated, all of its
neighbors are linked by edges. As the U;’s are X,(;,)’s parents, they are also neighbors.
Since edges were added by Z’s moralization between X ;) and the W}’s, the latter are
also X, ;,)’s neighbors. Hence X, ;,)’s elimination adds edges in £ between all of the
U;’s and W;’s. Consequently, triangulating again the graph obtained from G after arc
reversal results again in G et Gr. ¢

Proof of Proof of proposition 6.2: When function elimination(-) is called on
node X,(), if V' = 0, all the arcs adjacent to X,y are properly directed and no arc
reversal need be performed. If, on the contrary, V' = {Y1,...,Y,} # 0, by step 2 of



Section 6.4. Proofs 95

the function it is possible to select a Y; and to apply proposition 6.1, hence resulting in
a graph the triangulation of which is still Gr. Note that the arcs adjacent to X ;) added
to A by this process are directed toward X1y and thus their head cannot belong to V'
Hence steps 1-5 remove by induction all the improper arcs and they result in V' = ().
Moreover, proposition 6.1 guarantees that triangulating the modified graph leads to Gr-.

When steps 6-9 are performed, only arcs of type (Y, X(1)) are added. Since these
arcs already belonged to A7, they corresponded to edges adjacent to X, ;) in the undi-
rected triangulated graph, say Gp. Therefore, when X, (1) has been eliminated, edges
between all these Y’s and the other X, ;)’s neighbors have been added. But the arc
additions by steps 6-9 has precisely this effect by moralization. So triangulating again
after their addition results again in Gg, hence in Gr.

The above two paragraphs can be applied to X;(2), X5(3), etc. By induction, it can
be concluded that applying steps 1-9 and triangulating results in Gr. But steps 1-5
ensure that arcs adjacent to each of the nodes in the modified version of graph G are
directed as those in Gr, and steps 69 guarantee that all the arcs belonging to G also
belong to the modified version of graph G. Hence, the algorithm maps G into Gr. ¢

Proof of Proof of proposition 6.3: By proposition 6.2, G’ represents a decomposition
of the joint probability compatible with that defined by P. Hence if the cutset algorithm
removes all cycles, Collect-Evidence and Distribute-Evidence, or equivalently Fay and
Jaffray’s algorithm, will provide exact computations.

By corollary 6.2 all the arcs in A" adjacent to X (1), say (Xo(,), Xo01)), - - > (Xo(i)s
Xo(1)), are directed toward X, (). Since £ is a finite number, there exists in {i1, ..., %}
a smallest index. Without loss of generality, assume it is ¢;. By triangulation, all
of X,(1)’s neighbors are linked together to form a clique. Hence between every pair of
variables (Xo(i;), Xo(i))» J, 1 € {2, ..., k}, there exists an arc in A’. So there exist £ —1
triangles Xo(;,) Xo(i;) Xo(1), and cutting arcs (Xg(ij), Xo’(l)) removes all cycles passing
through X, () (since there remains only one arc adjacent to Xo(1): (Xo(,), Xo(1))). Let
us now eliminate cycles passing through X, ). There exists no arc (X,(), Xo(2)) in
A’ because X1y has no child. Hence the process applied on X ;) can also be applied
to X, (2). By induction on the nodes ordered according to elimination sequence o, all
cycles are removed from the graph. Hence Fay and Jaffray’s algorithm will provide
exact computations.

Let us show that if every arc (X,Y") is labeled by X before any cutset, then for
any node X, ), the cutset algorithm of the proposition changes only the label of the
remaining arc directed toward X,(;) and, moreover, this label becomes equal to the
set of all X,(’s parents. Triangle X, ()X, ;)Xo is cut on arc (X,(;y, X)) only
if j < i. Hence X,(; is eliminated before X, and accordingly there exists an
arc (Xo(), Xo(j)). In other words, the triangle is constituted by arcs (Xy(y, Xo(j))s
(Xo@); Xo) and (X, (), Xox)). Consequently, cutting arc (Xo(;), Xo(r)) adds only
label X, ;) to arc (Xg(j), Xo(k)), i.e., to the only remaining arc adjacent to X, ) after
all cutsets. Now when all triangles adjacent to a given node have been cut, there re-
mains no cycle passing through it and a fortiori through its only remaining adjacent
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arc. Hence future cuts cannot modify the label of this arc.

Let us show by induction that 7—\ messages are equal to those described at the end
of the proposition. Induction basis: assume that, after cutsetting, node X has only one
neighbor left, say Y (see Figure 6.8.a). X cannot have other parents Z, ..., Z, in '

(a) X sends a message (b) Y sends a message

Figure 6.8: Induction bases.

since the cutset algorithm always leaves an adjacent arc. If X received an evidence e x,
then e}, = ex else ek, = ex = (. By the labeled formulas on page 41, message
7y (X) sent by X is equal to P(X,ex) (no product is computed since all the arcs
adjacent to X except (X, Y') have been removed). But Cxy = X, else there would
exist Z # X belonging to C'xy and, by the cutset algorithm, there would also exist
a triangle Z XY where Z is parent of both X and Y, a contradiction since X has no
parent in G'. Consequently, 7y (X) = P(Cxy, eky ).

Consider now a node, say Y, having only one parent left after cutset (see Fig-
ure 6.8.b). By the cutset algorithm, Y cannot have children Wy, ..., W, in G’ because
this algorithm always leaves an adjacent arc. Again, the existence of arc (X,Y") and
the removal of arcs (Z;, V') imply that node X is, among Y’s parents, the first one to be
eliminated during the triangulation process. Hence, by the third paragraph of this proof,
arc (X, Y)’s label is equal to the set of Y’s parents, i.e., Cxy = {X, Z1,..., Z,}. The
labeled formulas on page 41 show that the message sent by Y is equal to

Y. P(Y.exylPa(Y))

ZGV\CXY

(no product is performed since only one arc remains). Consequently,

N(X) =Y P(Y,exy|X,Z1,...,2,) = Plexy|X, Z1,.... Z,),
Y

and )\y(X) = P(€§Y|CXY)'

Let us study the general case of the induction (Figure 6.9). Arcs (Z;, X)’s have
been removed hence, during the triangulation process, nodes Z;’s have been eliminated
after X. For the same reason, since X is one of V;’s parents, all the other arcs adjacent
to V; and outgoing from V;’s parents in G’ have been removed using triangles passing
through X. But this is possible only if the V;’s are eliminated before X.
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Figure 6.9: General case for the induction.

By induction hypothesis, A\x(V;) = P(exy,|Cxv;), ¥V i. X is one of V;’s parents,
hence all the other arcs ingoing V; in graph G’ have been cut and, by the cutset algo-
rithm, this is possible only if these arcs are outgoing from parents of both X and V.
Consequently, labels C'xy, are subsets of {X, Z,..., Z,}. If there exists Z; & Cxy,,
then Z; is independent of V; conditionally to C'xy;. Indeed, in the contrary, there would
exist a trail {Uy, ..., Uy} between Z; and V; not passing through any variable in C'yy;.
But by d-connection', this trail cannot have converging arcs. Hence, since Z; cannot
be V;’s descendant (else there would exist a directed cycle), U,_; must be one of V;’s
parent. Thus it is either X, but X belongs to C'xy;, or a parent of V; such that arc
(Uk—1,V;) has been cut, which implies that U,_; € Cxy,. In both cases, Z; would
be independent of V; conditionally to C'’xy;, a contradiction. Now if Z; is independent
of V; conditionally to C'xy;, it is also independent of exvy; conditionally to Cxy;, else
there would exist a d-connecting trail between Z; and a node X, having received ev-
idence in €xy;» and a d-connecting trail between X and V;, the union of these two
trails being a d-connecting trail between Z; and V;, a contradiction. In conclusion,
P(e)_(vz|CXV,) = P(@}VJX, Zl, ceey Zp)

By construction of the triangulated DAG in corollary 6.2, X, ;) has only parents,
and after cutsetting only one remains, the label of which is equal to X,(;)’s parents set,
or equivalently to the separator content of the outgoing arc of D(;). Once X, (y), has
been removed, X, () 18 in a similar case. Therefore, we can show by induction that
each label on the arc ingoing of every node X, ;) of G’ (after cutsetting) corresponds to
the content of the outgoing arc of D, ;) in the elimination tree. Therefore the remaining
arcs in the cutsetted version of G’ are one-to-one with arcs in the elimination tree as
well as their adjacency properties (two arcs are adjacent in the former if and only if
they are adjacent as well in the latter).

A well known property of elimination trees (in fact of joint trees) is that the variables
of two cliques, say C'; and (Y, are independent if all the variables of some separator(s)
or clique(s) on trail between C'; and (), are instantiated. By preceding paragraph, Dy,
and Dy, the cliques created when V; and V; are eliminated respectively, are linked in
the elimination tree by trail { Dy;, Dx, Dy, }. So the running intersection property en-
sures that, for all X, X; such that X} (resp. X;) is on V;’s side of arc (X, V;) (resp.

'"Two variables, X and Y, are probabilistically dependent if and only if they are d-connected, i.c.,
there exists a trail {A1,..., Ar} suchthat A; = X, Ay =Y, and such that along the trail, nodes A; hav-
ing converging arcs, e.g., arcs (4;-1, 4;) and (A;41, A;), either received evidence or have descendants
with evidence, and the other nodes along the trail are not instantiated.
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(X, V})) in the cutsetted version of G’, the paths between cliques containing X}, and
those contain X; must pass through Dy; and Dy,. Consequently, X} is independent of
X, conditionally to Dx and, by the preceding paragraphs, Dy = {X, Z,..., Z,}. But
by hypothesis, all evidence ex,’s are independent of the rest of the network condition-
ally to X. So ey, is independent of exv, conditionally to X, Z;, ..., Z, and:

[[rc(vi)=rP (U exvi| X, Zi, ..., Zp> :
=1 i=1

(Zy, X) is the only remaining arc after cutsetting the arcs outgoing from X’s par-
ents. This implies that all the other (Z;, X)’s have been cut within triangles Z;7; X.
Consequently, {Z;,...,Z,} C Cy x. But Cz x cannot contain any other variables
since those would be among X’s parents (by the cutset algorithm). So 7 (X) =
P(e} v,Crx) = Ple} x.Z1, ..., Z,). For reasons similar to those of the preceding
paragraph, eJZrl « is independent of X and of ex conditionally to {7, ..., Z,}. Conse-
quently, P(X, ex|Pa(X))7rz, (X) = P(X,ex, e} x|Z1,. .., Z,). Similarly, the ex,,’s
are independent from e x and e}l « conditionally to { X, Z, ..., Z,}. Consequently,

P(X,ex[Pa(X)) x mx(Z1) x [[ M, (X) = Pleky, X, Z1,..., Z,).

i=1
But by symmetry between Y and the V;’s, Cxy C {X,Zy,...,Z,}. So, if we sum
P(eky, X, Zy, ..., Z,) overall the variables not belonging to Cxy, we get P(eky-, Cxy),

which is precisely the message described in the proposition. The proof is similar for
upward messages.

