
SORBONNE UNIVERSITÉS, UPMC
ÉDITE de PARIS

UNCERTAIN REASONING
FOR BUSINESS RULES

Hamza AGLI

Dissertation presented in partial
fulfillment of the requirements for
the degree of Doctor of Philosophy

July 2017

i
UNIVERSITÉ PIERRE ET MARIE CURIE

THÈSE DE DOCTORAT

École doctorale Informatique, Télécommunications et Électronique (Paris)

IBM France Lab/LIP6

Raisonnement Incertain
pour les Règles Métier

par

Hamza AGLI

Pour obtenir le grade de :

DOCTEUR EN INFORMATIQUE

Spécialité :

Intelligence Artificielle/ Aide à la décision

présentée et soutenue publiquement le 7 Juin 2017

devant le jury composé de :
M. Philippe Leray, Prof., Polytech’Nantes Rapporteur

M. Mathieu Serrurier, HDR, Université Toulouse 3 Rapporteur

M. Hassan Aït Kaci, HDR, HAK Language Technologies Examinateur

M. Stephane Doncieux, Prof., UPMC Examinateur

Mme. Vanda Luengo, Prof., UPMC Examinateur

M. Christophe Gonzales, Prof., UPMC Directeur de thèse

M. Pierre-Henri Wuillemin, MdC., UPMC Co-Directeur de thèse

M. Philippe Bonnard, Ing., IBM Co-Directeur de thèse

M. Christian de Sainte Marie, Dr., IBM Co-Directeur de thèse

To Mohamed ...

Acknowledgments

I would like to express my gratitude towards everyone who supported me during

this journey. I am tremendously grateful to my supervisor Christophe Gonzales

for inspiring me how to do research, for teaching and correcting me and for his

continuous support. My deepest appreciations to Philippe Bonnard and Pierre-

Henri Wuillemin for their countless explanations and reviews, their availability,

patience and fruitful discussions with me. Their insights, kindness and help are just

priceless. I have learnt so much from them. Thank you for being such wonderful

supervisors !

At IBM, Christian De Sainte Marie was more than a manager, with him I had

insightful discussions and his comments were truly helpful to move forward.

I also would like to thank Patrick Albert for the inspirational enthusiasm he gave

me to start this PhD. I am thankful to IBM France Lab for supporting this research

with the IBM PhD fellowship and ANRT with the CIFRE grant.

I sincerely thank Philippe Leary and Mathieu Serrurier for the effort and time

they spent to judge my work. I am thankful to Stephane Doncieux, Veronique

Delcroix, Hassan Aït Kaci, Vanda Luengo for their participation in the jury and

evaluating my work.

Many thanks to my colleagues at IBM and LIP6 who made this experience

amazingly unique. Thanks to Stéphane for being there every time I need him. I

am grateful to Nicolas for his smile and kindness to answer my several technical

questions. I will never forget the kindness and help of Jean-Louis as he was always

available to share his technical expertise. I want to thank Lionel for the time he

spent to answer my questions about his programs and share his PhD experience

v

with me. Thanks to Thomas for his help to find a use case for our research. I

also enjoyed chatting with other colleagues, I mention Changhai, Moussa, Yiquan,

Pierre, Stephanie, Pierre-André, Françoise, Julie, Rachel.

During this PhD, I enjoyed meeting many PhD students with whom I spent

unforgettable and pleasing time. I have to mention Nawal, Oumaima, Karim,

Nicolas, Olivier, Ahmed, Santiago, Matthieu, Reda, Penelope, Hugo, Siao-Leu and

Cécile. Finally, a very especial thanks to Youssef, El Houcine, Jamal, Ismail,

Nidhal, Fatima, Amina, Mustapha, Saed, Abdalah, Abdel Hadi, Hamza, Youness,

Houssame, Amine, Imad, Yvain, Alexis, Mélaine, Fayçal, Kamal, Ali, Alae and

Daoud for their caring friendship, encouragement and advice.

Words disappear when I want to thank my beloved parents. Their bounties

surround me and their continuous presence gives meaning to my life. Let them

know my complete and deepest gratitude for their unlimited support, love, trust,

encouragement and the hope they put on me. Similarly, I am profoundly grateful

to my dearest brothers and sisters Fati, Amine, Tariq, Reda, Karim, Mimiya and

Nora. Please accept my unbounded and eternal thanks. All credit to my family.

I am deeply indebted to my beloved wife and best friend Meriem. Your are the

beauty and love of my heart. I cannot express my gratitude for what you have done

for me. My heartfelt thanks to you for being always by my side, such a great wife.

An affectionate thanks to my little hero Muhammad who came as sweet gift and

reward to brighten up our life, I am proud of you dear son.

Shoukran’bzaaf ...!

Résumé

Nous étudions dans cette thèse la gestion des incertitudes au sein des systèmes

à base de règles métier orientés objet (Object-Oriented Business Rules Manage-

ment Systems ou OO-BRMS) et nous nous intersessions à des approches proba-

bilistes. Afin de faciliter la modélisation des distributions de probabilités dans ces

systèmes, nous proposons d’utiliser les modèles probabilistes relationnels (Prob-

abilistic Relational Models ou PRM), qui sont une extension orientée objet des

réseaux bayésiens. Lors de l’exploitation des OO-BRMS, les requêtes adressées

aux PRM sont nombreuses et les réponses doivent être calculées rapidement. Pour

cela, nous proposons, dans la première partie de cette thèse, un nouvel algorithme

tirant parti de deux spécificités des OO-BRMS. Premièrement, les requêtes de ces

derniers s’adressent seulement à une sous partie de leur base. Par conséquent, les

probabilités à calculer ne concernent que des sous-ensembles de toutes les vari-

ables aléatoires des PRM. Deuxièmement, les requêtes successives diffèrent peu les

unes des autres. Notre algorithme exploite ces deux spécificités afin d’optimiser

les calculs. Nous prouvons mathématiquement que notre approche fournit des ré-

sultats exacts et montrons son efficacité par des résultats expérimentaux. Lors de

la deuxième partie, nous établissons des principes généraux permettant d’étendre

les OO-BRMS pour garantir une meilleure inter-operabilité avec les PRM. Nous

appliquons ensuite notre approche au cas d’IBM Operational Decisions Manager

(ODM) dans le cadre d’un prototype développé, que nous décrivons de manière

générale. Enfin, nous présentons des techniques avancées permettant de compiler

des expressions du langage technique d’ODM pour faciliter leur exploitation par

le moteur probabiliste des PRM.

vii

Abstract

In this thesis, we address the issue of uncertainty in Object-Oriented Business

Rules Management Systems (OO-BRMSs). To achieve this aim, we rely on Prob-

abilistic Relational Models (PRMs). These are an object-oriented extension of

Bayesian Networks that can be exploited to efficiently model probability distribu-

tions in OO-BRMSs. It turns out that queries in OO-BRMS are numerous and

we need to request the PRM very frequently. The PRM should then provide a

rapid answer. For this reason, we propose, in the first part of this thesis, a new

algorithm that respects two specifities of OO-BRMSs and optimizes the proba-

bilistic inference accordingly. First, OO-BRMSs queries affect only a subset of

their base, hence, the probabilities of interest concern only a subset of the PRMs

random variables. Second, successive requests differ only slightly from each other.

We prove theoretically the correctness of the proposed algorithm and we highlight

its efficiency through experimental tests. During the second part, we establish

some principles for probabilistic OO-BRMSs and we describe an approach to cou-

ple them with PRMs. Then, we apply the approach to IBM Operational Decision

Manager (ODM), one of the state-of-the-art OO-BRMSs, and we provide a gen-

eral overview of the resulted prototype. Finally, we discuss advanced techniques to

compile elements of ODM technical language into instructions that are exploitable

by the PRM probabilistic engine.

ix

Contents

1 Introduction 1

1.1 General Context . 1

1.2 Motivation . 5

1.3 Contributions and Outline . 6

2 IT for Business Rules Management 9

2.1 Introduction . 9

2.2 Business Rules Approach overview 11

2.3 Business Rules Management Systems 14

2.3.1 Features of a BRMS . 16

2.3.2 Rule-based Expert Systems 18

2.4 Discussion and Conclusion . 28

3 Bayesian Networks for Uncertainty Management 31

3.1 Introduction . 31

3.2 Bayesian Networks . 33

3.2.1 Definition and Design . 33

3.2.2 Graphical Semantics . 37

3.2.3 Reasoning with BNs . 43

3.3 Probabilistic Relational Models . 49

xi

3.4 Conclusion . 56

4 Incremental Junction Tree Inference 59

4.1 Introduction . 59

4.2 Junction Tree algorithm . 61

4.3 Incremental Junction Tree Inference 68

4.3.1 Optimal Roots . 71

4.3.2 A new Incremental Inference 73

4.4 Evaluation . 75

4.4.1 Messages Optimization . 75

4.4.2 Time Optimization . 76

4.5 Conclusion . 81

5 Business Rules Uncertainty Management 83

5.1 Introduction . 83

5.2 Coupling BRs with PRMs . 84

5.2.1 Uncertain OO-BRs Principles 84

5.2.2 Model Extension . 89

5.3 Application to IBM ODM . 91

5.3.1 Overview . 91

5.3.2 A Complex Compilation Process 97

5.3.3 A Loosely Coupling-based Execution 103

5.4 Towards Advanced techniques . 105

5.4.1 Preliminary . 105

5.4.2 Probabilistic Propagation 109

5.5 Conclusion . 121

6 Discussion and Future Works 123

A Proofs 127

B Other experimental results 133

Bibliography 154

Subject Index 154

List of Figures

1.1 Some areas of AI . 4

2.1 Central components of a RBS . 20

2.2 UML diagram for air conditioner’s Example 2.3.1 23

2.3 Rete network for air conditioner’s Example 2.3.1 23

3.1 A DAG for the student example . 34

3.2 Random variables for the student Example 3.2.3 35

3.3 Randomly generated CPTs for Example 3.2.3’s random variables . . 36

3.4 A trail (left) and a directed path (right) 38

3.5 Markovian assumption for node L 39

3.6 The Markov blanket for node L . 40

3.7 An example of a blocked trail between X and Y 42

3.8 A BN with repeated patterns . 50

3.9 Abstraction of the repeated patterns of Fig 3.8 as classes 51

3.10 The relational skeleton related to the BN in Fig 3.8 52

3.11 some PRM concepts for Example 3.3.6 54

3.12 An example of an aggregator CPT and a slot chain 55

3.13 The ground BN for the system in Fig. 3.11b 56

4.1 A DAG (a) and its corresponding moral then triangulated graph (b) 62

4.2 A JT for the student example . 64

xv

4.3 An initialized JT data structure for the Student Example 3.2.3 . . . 65

4.4 Message-passing during collect . 66

4.5 Message-passing during distribution 68

4.6 A maximal sub-tree in a JT . 69

4.7 Message passing within a JT T . 70

4.8 IJTI messages optimization for real BNs 76

4.9 IJTI messages optimization for artificial BNs, each curve corre-

sponds to a BN size . 77

4.10 Average time gains for some real BNs. The title expresses hard and

soft change percentages respectively. Each plot corresponds to a

target % . 79

4.11 Average inference time gains for other real BNs. Each plot corre-

sponds to a target % . 80

5.1 UML diagram for Example 5.2.1 . 85

5.2 Class dependency schema for the insurance example 87

5.3 A relational skeleton for the fraud example 88

5.4 ODM life-cycles . 91

5.5 ODM Components View . 93

5.6 A screen view of IBM rule designer 93

5.7 General form of IRL technical rules 94

5.8 ODM rule engine in Rete mode . 97

5.9 Subscriber and System classes . 100

5.10 ODM compiling chain . 101

5.11 BIS coupling . 103

5.12 PRM plugin as a service . 105

5.13 A rule class model with (non) probabilistic attributes 110

5.14 A possible dependency graph for PRM classes X and Y 110

5.15 A BN fragment obtained from analyzing rule conditions 113

5.16 CPTs of x2.X2 and lt2β2, with β2 = 1 is given 116

5.17 A runtime BN fragment obtained after compiling the existence con-

dition in Rule 5.9 . 117

5.18 A BN fragment obtained when compiling Rule 5.10 119

5.19 Probabilistic inference result, with evidence x2.X1 = 1 120

List of Algorithms

1 Select-Execute cycle . 22

2 Collect . 66

3 Distribute . 67

4 Junction Tree Algorithm . 67

5 Incremental Junction Tree Inference (IJTI) 74

6 Simulation of incremental inference using IJTI 78

7 ODM engine cycle execution in Rete mode 98

xix

Chapter 1

Introduction

1.1 General Context

In the contemporary business environment, a great deal of operations is performed

or supported by information technology (IT) systems. Ironically, IT does not al-

ways "support" the business but also may cause its failure or lower the quality

of its deliveries 1. For example, it is known that a lot of IT-based projects miss

their deadlines because of IT obstacles. In addition, initial requirements might

be exposed to changes and IT systems, however, hardly follow the change. There

are many causes of this problematic situation and a notable cause is related to

business policies and rules. Despite the importance of these latter in driving busi-

ness operations, there were surprisingly no well-established methodology, prior to

the business rules approach that we introduce later, to emphasize these rules and

efficiently encode them into a computer-based application. Information about

such rules is often hidden or repeated throughout the application modules. Even

worse, it could be lost, unknown, inconsistently captured or not precisely stated,

and this leads to businesses that are run in contradiction to their rules and goals.

1around 66% of the US projects fail according to [123, 124]

1

This is because there is often a misalignment between the business requirements

specification and the IT implementations. The separation of concerns principle

promotes a modular architecture for developing IT systems, based on a loosely

inter-operating services (concerns). After data, business rules (BRs) follow this

principle and become an independent concern. Actually, in the last decades, the

Business Rules Approach emerged as a well-established methodology to allow for

a better management of BRs. The approach introduces a new layer of BRs to

the IT systems design and architecture. Business systems development becomes

business-centric and BRs become a separate service inside a Service Oriented Ar-

chitecture (SOA), i.e., they are now independent entities, distinct from the data

and the view aspects of the system and separated from processes 2. There are

many ways to express the rules that govern or guide business activities includ-

ing the IF/THEN-ELSE constructs, e.g., "If the category of the customer is

Premium then add a 40% discount to his shopping card".

In a competitive context, agility is the real time capacity to adapt to the mar-

ket change and react in a direction that benefits the organization. The sake of

agility is at the core of the business rules approach. The latter replies to the fast

and constant change of the business environment with an agile and flexible de-

velopment process [19]. Requirements and rules are no more hidden or scattered

along business applications, but their automation is now managed and maintained

trough a dedicated system called Business Rules Management Systems, BRMSs

hereafter. In recent years, such tools have proliferated and many organizations

adopted the approach for the sake of agility, re-usability and consistency of BRs.

These business-driven tools have the advantage to enforce business policies and

prove to help the enterprise to reduce costs and improve their performance and

productivity. This explains why BRMSs industry witnesses an increasing annual

2a set of inter-related tasks and activities

2

growth, as it is shown in recent research reports such as [62, 64], which estimated

the global BRMS market to reach $636.7 million in 2015 with a Compound Annual

Growth Rate (CAGR) up to 17.8% during the period 2015-2020. It is worthy to

notice that BRMSs can be also integrated with different Business Process man-

agement tools and to reinforce the alignment of computer science practices with

business administration goals [131].

Having complete or certain information about our domain is not always a real-

istic scene. On the contrary, uncertainty is everywhere, it affects data, knowledge

and processes. In particular, reasoning under uncertainty becomes an important

and active area of research within the field of Artificial Intelligence (AI). Although

there is no consensual definition for AI, one can say that it is about building

programs or machines that try to imitate human intelligence at a certain level

and improve their outputs as long as they consume more experiences. According

to [115], different people approach AI with different methods while having differ-

ent goals in mind. [115] also emphasizes four aspects about AI that are related

to thinking humanly, thinking rationally, acting humanly and acting rationally.

While the first two approaches are concerned with reasoning, the last ones ad-

dress behavioral aspects. During the last decade, AI has witnessed a remarkable

progress as well as a proliferation of its applications. Fig. 1.1 depicts some of the

AI key sub-domains, although the list is not exhaustive.

Reasoning includes inferring the state of the domain at hand based on knowledge

about it and some prior observations. For example, a diagnosis of a patient’s

symptoms, blood and urine might help doctors to determine the diseases in ques-

tion, if any, and prescribe a treatment accordingly. A Nuclear-Magnetic-Resonance

(NMR) well-logging tool helps petro-physicist, using sensor measurements, to in-

vestigate earth formations, in particular, to characterize hydrocarbon reservoirs

3

Artificial
Intelligence

Speech

Speech
to Text

Text to
Speech

Robotics

Natural
Language

Expert
Systems

Production

Proba-
bilistic

Machine
Learning

Supervised

Unsu-
pervised

Rein-
forcement

Planning &
Scheduling

Computer
Vision

Figure 1.1: Some areas of AI

and decide whether water, gas or oil are present. In these examples, we may lack

the adequate information to make a good decision. Some aspects about the pa-

tient are just unobservable, e.g., only few historical records are available, and other

aspects must be estimated. Observations themselves may be affected by measure-

ment errors, which implies lack of accuracy and precision. In the example of NMR

well-logging, measurements could be noisy due to vibrations of the sensors and

are unreliable in some particular environments. In all the above situations, the

decision making process is no more deterministic and we must take into account

uncertainty in the reasoning process to reach an acceptable decision.

Indeed, uncertainty is an inescapable aspect of real world data and several theo-

ries and frameworks have been proposed to handle it. However, we are interested

in one popular solution that is based on Probabilistic Graphical Models (PGMs)

4

[67, 72, 102]. PGMs mix the mathematical power of probability theory with the

intuitive representation of graph theory. Therefore, they have the advantage to

separate knowledge representation from the reasoning process. Broadly speaking,

a PGM, be it directed and undirected, exploits dependencies between the vari-

ables of interest to compactly capture the uncertainty of the domain and derive

conclusions using sophisticated inference algorithms.

1.2 Motivation

Current BRMSs perform well in the presence of complete information about the

domain using first order logic. The mechanism of Forward Chaining3, for instance,

permits to infer conclusions from observations about the domain. It turns out that

the BRMS technology has roots in the Rule-Based Systems (RBSs), a sub-field of

AI. Even though the latter has an active research community on uncertainty, there

is no current BRMS that offers a satisfactory support for it. As a matter of fact,

current BRMSs turn to have poor facilities for uncertainty management. They

either assume the encoded knowledge to be deterministic or use some heuristic

models that are unfortunately limited.

There are two needs that motivate this thesis. The first one is related to Opera-

tional Decision Manager, ODM hereafter, which is the IBM market leading BRMS

and the company seeks to enrich its reasoning process by handling uncertainty. In

this thesis, we study how AI techniques can answer such an issue and we focus on

the PGM framework for it has common concepts to share with BRMSs. Thus our

first research question is the following :

Q1 : How can we efficiently manage uncertainty in BRMSs using the

PGM framework?

3see Section 2.3.2

5

The working memory that stores facts about the knowledge in a BRMS is dy-

namic and incremental by nature. For example, new objects might be inserted or

removed or new relations could be defined. This remark directs us to our second

motivation. The probabilistic inference should take the property of incrementality

into account. As we will see, the literature does not fulfill this need sufficiently.

Therefore, our second research question can be formulated as follows:

Q2: How can we perform probabilistic inference in an incremental and

optimized manner?

1.3 Contributions and Outline

This thesis has two main contributions. First, we introduce a new incremental

probabilistic inference algorithm, which is well suited for the dynamic nature of

ODM. We provide experimental tests to shed light on the gain we obtain using

our approach. Furthermore, our algorithm is being added as a contribution to the

development of the open source aGrUM library (a Graphical Universal Model).

The latter is developed by our research laboratory LIP6 to provide state-of-the-art

implementations of graphical models for decision making. Note that we develop a

general algorithm that can be applied whenever the system at hand is incremental

and multi-target. As a consequence our algorithm is not restricted to BRMSs, that

is why we will first handle Q2. Our second contribution provides an answer to Q1

through a coupling architecture with PGMs. Therefore, we propose an effective

methodology to ensure the coupling and, as an application, we develop an internal

prototype on top of ODM. Generally speaking, the prototype maps the model

upon which the BRMS is built to a PGM and delegate the BRMS’s probabilistic

queries to the PGM’s engine. Computations can then be performed using the

algorithm developed in the first contribution. We also provide some principles to

6

ensure more advanced probabilistic reasoning for BRMSs.

Our research results in the following scientific publications:

1. Inférence incrémentale pour les modèles probabilistes relationnels et appli-

cation aux systèmes à base de règles orientés objet, Revue d’Intelligence

Artificielle 2017, accepted [5].

2. Incremental Junction Tree Inference. In Information Processing and Man-

agement of Uncertainty in Knowledge-Based Systems (IPMU) 2016 [3]

3. Un algorithm d’arbre de jonction incrémental, JFRB 2016 [4]

4. Business Rules Uncertainty Management with Probabilistic Relational Mod-

els. In Rule Technologies. Research,Tools, and Applications (RuleML) 2016

[2].

5. Uncertain Reasoning for Business Rules. In RuleML doctoral consortium

2014 [1]

6. Des règles métier pour la gestion de l’incertain, JFRB 2014 [6]

This manuscript is composed of 5 Chapters and is organized as follows.

Chapter 2 gives an overview of the business rules approach and stresses upon its

technological implications, which are manifested in the adoption of BRMSs. Then,

we explain the origins of BRMSs and see different approaches used to tackle the

question of uncertainty. As we already mentioned, we are interested in PGMs

and in particular, in the formalism of Bayesian Networks (BNs) and its object-

oriented extension Probabilistic Relational models (PRMs). Hence, Chapter 3

introduces BNs and PRMs and describes how they allow a decision maker to model

uncertainties in the domain and, later, to infer its state given some observations.

We also present some popular probabilistic inference algorithms used by BNs. In

7

Chapter 4, we provide an answer to Q2 and we propose a probabilistic inference

algorithm that is adaptive to incremental and multi-target systems, and ODM

in particular. In addition, the chapter highlights the effectiveness of our method

based on experimental tests. In Chapter 5, we provide an answer to Q1. After

introducing the necessary background, this chapter proposes a method to empower

BRMSs capabilities with uncertainty management. Our results are implemented

in a new prototype developed on top of ODM. We describe the prototype’s main

components and see how uncertainty can be handled in such an industrial context.

Chapter 6 concludes this manuscript with a summary of our work and proposes

some directions for future works.

8

Chapter 2

IT for Business Rules

Management

We recall that this thesis aims at extending the capabilities of IBM ODM [63], a

Business Rules Management System (BRMS), to handle uncertainty.

BRMSs are a family of computer-based systems that result from marrying a

business rule approach with the technology of rule-based expert systems. We first

describe such an approach, then we explain the components and mechanisms of

the technology that support it.

2.1 Introduction

There is a well-established business tradition of automating parts of the policies

that govern the decision-making process in computer-based applications [50, 90].

However, the business environment, being characterized by a rapid and constant

change, does not facilitate such an automation. As a consequence, it becomes vital

for modern organizations, first, to build more agile systems and second to adapt

quickly to the highly competitive and dynamic market (competitive, new products

9

and prices, new customers and preferences, etc ...). Actually, changes that affect

business have many facets including government and legislation policies changes

such as taxation laws, interest rates and environmental regulations. Last but not

least, IT systems have drastic influence on how business operates and organizes its

processes, e.g., projects outsourcing, online services, communications tools, stor-

ing data and extracting valuable information from it. Indeed, the business and

its supporting IT systems are very inter-related and both must meet the require-

ments of the business ever-changing environment. In [37], the authors highlight

three components for the development of any business information system: data,

process and policies. Whereas the first two have been integrated using the object-

oriented paradigm, policies are commonly neglected and left implicit in the pro-

gram code. In a business project, it is frequent to see business logic scattered over

different applications in the information system [90] and paradoxically, business

experts, who own the knowledge about business policies, have very limited access

to the encoded business logic. The problem is worse when the business needs to

change its operations and policies, and consequently the supporting IT system.

This results in high costs to adapt current IT systems to the changes that oc-

cur, as business logic is distributed all over different applications. Hence, conflicts

occur between business owners and application developers in term of aligning IT

with business.

Even the triggers used in active databases to express business policies as con-

straints were very limited and therefore, business policies that were hard-coded

as procedures in SQL or COBOL fail to provide flexible systems and result in

many maintenance issues [50, 71]. The problem is identified as the missing link

between high-level data architecture and project-level physical-database design or

data-processing [9, 128]. One of the early answers to this problem consists of us-

ing object models to integrate and explicitly represent business policies in terms

10

of rules [37, 107, 108, 128]. However, the most popular approach that continues to

gain acceptance among business practitioners and researchers is known as the busi-

ness rules approach [53, 90, 113]. This approach promotes Business Rules (BRs)

as an independent formalism to represent the business logic in terms of rules and

manage them within centralized applications called Business Rules Management

Systems (BRMS). The following paragraph further elaborates such an approach.

2.2 Business Rules Approach overview

When the term of business logic is invoked, it consists of all parts of the IT system

responsible of specifying the schema that defines and processes the information flow

in a database. This encompasses essentially constrains and policies that govern

various aspects of business operations. Although the term of BR seems to appear

first in [9], where rules are identified as an independent component that links

data architecture and data processing, such rules have been often conflated with

constraints of the databases community or policies [50]. Before defining what is a

business rule, let us clarify first the business policy.

Definition 2.2.1 (Business policy). A business policy is a statement of directions

or guidelines that governs the decisions of an organization and controls its actions

scope.

For instance, an insurance organization might have a policy saying :

Example 2.2.2 (Discount policy). All Platinum customers in Paris who place an

order during the summer receive a 45 percent discount.

BRs have been given many definitions in the literature, albeit the most in-

fluencing was produced by the GUIDE Business Rules Project [58]. This latter

aims at formalizing an approach, called the business rules approach, to identify

11

and articulate the constraints that define the structure and control the enterprise

operational decisions. Thus, the approach advocates enforcing business policies

by translating and decomposing them into more specific statements, which will

constitute BRs. the Business Rules Group (BRG)1 promotes the independence

principles of BRs in their seminal upshot Business Rules Manifesto [112]. Accord-

ingly, BRs should be managed separately and directly by business workers.

Finally, BRG has contributed to the work of the Object Management Group

(OMG) to standardize the approach, which results in the emergence of the Se-

mantics of Business Vocabulary and Business Rules (SBVR) standard [93]. SBVR

is a metamodel for developing semantics models in a business domain in the form

of a vocabulary and a set of BRs. The following definition is an adaptation from

[50, 112]

Definition 2.2.3 (Business Rule). A BR is a compact, atomic, well-formed,

declarative statement that defines or constrains an aspect of the business and its

collaborators. It must be expressed against a domain ontology (business policies

vocabulary) in a natural-language that is understandable by whom it may concern,

such as business and IT professional and customer.

BRs are the atoms that constitute a business policy and can be typically formu-

lated via a set of conditions and actions. For example, the above business policy

can be translated into the following two BRs.

Example 2.2.4. (Discount BRs.)

IF the value of the shopping cart of the customer is more than 1500

THEN set the category of the customer to "Platinum"

IF the customer’s city is "Paris" and the customer’s category is "Platinum" and

the order date is between "June 21,2017" and "August 20, 2017"

THEN set the order discount to 45 percent
1 a group formed by IT practitioners and business analysts inside the GUIDE project.

12

According to [113], a BR is based on a collection of noun concepts called

terms and gathered in a glossary called concepts catalog.. For instance, Customer,

customer’s city and Customer’s category represent terms in Example 2.2.4.

Terms are words or phrases that reflect business concepts and whose exact mean-

ing is specified and agreed upon among collaborators in a business.

Interactions between terms are known as facts [113] or fact types [93]. Facts are

verb concepts that link together appropriate terms. For instance, the assertion

Customer has a city is a fact that relates a customer to a city in Example 2.2.4.

Now, BRs are simply built on top of these facts by expressing how these facts

must/should (not) be constrained in order to guide business operations [113].

Finally, it is important to highlight the following aspects about a BR:

• Atomic structure: BRs cannot be reduced or decomposed into multiple or

derived BRs, otherwise one can loose important information about the busi-

ness.

• Business determination, in the sense that it must define or constrain some

aspects of the business.

• BRs are under the ’business jurisdiction’ and derived from its policy in the

sense that they only regard what is under the company’s authority to modify.

In the business rules approach, all BRs should be collected managed withing a cen-

tral rule repository. The approach recommends the use of a business rule engine

to execute rules directly rather than transcribing them into some procedural form

[52, 112]. Although different ways to implement the BRs approach might exist,

using BRMSs remains the most economical one [50]. In fact, BRMSs externalize

BRs and provide facilities for a centralized management. Thus, BRs and other

IT components have a separate life-cycle and yet they can easily communicate

with each other. As a consequence, business workers benefit from direct access

13

to BRs while collaborating more independently with IT developers. In [114], the

authors emphasize that the business would need its BRs even if it had no soft-

ware, which means that developing a BRs solution does not necessarily require

a software development. Although this may implicitly attribute less importance

to the technology behind, the approach promotes the use of BRMSs to support,

better than any previous systems, the continuous and fast changes in the business

environment. According to [19], a BRMS is a necessary component to ensure an

agile BRs development and without which the BRs approach would not be fully

implemented. Putting business first should not be understood as neglecting the

technology that supports them, because real world experience shows that good

technology can even shape BRs and significantly enhance time, quality and money

outcomes of business projects. Therefore, adopting a BRMS will definitely build

better, changeable systems faster that any previous approach [54]. Today the BRs

approach has reached a good maturity. This is shown, on one hand, by several

studies that appear to cover the subject [19, 33, 50, 53, 54, 90, 113]. On the other

hand, by the increasing number of applications that implement it such as in bank-

ing, insurance, health care, retail and manufacturing. The next section gives more

details about the basics of BRMSs.

2.3 Business Rules Management Systems

The separation of concerns principle is wildly adopted in software engineering.

It essentially consists of dividing as much as possible applications into separate

components or modules. A very prominent application of this principle is the

Service-Oriented-Architecture (SOA) paradigm. The adoption of SOA and BRMS

together will let businesses deploy or integrate new applications far more easily

[50]. As we mentioned in the previous paragraph, BRMS were introduced to help

14

aligning IT with business. In the IT architecture perspective, BRMSs come as a

separate layer and can be seen as a service among others such as database man-

agement systems. BRMSs externalize and centralize the management of BRs to

avoid distributed and redundant updates. Finally, BRMSs separate BRs from the

technical implementation, thereby, BRMSs are the technical solution that gives

business workers the control over BRs with greater agility. The way BRMSs man-

age BRs is largely borrowed from early rules-based systems (RBSs) . Indeed,

BRMSs inherit from these how to effectively store, in a declarative manner, and

reason, in a component-based architecture about that knowledge. We refer to the

next section for more details about RBS.

Being a complex software system, a BRMS additionally implements the business

logic by providing the environment for designing, authoring, checking, deploying

and executing BRs. Therefore, modern BRMSs provide business experts, who own

the business knowledge and processes, with tools to manage BRs directly without

being IT specialists. It represents a common ground for collaboration with these

latter, though.

It is worthy of note that besides their declarative aspect in the the condition part,

which is inspired from functional and logic programming, BRMSs have also a pro-

cedural capacity à la Java or C# in their action part. Such languages, which

are based on the conceptual framework of Object Model (OM), have proven to be

particularly well adapted to construct well-structured complex systems. In addi-

tion, this use of an object-oriented (OO) programming at the core of BRMSs has

naturally emerged as a de facto standard from the most successful real business

applications. This is because an OM encompasses essentially the principles of ab-

straction, encapsulation, modularity and hierarchy. Therefore, it provides a clear

advantage that facilitates design and software reuse. Having said that, the domain

ontology mentioned in Definition 2.2.3 corresponds to the definition of an OM ex-

15

pressing business concepts. In practice, a business domain can often be modeled by

identifying separate sub-domains, i.e., a set of interrelated class of objects. Each

class is characterized by a number of fields or attributes. Illustration of classes

from Example 2.2.4 are customer and order. Attributes might be a name or city

for a customer. This latter might be related to many orders. An OM defines also

the operations that can be performed, such as providing a discount or displaying

a specific message. In this thesis we are only interested in OO-BRMS.

2.3.1 Features of a BRMS

Amodern BRMS, be it commercial or open source, provides some common features

including classical inter-operable modules.

• development environment (IDE) to edit rules and the underlying models. It

also provides a graphical interface for non technical people to author rules.

An IDE can be integrated as a plugin in Eclipse for example.

• inference engine that is responsible of executing the rule against the facts

base and performing actions. The execution is often based on the Rete algo-

rithm and its enhancements, but also a sequential algorithm can be applied.

Engines operate essentially in a forward strategy, a backward or mixed strat-

egy are also possible. 2

• the rule base, which is a centralized and searchable repository to store and

manage collaboratively BRs. Note that other alternatives to enter rules,

exists such as decision tables, decision trees and rule-flows.

• support for rule flows and events processing to chronologically order business

processes execution and specify transition time from one process to another.
2see next section for details

16

For simplicity, a process can be regarded as a set of activities that will

evaluate a set of rules. Most of BRMSs provide a graphical editor for creating

flows and allows a drop and drag functionality.

• programming and execution environment are different from one BRMS to

another. Every product has its own language to write rules technically, but

all of them provide a mechanism to write in a natural language-like format.

The runtime is generally based on Java or .NET. Facilities for checking the

rule syntax in real time and debugging do exist in modern BRMSs.

2.3.1.1 Mainstream BRMSs

The mainstream BRMSs include IBM ODM [63], Fair Isaac Blaze Advisor [43],

Red Hat JBoss Enterprise BRMS [110], Progress Corticon [109], Oracle Business

Rules [96], Microsoft BizTalk [86], SAP NetWeaver Business Rules Management

[117], PegaSystems PegaRules[104], InRule Technology [65], OpenRules [95] and

Bosch Visual Rules [18]. Comparing these systems is out of the scope of this thesis,

we refer to [51] for a comprehensive comparison including the first two of them. In

addition, [51] provides a multi-criteria decision analysis-based method to evaluate

them. In particular, the author concludes that none of the leading BRMS products

available today has any sophisticated facilities for managing or reasoning under

uncertainty.

As we already mentioned, BRMS technology is heavily inspired from RBSs tech-

nology. RBSs have a key feature to manage effectively the business knowledge.

Notably, they ensure a clear separation between the declarative knowledge from

the code that uses that knowledge to solve a specific problem or to satisfy a par-

ticular business requirement.

17

2.3.2 Rule-based Expert Systems

The story of BRMS technology is tightly linked to AI and all began with rule-

based expert systems. These form a sub-area of AI that had flourished from

mid-sixties till the end of the past century and still influences today AI tech-

nologies. Technically speaking, an expert system might be defined as a computer

program designed to simulate, support or improve upon the decision-making pro-

cess of a human expert in a specific area, where intensive knowledge is required.

So, an expert system can either replace the human expert, e.g., control systems

in manufacturing or provides helpful insights to the expert, e.g., medical diagno-

sis. Particularly, one popular way to capture and store the knowledge in a RBS

is in the form of production rules i.e., a set of implications having the form of

"IF-THEN-ELSE" statements 3, that is why RBSs are referred to as production

(rules) systems. Production systems were popularized by Newell and his collabo-

rators while working on reproducing human reasoning and problem solving, see for

example [75, 91]. The most influential programming language for these systems

was OPS5 by Charles Forgy [20, 45], which is written in LISP and uses the Rete

algorithm [46] to draw conclusions from rules. Actually, OPS5 was successful and

surpassed other implementations due to its efficiency and capacity to scale up.

The potential of RBS, which has been first demonstrated and well-publicized by

AI researchers, led to great successful applications. This success attracted many

organizations to use RBS technology to the point that over two thirds of the For-

tune 1000 companies during the eighties applied the technology to daily business

activities. Furthermore, RBS applications have then proliferated even though the

business, manufacturing and medical fields remained the dominant areas in which

RBS are used [39]. At this stage, it is worth mentioning some of the early expert

3the IF part is also called condition or premise, or left hand side (LHS) and the THEN part

is also called conclusion, action or right hand side (RHS)

18

systems that influenced the course of AI. The seminal one is DENDRAL [21], a

chemical RBS used to infer molecular structure from spectroscopic analyses. This

RBS was a cornerstone in the history of expert systems and inspired the devel-

opment of numerous RBSs that came later. The other one is MYCIN[22], which

is perhaps the most famous one, is designed to diagnose bacterial infections in

human blood. Other successful RBSs include XCON [13], which is written in

OPS5 for configuring computer systems orders and was one of the first to be in-

dustrialized. Finally PROSPECTOR [57], a geological analysis system to discover

rocks and minerals deposits. The common point between all these RBSs is their

solving-problem power that comes especially from the encoded knowledge and this

emphasized the crucial role of the knowledge base. Building expert systems for

specific application domains has since then become a separate subject known as

knowledge engineering, a term coined by Freigenbaum who is a key contributor

to DENDRAL [42]. Broadly speaking, the very term “knowledge-based system”

refers now to information systems, in which part of human knowledge is (symbol-

ically) represented and reasoned about by mimicking human reasoning.