To complete this proof, there remains to show that the computational complexity
of the propagation algorithm of the proposition is at most equal to that of HUGIN.
The latter is equal to the sum of the complexities of the all the absorptions performed.
The complexity of the absorption of a clique C; from C; (see Figure 4.8) is equal to
|Ci| + |C;|, where |C| refers to the product of the number of possible values of all the
random variables in C.

The complexity of HUGIN is greater than or equal to that of Jensen’s algorithm ap-
plied on the elimination tree. Indeed, in the second paragraph of the proof of lemma 6.1,
the transformation applied to the elimination tree consists in removing a sequence of
nodes N1 = {Dg(iy), - - -, Do)} as well as their outgoing arcs and replacing arc
(Do(ir)s Do(is)) Y (Dogir), Do(jy))- The corresponding impact in the absorptions com-
plexity is a change from | D, ;)| + | Dy, | +2 Z?;; | Doi;)] 10 [Doiyy| + | Doy | Now,
as forall j’s, 2 < j < p—1, D,(;;) € D and has only one parent, by property 3 of
lemma 6.2, Dy(;,) = Do(i,_1)\{Xo(i,_,)}- Since all nodes X’s have at least 2 pos-
sible values, [Dgy(i;)| < |Dogi;_1)|/2, so that 22?;; |Dogijy| < 2|Do(iy)|. Moreover
|Doiy| > |Doi,)|- so the complexity before transformation is less than or equal to
3| Do(ir)| + | Doy, or equivalently to |Do;,)| + | Do(jy)|. Now, each time the transfor-
mation is applied, D, ;) is different from preceding D,;,)’s because after each trans-
formation, D, ;,) is linked to a node in C. Hence the set of transformations applied in
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the second paragraph of the proof of lemma 6.1 increase the propagation complexity.
For the same reason, the transformations applied in the third and fourth paragraphs of
the proof of lemma 6.1 keep the overall complexity unchanged, so that the complexity
of Jensen’s algorithm applied in the elimination tree is at most equal to that applied in
the junction tree.

In the propagation algorithm of proposition 6.3 (and on Figure 6.5), 7—\ messages
are equal to:

mv(X)= > |P(X,ex|Pa(X))P(ef, x, Cuix) [ | Plexy,|Cxy,)
7j=1

9

ZGV\CXY:
p
W(X)= > [P ev[Pa(Y)) ]| Pleys,ICrs,) |
ZeV\Cxy L 7=1

since nodes of G’ have at most one parent. By the preceding paragraphs, labels C'xy
and C'yy, are subsets of { X, Pa(X)}. Hence message my (X) is equal to

m

> [PXex[Pa(X) [] Plexy,|Cxv,)) D> Plefx, Cux)l-

ZeV\Cxy Jj=1 ZeV\{X Pa(X)}

Again by the preceding paragraphs, labels C'4 5 of every arc (A, B) in G’ are equal to the
set of B’s parents, hence to cliques of the elimination tree. Now note that the complex-
ity of computing 7y (X) as defined above would be equal to that of the absorption by a
clique {X, Pa(X)} from cliques Cy, x and Cxy,’s. Note also that clique { X, Pa(X)}
is equal in the elimination tree to Dy. Similarly, message Ay (X) corresponds to the
absorption by clique {Y, Pa(Y)} from cliques Cyg,’s. Finally by the preceding para-
graphs, if all these cliques are adjacent in the triangulated DAG, they are also adjacent
in the elimination tree. Hence the overall complexity of the collect-distribute phases in
the triangulated DAG is equal to that in the elimination tree. By transitivity, it is also at
most equal to the complexity in HUGIN. ¢
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Chapter 7

Binary join trees within Pearl’s
algorithm

It is well known that Shafer-Shenoy’s algorithm is competitive with Jensen’s method
only when it is applied in binary join trees, that is, although these algorithms have the
same computational complexity, in terms of the number of arithmetic operations they
perform, Jensen’s algorithm usually outperforms that of Shafer-Shenoy. Only when
applied within binary join trees is the latter as fast as Jensen’s algorithm. As the vari-
ation of Pearl’s algorithm we introduced in the preceding chapter is strongly related to
Shafer-Shenoy’s algorithm, it suffers from the same property : unless it can perform
computations as if it were in a binary join tree, it will require more arithmetic opera-
tions than Jensen. In this chapter we will show how propagation in binary join trees
can be effectively reproduced using a stack to store temporary computations.

For this purpose, we first present an example which enables us to highlight the dif-
ferences between propagating in a general join tree and in a binary one. Then we show
how these can be used to reduce the number of computations performed by Pearl. Quite
naturally, it is shown that this can be achieved using some stacks to store temporary
computations.

7.1 Example of a propagation in a BJT

7.1.1 Computations in a nonbinary join tree

Consider the Bayesian network of Figure 7.1. The graph resulting from moralization
and triangulation using elimination sequence A, F, G, I, J, K, H, D, B, C, F, is
shown in Figure 7.2. This, in turn, leads to the join tree of Figure 7.3. To understand
precisely the difference between propagating in a classical join tree and in a binary join
tree, we shall first apply Shafer-Shenoy’s algorithm in the join tree of Figure 7.3, and
then in a binary join tree. Using clique HC'DFE as the root, the former computations
are described in Tables 7.1 and 7.2. These are summarized in Figure 7.4.

101
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Figure 7.2: The Markov network obtained after triangulation.

P(A)P(BIA) P(FIB)

Figure 7.3: A compatible join tree.

Remark that the computations of messages @ to @ is very inefficient because the
same products are performed several times. To avoid these redundancies, we shall use
a binary join tree instead of the tree of Figure 7.3.
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Sending clique computation message
A5 S PCOP(RIA) = POP) @
BF > P(F|B) = @
BCE %, P(E|B)P <0\B> (B)is=P(C,E) ®
CGE > ¢ P(G|CE) = @
DCJ ZJ <J|C D) -‘ICD ®
DEK Y. P(K|D,E) =1pg ®
HI > P(IIH)=1y @

Table 7.1: The inward pass performed by Shafer-Shenoy in the nonbinary join tree.

Receiving clique computation message
HI ZC,D,EP( )P(H|C D E) (C, E)ﬂCEHDCIDE = P(H) (1]
DEK ZC’H P(D)P(H|C,D,E)P(C, E)icglpcig = P(D, F) 2]
DCJ ZH’EP(D)P(H|C,D,E) ( )1CE1DE1H = (C,D) (3]
CGE ZH’DP(D)P(H|C,D,E) ( )DC’ DElg = (C, E) (4]
BCFE ZHDP(D)P(H\C D E)‘CElDC\DEnH_JCE (5)
BF S c.x P(E|B)P(C|B)P(B)icy = P(B) ®
AB ZC,EP<E‘ )P(C’B)IBICE— i (7]

Figure 7.4: Messages in the nonbinary join tree.

7.1.2 Computations in a binary join tree

A binary join tree corresponding to the join tree of Figure 7.3 may be that of Figure 7.5.
Observing that i) node C' E BG has been added only to factorize computations involving
cliques BCE, HCDFE and CGE}; and ii) that only one of these three cliques contains
B (i.e., clique BC'E) and only one contains G (i.e., clique CGFE), node C EBG can
be advantageously substituted by the smaller node C'E’ without altering the correctness
of the propagation algorithm. Similarly, node C'D F K J can also be replaced by CDFE.
Such substitutions lead to the more efficient binary join tree of Figure 7.6 that we will
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use for our computations. Now, if clique HCDE is chosen as the root for Shafer-
Shenoy’s algorithm, then the computations performed will be those of Tables 7.3 and
7.4. Note that, in this new join tree, the redundancies in the computations mentioned
above have been avoided.

P(A)P(BIA) P(FIB)

P(GIC,E)

Pt D (HepE)

P(D)P(HIC,D,E) (DEK) P(KID,E,

Figure 7.5: A compatible binary join tree.

P(A)P(BIA) P(FIB)

P(D)P(HIC,D,E)

Figure 7.6: An optimized binary join tree.

Note that, when comparing the computations performed in the nonbinary join tree
and in the binary one, no major difference can be found during the collect (or inward)
pass, all the differences lie in the distribute (outward) pass. Indeed, the only differences
between the inward inner passes performed in the nonbinary and the binary join trees
are the following two messages that are computed in the latter and not in the former:

o P(C,E)icr = P(C,E)

® loplpr = lopE
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Sending clique computation message
AB YA P(AP (BIA) P(B) @
BF > P(F|B) = @
BCFE EB (E|B)P (C’\B)P(B)'HB = P(C,E) ®
CGE EG <G|C E) = lcE @
CFE P(C,E)JCE:P(C,E) ®
DCJ ZJ P(J|C,D) =1¢cp ®
DEK ZKP(K|D,E) = lpg @
CDE leplpe = lebE
HI 21 P(I|H) = ®
Table 7.3: The inward pass performed by Shafer-Shenoy in the binary join tree.
Receiving clique computation message

HI
CDFE
DEK
DCJ

CE
CGE
BCFE

BF

AB

>cppPH|C,D,E)P(D)P(C, E)icpr = P(H)

> P(H|C,D, E)P(D)P(C
ZC’ (C D E) CD—P(DvE)

>_r P(C.D,E)ipg = P(C, D)

ZH,D (H|C D,E)P(D)icprlg = lce
P(C,E)icg = P(C,E)

leglce = lcE

>_pp P(E|B)P(C|B)P(B)icr = P(B)
ZCEP(E|B)P(C|B)]1B]CE =1lp

,E)'H.H

= P(C,D,E)

000 OdD®C

Table 7.4: The outward pass performed by Shafer-Shenoy in the binary join tree.