There are two important components that form any RBS, which can be expressed

by the following equation : RBS = Knowledge Base + Inference Engine. A user

interface is useful as a channel between the system and different users, e.g., an au-

tomatic way to enter/update knowledge by a human expert, a question-answer

session or an explanation facility to help a user to understand the reasoning pro-

cess or an action is made. Fig 2.1. depicts the central components of a RBS where

arrows reflect information flows

2.3.2.1 Knowledge Base Representation

There are two types of memories in a RBS : a long term and a short term mem-

ory. The first one corresponds to the Rules Base (RB) that contains the expert

19

Figure 2.1: Central components of a RBS

domain-specific knowledge. The knowledge it contains is abstract and encoded

in the form of production rules, which are expressed informally as rules that are

sometimes called heuristic rules of thumb. As we discussed earlier, a rule con-

sists of set of conditions if fulfilled, some conclusions or actions are performed: If

<condition> Then <action>. An example of such knowledge abstraction might

be the following:

Example 2.3.1. A naive air conditioner system:

RB = {R1, R2, R3} such that:

R1: IF the air conditioner is on THEN close the window

R2: IF the window is closed THEN open the curtain

R3: IF the room temperature is more than 35◦ and the air conditioner is off THEN

switch-on the air conditioner

The order in which such statements are entered into the base is not important.

Actually, rule languages are declarative, in the opposite to conventional program-

ming languages like Java or C++, which are procedural and where the order of the

IF/THEN-ELSE statements matters. In the case of using an OO paradigm, we can

see that we are based on an OM to define terms used in the RB. We For instance,

20

we can use two classes, namely Conditioner and Room, to define the OM in the

Example 2.3.1.

The second memory, called the Working Memory (WM) or Facts Base, can be

evaluated with respect to the RB. WM is a continuously changing database that

contains known facts about different states of the domain objects. Hence WM

stores rather a concrete knowledge related to interaction with users. The WM’s

objects are called WM elements, WMEs hereafter. In our running Example 2.3.1,

a WM may contain for instance :

• f1 = { the temperature of the room is more than 35◦},

• f2 = {the curtain is open },

• f3 = {the window is closed },

• f4 = {the air conditioner is on}.

RBSs contain a mechanism to control the global coherence and assure the con-

sistency of the knowledge base in order to prevent contradictory knowledge to

reach the rule base . Particularly, it specifies constraints on assignable values w.r.t

variables domain (coherence of facts) or detect contradictory rules (coherence of

rules). The component that is responsible for drawing conclusions by applying the

rules in RB to the WM facts is the inference engine, which is the aim of the next

subsection.

2.3.2.2 Inference Engine

This component is the RBS’s brain that matches rules in RB with WM known facts

by applying a pattern matching algorithm. A rule whose condition part is satisfied

by a fact is activated and is usually stored in an agenda, also called a conflict set.

When several rules are activated, the engine applies a solving procedure called

21

conflict-resolution strategy to decide which rule to execute, the rule is then said to

be fired. The simplest conflict-resolution strategy is, of course, just to apply the

production rules in the order in which they entered the agenda. However, other

heuristics might be applied to prioritize the set of activated rules in the agenda.

Then, the engine fires then rules beginning from the highest until no active rule is

left. The inference engine processes the knowledge base in cycles, which have been

given many names such as select-execute and recognize-act cycles. Algorithm 1

shows an example of the engine execution cycle. After updating the agenda, by

either activating a rule if its conditions are satisfied by the current WM or removing

it otherwise, the engine executes all activated rules and loops until no new active

rule remains.

There exist many algorithms to implement RBSs, but the aforementioned Rete

algorithm [46] is the most influential one and is still used in modern rule engines.

The key idea of Rete is to compile RB into a graphical representation called the

Rete network, where shared conditions are no more duplicated. In practice, con-

ditions are first associated with nodes called alpha-nodes that select WMEs whose

attributes match rule conditions, just like the select operator in the conventional

Algorithm 1: Select-Execute cycle

1 done ← false

2 while not done do

3 Select a rule to execute // w.r.t., a Conflict Resolution

4 Execute actions of the selected rule and remove it from agenda

5 Update agenda

6 if agenda is empty or a stop condition is reached then

7 done ← true

22

Conditioner
state : enum{on,off}

Room
temp : int
windows : enum{opened,closed}

Figure 2.2: UML diagram for air conditioner’s Example 2.3.1

database formalism. Then, beta-nodes combine two or more satisfied conditions

just like the join operator.

Let us illustrate this through Example 2.3.1. Assume that our domain is com-

posed of two classes, Conditioner and Room as it is showed in the UML diagram

of Fig. 2.2. Then, Fig. 2.3 depicts a Rete network associated with RB in Example

2.3.1.

Obviously, there is no unique Rete representation since different combinations

of conditions exist. The network can be seen as a data-flow graph. Each time a

fact is added, it is filtered to match or not the network nodes down to the bottom.

If it has passed all the nodes, then the corresponding rule is activated. Rete is a

Conditioner Room

offon temp

> 35
windows

closed

off & temp> 35

R3R1 R2

root node

type nodes

alpha nodes

beta nodes

rule nodes

Figure 2.3: Rete network for air conditioner’s Example 2.3.1

23

pattern-matching algorithm such that every path in the network corresponds to

a pattern in the rule. Furthermore, every node in the network is a local mem-

ory that holds WMEs satisfying the associated conditions. As we can see, Rete

is memory-consuming, albeit it efficiently pairs WMEs the with rule base. Note

that there exist other algorithms for implementing production systems in general,

such as TREAT [87], which introduces a new method of state saving in production

system interpreters called conflict-set support, and Gator [56] a generalization of

Rete and TREAT.

There are two famous strategies used by the inference engine to derive new

knowledge or draw conclusions, namely, the forward chaining and backward chain-

ing. Even though BRMSs4 are generally implemented using the first strategy, the

second one can generally be emulated. Here we use the term chaining to reflect

the reasoning chain, which is based on a series of inferences that allow RBS to

connect a problem with its solution. Note that hybrid strategies, where we mix

backward and forward chaining, are not covered by this section.

Forward Chaining We talk about Forward Chaining when we start the reason-

ing process by evaluating facts present in the WM w.r.t rules conditions to end

with conclusions that follow from the facts. A rule is executed when the conclusion

part is executed.

The engine will try to match the required condition for all rules until none is satis-

fied. If we get back to Example 2.3.1, withWM = {f1}, then the strategy consists

of selecting rules whose conditions match f1, hence R3 will be applied first. The ap-

plication of the selected rules may change the WM content, enabling consequently

other rules to be fired. So after applying R3, we haveWM = {f1, f4} which results
4being a product system, a BRMS is used to produce actions or change the behavior of an

environment, hence the forward chaining strategy is naturally adopted in BRMSs

24

in R1 now being applicable and f3 is added to the WM. As a consequence R2 is

activated and fact f2 is added. We therefore conclude that the final WM is equal

to {f1, f2, f3, f4}. The inference process is terminated as soon as all applicable

production rules have been processed or a certain stop condition is reached. As we

see, this strategy is fact-driven and it is best for prognosis and control systems or

systems where no specific goal is being explored. Forward chaining is also called

bottom-up reasoning as it reasons from the low-level facts to the top-level conclu-

sions that are based on the facts. It was used in the DENDRAL system that we

mentioned previously.

Backward Chaining This strategy is the reverse of the previous one. It is

applied when we reason from conclusions and move backward to the facts that

support them. If there are no matching facts, the conclusion at hand will be re-

jected and other will processed until a conclusion is obtained. Hence, this strategy

is goal-driven as conclusions can be identified as goals to achieve. More precisely,

a goal may match with a conclusion of one or more rules present in the knowledge

base. All rules that match a certain goal are selected. In our example, assuming

the goal to be f3, then the only selected rule is R1. Each one of the selected

rules is subsequently processed by considering its conditions as new sub-goals to

be achieved, where a sub-goal is achieved when the WM contains a fact supporting

it. Otherwise, when a sub-goal finds no supporting fact, we recursively apply the

same process by selecting rules whose conclusions correspond this sub-goal. In our

example, since R1 is the only selected rule, we get the new sub-goal f4, which in

turn causes the selection of R3. When all the sub-goals, i.e., the conditions of the

selected rule, have been achieved, then the rule conclusions are executed, which

may cause the WM to change. In our example, since the WM contains the fact f1,

25

the condition of the selected rule R3 is satisfied, i.e., f4 is achieved. Thus, R3 is ex-

ecuted and f4 is added, that is, WM = {f1, f4}. Finally, R1 can be now executed

as all its sub-goals, namely f4, are achieved. In a backward strategy, the engine

selects only necessary rules to achieve initial goals and terminates the inference

once they are achieved, that is why rule R2 is not executed in our example even if

its condition is fulfilled. This strategy, also called top-down inference, is suitable

for diagnosis problems. An example of backward RBSs is the MYCIN diagnosis

system.

2.3.2.3 User-System Interaction

The user-system interaction component allows RBS to communicate with users,

which hereafter stand for end-users, knowledge engineers or domain experts. For

example, it helps the knowledge engineer to develop and maintain knowledge base

or to enter additional data. Another scenario may consist of displaying conclu-

sions made by the system. Furthermore, different modes of user interfaces can

range from simple command line to a sophisticated graphical user interface, but

all modes should provide an easy and user-friendly experience. A good user in-

terface hides the internal technical rules representation and presents them in an

understandable form to users.

Another aspect of the human-machine interaction is to provide explanation facil-

ities that explain or justify, in understandable and acceptable terms, the process

followed by the system to reach conclusions. Providing such a feature was at the

core of research from the beginning of expert systems and was considered as one

of their most important characteristics that impacts the user experience accep-

tance [38, 135]. In a dialogue session, when the system prompts the user to enter

some information and the user asks why, this facility may reveal which rule of the

system is being used. Moreover, tracing activated rules and contents of the WM

26

can be useful to answer how an action is reached. Another interesting explanation

facility is the what-if analysis to explore alternate solutions using a hypothetical

reasoning. However, simply tracing the activated rules or paraphrasing the chain

reasoning does not help the user to easily understand the process employed by

the system [89]. Actually, although the research community stressed the impor-

tance of explanatory capability, most early expert systems have only limited part

of it and provide an explanation limited to a description of the reasoning steps

[82, 132]. This research area is fertile and still witnesses active efforts to over-

come limitations of unsatisfactory explanations. According to [125], limitations

stem essentially from the inadequacy of generating explanations directly from a

very low-level representation (production rules), which fails to capture all the in-

formation needed for explanations and fails to distinguish the roles that different

kinds of knowledge play. Relatively recent advances are concerned about building

new architectures that capture more of the knowledge that is needed for explana-

tion. The key idea is, on one hand, to enrich explicitly the system with dedicated

and separate knowledge bases. On the other hand, to view explanations gener-

ation as a problem-solving activity that needs its own advanced techniques and

architecture. Examples of these systems include the Explainable Expert System

[125, 126], which uses strategic knowledge about how the system is designed and

how it reasons or the Reconstructive Explainer [133], which reconstructs causal

chains from a separate knowledge base to justify the reasoning path from inputs

to answers. In another direction, [14] claims that making the distinction between

reasoning knowledge and communication knowledge is theoretically appealing and

allows to manage better the software engineering development of explainable ex-

pert systems. Finally we direct the reader to [28, 88] for more detailed surveys

and discussions of approaches to explanation.

Note that many efforts has been done to construct development environments as

27

a general base for building specific expert systems. These environments are in-

dependent of the domain-specific knowledge and use a predefined formalism for

knowledge representation and corresponding inference engine, which gave birth to

what is known as expert system shells. First of them, the EMYCIN system [85]

was designed by stripping MYCIN of its knowledge base. Nevertheless, most of

the early expert systems were ad hoc and case specific applications, which were

generally hard-coded in the LISP (LISt Processing) language.

Despite the optimism and early successes of expert systems, these often involve

expensive development and maintenance costs. In [79] for example, it is argued

that expert systems lack some validations and critical assessment because they are

not widely tested and this raises legal and ethical issues. Finally, we want to em-

phasize that it is indubitable that early RBSs suffer from fundamental limitations

when dealing with uncertainty [103] and these problems, among others, caused the

emergence of a new class of expert system called probabilistic expert systems, a

subject discussed in much details in in the next chapter.

2.4 Discussion and Conclusion

Although the term of imperfection is used by [121] to include all types of uncertain

or imprecise knowledge, the term uncertainty is often equivalently used. Unfortu-

nately, it turns out that whereas BRMSs are well adapted to deal with structured

and complete data by using classical Boolean inference, they face some difficulties

when they take into account imperfect data [94]. BRMSs must integrate mech-

anisms to handle the issue of uncertainties in the domain. To this aim, three

approaches are commonly used in the RBS community:

• Heuristic models, which weight rules with a degree of truth, e.g., certainty

factors (CF) and likelihood ratios (LR) [22, 57]. These deal with uncertainty

28

in the knowledge (rules) not the data. However probabilistic interpretation

given to CF is incoherent with probability theory [61]. On the other hand,

the conditional independence between evidence and rules actions in LR is

seldom satisfied in real applications and LR-based expert systems have poor

performance [92].

• Fuzzy logic (FL) [136] which describes imprecision or vagueness by associat-

ing variable values to fuzzy sets, a kind of moving from a bivalent logic to a

fuzzy one. However, FL is not in essence designed to deal with incomplete

data or to express relations between variables in the knowledge base as in OO

frameworks. In addition, FL when applied to systems that perform chains

of inference, such as BRMS, may lead to inconsistent conclusions [40].

• Bayesian techniques, which are essentially based on Bayesian Networks (BNs)

[102], to consistently model domains with uncertainty. In addition, several

algorithms have been proposed to learn their graphical structure and their

conditional probability tables (CPTs) parameters. Even if they are a very

popular tool to deal with uncertainty, BNs are not suited for complex sys-

tems, in which they involve high design and maintenance costs [73, 84].

Moreover, they do not support well object-oriented and dynamic systems.

One can also find hybrid approaches that combine, for instance, BNs with CF

[16, 74]. Obviously these methods incur some problems discussed previously. More-

over they are developed for specific uses and cannot handle effectively the frequent

changes of business policies, where BRMS perform better. Another approach is

Probabilistic Logic Programming [35]. But this is not suited for the BRs procedu-

ral side effects and the OO-BRMS upon which we build our application.

To summarize, this chapter introduces the business rules approach as a method-

29

ology where BRs are regarded as first class citizen in the business operational de-

cision management. The main technical implication of such an approach is the

adoption BRMSs. We give a brief overview of such applications and we finally

describe RBS as they represent their technical ancestors. Most of current BRMSs

are based on the OO paradigm, that is why we are particularly interested in OO-

BRMS. The aim of this thesis is to enhance these systems with uncertainty man-

agement capabilities. Again, in the light of SOA paradigm, we want to integrate a

probabilistic reasoner as a service on top of current BRMSs implementations. To

this purpose, we use Bayesian Networks and one of their OO extensions. The next

chapter introduces such a framework.

30

Chapter 3

Bayesian Networks for

Uncertainty Management

3.1 Introduction

In developing intelligent systems, it is inevitable to deal with the uncertainty that

pervades real-world applications. As we discussed in the introduction, this issue

has multiple origins such as measurement errors, noisy automatic processes, the

modeling process itself, etc. Many approaches have been adapted to tackle this

question, such as probability and possibility theories. For detailed surveys on these

approaches, the reader might look at [55, 119, 121].

One interesting approach that is well suited is called Probabilistic Graphical Mod-

els (PGMs) [67, 72, 102]. This framework combines graph theory with probability

theory to represent and reason with complex and real-world data. It has now

become a very popular and dominant tool for reasoning under uncertainty in the

AI field. PGMs earn such a popularity for many reasons. First, their graphical

structure allows them to capture conditional independence properties of a joint

probability distribution. This allows for a compact factorized representation of

31

the distribution and provides sophisticated methods for automated reasoning. Sec-

ond, their representation is natural and human readable, allowing even non experts

to understand the conditional interactions between the variables of the domain.

Lastly, the framework is based on rigorous probability calculus that makes the

framework mathematically sound. The construction of the joint probability dis-

tribution permits to probabilistically draw useful conclusions about one or more

variables of the domain knowing some observations about other variables. This

technique covers a large spectrum of interesting queries. For example, in a printer

troubleshooting application, the specification of the joint distribution of the com-

ponents and device status allows the computation of the posterior probability that

the device will work properly, given some observations of the device behavior.

However, specifying the distribution over a high-dimensional space of variables

appears intractable since the size of such distribution grows exponentially with

respect to the domain size. That is exactly where PGMs play an extremely inter-

esting role to encode such complex distributions in a tractable manner. For the

purpose of this thesis, we are interested in directed PGMs that are called Bayesian

Networks (BNs) [72, 102]. In this chapter, we are interested in the BN framework

and its OO extension, the so called Probabilistic Relational Models (PRMs). We

discuss also a graphical test for deciding which conditional independence relations

are implied by the structure of the BN

32

3.2 Bayesian Networks

3.2.1 Definition and Design

BNs [72, 102] were proposed in the late 80s and rapidly became one of the most

popular framework to reason under uncertainty in AI and expert systems. BNs 1

are used in a wide range of real-world applications, including medical diagnosis,

risk management, fraud detection and clinical decision support [31, 134].

As a directed PGM, the core of a BN representation is a directed acyclic graph

(DAG) whose nodes 2 represent random variables (e.g., the status of a device, the

occurrence of an event) and whose arcs represent probabilistic dependencies (cause,

influence, information flow, etc) between these variables of interest. This enables

them to encode compactly the joint probability P over their nodes as the product

of the conditional probabilities of the nodes given their parents in the DAG. This

compact factorization of P into local distributions is known as the chain rule of

BNs and is similar to the chain rule of conditional probabilities:

Definition 3.2.1 (Chain rule of BNs). let G = (V ,A) be a directed acyclic graph

over a set of random variables V (continuous or discrete), where A is a set of arcs.

We say that a joint probability distribution P factorizes over G if P is defined over

V and can be written as the following product:

P(V) =
∏
X∈V

P(X|Pa(X)) (3.1)

where Pa(X) denotes the set of immediate ancestors (parents) of X in G. Now

we can define more formally the BN as follows:

Definition 3.2.2 (Bayesian Network). A BN is a pair (G,P), where G = (V ,A)

is a DAG and P is a joint probability distribution that satisfies the chain rule 3.1.
1different designations can be found in the literature: probabilistic networks, belief networks,

causal diagrams.
2We assume that the random variables are identified with the graph nodes.

33

In practice, P is given as the set of local conditional probability distributions

of the variables given their parents in the DAG : Θ = {P(X|Pa(X)) : X ∈ V}.

Whereas the joint size grows exponentially with the BN size, the total number of

parameters is in general bounded by |V| × vp+1, where v and p are bounds on the

domain sizes of the variables and on their number of parents respectively. In the

rest, we are interested in discrete BNs, i.e., variables in V are discrete, and we

will rather use the term conditional probability tables (CPTs). To illustrate these

concepts, we use the example from [72]:

Example 3.2.3 (The Student Example). A company wants to hire recently grad-

uated intelligent students based on their recommendation letters, which reflect the

student grade in a particular course, and SAT scores, which reflect the student

intelligence.