Figure 7.7: The messages sent throughout the binary join tree.
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and the differences between the outer passes are given in Table 7.5. The efficiency of
the binary join tree lies in the computations of the messages sent to cliques :

e DEK and DC'J where ), P(D)P(H|C,D, E)P(C,E) = P(C, D, E)is com-
puted only once;

e CGE and BCE where the expression ), , P(D)P(H|C, D, E)P(C, E) is
computed as ) ., P(C, D, E).

jointree  Receiving clique computation

nonbinary HI ZC7D7EP(D)P(H]C, D,E)P(C,E)icglpcips = P(H)
binary HI > c.p.s P(D)P(H|C, D, E)P(C, E)icpr = P(H)

nonbinary DEK >on P(D)P(H|C, D, E)P(C, E)icpipcin = P(D, E)
binary DEK > cP(C,D,E)icp=P(D,E)

nonbinary DCJ >up P(D)P(H|C,D,E)P(C, E)icgippin = P(C, D)
binary DCJ > P(C,D,E)ipg = P(C,D)

nonbinary CGE >up P(D)P(H|C, D, E)P(C, E)ipciprin = P(C, E)
binary CGE P(C,E)icp = P(C, E)

nonbinary BCE ZH’D P(D)P(H|C,D, E)icpipcipely = lck
binary BCFE loelcr = ok
binary CDFE >y P(H|IC,D,E)P(D)P(C,E)iy = P(C,D,E)
binary CE > up P(H|C,D,E)P(D)icppin = lcr

Table 7.5: Comparison of Shafer-Shenoy’s outer passes.

7.2 Pearl’s algorithm in a triangulated Bayes net

Let us now perform our variant of Pearl’s algorithm on the example of the preceding
section. The first step consists in creating the triangulated Bayesian network corre-
sponding to the elimination sequence A, F, G, I, J, K, H, D, B, C, E. The resulting
graph is shown in Figure 7.8. The second step consists in retrieving the new conditional
probabilities to be stored in each node of the triangulated Bayesian network. Those cor-
respond to the following decomposition of the joint probability distribution :

P(V) = P(A|B)P(B|C, E)P(C|E)P(D|C, E)P(E)P(F|B)
P(G|C, E)P(H|C, D, E)P(I|H)P(J|C, D)P(K|D, E).

Finally, local cutsets must be established. Using dashed arcs to represent the arcs re-
moved by cutsetting, the graph in which Pearl’s propagation will be performed is that
of Figure 7.9.

Using node H as the root of Pearl’s algorithm, the computations performed during
the collect and the distribute phases are given in Tables 7.6 and 7.7 respectively.
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@
(B)
®
(Cr—~(D+HE)
PV
© CHf
© O ®
Figure 7.8: The triangulated Bayesian network.
® B
(B—_p
N
© ﬁ DE
®© O ©®

Figure 7.9: Local cutsets in the triangulated Bayesian network.

Sending node computation message
YA P(AB)=1p

>.p P(F|B) =15

ZB P(B|C, E)HBﬂB = lcE

P(E)

ZG P(G|C,E) =1cg
P<C|E>P(E)NCENCE = P(C, E)

ZJ P(‘]‘Ca D) = T-CD

> x P(K|D,E) =1pg

P(D|Cv E)P(Cv E>HC'D]1DE - P(C7 D7 E)
> PUIH) =14

Table 7.6: The collect pass performed by Pearl.

~OUR~OQ0m e
CRCRCNSNCRONCONCRONC)

The messages are shown in Figure 7.10. The messages we sent here are roughly
equivalent in terms of the number of arithmetic operations performed to those sent
by Shafer-Shenoy in the nonbinary join tree. We noticed in subsection 7.1.2 that, in
the nonbinary join tree, the inward pass could not be improved but that the outward
pass could be speeded up by computing cleverly » ., P(D)P(H|C, D, E)P(C, E) and



108 Chapter 7. Binary join trees within Pearl’s algorithm

Receiving node computation message
ZC,D,E P(H|C,D,E)P(C,D,E)= P(H)
ZHP(H|C,D E) o = lcpE

EC P(D‘C, E) (C E) lepelep = P(D,E)
EE P(D|C, E) (C E) locpElDE = P(C,D)
ZD P(D|C, E) lepElDElcD = lcE
P(C|E)P(E)icgicr = P(C,E)

ZC P(C|E)T‘CEJICEJICE =lg
P(C|E)P(E)icgicr = P(C,E)

EQE P(B|C,E)P(C, E)ig = P(B)

ECE P(B|C,E)P(C, E)ig = P(B)

ST EHQAQANR D~
BOOORICOID®C

Table 7.7: The distribute pass performed by Pearl.

Figure 7.10: Messages sent in the triangulated Bayesian network.

>.up P(D)P(H|C, D, E)P(C, E). Such computations were used for sending mes-
sages to cliques DEK, DCJ, CGE and BCE. In our Pearl’s propagation the same
observation can be made. Indeed, notice that messages sent to cliques DEK, DC'J,
CGE and BCFE correspond to messages sent to nodes K, J, G and B, and that the
latter are:

* > ¢ P(D|C,E)P(C, E)icpgicp = P(D, E),
e > . P(DIC,E)P(C, E)icpelpe = P(C, D),
e P(C|E)P(E)icmion — P(C, E),
e P(C|E)P(E)icmion = P(C, B).

Using the same argument as in binary join trees, we can see that P(D|C, E)P(C, E) =
P(D,C,E) and P(C|E)P(E) = P(C, E) need be computed only once. Doing so,
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we will obtain the same performance as Shafer-Shenoy with binary join trees. Now
the problem that we shall solve is: “how can we easily identify such redundancies in
the computations?”’. We could of course transform the Bayesian network as nonbinary
join trees were transformed into binary join trees but, here, a simpler adaptation can be
applied: as we shall see in the next section, it is sufficient to use some stacks storing
temporary computations to avoid all redundancies.

7.3 Simulating BJT’s with Pearl’s algorithm

As we just saw, to be as efficient as Shafer-Shenoy in binary join trees, Pearl’s algorithm
just needs to avoid redundancies in messages computations. Each message from a
node X to a node Y is computed as a summation over the product of the conditional
probability stored into X by the messages sent to X by its neighbors except Y. Hence if
there exist redundancies, they can only arise when a node X sends messages to several
of its neighbors (as the messages have some products in common). Hence we shall
study in the next subsection how messages are generated by a given node during both
collect and distribute phases. This will suggest a new variation of Pearl’s algorithm and
we will see that the latter is not only competitive with Jensen or Shafer-Shenoy in terms
of computational complexity but also in terms of the number of arithmetic operations it
will perform. In a second subsection we will apply this algorithm to the example of the
preceding section and show that our version of Pearl’s algorithm is actually competitive
with both Jensen or Shafer-Shenoy.

7.3.1 Avoiding redundancies in Pearl’s algorithm

Consider an arbitrary node X in a triangulated Bayesian network (see Figure 7.11).
Assume that we apply Pearl’s algorithm with local cutset in this graph and that the root
is on Y’s side.

mx %\@%/?(Uk) Ty (X)

P —

Ay (X)

Figure 7.11: Local messages.

During the collect pass, X must send to Y message:

m

wv(X)= Y PX|U,...,U) HWX(Ui) [T, ),

ZeV\Cxy j=1
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where V represents the set of all the random variables of the Bayesian network, and
C'xy represents the label of arc (X, Y) (see page 87). Similarly, during the distribute
pass, X must send the following messages:

m

VE Ax(Ux) = > PX|U,..., UM X) [[rx (@) [ Ay, (X,
ZeV\Cu, x i£k j=1
k
VE o (X) = ) PX|Un.. Uy (X) [ mx (@) [T Ay, (X).
ZEV\CXYk =1 77k

As we can see, the differences between the terms involved in all these products are
rather small, so that it should be possible to perform many factorizations.

Remark that, on a monoprocessor computer, it is not possible to compute several
multiplications at a time, so the products must be performed one by one. So, consider
that during the collect pass, the products are performed using the following algorithm:

let M, = P(X|Uq,...,Us)
for:=1to k do

let Mi—i—l = Mz X ﬂx(Ui)
done
for j=1tomdo

let Mk+j+1 = Mk+j X )\yj (X)
done

Then ZZeV\CXY M. m1 is obviously equal to my (X).

My = PX|Us,....U) [[rx (@) T] M, (X),

=1 j<m
k
v (X) = > PX|UL. L U (X)) [T ex (@) T Ay, (X)
ZeV\Cxy,, i=1 jF#Em
= ) Mga(X).

ZGV\CXYm

Similarly,
k

Mism—1 = P<X|U17---7Uk>H7TX(Ui) H Ay, (X),
i=1 j<m—1
k

Ty, (X) = > PX|UL. L UM X) [ [rx @) T v (X)

ZeV\Cxy,, _, i=1 j#Em—1

= Y My A (X)Ay, (X)
ZEV\nym71
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and
k
Mytm—o = PX|U,....U) [[7x@) T] M, (X),
i=1 j<m-—2
k
Ty, ,(X) = > PX|UL. . U)X [ ex (@) TT v (X)
2€V\Cxy,, , i=1 jAm—2

= Z Mk+m_2)\y(X))\Ym (X))\mel(X)'

ZEV\CXYm_2

So, had we stored all the temporary M., ;’s of the above algorithm, the computations
of the my, (X)’s, forall » € {1, ..., m} would be given by the following formula:

(X)) = > Muahv(X) [ A (X).