The process of modeling with BNs follows in general two steps, which will be

emphasized through the example. The goal is then to develop a BN to capture the

knowledge from the domain problem at hand and use it to help a decision process:

D I

G

L S

J

Figure 3.1: A DAG for the student example

34

3.2.1.1 Qualitative step

During this step, the independence structure G is constructed by defining, first a

set of interest variables and their domains (possible values or states) and second,

by linking these variables to form a DAG. To this end, one can be guided, for

example, by using causal dependencies that capture interactions among variables

in terms of cause-effect relationships [59].

One possible way to capture domain variables and their interactions for the student

Example 3.2.3 is as follows: a job variable (J) is introduced to reflect whether the

student got the job and this only depends on the recommendation letter (L) and

SAT scores (S) variables. We also assume that the grade (G) is only influenced

by the student intelligence (I) and the course difficulty (D). Only the student

intelligence determines his SAT score. Finally, letter recommendation depends

only on the student grade. The table in Fig. 3.2 describes the proposed domain

variables and their possible values. For instance, D can take two values, easy or

hard. We use the notation V al(X) to denote the possible values of random variable

X. Fig. 3.1 depicts the corresponding graphical structure, whose nodes represent

the random variables and whose arcs represent direct influence between them.

X V al(X)

Difficulty (D) {easy,hard}

Intelligence (I) {low,high}

SAT (S) {low,high}

Grade (G) {A,B}

Letter (L) {weak,strong}

Job (J) {no,yes}

Figure 3.2: Random variables for the student Example 3.2.3

35

3.2.1.2 Quantitative step

This phase concerns the probability assessment by building the so called network

parameterization Θ, i.e., to each variable of G, we associate a CPT that quantifies

its relationship to its parents in the DAG. In the absence of the parents, we only

specify a prior probability distribution. As we see, the advantage is that, instead of

specifying the whole P, we only need to specify more compact local CPTs and we

are able to get significant savings, for instance in our running example, instead of

storing 26 = 64 entries, all we need is 2+2+23 +22 +22 +23 = 28 entries. Fig. 3.3

depicts arbitrary CPTs generated for the student example’s random variables. Now

the joint probability distribution can be obtained from the factorization product

as:

P(D, I,G, S, L, J) = P(D)P(I)P(G|D, I)P(S|I)P(L|G)P(J |L, S)

Figure 3.3: Randomly generated CPTs for Example 3.2.3’s random variables

36

Once constructed, a BN can be used to efficiently answer different probabilistic

queries such as the computation of most probable explanations (MPE), maximum

a posteriori (MAP) and the conditional probability. For instance, in the student

example, P(S = low|I = high) can help us to update our opinion about a student

score knowing he is highly intelligent. We direct the reader to Section 3.2.3 for

more details about techniques for querying a distribution based on BNs.

Until now, we focused on the compact representation of P that is ensured using

local CPTs. On top of that, the BN also encodes some local independencies, that is

why we previously called G the independence structure. The intuition behind this

semantics is that a variable depends directly only on its parents, its children and

their parents. We formalize this intuition throughout the next section and we will

see that the formal semantic of a BN corresponds actually to a set of conditional

independence assertions.

3.2.2 Graphical Semantics

The DAG also compactly represents a set of independence statements, which are

visualized through the existence/absence of arcs in the DAG. This notion is actu-

ally an intrinsic property of the induced joint probability P that goes beyond the

simple graphical representation. It is a characteristic of probabilistic conditional

independences. All the following definitions assume a given P that is decomposable

according to a DAG G. The latter is composed of a nodes set V that corresponds

to a set of random variables and A a set of arcs between these nodes. Capital

letters will denote nodes or variables and lower-case letters will denote their values

or assignments. Finally, boldface letters will denote sets of variables.

Definition 3.2.4 (Probabilistic Conditional Independence [34]). Let X,Y,Z ⊂ V,

we say that X is conditionally independent of Y given Z, w.r.t P, and we write

(X⊥PY|Z), iff: P(X,Y|Z) = P(X|Z). When Z = ∅, we say that X and Y are

37

marginally independent and we write (X⊥PY). The variables in Z are often said

to be observed.

The intuition behind this definition is that two sets X and Y are conditionally

independent given a set Z when, given our knowledge about this latter, our belief

on X is not influenced by any knowledge we learn about Y. Before drawing the

link between this definition and the graphical representation, let us first introduce

some graph theoretic notions.

Now, X ∈ V is said to be a parent of Y ∈ V if the arc (X, Y) is in A. The set

of all parents of a node X is denoted as PaG(X). We can omit subscript G when

there is no ambiguity about the DAG at hand.

Definition 3.2.5 (Trail). {X1, . . . , Xn+1} ⊂ V is said to be a trail in G =

(V ,A) if (Xα, Xα+1) or (Xα+1, Xα) are in A for all α ∈ {1, . . . , n}. When only

(Xα, Xα+1) ∈ A for all α the trail is called a (directed) path from X1 to Xn and

denoted X1−Xn.

For instance, Fig. 3.4a (resp. Fig. 3.4b) depicts a trail (resp. directed path)

obtained from the student DAG 3.1.

Definition 3.2.6 (Descendants and ancestors). Let X, Y ∈ V. If there is a directed

path from X to Y , then Y is said to be a descendant of X. We also say that X

is an ancestor of Y . Descendants(X) (resp. Ancestors(Y)) denotes the set of

the descendants of X (resp. ancestors of Y). Finally, let NonDescendant(X)

define all nodes in G other than X and Descendant(X)

G I S J

(a)

D G L J

(b)

Figure 3.4: A trail (left) and a directed path (right)

38

Using these notations, the already mentioned independence statements can be

encoded graphically by the BN as follows:

Definition 3.2.7 (Markovian Assumption). In the BN (G,P), every node is con-

ditionally independent of its non-descendants given its parents in DAG G:

∀X ∈ V , ({X}⊥PNonDescendant(X)|Pa(X)) (3.2)

For instance, the Markovian assumption states that {L}⊥P{S, I,D}|{G} in

Fig. 3.5 It is important to emphasize that one can prove that having a joint

distribution P, which obeys Markovian Assumption 3.2 is equivalent to say that P

satisfies the chain rule of BNs 3.1 [25]. This also implies that every independence

statement derived using such an assumption is necessarily satisfied by P. However

the inverse is not always true, there might be other independences that are only

satisfied by P and not expressed by the Markov property.

Given a variable X ∈ V , only a subset of variables, called the Markov blanket of

X, is required to update our knowledge about X.

D I

G

L S

J

Figure 3.5: Markovian assumption for node L

39

D I

G

L S

J

Figure 3.6: The Markov blanket for node L

Definition 3.2.8 (Markov Blanket). Given a DAG G = (V ,A), the Markov blan-

ket of X ∈ V, denoted MBG(X) is defined as the union of the parents of X, of the

children of X and of these children’s parents.

This means that any instantiation Y = y such that Y /∈ MBG(X) does not

impact our belief on X once we know the values of the variables in MBG(X).

In other words, X is separated from the rest of the network by MBG(X). For

instance, in the student DAG 3.6, the Markov blanket of variable L (dashed node)

is composed of the red nodes, i.e., MBG(L) = {G, J, S}

In this chapter, we restrict ourselves to the independences that are derived from

the DAG using Assumption 3.2. We refer to [34, 97], where one can be guided by

set of properties called the graphoid axioms for conditional independence, to infer

additional independences from P.

Using these axioms to find conditional independences may be fastidious. For-

tunately, there exists a graphical test called d-separation (directional separation)

[102] that allows us to efficiently detect the independences implied by these ax-

ioms and those entailed by the Markov assumption. This test is intuitive and is

40

much easier to exploit by human reasoning than the graphoid axioms. Given three

disjoint sets of nodes X,Y,Z ⊂ V , the d-separation criterion graphically detects

whether X is independent of Y given Z by testing whether every trail between

X ∈ X and Y ∈ Y is blocked by Z. Hence, let us first define the notion of blocked

trails.

Moreover, the notion of blocked trail helps us to see the probabilistic influence

as a flow of information in the graph. Given the set of nodes Z, a trail is blocked

whenever it contains a closed two-arc trail given Z, otherwise the trail is said to be

active. So, what is a closed two-arc trail? Depending on the type of the two-arc

trail, we will be able to determine whether the trail is closed or not. Consider a

two-arc trail {X1, X2, X3}, this can have three forms:

1. Sequential:

(a) X1 → X2 → X3 when {X1} ⊆ Pa(X2) and {X2} ⊆ Pa(X3).

(b) X1 ← X2 ← X3 when {X3} ⊆ Pa(X2) and {X2} ⊆ Pa(X1).

X1 X2 X3

(a)

X1 X2 X3

(b)

2. Convergent, aka v-structure X1 → X2 ← X3 when {X1, X3} ⊆ Pa(X2).

X1 X3

X2

3. Divergent, X1 ← X2 → X3 when {X2} ⊆ Pa(X3) and {X2} ⊆ Pa(X1).

Then, table 3.1 summarizes when a two-arc trail is said to be closed given a node

set Z. For instance, in Fig. 3.7 trail {X,X1, X2, X3, X4, Y } is blocked given

41

X1 X3

X2

a trail {X1, X2, X3} closed given Z?

Sequential and Divergent X2 ∈ Z

Convergent {X2},Descendant(X2) 6⊂ Z

Table 3.1: Conditions under which a two-arc trail is closed

Z = {X2, X3}, since it contains the closed two-arc trail {X2, X3, X4}, which is

divergent and X3 ∈ Z Now we have all the ingredient to provide a definition of

d-separation.

Definition 3.2.9 (d-Separation [100]). Let X,Y and Z be disjoint sets of nodes

in G. We say that X and Y are d-separated by Z, written X⊥GY|Z, iff every path

between a node in X and a node in Y is blocked by Z.

For instance, in Fig. 3.7, we have {X}⊥G{Y }|{X2, X3}.

Two variables that are not d-separated are said to be d-connected. The purpose of

the d-separation test is to provide a simple and yet efficient graphical criterion to

assert whether two variables are probabilistically dependent given our knowledge

about other variables. So far, we have been guided by an intuitive approach based

on the influence propagation, but one may wonder whether for every two nodes

X, Y d-separated by some set Z, we have X is conditionally independent from Y

X X1

X2

X3 X4 Y

Figure 3.7: An example of a blocked trail between X and Y

42

given Z, w.r.t P. This is the purpose of the following proposition:

Proposition 3.2.10 (soundness of d-separation [129]). Let X, Y and Z be disjoint

sets of nodes in G. Then X⊥GY|Z⇒ X⊥PY|Z.

One legitimate question concerns the completeness of d-separation, that is, we

want to know whether the criterion can detect conditional independences each

time they hold for P. Unfortunately, the answer is negative. However, we have

the following weaker result:

Theorem 3.2.11 (Weak completeness). For every DAG G, there exists a joint

probability distribution P factorizing over it, s.t., X⊥GY|Z⇔ X⊥PY|Z.

This weaker notion of completeness is telling us that one cannot improve on

the d-separation test, i.e., this criterion discovers all the independences that one

can derive from the DAG [47]. As a consequence, the set of independences that

is expressed by the Markovian assumptions are the maximum that we can derive

from the independence structure. In other words we have the following theorem:

Theorem 3.2.12 (Dependent variables [31]). Given a DAG G, X and Y are

dependent given Z in some distribution P that factorizes over G if X and Y are

not d-separated given Z in G.

Finally, we would like to emphasize that there exist other equivalent and yet

simpler methods to test independences in BNs, such as Markov separation [77] and

u-separation [23].

3.2.3 Reasoning with BNs

A BN can be considered as a probabilistic knowledge base, in which the process of

querying is called inference. In fact, inference is the main task behind constructing

a BN. The general form of the probabilistic inference is P(Q|E=e), which reflects

43

the following human reasoning question: suppose we observe e on a subset of E

of the domain, what are the probability values that another subset Q can take?

Q is called the query or target and E=e is called an observation or evidence.

3.2.3.1 Querying the distribution

We present here the most common types of probabilistic queries:

Marginal distribution can be viewed as the projection of P on a smaller sub-

set of variables by marginalizing out over the other variables. When Q,E 6= ∅,

the query is called the posterior marginal of Q given the knowledge on observed

variables E. It is called also the conditional probability query. In the sequel, x

will be used to denote the assignment X = x. Answering the marginal distribution

query involves the computation of both the joint distributions P(Q, e) and P(e)

as :

P(Q|e) = P(Q, e)
P(e) (3.3)

Both distributions can be computed by marginalizing out the variables in W =

V \ Q ∪ E. In this case, the numerator can be computed by summing out over

W ,P(Q, e) = ∑
w∈WP(Q, e,w), while the denominator, which is called the prob-

ability of evidence, can be deduced from the previous equation by

P(e) =
∑
q∈Q

P(q, e)

When E = ∅, the distribution P(Q) is called prior marginal.

Most Probable Explanation (MPE)

This class of probabilistic queries tries to find the most probable instantiation

of query variables Q = V \ E given the evidence E = e. To put it another way,

44

this amounts to find the assignment of Q that maximizes P(Q|e) i.e., computing

the quantity :

argmaxq∈QP(q|e)

Maximum A Posteriori (MAP)

This is a more general case in the sense that while Q covers all non evidence

variables in MPE, it is now just a subset of variables for which we therefore seek

to find a high-probability joint assignment. It is also called the marginal MAP,

because this involves both marginalizing out some variables and computing some

ArgMax on others. More precisely, if W = V \{Q ∪ E}, this amounts to compute:

argmaxq∈Q
∑

w∈W
P(q,w|e)

Now if we come back to student Example 3.2.3, and rely on one of the probabilis-

tic inference algorithms, which will be detailed in the next section, we can predict

how likely an intelligent student would get the job by answering the marginal

distribution P(J |I = high), where Q = {J} and E = {I = high}. Note that

in general, the prediction flow of information is in the same direction as the BN

arcs. Another query would try to see the impact of knowing the student got the

job on our knowledge about his grade. This could be done through computing

P(G|J = yes). This kind of reasoning is called diagnosis and the information flow

is in the opposite direction of the BN arcs. Observing that the student got an

A grade, we would like to know what is the most probable assignment of vari-

ables D and S that allows such a situation. This is done by answering the query

MAP (D,S|G = A) and if we add J and L to the targets, the query will then

reduce to an MPE.

45

3.2.3.2 Probabilistic inference

Several algorithms were proposed in the literature to answer efficiently and reduce

computations amount of the previous queries. By essence, the inference problem is

simple. However, as we noticed, the challenging part is the sum computations over

combinations of values, whose number is exponential in the number of variables.

A straightforward computation of the sum is therefore only feasible when this

number is not very large, otherwise the problem becomes intractable. Broadly

speaking, we can classify inference algorithm into two categories. First, exact

inference algorithms, including elimination and conditioning algorithms. Second,

approximate inference algorithms.

Historically, the first exact algorithm to get every node’s marginal probabilities

has been proposed in [98] and was valid only for trees. Its extension to poly-trees,

also called singly- connected networks, was proposed in [69, 100] and was known

as the poly tree algorithm. The algorithm is based on a message-passing protocol,

in which a node is entitled to propagate a message only after it has received

messages from its neighbors except from the receiving node. In viewing the BN

as a causal structure, every distribution over a node is viewed as a belief in that

node, that is why it is common to call this algorithm belief propagation. Note that

its complexity is linear in the size of the network. The two main approaches to

extending this algorithm to general (multiply-connected) networks are the cycle-

cut set algorithm, also known as loop cutset conditioning [99, 102], and join or

junction tree algorithms [78].

The first approach tries to reduce the structure to a poly-tree, where it is pos-

sible to apply the poly-tree algorithm, that is, the algorithm tries to solve the

problem under the condition of instantiating some variables and repeating this for

all possible values of the variable. It is clear that this technique yields to multi-

46

ple calls of the poly-tree algorithm since conditioning on enough variables (loop

cut set) makes the structure a tree The final solution can then be re-constructed

by aggregating the computations performed from each poly-tree algorithm call. A

more advanced technique known as recursive conditioning, tries to split recursively

the network into disconnected sub-networks to be solved by classic conditioning.

Unfortunately, this kind of inference algorithm is known to be very time consum-

ing and might yield to higher complexity in some complex networks, even if we

can control such a complexity in general.

In another direction, a second approach called the join tree algorithm was proposed

in [78, 83, 120] and became one of the most popular exact inference algorithms.

Basically, this algorithm transforms the initial BN into a corresponding join tree,

which is a secondary structure obtained from clustering the BN nodes into cliques.

Probabilistic inference is then based on passing messages through the join tree.

This algorithm proves to be efficient and is considered one of the state of the art

algorithm. That is why it is the most widespread algorithm to implement exact

inference in practice. Another alternative is the variable elimination algorithm

[36, 137], which is based on the simple technique of eliminating non query and

evidence variables. The algorithm initializes a set of factors with the BN CPTs,

then, each time a variable needs to be eliminated, the product of factors that

mentions that variable is computed. The variable is then marginalized out from

the combined factor. By repeating this elimination process until no more variables

need to be removed, one can obtain the marginal distribution over any subset of

variables. The performance of such an algorithm is very related to the elimination

order of the variables and finding an optimal elimination order turns out to be is

a NP-Hard problem [17, 70].

In general, it is known that the probabilistic inference is a NP-hard problem [24, 26]

47

and it turns out that variable elimination and join tree algorithms are very related3

and have the same space and time complexities, which are exponential in the tree-

width, i.e., the size of largest cluster in the join tree minus one.

The join tree algorithm has some attractive properties. On one hand, it can be

seen as a sophistication of variable elimination algorithm that allows simultaneous

eliminations of many variables. On the other hand, it is able to compute multiple

marginals at once [32]. These properties are interesting for our context, where we

deal with multi-target systems. That is why this thesis is particularly interested

in the join tree algorithm. We refer to the next Chapter (4) for a detailed de-

scription of how such an algorithm works. But now let us emphasize the fact that

there exist also many other approaches to inference different from the aforemen-

tioned techniques. In particular efforts have been done to exploit the BN local

structure in order to represent more compactly factors and speed up the inference,

see for example [8, 11, 30, 116]. Even if these methods offer a promising ground

for improving inference, they suffer from theoretical justifications regarding their

complexity and the savings they might offer [32].

Finally, it turns out that exact inference can be intractable and in this case var-

ious approximation methods try to find iteratively an approximation from random

samples of instantiations. We recall briefly some of these techniques, as this sub-

ject is not treated in this thesis. For example, belief propagation can be used to

search an approximation of the probability distribution and then uses optimization

techniques to minimize an error function [69, 102]. There are also other popular

methods of approximate inference that are based on stochastic sampling, that is,

estimating the probability using a frequentist approach. The most famous ones are

Markov Chain Monte Carlo methods, which include Gibbs sampling and Metropo-
3Intuitively, junction tree algorithm consists of performing variable elimination in all direc-

tions at once and storing intermediate results at each step.