ZGV\CXYT Jj=r+1
Similarly,
My = PX|Uy,....U) [[nx(Uy),
i<k
Ax(Up) = Y PX|Ur, . UM X) [ [ ex () T ] v, (X)
ZeV\Cy, x i#k Jj=1
= > MMNXO[M.(X)
ZeV\Cy, x Jj=1
and
My_y = PX|Uy,....Ux) [ =x(Uy),
i<k—1
Ax(Up_1) = > PX|U, L UM X)) [T mx @) [, (X)
ZeWCu,_ | x i#k—1 j=1
= > M) [ v (X)X (U).
ZeV\Cu,_;x j=1

Hence, by induction, it is easily seen that the computation of the A x (U,.) messages can
be computed for all € {1,..., k} as follows:

Ax(Un) = ) MTAY(X)HA%(X) [T =)

i=r+1
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To summarize, the 7-\ messages sent by node X to its neighbors can be computed as:

(X)) = Y M,
ZeV\Cxy
(X)) = Y M Av(X) [ (X)),
ZeV\Cxy, j=r+1
m k
Ax(Un) = > MA(X) [, ] #x(@).
ZeV\Cu, x j=1 i=r+1

Remark now that the 7y, (X )-Ax(U,) messages can be computed in any order. But if
we first compute the 7y, (X)’s in ’s decreasing order, and then the A x (U,) also in r’s
decreasing order, then the computation of most products can be avoided. Indeed, in the
Ty, (X) formula, if we denote by Ny, the product Ay (X) x []7L, . Ay;(X) for all
r € {1,...,m}, then Ay (X) x [[72, \y;(X) = Niy,—1 is equal to Niyr X Ay, (X).
Similarly, if we denote by N,, for all » € {1,... k}, the value of the expression
Ay (X) T Ay, (X)) TTE, 4y mx (U3), then Ny, = Niy X Ay, (X) and, for all r < k,
N, = N, 11 X mx(U,41). Hence, the collect-distribute messages can be computed as:

my(X) = Y My,
ZEV\CXY

Wn.(X) = Z My v Niyrrs
ZEV\CXYT

Ax(U) = Y MN,.
ZEV\CUTX

Of course, a similar treatment may be applied if Y is a parent of X. Note also that the
root of the propagation algorithm may be treated slightly differently in the sense that
there is no need to compute My ,,,11 since this matrix is just needed for the message
sent toward the root during the collect phase.
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This justifies the following propagation algorithm:

Algorithm 7.1 (The polytree algorithm in a BJT) Ler (V, A, P) be a BN. To com-
pute a posteriori marginal probabilities of all the random variables in V), label the
arcs using Algorithm 3.2 (see page 41) and apply Algorithm 6.1 (see page 87) com-
puting the m — \ messages as follows: consider a subgraph such as that of Fig-
ure 7.11. Then, during the collect phase, X stores in a stack matrices M; obtained
by the following algorithm :
let M, = P(X|Uy,...,Us)
for: =11t kdo

let Mi+1 = Mz X Wx(Ui)
done
let h = m is X is not the root else h = m — 1
forj =1t hdo

let Mk+j+1 = Mk+j X )\yj (X)
done
X then sends message 1y (X) = 3 ;e\ 0y Mitm+1. For the distribute phase, X
sends messages first to the Y,.’s, in r’s decreasing order, then to the U,.’s, also in r’s
decreasing order, and these messages are computed as follows:
let Ny, = Ay (X) if X is not the root else Ny, = 1x
for j =mto1do

let Ty, (X) = Zzg\cxyj M1 jNij

let NkJrj,l = Nk+j X )\yJ (X)
done
fori=~Fkto1ldo

let \x (U;) = ZZeV\CUiX M;N;

let Nz'fl = Nz X Wx(Ui)
done

7.3.2 Example of Pearl’s propagation in a BJT

In this subsection, we will apply the above algorithm to the example of Section 7.2 and
compare the number of arithmetic operations performed with those required by Jensen
or Shafer-Shenoy. So, consider again the Bayesian network of Figure 7.12 and assume
that we apply Algorithm 7.1 using node H as the root of the algorithm.

According to this algorithm, during the collect phase, node H asks its neighbors D
and [ for messages. In turn, they also ask their other neighbors for messages, and so
on. We assume without loss of generality that messages are sent in the following order:
first A sends its message, then F', B, FE, GG, C, J, K, D and finally I. In the sequel we
will note M, (.X) the ith element stored into the stack of node X. Now the collect phase
of Algorithm 7.1 is achieved by the following operations:
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Node A:

Node F":

Node B:

Node E:

Node G:

Node C:

Node J:

Node K:

Node D:

®B
Bz
® C%&@@
©CD<HfE
© O ®

Figure 7.12: Local cutsets in the triangulated Bayesian network.

create a stack containing M;(A) = P(A|B)
send message A4 (B) = >, M1(A) =1p

create a stack containing M, (F) = P(F|B)
send message A\p(B) = > . Mi(F) =1p

create a stack containing M;(B) = P(B|C, E)

add to the stack Msy(B) = M;(B) x Aa(B) = P(B|C, E)
add to the stack M3(B) = My(B) x Ap(B) = P(B|C, E)
send message A\p(C) = > 5 Ms(B) =1cg

create a stack containing M, (E) = P(FE)
send message ¢ (E) = M (E) = P(E)

create a stack containing M;(G) = P(G|C, E)
send message A\¢(C) = >, Mi(G) = i¢cg

create a stack containing M, (C) = P(C|E)
add to the stack M5(C') = M;(C) x A\g(C) = P(C|E)
add to the stack M3(C') = M(C) x ¢ (E) = P(C, E)
add to the stack M, (C') = M3(C) x A\g(C) = P(C, E)
send message 7p(C) = My(C) = P(C, E)

create a stack containing M, (J) = P(J|C, D)
send message \;(D) = >, Mi(J) =1cp

create a stack containing M, (K) = P(K|D, E)
send message A\ (D) = >, Mi(K) = 1pg

create a stack containing M, (D) = P(D|C, E)
add to the stack Msy(D) = M1(D) x mp(C) = P(C,D, E)
add to the stack M3(D) = My(D) x A\;(D) = P(C, D, E)
add to the stack My(D) = M3(D) x A\g(D) = P(C,D, E)
send message 7y (D) = My(D) = P(C, D, E)
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Node /: create a stack containing M;([) = P(I|H)
send message A\;(H) = >, My(I) =1y

Node H: create a stack containing M,(H) = P(H|C, D, E)
add to the stack My(H) = My(H) x my(D) = P(H,C, D, E)

The distribute phase is achieved by the following operations:

Node H: let Ny(H) =1y
send message 77 (H) = >, p Ma(H) x No(H) = P(H)
let Ny(H) = No(H) X A\j(H) =1y
send message A\p(H) =Y, Mi(H) x N1(H) = 1cpe

Node I: let Ny(I) =n;(H) = P(H)

Node D: let Ng(D) = )\H(D) = lopE
send message 7y (D) = Y, Ms(D) x N3(D) = P(D, E)
let NQ(D) = Ng(D) X )\K(D) = lopE
send message 7, (D) = > . My(D) x No(D) = P(C, D)
let Nl(D) = NQ(D) X )\J(D) = lopE
send message A\p(C) = >, M1(D) x Ni(D) =1cg

Node K: let Ni(K) = mx(D) = P(D, E)
Node J: let Ny(K) =m,(D)= P(C,D)

Node C: let N3(C') = Ap(C) = 1¢cg
send message 7 (C') = M3(C) x N3(C') = P(C, E)
let No(C') = N3(C) x Aa(C) = 1cE
send message A\c(E) = > My(C) x No(C) =1
let N1(C) = No(C) x mc(F) = Po(E)
send message m5(C') = M;1(C) x N1(C) = P(C, E)

Node G: let Ni(G) = n¢(C) = P(C, E)
Node E: let Ni(F) = A\c(E) =1g

Node B: let No(B) = 15(C) = P(C, E)
send message 7 (B) = Y M2(B) X No(B) = P(B)
let Ni(B) = Ny(B) X Ap(B) = Pg(C, E)
send message m4(B) = > . p, Mi(B) x Ni(B) = P(B)

Node F: let Ny(F) = nr(B) = P(B)
Node A: let Ni(A) = m4(B) = P(B)

To summarize, our algorithm has performed the following arithmetic operations:
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Collect phase
Sending node  additions multiplications
A |AB]|
F |FB|
B |BCE| 2|BCE]
G |GCE)|
C 3|CE]
J |JC D]
K |KDE]
D 3|DCE|
1 |[TH|
H |HCDE)|
Distribute phase
Sending node  additions multiplications
H 2|HCDE| |H|+2/HCDE|
D 3|CDE| 5|CDE|
C 2|CE| 5|CE]
B 3|BCE)| 3|BCE|

whereas Shafer-Shenoy used the following arithmetic operations:

Collect phase
Sending clique additions multiplications

AB |AB| |AB|

BF |F'B|
BCE |BCE| |B| + |BC| + |BCE|
CGE |GCE|

CE |CE|

DCJ |JCD|
DEK |KDE)|
CDFE |CDE]

HI |IH |

Distribute phase

HI |HCDE| 2|CDE|+|HCDE]
CDFE |HCDE| |CDE|+2|HCDE]
DEK |CDE| |CDE|

DCJ |CDE| |CDE|

CE |HCDE| |CDE|+2/HCDE|
CGE |CE|
BCFE |CE|

BF |BCE| |BC| + 2|BCE|

AB |IBCE|  |BC|+2|BCE|
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The difference [number of operations in Shafer-Shenoy| — [number of operations in
our Pearl variant| is thus equal to:

|\HCDE| — |ODE| — 2|CE| — |BCE| additions,
2|HCDE| + 3|BC|+ |AB| + |B| — |CDE| - 5|CE| — |H| multiplications.

If all random variables have 10 possible values, then our algorithm outperforms Shafer-
Shenoy by 7800 additions and 20000 multiplications. Of course, the computations of
Shafer-Shenoy’s algorithm may be improved by observing that, during the distribute
phase, some computations still may be factorized. But then, additional savings may
also be achieved in our algorithm by observing that there is no need to postpone the
summations in the M/;’s and the /V;’s until we send messages: we could also perform
some summations in the induction formula used for computing the M;’s or the N;’s.
Thus, our algorithm would still be competitive with that of Shafer-Shenoy or Jensen.
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Chapter 8

Updating undirected methods with
local triangulation

There exist multiple ways to convert a BN into a junction tree [BG96b, JJ94, Kj&90,
SG97] and unfortunately the efficiency of inference techniques varies widely from one
junction tree to another. Moreover finding optimal junction trees, i.e., minimizing the
computational effort of probabilistic inference, being NP-hard [ACP87], only heuristics
are used in practice. Hence algorithms producing efficient junction trees are crucial for
probabilistic computations and this chapter is devoted to improve existing ones. These
results should improve all inference mechanisms, including our Triangulated Bayes Net
method.

Almost all algorithms for creating junction trees share the same idea: they first
moralize the BN, i.e., they add undirected edges between every pair of parents. Then
they remove the arcs directions (see Figure 8.1(b)) and they triangulate the resulting
graph (Figure 8.1(c)). The cliques obtained (maximal complete subgraphs) form the
nodes of the junction tree (Figure 8.1(d)). Finally edges are added to the latter to
respect the running intersection property. Usually, different algorithms only differ in
the way they perform the triangulation.

As was shown in section 4.2, triangulating a graph consists in adding new edges
called fill-ins so that each cycle of length greater than 3 contains a chord, that is, an
edge connecting two non adjacent nodes of the cycle. As such, only fill-ins connecting
nodes belonging to a same cycle should be added, others can be dispensed with. How-
ever, in practice it often turns out that algorithms add fill-ins between nodes that do not
belong to the same cycle, thus creating suboptimal junction trees. For instance, moral-
izing the BN of Figure 8.1(a), where the numbers beside nodes represent the number
of values that the random variable can take, results in the graph of Figure 8.1(b). This
graph is almost triangulated, that is, only edges (B, C') and (G, H) are needed to make
it triangulated. However classical software such as HUGIN are unable to see it and they
add unnecessary edges such as those of Figure 8.1(c). As the computational complexity
of probabilistic inference deeply depends on the size of the cliques and on the topology
of the junction tree, it is undesirable to obtain the junction tree of Figure 8.1(d) (which

119
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directly follows from the triangulated graph of Figure 8.1(c)) and indeed computations
performed in this tree are slower than those performed on the optimal tree. For large
BN, finding as best as possible junction trees is appreciable. The purpose of this chapter
is to present a preprocess for triangulation algorithms that avoids adding such unnec-
essary edges. This preprocess is very flexible in that it is fast and can benefit to any

triangulation algorithm.

b) after moralization

2 @22

c) after usual triangulation d) a suboptimal junction tree

(CoE-{eD-BeD)-{BC-ABO A FCAKOH K -EIMH L PO F HEGHGHHGHD{HI (I

) an optimal junction tree

Figure 8.1: From a BN to Junction Trees.

More precisely, we will describe an efficient algorithm for producing junction trees
avoiding adding any fill-in where there are no cycle. The key idea is to extract from the
BN subgraphs that only contain intersecting cycles and to triangulate them separately.
A second pass then aggregates all the resulting subgraphs to produce a triangulated
graph of the original BN. We also show how junction subtrees resulting from each
separate triangulation can be aggregated to result in a junction tree of the whole BN.

Section 8.1 shows the key idea for triangulating BN without creating fill-ins con-
necting nodes not belonging to the same cycle. Section 8.2 presents an algorithm based
on the same idea that finds junction trees without proceeding to the triangulation of the
whole BN. Empirical results obtained both on randomly generated BN and on classical
benchmarks are given in Section 8.3. Finally proofs of all the propositions and lemma
are given at the end of the chapter.
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8.1 Triangulation avoiding unnecessary fill-ins

The aim of this section is to propose an algorithm for triangulating BN that avoids
adding fill-ins connecting nodes that do not belong to the same cycle. The idea is sim-
ple: if no moralization were needed, extracting subgraphs of G = (V, A) constituted
only by intersecting cycles and triangulating separately each of them would be suffi-
cient to triangulate G. We know that moralization is needed to ensure that the sets of
variables in each conditional probability of the BN can be included in some clique of
the triangulated graph. To take into account moralization, it should be sufficient to
extract subgraphs of G = (1, A) constituted only by intersecting cycles, then to mor-
alize and triangulate separately each subgraph, and finally to add the edges that should
have been added during the moralization of the whole of G but that were missed by
moralizing only subgraphs.

¢) adding moralization edges

Figure 8.2: An Example of Triangulation.

Consider indeed the network of Figure 8.2(a). Subgraphs containing only inter-
secting cycles are pictured on Figure 8.2(b), where fill-ins added by moralization and
triangulation are displayed with dashed lines. Note the lower left subgraph contains two
cycles since those are intersecting, i.e., they have at least one arc in common. Adding
only the fill-ins of each subgraph to the BN would be sufficient to triangulate it, but
some moralization edges would prevent conditional probabilities to belong to some
clique. For instance, as no clique would contain both A, D, E and F, it would not
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be possible to store P(FE|A, D, F') in any clique. Hence additional “moralizing” edges
should be added (the dashed lines on Figure 8.2(c)). Note that these edges do not alter
triangulatedness, i.e., the graph of Figure 8.2(c) is triangulated. This applies for any
graph as is shown in proposition 8.1 below.

Before stating this proposition, we shall briefly explain how the subgraphs can be
retrieved from the original BN. For this purpose, let us recall some notions of graph
theory [Ata99]. An articulation node is a vertex whose deletion along with its adjacent
edges breaks up the remaining graph into two or more disconnected pieces. A graph
is said to be biconnected if it has no articulation node. A biconnected component of
a connected graph is a maximal subset of edges such that the corresponding induced
subgraph is biconnected. It is easily seen that the set of subgraphs we triangulate cor-
responds precisely to the set of biconnected components of size strictly greater than
1 (those of size 1 correspond to arcs not belonging to any cycle). Then, the follow-
ing proposition ensures that the operations we performed on the graph of Figure 8.2(a)
apply for any BN.

Proposition 8.1 Ler G = (V, A) be a connected DAG, let B = {B, ..., By} be the

set of biconnected components of G such that |B;| > 1. Foranyi € {1,...,k}, let

Gp, be the subgraph induced by B,, i.e., the graph the nodes of which are those of V

adjacent to the edges of B;, and the set of edges of which is B;. Let G, be the graph

resulting from the application of the following three steps :

1. moralize and triangulate separately (using any algorithm) every Gp.. Let Ep be
the union of the sets of fill-ins added to every Gg,’s;

2. for each X € V, moralize X'’s parents in G;

3. change all directed edges into undirected edges in the resulting graph and add all
the edges of Er.

Then G, is a triangulated undirected graph.

As shown in the next proposition, proposition 8.1 is particularly attractive as the
application of its 3 steps can infer an optimal triangulation for the whole BN from
optimal triangulations of subgraphs (the Gp,’s).

Proposition 8.2 If the triangulations performed on step 1 of proposition 8.1 are op-
timal for every Gg, (in the sense that they produce small-size cliques [Mel87]), then
G. is optimal as well.

Extracting biconnected components from a graph is an easy task and can be achieved
by a depth first search procedure with a complexity of O(|V|+|.A|) [HT73, Tar72]. The
application of the three steps described in proposition 8.1 creates a triangulated graph
G. from which a junction tree can be derived [JJ94]. However, this may not be the most
efficient way (in terms of computational complexity) to get a junction tree. Indeed tri-
angulation methods traditionally use a node elimination technique and the elimination
ordering determines both the cliques and the edges of a corresponding junction tree.
As the triangulations of the subgraphs induce some orders on subsets of V), these may
certainly be used to speed up the process of creating a junction tree compatible with G,,.
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The aim of the next section is to show how this can be achieved efficiently in practice.

8.2 A new algorithm for finding junction trees

The idea of our algorithm is to create the junction trees for each separate subgraph
containing intersecting cycles (the Gp,’s). Then, to take into account step 2 of propo-
sition 8.1, these “local” trees are aggregated and modified to form a “global” junction
tree of the BN. We first illustrate this principle on the BN of Figure 8.2(a) and, then,
we derive from this example a generic procedure.

Consider again the BN of Figure 8.2(a), that we reproduced on Figure 8.3(a). Sub-
graphs containing only cycles are pictured on Figure 8.3(b) and their corresponding
junction trees on Figure 8.3(c). The latter suggests the basic operations needed for
converting these local junction (sub)trees into a global one:

e Operation 1: some cliques belonging to different subtrees share some random
variables and, thus, should become connected in the global junction tree. This is
for instance the case of cliques F'GK and K M N that share variable K;

e Operation 2: step 2 of proposition 8.1 may require merging some cliques of
different subtrees into one superset. For instance F'GK and HIK should be
substituted by a clique FGHIK because F', GG, H and [ are K’s parents;

e Operation 3: some random variables such as P do not belong to any local tree’s
clique and, consequently, some new cliques may have to be created.

In order to obtain an efficient algorithm, Operation 1 requires that we can retrieve
quickly the sets of cliques sharing some variables. This can be done during the sub-
graphs triangulation stage: it is sufficient to create a data structure Cy associated to
each random variable X and keeping track of the cliques X belongs to. As inside each
subtree, cliques sharing some variables are connected, Operation 1 requires that Cx
keeps track of only one clique in each subtree. Operation 2 suggests that when there
are several possible choices, the clique that contains both X and all of its parents in
the subgraph should be chosen to belong to Cx. Then when Operation 2 applies, the
cliques that should be replaced by supersets are quickly identified. For instance, Cp
should contain ADFE rather than DFE.J because A and D are E’s parent set in the sub-
graph induced by ADFEJL. The construction of the Cx’s can be achieved during the
subgraphs triangulation phase: before each triangulation, mark all the variables of the
subgraph as having no clique stored. When a node X is eliminated, if it has the “no
clique” mark, store the newly created clique within Cx and mark the node as “having
a clique”; for each child of X having the “no clique” mark, do the same thing. This
process is based on the fact that, before triangulation, the moralization within the sub-
graph ensures that all parents of a node are connected together. Thus, for the BN of
Figure 8.3(a), after the triangulation of the subgraphs, we shall obtain the following
Cx’s:
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(a) original BN (b) triangulation of subgraphs

(DED
KMND—{MN—QMN®  ADE>  DIKD

(c) Local junction trees

Figure 8.3: Local Junction Trees.

Ci = {ADE} Cy={BFG} Cc ={CHI}
Cp = {ADE} Cp={ADE} Cp ={BFG)}
Cec = {BFG} Cy={CHI} C; ={CHI}
C, ={DEJ} C, ={DJL} Cy={KMN}
Cy = {KMN} Co={MNO} Cp =Cqo=10
Cx = {FGK, HIK, KMN}

Now, assume the collection of junction subtrees of Figure 8.3(c) have been created
and let us finalize the global junction tree construction. We will consider successively
each node/random variable of the original BN in the inverse topological order, i.e. a
node will be examined only when all of its children have already been examined, and
we will find how the collection of subtrees constructed so far need be updated in order
to take into account this variable as well as its parent set. Thus, consider node P. This
node and its parent set constitute clique O P. Problem: does there already exist a clique
containing O P in the collection of subtrees? If such a clique existed, it would belong to
Cp. AsCp = (), set OP is a new clique and should be added to the collection of junction
subtrees. Moreover, since it is not connected to the other cliques yet, it represents a new
subtree and since O belongs to it, O P should be added to Cp, which now becomes Cp =
{MNO,OP}. Similarly, examining () results in adding clique O() to the collection of
junction subtrees and to add OQ) to Cp, thus becoming Co = {MNO,OP,0Q}.
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Let us examine node O: This node and its parents constitute set M/ NO, which al-
ready exists in Cp, hence there is no need to create a new clique M NO. However,
Co contains 3 cliques, namely M NO, OP,OQ), that are not yet connected and that
should be since they all contain O. Hence we should add some edges, for instance
(OP, MNO) and (OQ, M NO) (see Figure 8.4(a)). Note that this ensures that the Run-
ning Intersection Property holds in each subtree. Examine node M: Cy; = {KM N}
hence there is no need to create a new clique M K containing M and its parent K.
Moreover, since C,; contains only one clique, no new edge need be added. Similarly
for N. Consider now node K. Cx = {FGK, HIK, KM N}. Here, K and its parents
create a new clique K F'GH I and the latter should replace both FFGK and HIK. In
other words, in the collection of junction subtrees, cliques that were adjacent to F'G K
or HI1K should now be adjacent to K F'GH I and, similarly, in all the Cx’s, FGK and
HIK should be substituted by K FGHI (i.e. Cx = {KFGHI, KM NY}). Moreover,
as Cx contains two elements, K FGHI and KM N, these should be connected (see
Figure 8.4(b)).