48

lis Hastings algorithms [101, 111] that are used for generating samples from the

posterior distribution. Importance Sampling is another approach that randomly

samples another distribution and modifies these samples in such a way that they

provide a good estimate of the distribution of interest, see, e.g., Likelihood weight-

ing [118]. For a good grasp on these methods, the reader might find more details

in [72] or [31].

3.3 Probabilistic Relational Models

When dealing with complex and large systems, BNs do not seem to be well adapted.

Indeed, the cost of designing and maintaining such systems becomes high [73, 84]

and the inference might be intractable. A complex system may induce a big number

of probabilistic dependencies that can, not only lead to intractable modeling costs,

but also implies important update costs when changes occur in the underlying

structure. Actually, every time an entity and/or a relation in the domain changes,

a new BN should be defined. Such shortcomings are essentially due to the fact that

BNs completely ignore the concept of objects and their interactions. To cope with

the aforementioned problems several extensions were proposed in the literature,

among which, one can find the following:

• Object-oriented extension, such as Object-Oriented BNs [12, 73, 84]

• First Order logic extension, such as Markov Logic Network [66, 68]

• Relational models such as Entity-Relationship [60, 76].

In this thesis, we are particularly interested in Probabilistic Relational Models

(PRMs) [12, 106], an extension of the BNs attribute-based representation that

combines the OO paradigm with the relational representation in database theory.

Hence, PRMs specify a generic template defining a probabilistic model, a set of

dependencies, that hold in a relational domain, which can be represented by a

49

relational database. The OO paradigm helps to abstract and capture general

properties about similar entities in the domain in terms of classes having similar

properties and can be instantiated for specific contexts as many times as suited.

While the relational model helps to describe interactions or relationships between

classes and their instantiated objects. To understand these concepts and give more

formal definitions, we use the PRMs version described in [127].

For the illustration purpose, let us consider Fig. 3.8, which depicts a BN. In

such a configuration, one can identify repeated patterns and abstract them as a

generic type or class of objects. For instance, in Fig. 3.8, random variables Xi, Yi

form a pattern. A PRM class also abstracts all the interactions between its random

variables by drawing arcs expressing the probabilistic dependencies. Class’ random

variables, which describe and characterize the pattern represented by the class, are

called attributes. Basically, a class attribute can only be visible to attributes of

the same class. However, one might want to refer to attributes outside the class.

That is why PRMs define the notion of reference slots allowing communications

between different classes and hence between attributes of different classes. Now

let us give formal definitions for PRM concepts

Definition 3.3.1 (Class). A class C is defined by a DAG over a set of attributes

A(C) and a set of reference slots R(C) (see Definition 3.3.2).

Figure 3.8: A BN with repeated patterns

50

Figure 3.9: Abstraction of the repeated patterns of Fig 3.8 as classes

With this definition, a class represents a template for a fragment of a BN over

its attributes. To refer to a given attribute X (resp. reference ρ) of class C , we

use the standard OO notation C.X (resp. C.ρ).

Definition 3.3.2 (Reference slots). Let C and D be two classes. A reference slot

C.ρ = D is a pointer in C that refers to D and allows to access elements of D

through C. We say that C is the domain of C.ρ denoted domain(C.ρ) and D is the

range of C, denoted range(C.ρ). A reference slot is simple if it relates one class to

one class and it is complex if it relates one class to many. The inverse of C.ρ is

called inverse slot and is denoted D.ρ−1. We have range(D.ρ−1) = domain(C.ρ)

and domain(D.ρ−1) = range(C.ρ).

For instance, Fig 3.9 depicts the two classes obtained by abstracting the re-

peated patterns in Fig 3.8 and the corresponding reference slot (dashed parts).

The mechanism of reference slot can be applied recursively to allow one attribute

to access attributes of different classes by navigating through other classes, we call

this path of reference a slot chain.

It is important to highlight that class attributes are a generic template for

random variables, and in that way they differ from their instantiations that are

51

Figure 3.10: The relational skeleton related to the BN in Fig 3.8

actually distinct random variables.

Definition 3.3.3 (Instance). An instance c of class C is an actual object of the

the class C, i.e., a BN fragment whose attributes are random variables generated

from the class level template and where reference slots refer to sets of their range’s

instances.

Similarly, given an instance i, A(i) denotes the set of the instantiated attributes

of instance i, which are random variables. We call a set of instances linked together

using reference slots a relational skeleton and we refer to its graphical representa-

tion as the instance graph. Given an instance i and a reference slot ρ ∈ R(i), we

denote by range(i.ρ) the set of instances connected to i through ρ.

Definition 3.3.4 (Relational Skeleton). A relational skeleton S is a set of in-

stances such that for any instance c of class C and any reference slot C.ρ = D,

there exists at least one instance d ∈ S such that d is an instance of D and

d ∈ range(c.ρ).

The BN shown in Fig 3.8 can be compactly represented by the system in Fig

3.10 with the corresponding relational skeleton. It may happen that, for two

instances i1 and i2 of a same class C, the number of parents of random variable

52

i1.X differs from that of i2.X. This is the case, for example, when i1.X and i2.X

refer to SAT scores of two different students who did not follow the same courses,

the parents of these variables being these courses. In this case, the precise set of

parents of an attribute cannot be determined precisely at class level, which implies

that a standard CPT cannot be provided for v ariable X in Class C. To cope with

this kind of situation, we need to specify a generic function capable of encoding

at class level X’s CPT whatever the number of parents in the instances of C.

For this reason, PRMs define aggregators to express such a many-to-one instance

relation. In addition, aggregators are useful to keep the probabilistic semantic and

genericity at class level and avoid otherwise multiple class definitions w.r.t. the

variable number of configurations depending on relation arities, i.e., the size of the

multiple slot.

Definition 3.3.5 (Aggregator). An aggregator is a deterministic functional at-

tribute, whose CPT is inferred once the class is instantiated and connected to its

instantiated references.

Examples of classical aggregators include min, max, for all and exist. Let us

present an illustration of these concepts and consider the updated Student Example

3.3.6.

Example 3.3.6 (Updated Student Example). In Example 3.2.3, the student was

related to one course. Now, we consider the student attending several courses.

Based on the remark that the course difficulty does not characterize a student, but

rather is a course property, it would be interesting to divide the domain variables

into two types. The first one gathers properties that describe a student and the

second one gathers those describing a course.

From the description in Example 3.3.6, It would be natural to define two classes

Student and Course. Fig. 3.11a depicts such a situation and represents class’

53

Course

D

Student

courses

exists I

G

L S

J

(a) Class definitions and their dependencies

c1: Course

c2: Course

c3: Course

c4: Course

s1: Student

s2: Student

(b) A possible system

Figure 3.11: some PRM concepts for Example 3.3.6

references using a dashed arrow. While the former has six attributes and a multiple

reference slot (dashed node), the latter has only one attribute. In this scenario,

we assume that our belief on the grade variable changes if the student subscribes

to at least one hard course. To express this, we introduce the exists aggregator,

which returns true if the student is related to at least one hard course. To get an

intuition of how such an aggregator works, let us suppose that we have a system

composed of three Course instances (c1, c2, c3) and one Student instance (s1, s2)

as the relational skeleton in Fig. 3.11b shows. In this case, the exists aggregator

CPT is shown in Fig. 3.12a. When an attribute of a class C1 depends on another

attribute in class C2 such that C1 and C2 are connected through a third class C3, a

slot chain is involved to allow such a referencing:

Definition 3.3.7 (Slot chains). A slot chain C.K is a sequence of reference and/or

inverse slots ρ1, ρ2, . . . , ρn such that domain(ρ1) = C and ∀i ∈ {1, . . . , n − 1}

range(ρi) = domain(ρi+1). We say that range(ρn) is the range of C.K and

domain(ρ1) its domain.

54

(a) A possible CPT for

the exists aggregator

C1

X

ρ1

C2

Z

Y

C3

U

V

ρ2

(b) An example of a slot chain re-

lating C1 and C2 through C3

Figure 3.12: An example of an aggregator CPT and a slot chain

Fig. 3.12b illustrates such a situation, where attribute C1.X refers its parent

C2.Z through the slot chain C1.ρ1.ρ2 = C2.

Now, we have all the necessary ingredients to define formally PRMs. Given a

relational skeleton S and a class C, let IS(C) denote the set of instances of C in S.

Definition 3.3.8 (PRM). A PRM Π is a pair (C ,S), where C is a set of classes

and S is a relational skeleton. It encodes the joint probability distribution over

A(S), the set of all instance attributes in S, as the following product:

P(A(S)) =
∏
C∈C

∏
i∈IS(C)

∏
i.X∈A(i)

P(i.X|Pa(i.X)) (3.4)

Definition 3.3.9 (Ground BN [48]). Given a PRM Π = (C ,S), its associated

ground Bayesian Network is a BN constructed using the following steps:

1. There is a node for every attribute i.X of every instance i ∈ S, named i.X.

2. Each i.X depends probabilistically on parents of the form i.Y or j.Y such

that there exists a slot chain K with j ∈ range(i.K).

3. i.X’s conditional probability distribution is a CPT generated from the at-

tribute’s CPT of the corresponding class.

55

c1.D c2.Dc3.Dc4.D

s1.exists s1.I

s1.G

s1.L s1.S

s1.J

s2.exists s2.I

s2.G

s2.L s2.S

s2.J

Figure 3.13: The ground BN for the system in Fig. 3.11b

Fig. 3.13 depicts the ground BN for system in Fig. 3.11b.

3.4 Conclusion

In this chapter we introduce BNs, a well-established framework to represent and

reason under uncertainty in IA. Furthermore, we present some of their graphical

properties, notably the graphical independences they encode and we relate this to

the conditional independences of the induced joint probability distribution. We

also give a graphical criterion, called d-separation, that reveals all independence

statements from the BN structure. Finally, observing that BNs might suffer from

some limitations, we present PRMs, an object-oriented extension of BNs, that al-

low BNs to scale up to complex large systems.

We previously saw in Chapter 2 that techniques used to quantify uncertainties

in the RBS domain have theoretical and practical limitations. We believe that this

could be overcome by exploiting a probabilistic reasoning. In this context, BNs

56

could prove to be useful, particularly their PRM extension. The reason why we

are interested in PRMs is twofold. First, PRMs provide a mathematically sound

framework and integrate the OO paradigm and relational models. This allows BNs

to scale up and their inference to speed up. Second, modern BRMSs are based

on the OO paradigm and their knowledge bases have several connections with

relational databases. Additionally, probabilistic inference engines, notably those

based on the junction tree algorithms, seem to be good candidates to speed-up the

rules inference, as they allow querying multiple targets at the same time. However,

the rule engine queries of the WM are, by essence, incremental and frequent, hence,

the probabilistic inference shall also be performed incrementally. In the following

chapter, we investigate a new approach to extend BNs inference to the context of

modern BRMSs.

57

58

Chapter 4

Incremental Junction Tree

Inference

4.1 Introduction

In a BRMS, interactions with the WM are dynamic and incremental. Moreover,

the WM is by essence, multi-targets, which means that it contains many query

variables. As a consequence, if we are to integrate a probabilistic feature based

on the PGM framework, the probabilistic inference has to take this property into

account. However, this is a challenging task in general. Actually, when the system,

its evidence and/or its targets evolve, most of probabilistic inference algorithms ei-

ther recompute everything from scratch, even though incremental changes do not

invalidate all the previous computations, or they do not fully exploit incremen-

tality to minimize computations. The very idea of taking advantage of previous

computations to optimize the current ones is not new. For example, [27] defines

an incremental system that can make use the results of previous computations

to reduce the cost or improve the quality of results for subsequent computations.

Four incrementality criteria relevant to probabilistic inference were then identi-

59

fied: incrementality w.r.t (time) resource, queries, evidence and representation.

In this chapter, we are interested in all these aspects, especially in the last three

ones. Surprisingly, very few inference algorithms address all these aspects. For

example, [83] exploits partially the incrementality, but it is far from optimal when

the set of targets is smaller than the set of all the random variables or when this

set changes. In [29], for instance, the query point of view is taken into account

by reconfiguring dynamically some join trees (JT) when queries change but the

BN structure is assumed to remain static, which may not necessarily be the case

in rule-based systems. In [81], the authors exploit relevance-based reasoning to

identify the parts of the network that are relevant for computations and, then,

update several subnetworks whose union covers the original one. Unfortunately,

this algorithm does not take into account computations performed previously. In

[83], an incremental JT-based inference algorithm has been proposed that exploits

independences induced by incremental evidence updates. But the JT structure

never evolves and it is assumed that all the nodes are targets, which is not optimal

in our context. On the opposite, the incremental JT structure is addressed in [44]

but not the queries incrementality nor the exploitation of previous probabilistic

computations.

Another direction is investigated in [80], where authors argue that compiling the

original BN into a conjunctive normal form (CNF) coupled with caching tech-

niques improves inference when the network structure is updated. But this does

not take optimally into account evidence and queries. Along similar lines and in

the context of logic programs, [130] proposes an online inference that allows up-

dating the set of facts while keeping the set of (logic) rules intact. At the end,

the process comes down to adding or removing clauses in the corresponding logic

program. This is obviously a non PGM-based approach that deals only with a

particular case of incrementality, that which is of evidence. Indeed, our framework

60

is to be integrated within a BRMS where the rules have side-effects on the facts

in opposition with logic programs.

This chapter tries to avoid the previous limitations, as they may incur strong un-

necessary overheads when the system under study is large. In order to alleviate

the question of incrementality, we introduce a new junction tree-based message-

passing inference algorithm that, given a new query, minimizes computations by

identifying precisely the set of messages that differ from the preceding computa-

tions. Additionally, our algorithm takes advantage of computations sharing within

junction tree algorithms to answer multiple queries.

In the sequel, B = (G,Θ) stands for a BN and for any graph G, we use the nota-

tion V(G) and E(G), to express the set of its vertices/nodes and edges respectively.

Finally, T will refer to a junction tree (see below) associated with B.

4.2 Junction Tree algorithm

This section provides a concise overview of the join tree algorithm, where inference

is based on a message-passing algorithm within the so called secondary structure

called junction tree (JT). Let us first present a general description of the algorithm

before introducing formal definitions. The JT of B is obtained after converting

DAG G into an undirected graph as follows. First, for each node in V , we add

edges between all of its parents, this step is called moralization and its result is the

moral graph. Second we remove the orientations of the remaining arcs and we add

edges in the resulting undirected graph so that, in every cycle of at least four nodes,

there exists a pair of nodes non-adjacent in the cycle but adjacent in the undirected

graph; this step is called the triangulation and the resulting undirected graph is

called the triangulated graph. We recall the DAG from of Student Example 3.2.3

in Fig. 4.1a. Fig. 4.1b illustrates the edges added during moralization (dashed

61

D I

G

L S

J

(a)

D I

G

L S

J

(b)

Figure 4.1: A DAG (a) and its corresponding moral then triangulated graph (b)

edges) and triangulation (dotted edges). Based on the cliques of the triangulated

graph, i.e., its maximal complete subgraphs, we will form the nodes of the JT. As

we see, the JT definition relies on the notion of graph of cliques, hence we first

provide a definition for cliques:

Definition 4.2.1 (clique). A complete sub-graph of an undirected graph G is a

sub-graph in which every pair of distinct nodes are connected. A clique Ci of an

undirected graph G is a maximal complete sub-graph of G, i.e., there does not exist

any complete sub-graph that strictly contains it.

For instance, C1 = {L, S, J} is a clique in the graph of Fig. 4.1b. Then a

clique graph is defined as follows:

Definition 4.2.2 (Clique graph). A clique graph U for an undirected graph G is

an undirected graph such that each of its nodes i is mapped to a clique Ci of G.

In addition, for every pair of nodes i and j such that Ci ∩Cj 6= ∅, i and j must

belong to the same connected component, i.e., there must be an undirected path

linking these nodes in U .

62

If we use natural numbers to represent V(U), then Ci represents the contents

of ith node. We also call V(U) and E(U) clusters and separators respectively.

In a JT based algorithm, U must satisfy the so called running intersection prop-

erty to be be ready for inference.

Definition 4.2.3 (Running intersection property). Let T be a clique tree. We say

that T satisfies the running intersection property if any non empty intersection of

two cliques belongs to every clique in the unique path between those two cliques.

Since Ci∩Cj 6=6 ∅, for (i, j) ∈ E(U), we call such intersection a separator, noted

Sij, and we will label (i, j) with Sij. Now, let us put Definition 4.2.3 another way,

the property says that whenever we have a variable X ∈ Sij, X is also in every

clique in the path that link i and j in U . Now we have all ingredients to define

the JT.

Definition 4.2.4 (Junction Tree). A junction tree is a clique tree that satisfies

the running intersection property 4.2.3.

Since there are different ways to triangulate the moral graph, the JT represen-

tation is not unique. For instance, Fig. 4.2 depicts a JT obtained from DAG G

of student Example 3.2.3. In particular, it shows three separators and four nodes

that correspond to cliques from the triangulated graph of G. We can also see that

{S}, which is equal to {G, I, S} ∩ {J, L, S}, is included in cliques 1, 3 and 4.

Now let us populate T with some data to actually be able to perform inference.

This kind of data is called factors:

Definition 4.2.5 (Factor). A factor over a set of random variables X is a function

φ such that φ : V al(X) 7→ R, where V al(X) = ⊗X∈XV al(X). X is called the

domain of φ and denoted dom(φ)

63

During the inference process, we need to define the combination of factors,

hence we introduce the notion of product between factors, which is defined as

follows:

Definition 4.2.6 (Factor product). Let φ1 and φ2 be two factors over {X1,X2}

and {X2,X3} respectively, with X1,X2 and X3 three disjoint sets of random vari-

ables (possibly empty). The factor product of φ1 and φ2, denoted φ1 × φ2, is the

factor ψ such that:

ψ : V al(X1,X2,X3)→ R

(x1,x2,x3) 7→ φ1(x1,x2)× φ2(x2,x3)

We can say that a CPT in Θ is an example of factor. The next step is to

assign each φ ∈ Θ to a node i ∈ V(T) such that dom(φ) ⊂ Ci. Let φi be the

factor associated with i and initially obtained by computing the product of factors

assigned to the clique Ci.

Definition 4.2.7 (Adjacency). Let i, j ∈ V(T) such that i 6= j. i and j are

1 : GIS

GI

2 : DGI

GS

3 : GLS

LS

4 : JLS

Figure 4.2: A JT for the student example

64

adjacent in T iff (i, j) ∈ E(T). The set of nodes (cliques) adjacent to i is denoted

by Adj(i), i.e., Adj(i) :=
{
k ∈ V(T) : (i, k) ∈ E(T)

}
.