(c) after examining E

Figure 8.4: The Modifications Brought to the Collection of Junction Subtrees.

It can be easily seen that examining nodes L and J do neither change the Cx’s
nor the collection of junction subtrees. Let us examine node E: it should form a new
clique ADEF' that should replace ADE. Moreover, as F' belongs to ADEF, the
latter should be added to Cr. Now, we can state a general rule: when a new clique
T = {X} U Pa(X) is created, for each random variable Y in T either there exists
a clique S in Cy that is included in 7" and S is substituted by 7" both in Cy (as well
as in all C;’s containing .S) and in the collection of junction subtrees, or 7" should be
added to Cy. Moreover, when we examine a node X, if Cx contains several cliques,
we always connect them. Note that, to ensure that the Running Intersection Property
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holds, it is sufficient to connect each such clique to that which contains both X and all
of its parents in the BN. Here as Cp = { ADFEF'}, no edge needs be added. Similarly,
examining nodes D and A will neither change the graph nor the Cx’s. Examine node
F: according to its parent set, a clique BF' should be created. However, it is contained
in clique BF'G that already exists. Hence no new clique will be added to the graph. As
Cr = {BFG, ADEF} contains 2 cliques, these should be connected, hence resulting
in the graph of Figure 8.4(c). Finally, the examination of the remaining nodes of the
BN do neither modify the tree obtained nor any of the Cx’s.

Assuming that G = (V, A) denotes the original BN, that Gr = (Vr, £r) denotes the
collection of junction subtrees resulting from the subgraphs triangulations, and that B
is the set of biconnected components of the BN of size strictly greater than 1, the above
procedure can be stated more generally as function finalize JT below:
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Function finalize JT (G, G, B)

01 V" =0,V «— {X €V :thereexistsno (X,Y) € A}
02 while V' # () do

03 X « any element of V'

04 V —V\{X}; NC — {X}Upa(X)

05 ifthereexists Cx € Cx s.t. NC C Cyx

06 then NC<—CX;CX <—Cx\{CX}

07 else Vr — Vr UNC

08 endif

09 foreach Cx € Cx do

10 if Cx € NC then

11 for Cy € Vr s.t. (Cx, Cy) € Erdo
12 8T<— {(NC,Cy)}UgT\{(Cx,Cy)}
13 done

14 for each Y € V\V" do

15 if CX € CY then CY — Cy\{CX}
16 done

17 VT — VT\{C)(}

18 endif

19  done

20  whileCx # () do

21 Cx « any element of Cx

22 gT*STU{(NC,C)()};CX%CX\{C)(}
23 done

24 V' V'U{X}

25 foreachY € pa(X) do

26 if there exists no i s.t. (Y, X)) € B; then
27 CY — CY U NC

28 endif

29 if {(Y,Z)e A: Z e V\V"} =( then
30 V' —VU{Y}

31 endif

32  done

33 done

In this function, lines 03 to 08 test whether for a given node X of the BN a new
clique NC containing precisely X UPa(X ) should be created. Lines 09 to 19 substitute
each clique Cy included in NC by NC' (both in the C;’s and in the collection of
junction subtrees). Lines 20 to 23 add edges connecting NC' to any clique in Cx, thus
ensuring that the running intersection property holds within all subtrees. Lines 26-28
add NC to the data structures of nodes that were connected to X by edges not belonging
to any cycle. The following proposition shows that it computes properly junction trees.
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Proposition 8.3 After performing £inalize JT, G is a junction tree. £finalize JT
can be implemented in O(|V| + | A|). Moreover, if the junction subtrees obtained for
the Gp,’s are optimal, the cliques of Gr are those of an optimal junction tree.

Proposition 8.3 does not preclude the possibility that Gr may be suboptimal even
when the junction subtrees of the Gp,’s are optimal. The reason is that there may be
several ways to link cliques so as to verify the running intersection property. An optimal
junction tree may however be inferred using the algorithm advocated by [JJ94].

8.3 Empirical results

As there is no guaranty as to whether the result produced by function finalize JT
is optimal, the efficiency of the trees produced by our algorithm may be assessed
through empirical results. To obtain meaningful comparisons, for every network of
our benchmark, function f£inalize JT was applied using the triangulation technique
advocated by [Kj®&90] on each Gp,, then the same technique was applied on the whole
BN. The efficiency of our algorithm for a particular network is computed as the ratio
of the number of operations required by Shafer-Shenoy’s algorithm to send messages
on both directions of every edge of the JT obtained by our algorithm divided by the
number of operations required in the JT obtained by moralizing and triangulating the
whole BN. Thus, when this ratio is less than 1, computations performed in the junc-
tion tree produced by our algorithm are faster than those performed in the junction
tree resulting from the classical triangulation method. Our tests are twofold: first they
are run on randomly generated BN, then on the networks of the Bayes net repository
(http://www.cs.huji.ac.il/labs/compbio/Repository/).

The results of the first collection of tests is represented on Figure 8.5. In this figure,
the Y-axis represents the ratios of the numbers of operations required by inference and
the X-axis represents the ratio of the number of edges in the original BN by the number
of nodes in this BN (thus giving some insight about the density of the network). Further-
more, each curve corresponds to the average ratio of number of operations obtained on a
set of networks having the same number of nodes. The upper curve thus corresponds to
network with 20 nodes. Experimentally, it turns out that the lower the curve the higher
the number of nodes. The lowest curve corresponds to BN with 200 nodes. During the
tests, BN were generated randomly with the constraint that they are connected. The
number of values taken by random variables/nodes were also drawn randomly between
2 and 5.

Figure 8.5 shows that the bigger the network, the higher the expectation of improv-
ing inference using our triangulation algorithm. Of course, this is only an expectation as
the gain using our triangulation depends highly on the topology of the network, which
is only partially taken into account in the density ratio we used in our tests. The latter
are restricted on the Figure between 1 and 3 as a ratio below 1 would correspond to
disconnected BN and a ratio above 3 most often implies that all cycles of the BN inter-
sect each other. In such a case, both triangulations perform the same operations and the
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ratios of the operations required by inference equal 1.
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Figure 8.5: Efficiency of our Triangulation on Randomly Generated Graphs.

network ratio network ratio
alarm 0.970963 carpo 0.659218
diabetes | 0.999787 insurance | 0.810709

link 1.000000 munin| 0.715494
munin2 | 0.696683 munin3 | 0.673786
munin4 | 0.778010 pigs 0.717863

water 1.000000 win95pts | 0.922649

Figure 8.6: Efficiency of our Triangulation in Practical Situations.

As a conclusion, we can say that the construction of a junction tree optimizing
probabilistic inference is known to be NP-hard, hence heuristics are applied in practice
and the resulting junction trees may be far from optimal. These heuristics first moral-
ize, then triangulate the original BN. Due to the moralization stage, it often happens
that triangulation adds edges connecting nodes not belonging to a common cycle, thus
creating suboptimal junction trees. [Kj&90] proposes two algorithms for detecting un-
necessary edges both based on a result by [RTL76] having a complexity of O(c?|T|?)
and O(c2(|T'|/|V])?) respectively, where T is the set of fill-ins and c is a constant rep-
resenting the density of the graph.

In this chapter we proposed an efficient algorithm that never adds any edge con-
necting nodes that do not belong to the same cycle. Our algorithm is efficient in the
sense that the complexity of the operations it performs beside the triangulation of each
subgraph (which cannot be dispensed with) is linear in the number of edges and nodes
in the whole BN. For instance, instructions such as the test of line 05 can be performed
in O(1): if there existed Cxy C NC, then all of X’s parents would have belonged to
intersecting cycles. Consequently, all arcs from each of X’s parents to X in the original
BN would have belonged to the same biconnected component B; of size strictly greater
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than 1. The biconnected components retrieval algorithm [Ata99] can be easily modified
while keeping the same overall complexity so as to mark every node such that all of its
incoming arcs belong to the same biconnected component. As the complexity of trian-
gulation is higher than linear and as we only perform it only on subgraphs, the overall
number of operations we need to construct a junction tree is very often less than that
required by classical algorithms. Moreover, most often, the junction trees we create are
“better” than those derived from classical algorithms (although sometimes it may turn
out that the latter find better trees when applied on some graphs with more edges than
fewer). Thus our algorithm is fast and most often creates junction trees that are “better”
than those created by classical algorithms.

8.4 Proofs

Lemma 8.1 Function £inalize JT terminates in a finite time. Moreover, every node
of V is assigned to X on line 03 exactly once.

Proof of lemma 8.1: At the beginning of the first pass of the outer whileloop, i.e.
the loop of lines 02-33, V' corresponds to the set of nodes of 1\ V" that have no children
except those in V. Assume this holds until the ith pass in the whileloop. In the next
pass, V" is modified by the addition of node X (line 24), hence if V' is to correspond to
the set of nodes of V\ V" that have no children except those in V", X shall be removed
from V' and the parents of X that do not have any children except those in V" shall be
added to V' (they did not already belonged to V'’ since X did not belong to V" before
the pass). But this is precisely what is performed on lines 03 and 29-31. Hence, each
time the algorithm performs a whileloop, V' is equal to the set of nodes of V\ V" that
have no children except those in V. At each of these passes some node X is added
to V", hence X cannot be added later to V’. So each node is assigned at most once to
line 03.