Then the JT algorithm is based on the idea of passing factors between adjacent

nodes using a message passing protocol. For (i, j) ∈ E(T), let ψi→j denote the

factor that is associated with Separator Sij and represent the message sent from

i to j over Sij. Note that since messages will be sent in both directions, we

distinguish between ψi→j and ψj→i. In practice, T will also store the factors of

cliques and separators. For instance, in Fig 4.3, which corresponds to the JT in

Fig. 4.2, we have φ1(G, I, S) = P(S|I)× P(I) and ψ1→2 = ψ2→1 are initialized to

the unity factor 1G,I .

In order to guarantee the correctness of computations, the message-passing pro-

tocol says that the message ψi→j should not be sent in an arbitrary manner, but

it is computed only when clique i has received messages from all its neighbors

except from j. The goal of exchanging a message from node i to j in the junction

1 : GIS

GI

2 : DGI

GS

3 : GLS

LS

4 : JLS

{P(D),P(G|I,D)}

{P(J |L, S)}

{P(S|I),P(I)}

{P(L|G)}

{1G,I}{1G,S}

{1L,S}

Figure 4.3: An initialized JT data structure for the Student Example 3.2.3

65

1 : GIS

GI

2 : DGI

GS

3 : GLS

LS

4 : JLS

∑
J
φ4(J,L,S)=ψ4→3

∑
L
ψ4→3×φ3(G,L,S)=ψ3→1 ψ2→1=

∑
D
φ2(D,G,I)

Figure 4.4: Message-passing during collect

tree is to propagate some information that is known to i but not to j toward j.

After propagating all the messages, all nodes j have received sufficient information

about the other nodes in the JT to be able to compute the joint posteriors of Cj.

One way to organize messages computationis to perform it in two phases,

namely a Collect, using Algorithm 2, and a Distribution, using Algorithm 3

from a predetermined root r ∈ V(T). During the first phase, messages are sent

along edges from leaves toward r and, during the second phase, they are sent in

Algorithm 2: Collect
Input : an initialized JT T and i, j ∈ V(T)

Output: Updated ψi→j
1 φ← φi for

(
k ∈ Adj(i) \ {j}

)
do

2 Collect(k, i)

3 φ← φ× ψk→i

4 ψi→j ←
∑
X∈dom(φ)\Sij

φ

66

Algorithm 3: Distribute
Input : an initialized JTT data structure and i, j ∈ V(T)

Output: Updated separator factors

1 ψ ← φi ×
∏

k∈Adj(i)\{j}
ψk→i

2 ψi→j ←
∑

X∈dom(ψ)\Sij

ψ

3 for l ∈ Adj(j) \ {i} do

4 Distribute(j, l)

Algorithm 4: Junction Tree Algorithm
Input : a JT T of B = (G,Θ)

Output: A JT T with messages in both directions on all the separators

1 for (i, j) ∈ E(T) do

2 ψi→j = ψj→i = 1

3 for φ ∈ Θ do

4 Assign φ to a clique C such that dom(φ) ⊆ C

5 Choose a root r ∈ V(T)

6 Collect(r, r)

7 Distribute(r, r)

the opposite direction. Algorithm 4 corresponds to the JT algorithm and sum-

marizes the discussion we held above. Note that if Ci contains an evidence node

X, then we instantiate X in each φ ∈ Θ such as X ∈ dom(φ) and we obtain a

reduced factor domain. We also want to emphasize that a JT can be a forest, e.g.,

when DAG G is not connected. In this case, the same algorithm is performed in

every connected component of the forest. Later, for simplicity, we assume that

we deal with a tree. Now let us illustrate the JT algorithm on our running ex-

67

1 : GIS

GI

2 : DGI

GS

3 : GLS

LS

4 : JLS

∑
G
ψ1→3×φ3(G,L,S)=ψ3→4

∑
I
ψ2→1×φ1(G,I,S)=ψ1→3 ψ1→2=

∑
S
ψ3→1×φ1(G,I,S)

Figure 4.5: Message-passing during distribution

ample. We assume T is rooted at clique 1. Then Fig. 4.4 illustrates the collect

phase, where we begin to send messages from leaves. In Fig. 4.5 we proceed with

the distribution of messages from the root 1 toward the leaves. After performing

these two phases, in order to have the joint posterior distribution over the vari-

ables in Ci, up to some normalization constant, all we need is to compute the

product φi ×
∏

(k,i)∈E(T) ψk→i. For instance, after Distribution phase in Fig. 4.5,

P (D,G, I) = φ2(D,G, I)× ψ1→2.

In the next section we develop an extension of the JT algorithm.

4.3 Incremental Junction Tree Inference

This section investigates a new approach to overcome the shortcomings discussed

in the introduction section (4.1). It aims at improving the efficiency of inference for

very large and dynamic systems. The key idea of our algorithm, called Incremen-

tal Junction Tree Inference (IJTI), consists of restricting the computations only

to parts of the JT that are relevant to targets and that have been invalidated by

68

j i

k1 k3 r

k4k2

Vj(i)

Figure 4.6: A maximal sub-tree in a JT

incremental changes. IJTI graphically characterizes those parts and thereby mini-

mizes probabilistic computations. Let us introduce some notations and definitions

Definition 4.3.1. Let r ∈ V(T), r 6= i, then Adjr(i) denotes the singleton

set containing the clique adjacent to i that is on the path between i and r, i.e.,

Adjr(i) :=
{
k ∈ Adj(i) : k ∈ i−r

}
, where i−r denotes the undirected path in T

linking i and r. We also define Adjr(r) := ∅. Finally, let Adj-j(i) := Adj(i) \ {j}.

For instance, in Fig. 4.6, Adjr(i) = {k3} and Adjr(k3) = {r}. Finally, let V-j(i)

stands for the set of nodes of the maximal subtree in T that contains i and not

Adjj(i), and let Vj(i) = V-j(i) ∪ {j} (see the shadowed area in Fig.4.6).

A message ψi→j sent within T is directed by nature. It propagates toward

j (and, by induction, toward V-i(j)) all the relevant information coming from

the cliques in V-j(i), notably all the evidence they received (by abuse, we say

that a clique received evidence when at least one of its random variables received

evidence). As a consequence, if ψi→j has already been computed previously and

no new evidence has been received nor structural changes occurred in V-j(i), there

is no need to recompute it. But even if V-j(i) received evidence, ψi→j needs not be

computed/updated if V-i(j) contains no target. In this case, ψi→j’s state becomes

“invalid” since the content of ψi→j is now incorrect. This is not an issue for the

current inference but, for future ones, we have to take this state into account to

recompute ψi→j if it is to be used. Let A(T) be the set of all arcs induced from

69

j i

k1 k3 r

k2

T
ε

T

T

Tε

∅

ε
ε

ε

ε

T
ε

(a)

j i

k1 k3 r

k2

ψi→j

(b)

j i

k1 k3 r

k2

(c)

Figure 4.7: Message passing within a JT T .

E(T), taking into account orientations, i.e., A(T) := ⋃
(i,j)∈E(T){(i, j)} ∪ {(j, i)

}
.

To formalize the above conditions, we begin with characterizing the information

that is "local" to i and j. By local we mean information that only depends on the

content or state of i and j:

Definition 4.3.2 (Local label-message λ). λ : A(T) 7→ 2{ε,T} is a function s.t.

(i, j) 7−→ λi→j :=

{ε} if ψi→j is in “invalid state” or “new evidence or

structural changes” have occurred (1)

{T} if i contains targets (2)

{T, ε} if (1) and (2)

∅ otherwise

To simplify the notation, hereafter, we will remove braces and denote {T, ε} by

Tε. Then, the idea of our algorithm consists of marking every arc (i, j) in A(T)

by labels µi→j expressing all the "local" information that V-j(i) contains.

Definition 4.3.3 (Label-message µ). For (i, j) ∈ A(T), the label-message sent

from i to j is a function µ : A(T) 7→ 2{ε,T} such that µi→j := ⋃
k′∈V-j(i)

{k}=Adjj (k′)

λk′→k.

70

As an example of the previous discussion, imagine that a first incremental

update impacts the initial DAG and consequently the initial T of Fig. 4.6. This

consists of the removal of k4, the insertion of an evidence on r and a new target on

k1. Fig. 4.7a depicts the µ-messaging within T after this update, where dashed and

dotted ellipses stand for the cliques containing targets and evidence respectively.

One can easily see that, for instance, µi→j = ε, µj→i = T and µj→k2 = Tε. The

following proposition allows to recursively construct the µ-messages:

Proposition 4.3.4 (µ construction). Let (i, j) ∈ A(T), then we have : µi→j =

λi→j ∪
⋃
k∈Adj-j(i) µk→i.

All the proofs are provided in the appendix at the end of this manuscript.

4.3.1 Optimal Roots

Let us recall that ψi→j denotes the message exchanged between cliques i and j

during an inference computation. It shall not be confused with the label message

µi→j of Definition 4.3.3. As we can notice from the JT algorithm description, the

number of computations performed by a JT-based message-passing algorithm does

not depend on the root clique selected for collect/distribution because the ψi→j
messages are sent on both directions on all the edges of the JT. For IJTI, this

is not the case, since this algorithm computes and sends only the ψi→j messages

necessary for the computation of the posterior distributions of its target nodes.

On some edges, IJTI will therefore not compute some ψi→j messages because

they are irrelevant w.r.t. the targets posterior distributions. As a consequence

the number of computations performed in IJTI is sensitive to the root selection.

For instance, in the JT of Fig. 4.6, if clique i received evidence and the only

target is j, only message ψi→j from i to j is necessary, which is precisely what

is sent if clique i is selected as root (here, only a distribution is necessary). But

71

if clique k4 is selected instead, message ψi→k4 needs to be sent during the collect

and messages ψk4→i and ψi→j need to be sent during the distribution, which is

clearly not optimal. To determine the optimal roots, let us define δi→j(r) as an

indicator of whether message ψi→j is recomputed (in this case, δi→j(r) = 1) or not

(δi→j(r) = 0) when r is selected as a root. In IJTI, we therefore seek to minimize

δ(r) = ∑
(k′,k)∈A(T) δk′→k(r), which corresponds to the total number of messages

recomputed and sent. Based on the discussion of the preceding section, we can

write:

δi→j(r) =

1 if (ε ∈ µi→j and{j} = Adjr(i)) or

(ε ∈ µi→j and{i} = Adjr(j) and T ∈ µj→i)

0 otherwise

(4.1)

The first line of Eq. (4.1) concerns collect messages ({j} = Adjr(i)). It asserts

that collect message ψi→j needs to be recomputed only if it is currently in an

invalid state or if new evidence or structural changes have occurred in V-j(i) (ε ∈

µi→j). When this is not the case, clearly, this message is up to date and does not

need recomputation. The second line of Eq. (4.1) concerns distribution messages

({i} = Adjr(j)). It asserts that ψi→j needs to be recomputed only if there exists

a target farther toward the leaves of the JT (T ∈ µj→i) and if some evidence

has been received on V-j(i) or some message coming from V-j(i) has been updated

(ε ∈ µi→j). Eq. (4.1) can be rewritten more compactly as:

δi→j(r) =

1 if ε ∈ µi→j and

({j} = Adjr(i) or ({i} = Adjr(j) and T ∈ µj→i))

0 otherwise

(4.2)

Fig. 4.7b and Fig. 4.7c illustrate that δ(k3) = 5 and δ(i) = 4 respectively. In this

case, it is better to select i as a root rather than k3 since this avoids the unnecessary

72

computation of one message. The following theorem states the existence of some

optimal roots and characterize them:

Theorem 4.3.5 (Optimal roots). Suppose we computed the µ-messages within T .

Then there exists r ∈ V(T) fulfilling one of the following mutually exclusive and

exhaustive properties:

1. (V(T), E(T)) = ({r}, ∅)

2. ∃r′ ∈ V(T) : µr′→r = µr→r′ = Tε

3. ∀k ∈ Adj(r) : µk→r ∈ {T, ε, ∅}

In addition, r ∈ Argmink∈V(T)δ(k), i.e., r is an optimal root w.r.t. inference

computations.

4.3.2 A new Incremental Inference

In this section, we propose a new algorithm designed to deal with incremental in-

ference. We assume that a first inference has been performed by message-passing

within T , using for instance a collect-distribute algorithm in a JT-based inference

architecture. Afterwards, incremental changes occur. Then IJTI is called to opti-

mize the inference process. We recall that we use a target-driven approach, hence,

we recompute only invalidated collect messages and we only distribute messages

up to the targets. Under these assumptions, the proposed algorithm is described

in Algorithm 5. It runs a revised message-passing algorithm to compute ψi→j only

when δi→j(r) = 1 for all i, j in the modified junction tree T . In line 5, a leaf clique

i is such that |Adj(i)| = 1. We emphasize that computing messages is performed

similarly to a classic JT-based inference algorithm. The correctness of IJTI is

guaranteed by the following proposition:

73

Algorithm 5: Incremental Junction Tree Inference (IJTI)
input : modified T , Q targets cliques

output : posteriors on targets

// set the number of neighbors visited during the collect

1 for i ∈ V(T) do

2 i.nbV N ← 0

3 Compute the µ-labels in T

4 Find r using Theorem 4.3.5

5 L← the set of leaves of T

// collect phase

6 foreach clique i ∈ L do

7 p← Adjr(i)

8 if δi→p(r) = 1 then Compute ψi→p
9 p.nbV N ← p.nbV N + 1

10 if p 6= r and p.nbV N = |Adj(p)| − 1 then L← L ∪ {p}

11 L← L \ {i}

// distribution phase

12 L← {r}

13 foreach clique i ∈ L do

14 foreach j ∈ Adj(i) \ Adjr(i) do

15 if δi→j(r) = 1 then

16 Compute ψi→j
17 L← L ∪ {j}

18 foreach clique t ∈ Q do

19 Compute the posterior distributions of the target nodes in clique t

20 return posterior distributions
74

Proposition 4.3.6. The IJTI algorithm is sound, i.e., computing only messages

ψi→j such that δi→j(r) = 1, for all (i, j) ∈ A(T), results in the correct computation

of the posterior distributions of the target variables.

4.4 Evaluation

We performed two kind of experiments to evaluate IJTI. First, the gain is evaluated

in terms of the number of saved messages and second, it is expressed in terms of

computations time.

4.4.1 Messages Optimization

In this section, we highlight the effectiveness of our algorithm by comparing the

gain of using it instead of any non-incremental JT-based inference algorithm. The

gain can be expressed as the percentage of unnecessary messages that IJTI avoids

to compute compared to the messages sent by classical inference algorithms on

both directions on all the edges and this amounts to 1− δ(r)/(2|E(T)|). For this

purpose, we performed tests using the aGrUM library on 9 real-world BNs of

different complexities as well as on randomly generated BNs. The latter contained

nbNodes Boolean random variables, (6 ≤ nbNodes ≤ 900, see Fig. 4.9) and, for

each value of nbNodes, 3 BNs were generated with nbArcs arcs, nbArcs being

chosen randomly in the interval [nbNodes− 1, 4/3 ∗ nbNodes− 1]. We simulated

the incrementality by randomly choosing for each inference a set of targets and

modified cliques. This induced invalid messages in T . Fig. 4.8 and Fig. 4.9 show

the average gains and their standard deviations (error bars over 20 incremental

inference queries) 1. Note that the behavior of the algorithm is the same for real-
1In Fig. 4.8.a, due to the small number of nodes and arcs in the BNs, percentages of modifi-

cations lower than 10% imply no modification at all, hence the lack of error bars.

75

10 20 30 40 50 60 70 80
BN modification %

20

40

60

80

100
ga
in
 %

survey
asia
insurance
water
alarm

hepar2
pigs
diabetes
link
win95

10 20 30 40 50 60 70 80
modification %

20

40

60

80

100

 g
ai
n
%
 +
 st

d

asia
hepar2
survey

10 20 30 40 50 60 70 80
modification %

20

40

60

80

100

 g
ai
n
%
 +
 st

d

alarm
diabetes
insurance
water

10 20 30 40 50 60 70 80
modification %

10

20

30

40

50

60

70

80

90

 g
ai
n
%
 +
 st

d

link
munin4
pigs
win95

Figure 4.8: IJTI messages optimization for real BNs

world BNs and for randomly generated ones. As could be expected, the smaller

the modifications, the bigger the gain. Note also that the gain is not too sensitive

to the size of the BN. Fig. 4.9 also shows the same behavior of the gain for larger

randomly generated BNs.

4.4.2 Time Optimization

In this experiment, we want to test IJTI in terms of time consumption while re-

flecting incremental queries of the WM by the BRMS engine. As we are interested

in local modifications of the JT, we evaluate the performance of IJTI when the

modification impacts less than 40% of the BN size.

The BRMS engine execution may induce incremental changes in the WM and

trigger probabilistic inference many times. Hence, a simulation of such an ex-

76

10 20 30 40 50 60 70 80
modification %

0

20

40

60

80

100

 g
ai
n
%
 +
 st

d

6
12
18
30

10 20 30 40 50 60 70 80
modification %

20

40

60

80

 g
ai
n
%
 +
 st

d

45
55
65
80

10 20 30 40 50 60 70 80
modification %

10

20

30

40

50

60

70

80

 g
ai
n
%
 +
 st

d

95
120
300
600

10 20 30 40 50 60 70 80
modification %

10

20

30

40

50

60

70

80

 g
ai
n
%
 +
 st

d

900
1050
1200

Figure 4.9: IJTI messages optimization for artificial BNs, each curve corresponds to a

BN size

ecution will be reflected on the probabilistic side by changing evidence and/or

structure of the JT (new arcs, nodes and evidence added or removed) and per-

forming a number of probabilistic inference. Moreover, in order to see the impact

of evidence/targets size, each simulation fixes the set of targets and evidence.

We therefore control the percentage of modifications that produce the structural

changes, let it be hard_change, and those which only change evidence without

impacting the structure, let it be soft_change. Actually our junction tree-based

architecture processes differently hard and soft evidence as follows. On one hand,

when adding/removing hard evidence to/from BN, one must systematically recon-

struct a new JT. On the other hand, a soft evidence entails such a reconstruction

only when the evidence node does not belong to the current JT. Finally, note that

77

the probabilistic inference is only triggered after some change occurs in the JT,

otherwise the previous computations are still valid. Algorithm 6 summarizes the

approach we use to simulate the incrementality and record the computations time

to quantify the gain obtained using IJTI.