Assume now some node Y of G is never assigned to X on line 03, or equivalently
that Y never belongs to V”, then Y is never added to V. So the condition on line 29
either is never true for Y or is never reached for Y. In the first case, each time a child
of Y has been assigned to X on line 03, Y still had a child in V\ V" and so Y never
belonging to V' implies that one of its children also never belongs to V”’; In the second
case, no child of Y is never assigned on line 03, hence no child of Y belongs to V”. So,
in both cases, Y never belonging to ” implies there exists a child of Y not belonging
either to V', hence resulting by induction in Y having an infinite set of descendants not
belonging to V”, which is impossible in a finite DAG. Consequently, each node of G is
assigned exactly once to X on line 03.

At the beginning of the algorithm, for every Y of G, Cy is a finite set. Only line 27
can add elements to Cy and, moreover, at most one element is added by each pass of
the outer whileloop. Consequently, as this outer loop is performed a finite number
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of times, all the inner loops are finite and the whole function terminates in a finite time.

¢

Lemma 8.2 After performing £inalize JT, Gr is a singly connected graph.

Proof of lemma 8.2: The proof consists in showing that after performing each while
loop of lines 02-33, the four following properties hold:

1. Gr is singly connected;

2. for any pair of distinct trees of Gr, the cliques of which are V1 and V2 respec-
tively in Vr, let V! and V? be the sets of nodes in V that belong to cliques in V}
and V2 respectively, then |V N V?| < 1;

3. let 7 be any tree of Gr and let V7 be the set of nodes of V contained in the
cliques of 7, then all pairs of nodes of V7 are connected in G by trails passing
only through nodes of V7 ;

4. forevery Z € V\V" and every Cy, C € Cz, C%, and CY, are different and belong
to different trees of Gr.

Clearly these four properties hold before entering the while loop of lines 02-33
for the first time. Assume now that these properties hold until a given node X € V
is selected on line 03 and let us show that they still hold the end of the corresponding
whileloop.

First note that the properties 1) and 4) still hold when reaching line 09. Indeed, NC'
is defined either on line 04 or on line 06. If it is on line 06, then as C'y is removed
from Cx and as all the elements of Cx belong to different trees, NC' and all the C}}’s of
Cx are different and belong to different trees. Moreover, as G and the C5’s, for every
Z # X, are kept unchanged, properties 1) and 4) still hold on line 09. If NC'is defined
on line 04, then no C% € Cx can be equal to NC' (else it would have been defined
on line 06). Moreover, there does not exist any clique NC' in Gr, else as function
finalize JT never selects a given node more than once on line 03, clique NC' would
have been created during the classical triangulation phase, which is impossible because
NC' would have then belonged to Cx (by the triangulation algorithm) and so N C' would
have been defined on line 06 instead of line 04. Consequently, the operation performed
on line 07 adds a new clique NC' to G with no adjacent edge, so NC belongs to a tree
different from those of the C'%’s, and properties 1) and 4) still hold.

Similarly, when reaching line 09, property 3) holds since the only modification that
can be issued on Gr is the addition of clique NC' on line 07, NC' being constituted
by X and its parents. As NC'is not linked to any other node in G, property 3) holds
since X and its parents in G are obviously connected in G by trails passing only through
nodes of NC'.
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The operations performed on lines 09—19 consist in substituting some nodes C'%,
C%,...,C% of Gr by node NC' (and in updating edges adjacent to the C%’s accord-
ingly). For convenience of notation consider that nodes C'%’s are replaced in i-increasing
order. No cycle can be created after C'} has been replaced by NC' simply because, by
the preceding paragraph, NC and C'} belong to different trees; moreover as the C%’s,
i > 1, belonged to trees of Gy different from those containing NC and C%., after C'%’s
substitution all the C&’s, 1 > 1, still belong to trees of G different from that containing
NC. Assume there exists anode Z € V\V” such that C},, C% € Cz belonged to differ-
ent trees before C’s substitution and to only one tree after that substitution. Then C'},
and C% were in the same tree as NC' and C% respectively before substitution. For NC'
to be in the same tree as another node before substitution, NC' must have been created
on line 06, but then Z and X both belonged to 2 different trees before performing the
whileloop, which is impossible since property 2) held at that time. Assume that until
after C',* has been replaced there exists no cycle and that NC and all the C%,’s, j > i,
belong to different trees. If the substitution of C'% by NC' induces a cycle in G, then
a node C'y adjacent to C}'( would be connected to NC' before substitution, and conse-
quently C% would also have been connected to NC', which is impossible by induction
hypothesis. Moreover, NC' and the Cg(’s, j > 1, belong to different trees else there
already existed either a trail in G, between a C% and NC or a trail between a C and
C'%, which are both impossible according to the induction hypothesis. If there existed
Z € V\V" such that C},, C% € C belonged to different trees before C'%’s substitution
and to only one tree after that substitution, then C', and C% were in the same tree as
NC and some C%.

But as loop 09-19 only substitutes some C%’s by NC, this means that at the be-
ginning of the while loop C; and C% belonged to the same trees as some C% and
some C%, j # k, respectively which is impossible since Z and X would both have
belonged to 2 different trees, hence contradicting property 2). Hence properties 1) and
4) still hold when reaching line 20. Property 3) also holds. Indeed, all the trees that are
merged into one single tree by lines 09—19 contain node X of G, hence by property 3),
all the nodes of each tree were connected to X before substitutions, so the nodes of
the union of these trees were connected to each other, as well as with X’s parents.
Consequently, property 3) still holds on line 20.

Let us now show that lines 20-23 preserve properties 1) and 4). First remark that
as the C'x’s in Cy are all different from NC' (this results from lines 6 and 11-13), no
loop (NC, NC) can be added on lines 20-23. Second, as NC' and all the C'x’s of Cx
belong to different trees when reaching line 20, adding edges (NC, C'y) cannot create
any cycle. If property 4) was not preserved, there would exist Z € V\V” such that
C%,C% € Cy belonged to different trees before the loop and to only one tree after. But
then at the beginning of the whileloop C% and C% would belong to the same trees as
some C’g( and some C%, j # k, respectively which is impossible since Z and X would
both have belonged to 2 different trees, hence contradicting property 2). Consequently,
properties 1) and 4) still hold when reaching line 25. Obviously for the same reason as
in the preceding paragraph, property 3) is preserved by lines 20-25.
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Property 2) is also preserved when reaching line 25. Assume it were not true, then
there would exist two trees, both containing at least two different nodes of V, say A
and B. Clearly, that containing NC' is one of them. Call 7 the other tree. If A or
B is equal to X then either X and some other nodes contained in 7 form a cycle, or
no cycle of nodes of 7 passes through X. The former case is impossible since the
classical triangulation algorithm would have added a clique C'x of 7 in Cx and 7
would have been merged with the tree containing NC' by lines 09-23. In the second
case, as function finalize JT never selects more than once node X on line 03, a
clique containing X can only be added to 7 during the execution of the while loop
of lines 02-33 corresponding to a child Y of X. But then, as X is not in a loop within
7T, arc (X,Y) does not belong to any B; and so line 27 adds the NC' corresponding
to Y in Cx. Consequently, Cx contains a clique belonging to 7 which is impossible
since, then, 7 should have been merged with the tree containing the NC of Y during
the whileloop of lines 02-33 related to X. Hence neither A nor B can be equal to
X. If, before the whileloop, A belonged to one tree and B belonged to another, both
trees being merged with NC', then there was a trail between A and X in the first tree
and another trail between B and X in the second one. These trails have no node in
common except X by property 2) since both trees already contained X. As A and B
are also contained in 7, there is a trail between A and B not passing through X since 7°
is not merged with NC'. Consequently, there was a cycle passing through A, B and X,
which is impossible since by the classical triangulation, there should exist a tree in G
containing these 3 nodes, hence contradicting the fact that property 2) was preserved
before entering the while loop of lines 02-33. The last possible case is that at least
one of the nodes, say A, was not yet contained in any tree of Gy before the merging.
Then it can only be a parent of X that does not belong to any cycle. As we know that A
and B are connected within 7, that B and X are connected within the tree containing
NC and that there exists an arc (A, X) in G, there exists a cycle in G passing through
A, hence a contradiction. Consequently, in all cases, the violation of property 2) leads
to a contradiction, hence it still holds on line 23.

To complete this proof, there remains to show that the four properties hold when
reaching line 33. As from line 25 on, G is kept unchanged, properties 1), 2) and
3) trivially hold. As property 4) is known to be preserved until line 25, its violation
can only be the consequence of the execution of line 26. But this line is performed
only when arc (Y, X') does not belong to any 1;, i.e., when arc (Y, X) belongs to no
cycle. This implies that no cycle containing Y also contains X and, moreover, no
cycle containing Y has any intersection Z with the tree containing NC|, as defined
when arrived on line 23, else there would exist a cycle passing through 7, Y and X,
implying that arc (Y, X) belongs to a cycle. Consequently, the cliques in Cy do not
belong to the tree containing NC'. Hence adding NC' to Cy preserves property 4). 4

Proposition 8.4 After performing £inalize JT, G is a junction tree.
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Proof of proposition 8.4: We shall prove that at each pass of the outer while loop,
the following two properties hold: 1) forany Z € V", there exists exactly one tree in G
the cliques of which contain Z; and 2) the running intersection property (RIP) holds in
any tree of G. Of course both properties hold the first time we reach the outer while
loop since V" = () and all the trees of G are constructed by a classical triangulation
algorithm. Assume that these properties hold until a pass of the whileloop in which
some node X is assigned on line 03. Clearly, by lines 12 and 22, all the C'x’s of Cx
are linked to NC', which implies that all the trees containing some C'x form only one
singly-connected graph (a tree by lemma 8.2). Assume at the end of the while pass
there exists another tree 7 that contains a clique containing X. Then this clique, as
well as any clique in 7, did not belong to Cx. By the classical triangulation algorithm,
this implies that X does not belong to any cycle of nodes of 7. But then the clique(s)
of 7 containing X must have been added to 7 by function f£inalize JT. This cannot
be during the pass related to X else 7 would be connected to NC'. Hence it has to
be during a pass related to a child, say Y, of X. Thus clique NC(Y'), the NC clique
created during the whilepass related to Y, belongs to 7. By property 2) of the proof
of lemma 8.2, there does not exist any other tree of G containing both X and Y. Hence
since X does not belong to any cycle in 7, there exists no ¢ such that arc (X,Y") € B,.
Consequently, line 27 shall add NC(Y') to C'y and during the while pass related to
X, 7 should thus be linked with NC'(X), a contradiction. Hence property 1) still holds
after the whileloop related to X.