Algorithm 6: Simulation of incremental inference using IJTI
Data: BN, hard_change and soft_change percentages, target and

evidence percentages

Result: Records for computation times

1 Set initial target and evidence set

2 Compute posterior of targets

3 foreach hard_change and soft_change percentage do

4 repeat

5 Randomly choose targets and evidence w.r.t initial percentages

6 Compute posterior of targets

7 repeat

8 Introduce hard_change, soft_change into the JT of BN

9 Compute posteriors of targets

10 Record inference time

11 until number of inferences per simulation is reached;

12 until an average criterion is reached;

As we randomly select evidence and targets set, the simulation repeats the

selection at line 4 in order to report average results. In practice we iterate this 20

times. As we discussed earlier, a simulation corresponds to a sequence of calling

the probabilistic inference after introducing some changes. This is expressed by

the repeat loop at line 7, which also corresponds to 20 in practice .

As the percentage of evidence/targets increases, the inference times increase and

78

0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40
evidences %

0.0

0.2

0.4

0.6

0.8

1.0

tim
e
ga

in
 %

water-0-0.35
0.03
0.06
0.11

0.17
0.22
0.28

0.33
0.39

0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40
evidences %

0.4

0.5

0.6

0.7

0.8

0.9

1.0

tim
e
ga

in
 %

alarm-0-0.1
0.03
0.06
0.11

0.17
0.22
0.28

0.33
0.39

0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40
evidences %

0.2

0.3

0.4

0.5

0.6

tim
e
ga

in
 %

hepar2-0-0.25
0.03
0.06
0.11

0.17
0.22
0.28

0.33
0.39

0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40
evidences %

0.2

0.3

0.4

0.5

0.6
tim

e
ga

in
 %

diabetes-0-0.1
0.03
0.06
0.11

0.17
0.22
0.28

0.33
0.39

Figure 4.10: Average time gains for some real BNs. The title expresses hard and soft

change percentages respectively. Each plot corresponds to a target %

the computations that are still valid from previous inferences are reduced. So the

average gain decreases. The latter is computed as follows. For each pair of targets

and evidence percentages, we averaged inference time over 20 × 20 = 400 proba-

bilistic queries following the schema in Algorithm 6. Let tIJTI (resp. tLP) be the

resulting average for IJTI (resp. Lazy Propagation, a state-of-the-art algorithm

similar to that described in Algorithm 4). The average gain can be expressed as

1− tIJTI/tLP .

In this experiment, we are only interested in real BNs. The x-axis of Fig. 4.10

shows evidence percentages while the averaged time gain appears on the y-axis. For

each BN, a figure corresponds to a fixed parameter soft_change and hard_change,

which is also showed in the title. We recall that these two parameters are used to

79

0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40
evidences %

0.2

0.4

0.6

0.8

1.0
tim

e
ga

in
 %

pathfinder-0-0.15

0.03
0.06
0.11

0.17
0.22
0.28

0.33
0.39

0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40
evidences %

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

tim
e
ga

in
 %

hailfinder-0-0.2
0.03
0.06
0.11

0.17
0.22
0.28

0.33
0.39

0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40
evidences %

0.2

0.3

0.4

0.5

0.6

tim
e
ga

in
 %

pigs-0-0.25
0.03
0.06
0.11

0.17
0.22
0.28

0.33
0.39

0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40
evidences %

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

tim
e
ga

in
 %

mildew-0-0.1
0.03
0.06
0.11

0.17
0.22
0.28

0.33
0.39

Figure 4.11: Average inference time gains for other real BNs. Each plot corresponds to

a target %

update soft and hard evidence between inference iterations. It may be seen clearly

that, after being significant in small percentages, the gain falls as the percentage

of change increases. We explain this by the fact that the reuse of previous com-

putations, hence our optimization, is more significant in small or local changes.

We have similar behavior for other real BN as Fig. 4.11 depicts. We also notice

a general behavior of both algorithms showing that the bigger the percentage of

changes, the bigger the inference times. Fig. 4.12b shows an example of this be-

havior in the Alarm network. Finally, we want to emphasize that, if in addition we

introduce structural changes to the JT, i.e., hard_change 6= 0, the gain decreases

steeply, even for small structural changes, and stabilizes quickly to almost no gain.

Fig. 4.12a illustrates this in the case of Alarm and Insurance networks. This is due

80

0.1 0.2 0.3 0.4 0.5
evidences %

0.0

0.2

0.4

0.6

0.8

1.0

tim
e
ga

in
 %

alarm-0.1-0.1
0.03
0.06
0.11
0.17

0.22
0.28
0.33

0.39
0.44
0.5

0.1 0.2 0.3 0.4 0.5
evidences %

0.0

0.2

0.4

0.6

0.8

1.0

tim
e
ga

in
 %

insurance-0.1-0.2
0.03
0.06
0.11
0.17

0.22
0.28
0.33

0.39
0.44
0.5

(a) Average gain in the presence of JT structural changes

0.0 0.1 0.2 0.3 0.4 0.5

evidence percentages

0.000

0.005

0.010

0.015

0.020

ti
m
e
/
s

0-0.2-0.17

Lazy Propagation

Incremental Inference

(b) Inference time for Alarm net-

work. Title corresponds to

(hard_change, soft_change, targets%)

to the fact that the current implementation of IJTI spends more time to discover

the valid zones in the JT, and this time impacts negatively the overall inference

time. We refer to Section B of the Appendix for more results about the inference

times and the gain obtained for different networks and parameters.

4.5 Conclusion

In this chapter, we introduce IJTI, a new incremental junction-tree-based inference

algorithm for multi-target dynamic systems. Assuming that a first complete infer-

81

ence has been performed, it first identifies an optimal root and second optimizes

the inference accordingly. The correctness of these two optimizations is proved and

experiments highlight that the algorithm allows for important savings compared

to classical ones in the presence of local changes. In particular, we show that IJTI

outperforms state of the art inference algorithms for small or local changes and

the gain is more important when there is no structural changes impacting the JT.

In the next chapter, we deal with the issue of uncertainties in modern BRMSs.

We present a coupling approach with PRMs and we see that IJTI is well-suited to

answer probabilistic queries in such a context.

82

Chapter 5

Business Rules Uncertainty

Management

5.1 Introduction

We mentioned in Chapter 3 that uncertainty is inevitably present in real world

applications. Thus, in order for BRMSs to support more realistic decisions, han-

dling domain uncertainties becomes a must. In this chapter, we see how a coupling

approach can be a solution for modern BRMSs to effectively manage uncertain-

ties. The solution we propose adds probabilistic reasoning feature by coupling

the BRMS with a probabilistic engine. A complete integration is also conceiv-

able as in [122], where the RBS engine is extended to manage rules and their

uncertainties in the same time. However, we argue that separating concepts and

architectures simplifies the software development and maintenance, and provides

more control over the environment complexity (language refactoring, testing, etc.).

In fact, probabilistic inference is a complex process that would be inefficient for a

rule engine to manage besides its own inference. Therefore, we are interested in a

loosely coupled architecture to facilitate inter-operability and insure a clear sepa-

83

ration between business and probabilistic logics. Doing so, we want to avoid the

inter-independence between modules in tightly coupled systems, where a change in

the uncertainty management will require changes in rules management. The loose

coupling services principle is largely advocated in SOA alongside the decoupled

contract design pattern [41]. The key idea of such a principle is to allow a service

contract to be expressed independently of its implementation. In our context, this

would reduce dependencies between business logic and uncertainty management

implementation. We want to have a transparent uncertainty management while

being independent from the probabilistic implementation of that service. For ex-

ample, one might change the probabilistic engine in the future without altering

the service contract. This chapter, provides an approach that couples BRMSs and

PRMs. It describes how such an approach is articulated and how it ensures a prac-

tical probabilistic reasoning support. Finally, the chapter applies the approach to

ODM.

5.2 Coupling BRs with PRMs

5.2.1 Uncertain OO-BRs Principles

From Chapter 2 we recall that BRs are rules in the form “If <condition> Then

<action>” that are exploited for reasoning by forward chaining inference engines.

OO-BRMSs execute BRs against an OM that describes the application objects

based on a data model. In this latter we can differentiate two components, which

include an executable data model that can be implemented in JAVA or XML

schema, and a business-oriented model, which uses specific vocabulary and terms

familiar to business users and is expressed in a domain-specific language. Hence,

WMEs (or facts) are objects in the sense of the OO paradigm. It follows that an

elementary action or condition operates on tuples rather than simple values.

84

A single action affects WMEs by inserting a new object, removing an existing

object or updating an existing object. Each of these actions potentially leads to a

re-evaluation of any rule that matches the object in question.

It turns out that there exists a natural mapping between model elements in BRMSs

and PRMs. We illustrate this through a simplified example from an insurance

application. This example is not intended to be exhaustive but rather to illustrate

necessary concepts.

Example 5.2.1 (Simple insurance application). An insurance organism allows

its subscribers to request reimbursements depending on invoice types. A request

must be validated by a health care professional and each subscriber can have many

reimbursement requests.

A simplified representation of the model would consist of three classes rep-

resenting a healthcare professional, a subscriber and a reimbursement request.

Fig. 5.1 gives a UML class diagram for such an application. In a fraud detection

context, we want to verify, using a BR-based approach, whether the healthcare

professional is fraudulent. In such a context, anomalies that indicate fraud are

detected by executing a set of rules and using scoring heuristics. For instance,

if a fraud detection rule says that an excessive invoice alert must be raised on a

healthcare provider who submits a high price reimbursement request for one of his

subscribers, the corresponding object-oriented BR in Rule 5.1 will look for objects

in the WM that correspond to providers with subscribers requesting reimburse-

Reimbursement
type : enum
price : enum

HealthcareProfessional
subs : Subscriber[]
 age : int
 sex : enum
 location : enum

Subscriber
reimbs:Reimbursement[]
 age : int

Figure 5.1: UML diagram for Example 5.2.1

85

ments with a high price.

Rule 5.1: detect invoice anomaly

1 IF hp has type HealthcareProfessional

2 & sub has type Subscriber

3 & reimb has type Reimbursement

4 & sub in hp.subs & reimb in sub. reimbs

5 & reimb.price == high

6 THEN raiseAlertExceededInvoicePrice (hp)

Similarly, Rule 5.2 says that a lens age anomaly alert must be raised on a healthcare

professional who submits a lens reimbursement request for a subscriber under age

10.

Rule 5.2: detect lens anomaly

1 IF hp has type HealthcareProfessional

2 & sub has type Subscriber & reimb has type Reimbursement

3 & sub in hp.subs

4 & reimb in sub. reimbs

5 & sub.age < 10 & reimb.type=lens

6 THEN raiseAlertLensAgeAnomaly (hp)

When the data is completely known and well adapted to the classical logic paradigm,

such rules are well handled using variants of pattern matching algorithms, e.g, en-

hanced Rete. However, when coping with uncertain or missing data, such rules

cannot be executed. That is exactly where PRMs can play an important role to

handle such a situation.

In Example 5.2.1, we specified three classes. Fortunately, PRMs allow also to

handle OO concepts, such as class and references. This remark is fundamental in

our case since it will simplify the communication between both rules and proba-

bilistic engines. The corresponding PRM representation for the running Example

86

Reimbursement

typeprice

Subscriber

age exists texists p

risk

reimbs

HealthcareProfessional

age sex location
subs

exists stexists sp

risk

type riskprice risk

fraud

Figure 5.2: Class dependency schema for the insurance example

5.2.1 is given in Fig. 5.2. In particular, we found exactly three PRM classes related

to each other, in a way that is similar to class interactions in the UML diagram

5.1. The attribute reimbs of class Subscriber can be seen as a multiple reference

slot, which shows that the class points to a set of Reimbursement. In this exam-

ple, we need to aggregate the informations about all reimbursement requests that

belong to a subscriber. Hence, some PRM aggregators should be introduced. A

divide-and-conquer approach is used to build PRM aggreagators in Fig. 5.2. We

first determine whether the Subscriber has a Reimbursement with a high price

(by the exists_p aggregator); second, we determine if the HealthcareProvider

is linked to a Subscriber satisfying the previous condition (by the exists_sp

aggregator). We follow the same reasoning to generate the aggregator exists_st.

Fig. 5.3 depicts an example of a relational skeleton obtained from the fraud ex-

ample instances. A dashed arc stands for a reference slot. For instance sub1

references reimb1 and reimb2. Now that we have an equivalent PRM for rules

classes definitions, we are able to execute rules that manipulate objects with uncer-

87

hp: HealthcareProfessional

sub1:Subscriber

sub2:Subscriber

reimb1:Reimbursement

reimb2:Reimbursement

reimb3:Reimbursement

Figure 5.3: A relational skeleton for the fraud example

tainty in their attributes. As an obvious consequence, attributes with uncertainty

in the rules are directly mapped to their equivalent PRM attributes. In addi-

tion, instead of evaluating Boolean expressions in the condition part, we introduce

a probability operator to trigger the probabilistic engine inference. Thus, an

enhanced version for Rule 5.1, which says basically that an alert must be raised

when a healthcare professional submits a expensive price reimbursement for a sub-

scriber, we can have Rule 5.3 that says that an excessive invoice alert must be

raised on a healthcare professional if there is a 80% probability that the price of a

reimbursement request is excessive.

Rule 5.3: detect invoice anomaly with probability

1 IF hp has type HealthcareProvider

2 & probability (hp. price_risk =high) >.8

3 THEN raiseAlertExceededInvoicePrice (hp)

To summarize the approach, handling uncertainty in OO-BRMSs using PRMs is

based on the idea of model mapping and the introduction of a probability operator

in the rules syntax, which is responsible for triggering probabilistic inference. The

mapping itself relies on the fact that both models share many interesting OO

concepts such as classes and relations. The probabilistic knowledge encoded by the

PRM pertains to our knowledge about the business domain. This is emphasized

through relating the PRM to the OM that expresses business concepts,1 rather
1see discussion about OM vs knowledge base in Section 2.3

88

than rules that are likely to evolve. The next subsection specifies in more details

the extensions we need to implement these principles.

5.2.2 Model Extension

As we discussed previously, PRMs relate attributes of different classes, and those

of generated instances consequently, and have the advantage to create complex

networks covering multiple instances. Although, random variables are generated

from the same classes, they should be regarded as distinct variables with their

own life-cycle. For instance, sub1.risk and sub2.risk in Fig. 5.3 are two dis-

tinct random variables generated from class Subscriber. We know from Fig. 5.2

that price_risk attribute is linked by reference mechanism to attributes of classes

Subscriber and Reimbursement in the PRM, hence, in our extension, there is no

need to evaluate conditions that can be processed by probabilistic inference. For

instance, the operator in, used in Rule 5.1 to constrain the domain of an object,

is implicitly specified through the link of reference slot subs. When the engine en-

counters the probability operator, it immediately launches a probabilistic query,

i.e., it queries the underlying PRM. In such an extension, probabilistic data is

explicitly identified and can be processed by PRM engines.

We extend both model and meta-model of the rules. First by enriching the model

with new attributes as in the previous section and second by adding probabilistic

annotations. This has two advantages. The first is moving probabilistic definitions

from rules to their data meta-model. In making this move, probabilistic model and

inference handling2 are externalized to the PRM engine, which implies a separate

management of business and probabilistic logic. Second, this enables the model

to be more independent w.r.t. the rules, which means an independent evolution of

both models.
2Bear in mind that the probabilistic model definition is held by the rules OM.

89

Annotations are a type of meta-data that enriches the meta-model at hand. In this

work, they are added to indicate that a class contains probabilistic information,

as well as that an attribute is mapped to a PRM attribute and is parameterized

by its corresponding CPT and parents. If the attribute is an aggregator, annota-

tions show its type, its domain and the concerned modalities (the possible states

or values of the random variables). Therefore, an OM class (resp. an attribute) is

mapped to a PRM class (resp. an attribute) and the probabilistic data and how

classes are related to each other are extracted from the OM annotations. In the

OM, a restricted type represents a type whose domain is restricted, for instance

an integer that is restricted to {0, 1, 2}. Only discrete random variables are sup-

ported in PRMs, they can be user-labeled (e.g, state_type) or built-in types (e.g,

Boolean,int). Thanks to these annotations, the rules engine can generate the un-

derlying PRM classes and system at compile time. Before the generation process,

the model is parsed and checked. For example we check if the given list of a PRM

attribute parents is valid and consistent with its CPT. This latter is also checked to

verify it represents a well defined probability distribution. Actually, there are two

possible modes for PRM system definition. The first is a static declaration, which

assumes that all WM instances are known at compile-time. The PRM system is

then generated either by directly processing the WM instance graph, or by an

explicit declaration inside a special annotated class, which also specifies necessary

relations. The second mode allows a dynamic definition in addition to the previ-

ous mode. Here, rules’ executions may also update the system by incrementally

inserting new instances or modifying relations for instance. The last mode is ob-

viously much more interesting since it reflects BRs and the WM dynamic nature.

The mapping we use allows the rules to generate complex probabilistic networks

via the simple mechanism of class instantiation and reference slot. This property

enables the rules, for instance, to handle many sets of random variables, which are

90

Figure 5.4: ODM life-cycles

obtained for free, just by means of linking instances.

5.3 Application to IBM ODM

The aim of this section is to provide a practical view of the foundations introduced

in the previous section. Our implementation is based on IBM ODM [63] as an

OO-BRMS and a Graphical Universal Modeler (aGrUM) [49] as a probabilistic

engine. It is important to emphasize that the methodology we applied can be

easily generalized to any OO-BRMS as we showed previously. This section gives an

overview of the ODM functionalities and is mainly built from material in [19, 63],

where a more detailed presentation is given.

5.3.1 Overview

The ODM platform is a set of complex modules and applications that operate

together in different environments while ensuring a clear separation between IT and

business life-cycles as it is shown in Fig. 5.4. ODM enables organizational policies

to be defined, deployed, monitored and executed in an application server. In ODM,

91

business users and developers use tools that reflect their different skills and role

within the business application. Fig. 5.5 depicts the main components that ODM

provides for decision service development, rule management and authoring, and the

execution environment. On one hand, Decision Server provides tools development

and runtime components. It mainly consists of:

• The Rule Designer, which is an IDE that comes as an Eclipse plugging and

provides many capabilities to design, author and test rules. Fig. 5.6 shows

an in-depth view of the rule designer

• Rule Execution Server is a JEE container that provides the runtime environ-

ment for running and monitoring decision services and ensuring a transac-

tional propagation and security control. The console is a web-based applica-

tion to manager ruleset of the server.

On the other hand, Decision Server also interacts with Decision Center where

business users can author, manage, validate, and deploy decision services relatively

independently from IT specialists. The rule designer provides necessary tools to

develop all rules artifacts, such as OMs, rule projects and rule flows. Fig. 5.6

depicts a general view of the rule designer with some rule artifacts. As far as

ODM is concerned, the executable data model discussed in Section 5.2.1 is called

eXecutable OM (XOM) and the business layer that defines the vocabulary used

by BRs is called Business OM (BOM). The XOM corresponds to the physical data

model that references the application objects 3 and data, and is the base imple-

mentation of the BOM. ODM gives a flexible way to define the XOM from different

data sources such as Java, .NET, XML or COBOL. Furthermore, the BOM is a

model that is similar to the Java OM and whose elements resonate with those of

the XOM. The latter represents the class model against which rules are run. The
3These objects are POJOs that the rule engine manipulates as WM elements

92

Figure 5.5: ODM Components View

Figure 5.6: A screen view of IBM rule designer

high level language used by business professionals to edit rules is called Business

Action Language (BAL). The rules that are defined using BAL are called action

93

rules and they are based on the well known IF/THEN-ELSE constructs. BAL is

essentially designed to help business professionals to enter BRs in a more human

readable format.