By property 2) of the proof of lemma 8.2, at each step of the algorithm, two different
trees of G have at most one node of G in common. At each pass of the outer while
loop, some trees that contain X are merged. As they all contain X, they have no other
node in common. Hence RIP cannot fail because a node, say A, of G belongs to two
to-be-merged trees, say 7! and 72, and A is not on the trail between one clique of 7!
and one of 72 containing A. Consequently, RIP can fail only because there exists a
clique C'in atree 7 (merged with that of NC') containing a node B of G also belonging
to NC, and B does not belong to the trail between C' and NC'. Now, let C'x be the
clique in Cx belonging to 7. By construction, C'x contains X and all of X’s parents
in V7, where V7 is the set of nodes of G contained in cliques of 7. So B not only
belongs to NC' but also to C'x. But this is impossible since by induction hypothesis,
property 2) holding before X is selected on line 03, RIP holds in 7 and in particular
between C and C'x. Hence property 2) also holds after each pass of the outer while
loop on every tree.

By property 1), for any node Z € V", there exists only one tree in G containing 7.
Since, by lemma 8.1, after performing function £inalize JT, V" contains all the nodes
in G, and since by lemma 8.2 G has no cycle, Gr is a single tree. By property 2), RIP
holds in every tree of Gr during the execution of the function. In particular, it holds
when all the nodes of G have been added to V", i.e., when Gr is a tree. Hence after
executing function finalize JT G satisfies the running intersection property. By lines
09-19 and the fact that at each step of the algorithm trees have no more than one node
of G in common, no node C; of G is a subset of another node C'; of G. Consequently,
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Gr is a junction tree. ¢

Proof of proposition 8.1: First note that all the nodes and edges in Gp,’s belong to
cycles. Indeed, assume some node X were not in a cycle, then if it is connected in Gp,
to at least two nodes, say Y and Z, removing X would disconnect G, since Y and Z
would not be connected anymore, which is impossible since G, is a biconnected graph.
X cannot have no adjacent node since G, is constructed from set of edges B;. If X
has only one adjacent node Y, then as |B;| > 1, there exists at least another node Z in
Gp, and removing Y would disconnect Z and X, impossible. Hence all nodes belong
to cycles. For the same reason, all edges belong to cycles in Gp,’s.

Let G; = (Vs,,&p,) be the graph resulting for the application of step 1) on Gg, =
(Vs,, Ag,;). By definition, Gy is triangulated. Let G’ be the union of all the Gy ’s,
ie, G = (U;Vg,,U;&). Then G’ is triangulated. Indeed, for any couple of distinct
biconnected graphs (Gs,, G5, ), | Vs, N Vs,| < 1 else there would exist two nodes, say A
and B, both belonging to V5, and Vg,. But then graph (Vs, U Vs, B; U B;) would be
a biconnected graph: indeed, by definition removing node A (resp. B) can disconnect
neither the other nodes in Vg, nor the other nodes in Vg, since they are still connected
to B (resp. A). And removing a node in VBZ.\VB]. can disconnect neither the nodes in
Vg, (since B; is a biconnected component) nor the nodes in Vg, since B; is unaffected
by the removal. By symmetry the proof is similar when removing a node in Vg, \ Vs, .
Hence as the difference between G, and Ql’gi is that ggi has more edges than Gp,, for
any couple (G, Gg, ), [V, N V| < 1. Consequently, there exists no cycle containing
some nodes of G and some nodes of Gi;.. Thus for any i € {2,...,k}, the union of
Gp, and of the union of the ggj ’s, j < 1, is triangulated, and so G’ is triangulated.

Let V' = V\(U;Vg,) and let A" = A\(U;85;). Of course after adding nodes of V'’
to G’ the resulting graph is still triangulated, and similarly as A’ is the set of edges not
belonging to any cycle (edges belonging to cycles belong to biconnected components
of sizes strictly greater than 1, hence to some ;) after adding A’ to G’ the resulting
graph, say G”, is still triangulated.

Assume that, after performing the moralizations of step 2) on some nodes of G, G”
is triangulated and consider adding the moralization edges of some node X to G” on
step 2). If the resulting graph is no more triangulated, then there exist two parents of
X, say Y and Z, and a chordless cycle of length 4 or more, say C, passing through Y
and Z. By moralization, Y and Z are adjacent, so the cycle passes through edge (Y, Z)
(else (Y, Z) is a chord). If the cycle passes through X, then either (Y, X') and/or (Z, X)
is a chord or C is of length 3. If the cycle does not pass through X, then it cannot pass
through any other X’s parents else some moralization edge would be a chord. Before
X’s parents moralization, there already existed an arc from Y to X and another from Z
to X. Replace edge (Y, Z) in the cycle by edges (Y, X) and (Z, X ), then by hypothesis,
this new cycle ¢’ = {A; = Y, Ay = X, A3 = Z,...,A,_1, A, = Y} has a chord. It
cannot be (Y, Z) else (Y, Z) already existed before moralization and C would have a
chord. If the chord was not adjacent to X, then this is also a chord for C, a contradiction.
So all the chords of C’ are adjacent to X. Let us now prove that in this case Y and Z
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already belonged to some Gp, and thus have been moralized on step 1), hence edge
(Y, Z) already existed before step 2) and C has a chord. If edge (A3, A4) did not belong
to A, then either it has been added by moralization (either on step 1) or on step 2)), but
then both A3 and A, have a common child, say B (different from X else A, would be
one of X’s parent), in G and after adding B between A3 and A, all edges from A; to
Ay belong to G, or edge (A3, Ay) has been added as a chord by triangulation of step 1).
In this case, there exists a trail not passing though X between A3 and A, in G. Add all
nodes on this trail to C’ between A3 and A4. Note that this trail does not pass through
Y and Z since edge (Y, Z) is not in any B;. Perform the same process to all pairs
(A;, A1) in C'. Then C’ is a sequence of nodes going from Y to Y along edges of A.
Hence there exists a cycle passing though Y and Z in G, so edge (Y, Z) is added to G”
by moralization on step 1), a contradiction. Consequently, moralizing on step 2) cannot
fail to preserve triangulatedness.

Hence the graph resulting of the application of steps 1) and 2) is triangulated. As
step 3) removes the edges directions, graph G, is a triangulated undirected graph. 4
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Conclusion

Probabilities have become a cornerstone of many domains, including Artificial Intelli-
gence, Economics, Operations Research and even Psychology. However, until the end
of the 80’s, computing probabilities involving many different interdependent random
variables was impractical because: 1) the amount of storage required for such probabil-
ities was too high; and ii) the computations themselves were too big to be performed in
a reasonable amount of time. In the 80’s, Pearl [Pea88] introduced a directed graphical
structure called a Bayesian network that made both the storage and the computations
manageable. At about the same time, Lauritzen and Spiegelhalter and, then, Jensen
developed another graphical structure —this one undirected— that was shown to out-
perform Pearl’s model.

It is now common knowledge that Jensen’s algorithm, and more generally join tree
(Shafer-Shenoy) or junction tree-based algorithms (Jensen), propagate informations
faster than Pearl’s algorithm because the former deal much more efficiently with cy-
cles in the network than the latter and because such cycles are quite usual in practice.
Unfortunately the arc directions of a Bayesian network bring some useful informations
that are, at least to some extent, lost in join trees. As a consequence, Jensen or Shafer-
Shenoy may have to perform some computations that can be shown to be unnecessary
using arc directions. Thus these algorithms may be improved by just making the infor-
mations about arc directions available to them. Conversely, if Pearl’s algorithm could
be modified so as to deal with cycles more or less as Jensen’s algorithm, then it would
be greatly improved. These remarks suggest that, studying the relationships between
directed and undirected graphs, and between directed and undirected propagation algo-
rithms, some kind of unification of these methods may emerge that would improve all
of them. This unification has been the main topic of this thesis.

To improve these methods, we first had to identify the weaknesses and the strengths
of both undirected and directed algorithms. This was summarized in Chapter 5. Briefly,
the main advantage of Pearl lies in the d-separation analysis, that is, a probabilistic in-
dependence property encoded in directed graphs that enables to identify qualitatively
which computations are required to calculate a posteriori probabilities. The main ad-
vantage of Jensen’s or Shafer-Shenoy’s method lies in the secondary structure used by
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these algorithms and that copes efficiently with cycles in the Bayes net. This efficiency
derives from the fact that this structure is the result of a triangulation process.

Hence, were we to improve propagation algorithms, we should try to find a way to
create a directed secondary structure using some kind of triangulation algorithm. The
result being directed, d-separation may thus be used to avoid unnecessary computa-
tions, and the triangulatedness would keep the remaining computations very efficient.
This led us in Chapter 6 to propose a new directed secondary structure we called a
triangulated Bayesian network or TBN, and a new variant of Pearl’s algorithm. We
showed that this variant has the same computational complexity as Jensen’s or Shafer-
Shenoy’s algorithms. Of course even if some algorithms have the same computational
complexity, one of them may be twice or thrice as fast as another (since multiplicative
constants are not taken into account in computational complexity) hence our algorithm
may prove to be slower than Jensen’s in practical situations. In Chapter 7, we modified
it using the same idea as Shenoy’s binary join tree. This resulted in an algorithm that
is as fast as Jensen or Shafer-Shenoy. The only difference with the latter is that our
algorithm relies on a directed graph and that, in such graphs, d-separation can be used
to reduce the computation burden of propagation.

Finally, as our method now also relies on a graphical structure resulting from a tri-
angulation technique, it may be wondered whether the latter cannot benefit from our
unification between directed and undirected propagation methods. The answer is pos-
itive and 1s detailed in Chapter 8. In join tree-based algorithms, it is usual to moralize
the Bayesian network before triangulating it. This step is not actually compulsory but
it ensures that the conditional probabilities initially stored in the Bayesian network can
also be stored in the join tree. So all undirected propagation methods first moralize
the BN and, then triangulate it and compile the result into a join tree. As we perform
our triangulation in a directed graph, the problem that would arise without moralization
cannot arise and we can see that it is possible to postpone moralization after several
steps of triangulation. Doing so, we can show that the join trees obtained are smaller
and, as a consequence, the propagation algorithms are faster. The gain is shown to be
important in some practical situations.

To conclude, we have shown in this thesis how undirected and directed propagation
methods in Bayesian networks could be unified. Doing so, we have been able to use
the advantage of both kinds of methods to improve the efficiency of the propagations.
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