Knowledge in the rule engine is built using the ILOG Rule Language (IRL), a

Java-like programming language, which is actually the rules technical and execu-

tion language in ODM. Therefore, every rule artifact should be translated into IRL

as it is the only language the rule engine can understand. Rules that are written

using the IRL are called technical rules and follow the the general syntax in Fig.

5.7. We would like to emphasize that ODM allows for a BOM-to-XOM mapping

mechanism that is based on a specific XML schema. The latter must be provided

1 rule ruleName {

2 when{

3 // conditions :

4 <condition >;

5 [<condition >;]*

6 [evaluate (<then/else discrimination test >);]

7 }

8 then{

9 // action if ’when ’ is satisfied

10 [<action >;]*

11 }

12 [else{

13 // actions otherwise

14 [<action >;]*

15 }]

16 }

Figure 5.7: General form of IRL technical rules

94

at compilation for every rule artifact that is created directly from the BOM in

order to be executed at runtime. In this way, ODM provides a semi-automated

mapping that allows action rules to be translated during the compilation into tech-

nical rules. However, such an automation may require an IT specialist’s insight

and intervention to operate.

Now, let us summarize the most common IRL constructs that are used in the

condition part, i.e., declared inside the when part, and let us give their meaning

and a corresponding usage.

• Class conditions are the simplest form of conditions. They bind a variable

to a pattern, which consists of a type name and, potentially, inside of paren-

theses, some constraints on the type attributes. For instance the following

condition:

s: Subscriber (location =="Paris")

binds a variable s to patterns from the WM that are matched by any

Subscriber located in Paris.

• exists: this keyword checks the existence of a WME that satisfies the condi-

tion. The condition below is satisfied whenever a Subscriber WME located

in Paris is found.

exists Subscriber (location =="Paris")

• from is used inside the rule to access ruleset parameters. These are a special

type of parameters that are used to exchange data between the application

and the ruleset. If we assume that healthProfessional is a ruleset input

parameter, which is previously defined, then the following condition binds

the variable hp to that parameter.

95

hp : HealthcareProfessional () from healthProfessional ;

• in restricts the scope of a variable to a collection of values

sub : Subscriber ();

reim : Reimbursement () in sub. reimbursements ;

• not statement returns true if there is no WME matching the condition. In

order to express the negation of the exists operator, using the not operator

(without in/from) is preferable to using not exists. For example, the

following condition is satisfied when there is no subscriber in the WM located

in Paris.

not Subscriber (location =="Paris")

• Aggregates compute a value from a collection of values. Examples of aggre-

gations are the average, sum, or maximum of a numeric collection. Here is

an example of a condition that computes the total amount of all reimburse-

ments. When we want to condition the result of the aggregate, the keyword

where is used4.

agg: aggregate {

reimb: Reimbursement ();

}do{

sum{reimb.price}

} where{agg >20}

The BR engine is a central component in ODM as in every RBS. It manipulates

state-full, history-aware Java objects and supports three execution algorithms,

namely the Rete algorithm, the sequential algorithm and the Fastpath algorithm.
4Note that exists can be seen as a special case of aggregate.

96

Figure 5.8: ODM rule engine in Rete mode

We give an overview of the first one, a description of the remaining algorithms

might be found in [19].

As we already discussed in Section 2.3.2.2, the rule engine compiles the ruleset (RB)

into a complex network that orders efficiently rules conditions and we called this

network the Rete network. As it is shown in Fig. 5.8, WMEs are later evaluated

against this network and if a match is found, an instance of the corresponding rule

is triggered in the agenda. The latter is responsible for ordering, selecting and

executing rules’ instances. Algorithm 7 gives an overview of how the Rete works

in ODM. Note that the execution of a rule instance may update the WM. Thus,

it triggers a re-evaluation of the rules against the WM.

5.3.2 A Complex Compilation Process

Previous studies initiated the work to investigate how probabilities could be in-

tegrated into ODM and proved the feasibility of such an approach [7, 10, 105].

However, they were essentially based on BNs framework, where each class is asso-

97

Algorithm 7: ODM engine cycle execution in Rete mode
Input : WM, agenda, ruleset

Output: Rule Execution

1 repeat

2 Pattern-match condition rule parts with the WM

3 Create an agenda rule instance when there is a match

4 Select rule instance to be run using a conflict resolution strategy

5 Execute the condition part of the selected rule instances // leads to

adding, removing or updating a WM element

6 until agenda contains no more rule instance;

ciated with a BN without no possible reference to probabilistic attributes outside.

Also, the definition of the BN cannot be directly inferred from the class definition.

Obviously, this is not a realistic use and rules conditions must query only vari-

ables of the object being handled. This means a strong correlation between the

probabilistic model and the ruleset and this results in redundant BNs definitions.

We already discussed some of the limitations facing BNs and we mainly related

them to the lack of the object concept, see discussion in Section 3.3. Furthermore,

probabilistic engines that are based on modeling only with BNs do not support

reference mechanism, which is essential to objects management in BRMSs. There-

fore, it is natural to investigate what PRMs can offer in our context.

To begin with, let us show the XOM classes obtained for Subscriber and

the system of our running example. Consider Fig. 5.9 line 1, the annotation

@PrmClass is a mark to tell the compiler it is handling a probabilistic class. The

latter necessarily contains some probabilistic attributes, which are annotated with

@PrmAttribute. They carry the information needed to describe their counterpart

98

PRM attributes. For instance, age in line 6 has no parents and a CPT describing

whether the subscriber is under the age of 10 is provided. Note that AgeType at

line 6 is an Integer restricted type. @PrmAgg marks the attribute as an aggrega-

tor. In line 11, the annotation specifies a list of the attribute parents and its CPT.

In this example, we implemented the static mode. So, instances are specified as

internal attributes of the system class that is annotated with @PrmSystemClass in

line 15. Reference slots are set inside the class constructor at line 22. Finally, the

relational skeleton in Fig. 5.3 is generated from this system class.

The compilation process is based on a series of model re-writings. This is a pow-

erful tool that allows ODM not only to abstract instructions from their implemen-

tation, but also to conserve the rule paradigm. Practically, the IRL rules life-cycle

is completely separated from that of BAL rules. As a consequence, changing the

implementation is possible without altering every BR.

When BRs are entered using the BAL, they are first translated into IRL rules by a

rewriting procedure. Second, the resulting ruleset is checked and parsed to obtain

a ruleset semantic model as an Abstract Syntax Tree (AST). At this level, the

result may undergo recursive rewritings, on top of which one has different types of

plugins. Then, the ruleset AST is compiled while taking into account the chosen

algorithm. Again, this phase can be parameterized by various plugins according

to the algorithm to be used, e.g., Rete. The output at this stage is optimized and

transformed to obtain the semantic OM. This latter is a powerful meta-model,

it can be seen as an extension of the Java meta-model that allows compilation,

sources processing and model definition. There is no longer semantic rulesets here,

but, instead, an object model that encodes the rule semantics (condition and ac-

tion) inside the generated classes and methods. Other operations may appear such

as the BAL/IRL mapping and the linkage with outside applications via services

mechanisms. The final result is persisted and jitted into an archive that can be

99

1 @ PrmClass

2 public class Subscriber {

3 @ PrmMultiReference

4 public Reimbursement [] reimbs ;

5 @ PrmAttribute (parents ={}, cpt ={{.2} ,{.8}})

6 public AgeType age;

7 @ PrmAgg (name =" exists ", attribute =" reimbs .type",mod =" lens ")

8 public boolean exists_t ;

9 @ PrmAgg (name =" exists ", attribute =" reimbs .price",mod =" high ")

10 public boolean exists_p ;

11 @ PrmAttribute (parents ={" age "," exists_t "}, cpt

={{.2 ,.6 ,.5 ,.3} ,{.8 ,.4 ,.5 ,.7}})

12 public boolean risk;

13 }

14

15 @ PrmSystemClass

16 public class System {

17 public HealthcareProvider hp = new HealthcareProvider ();

18 public Reimbursement [] reimbs = new Reimbursement [3];

19 public Subscriber [] subs = new Subscriber [2];

20 public System (){

21 hp.subs=subs;

22 sub [0]. reimbs ={ reimbs [0], reimbs [1]};

23 sub [1]. reimbs ={ reimbs [2]};

24 }

25 }

Figure 5.9: Subscriber and System classes

100

IRL
Parsing
Checking SemRuleset

Ruleset
rewriting

SemRuleset Compiling

SemObjectModel

Deployment

BIS

data process plugin

Figure 5.10: ODM compiling chain

deployed in the desired platform, e.g., Java, C# and Script. Note that this chain

is executed in pipe-line and the order is controlled by the plugins execution in

the chain. Our proposed prototype, called BIS for Bayesian Insight System, can

be plugged on top of the rules compilation process as an additional rewriting of

the ruleset. The plugging choice is motivated by our desire to take advantage

of an existing compilation framework, rather than building such a process from

scratch. Additionally, a plugging approach facilitates the conceptual and technical

integration in the product architecture. Fig. 5.10 depicts an overall schema of the

compilation process. The IRL-based Rule 5.4 illustrates the final results after BIS

rewriting the Rule 5.3. It is at this level that we actually call the probabilistic

engine.

Rule 5.4: detect invoice anomaly with probability

rule detectInvoiceAnomaly {

when{

hp: HealthcareProvider (ProbabilisticEngine .this.

calculateProbability (this ," price_risk ", "high") > 0.8);

}

then{

101

raiseAlertExceededInvoicePrice (hp);

}

}

During the compilation of the extended IRL, annotations serve to extract PRM

attributes, CPTs and relations from the XOM. When the checking is completed,

the final model is written into a PRM text format, called o3prm, for Open Object

Oriented PRM . The latter serves as input for the probabilistic engine to answer

runtime probabilistic queries.

An alternative way to introduce the probability in rules using the IRL evaluate

operator. Rule 5.5 evaluates the risk that a Subscriber is participating in a fraud.

Rule 5.5: evaluate subscriber risk with probability

rule evaluatSubscriberRisk {

when{

hp: HealthcareProvider ();

sub: Subscriber () in hp.subs;

evaluate (prob(sub.risk == true)| hp.risk == true) >.8);

}

then{

alertRiskedSubscriber (sub);

}

}

The vertical bar in the rule above stands for “knowing that” and corresponds for-

mally to the conditional probability of a random variable.

In the instruction prob(sub.risk==true| hp.risk==true), the conditional con-

text is explicitly mentioned and it refers to the fact that hp.risk==true. However,

one might simplify the syntax by considering implicitly every fact in the WM. As

a consequence, prob should be stateful to facilitate writing the rules without being

102

Figure 5.11: BIS coupling

obliged to specify the conditional context at every probabilistic query. Thus, the

previous expression can be reduced to prob(sub.risk==true), which is implicitly

equivalent to prob(sub.risk==true|WM), here WM is simply "hp.risk==true"5.

5.3.3 A Loosely Coupling-based Execution

A complex PRM system can be easily generated from the rules by means of relat-

ing instances of probabilistic classes, which represent a pre-defined BN fragment

template. This is an advantage over the classical BNs approach, where the BNs

are repeatedly defined. In addition to the compilation API discussed previously,

BIS is also endowed with an execution API. Both insure different services com-

municating following the schema shown in Fig. 5.11. This allows for a coupling

between both BRs and probabilistic engines, which are implemented as services.

Actually, our framework is not restricted to one implementation, but is open to

other probabilistic libraries by means of an adaptive design. For instance, the cur-

5One can similarly manage the introduction of other operators such as mutual information

or entropy.

103

rent work is using aGrUM that can deal with PRMs. We have also tested JSmile

[15] as a probabilistic engine. However, we were limited by the lack of relations

and object concepts in such a framework. Recall that the compilation part per-

forms a rewriting from the rules semantic model, which encompasses probabilistic

data, to runtime functions, which actually call the probabilistic engine6. In our

case application, the PRM is generated by a XOM compilation and read by the

probabilistic engine. It is also possible to read both models from external files.

Furthermore, our architecture allows for a good inter-operability between both

platforms. On one hand, rules execution can change the state of the WM and

consequently the random variables in the PRM system through incremental op-

erations, i.e., add/remove evidence, objects or relations. For instance, the action

part of Rule 5.6 updates the WM by posting an evidence on the risk attribute.

Rule 5.6: detect invoice anomaly with probability

rule detectInvoiceAnomaly {

when{

hp: HealthcareProvider (prob(type_risk == high) >.8));

sub: Subscriber () in hp.subs;

}

then{

update sub{risk=true ;}

}

}

On the other hand, when a rule triggers the probabilistic inference, the probabilis-

tic engine computes the needed probability for the query and may also notify the

WM to update some attributes values in order to re-evaluate rules.

In Fig. 5.12 engines are related via an observation mechanism and both are no-
6 The current version of BIS does not support all the probabilistic engine functions.

104

EngineServiceRuleEngine

ProbaEngine

aGrUMEngine JSmileEngine

EngineObserver
update

update notification

prob query

Figure 5.12: PRM plugin as a service

tified, through the observer, when any change occurs in the WM. Each time a

WM incremental operation occurs, the underlying PRM is notified for the update.

Therefore, the probabilistic engine should operate in a lazy mode, that is, it must

record every incremental WM update until the next probabilistic query. Then, it

accordingly updates the PRM system and performs inference. After converting

the PRM system into a grounded BN, the IJTI algorithm 5 is used to optimize the

corresponding JT re-evaluation by only recomputing what has been invalidated

between two calls to the probabilistic engine.

5.4 Towards Advanced techniques

In this section, we provide foundations for an alternative approach to handle rules

uncertainties using a global probabilistic operator. In the sequel, we intentionally

ignore the action part, i.e., then/else{..} declarations, in rules examples as it is

irrelevant to our discussion.

5.4.1 Preliminary

So far, the approach we implemented to express rules uncertainties is to replace

every Boolean test over condition variables with a Boolean test over the proba-

105

bility of their corresponding random variables. In this scenario, every condition

is associated with a non negative parameter αi, as in the following rule, which is

based on the model in 5.2.

rule findSubscribers {

when{

hp : HealthProfessional (probability (age >50)≥ α1);

sub: Subscriber (probability (loc =="Paris")≥ α2);

}

}

There are at least two reasons why this approach is limited. First, we actually hide

the richness of rule constructs and operators and cut of their possible synergies

with the probabilistic engine operators; we will detail further this point. Here,

business users are prevented of expressing their confidence degree, more generally,

on a joint of a subset or the whole of variables in the condition part such as in the

following condition:

Subscriber (probability (location =="Paris" or "NY")≥ α2);

Secondly, as the majority of business users are interested in decision-making, not

in how probabilistic queries are done, they may be confused if they have to deal di-

rectly with programming or mathematical components. Transparency w.r.t. prob-

abilistic inference becomes since then strongly desirable to hide the computational

complexity that lies therein. Therefore, another interesting way to express proba-

bility in the rules is to parameterize the whole condition part, i.e., the when{..}

declaration, by a probabilistic activation threshold. In practice, we introduce a

general probability operator that governs rules eligibility by testing if the proba-

bility to satisfy all the rule conditions equals or exceeds a threshold α7.
7Here we assume that α is given, otherwise it might be inferred or computed from rules

context.

106

Rule 5.7: Find subscriber located in Paris for a certain professional

rule findSubscribers {

probability ≥ α ;// α is a non negative constant

when{

hp : HealthProfessional (age >50);

sub: Subscriber (location =="Paris") in hp. subscribers ;

}

For example, the condition in Rule 5.7 binds a variable hp to HealthProfessional

WME whose age is more than 50 and a variable sub to a Subscriber, which is

located in Paris and belongs to hp. When the probability of satisfying those two

conditions exceeds α, then this rule is activated. The probability operator can be

seen as a generalization of the Boolean case, for which rule actions are executed

when the conjunction of the rule conditions is satisfied. In this case, the threshold

is simply equal to 1 to express the fact that we are certain about the conditions.

The probabilistic operator, which is now put on top the rule conditions, is not to

be confused with certainty factors à la MYCIN, where each rules is associated with

a factor to show the confidence one has in the rule. Indeed, here we only move

probabilistic calls from inside the rules and put them on top of them. However,

the probabilistic computations that we carry should be based on a probabilistic

inference.

The difficult point lies in propagating this operator on the conditions, as it is

moved to a higher level, and the impact of this move on finding a correspond-

ing probabilistic query. Only the compilation process could tell the probabilistic

engine how to manage variables that are mentioned in the rule conditions and

how to regard non probabilistic ones. This is actually a challenging task that

involves a complex compilation process including parsing probabilistic conditions,

107

extracting relevant variables and transforming results into an adequate probabilis-

tic query. For example, in Rule 5.7, a joint probability distribution over hp.age,

sub.location should be evaluated and the rule is equivalent to:

rule findSubscribers {

when{

hp : HealthProfessional ();

sub: Subscriber () in hp. subscribers ;

evaluate (p: probability (hp.age >50, sub. location =="Paris"),

p≥ α);

}

}

In the following, we will try to shed light on the compilation challenges and

give some directions to propagate the probability operator on rules conditions.

Of course, the interpretation of the probabilistic operator will depend on the IRL

constructs we use, e.g., class conditions, generators and aggregates, and the way

they are combined together within rule conditions.

Now let us try to give a probabilistic interpretation of each construct alone, then

see what happens when aggregation and other type of conditions are combined.

We begin by emphasizing that since in and from generators restrict the condition

evaluation scope, we grant them a higher precedence than the probability opera-

tor. This could be naturally done, as the rule engine is responsible to trigger the

probabilistic inference and to specify the target variables from declaration of from

and in generators.

A clause is a disjunction of logical atoms, atoms hereafter, or their negation.

Where an atom is simply a predicate applied to a tuple of arguments. An atom is

108

characterized by the fact that it cannot be broken any further. As a consequence,

a rule condition can be expressed in terms of a conjunction of one or more clauses.

For example, the condition:

subscriber1 .age <21 and subscriber1 . location in {"Paris ,NY"}

is composed of two clauses, where the first clause consists of one atom and the

second consists of two atoms. More generally, we can use a CNF to represent the

conditions of a particular rule.8 Although this is not a necessary transformation,

we use it to facilitate rule conditions representation and to simplify illustrations

throughout this section. In this previous example, we have :

CNF1 = a11(age, 21) ∧ (a21(location, Paris) ∨ a22(location,NewY ork))

where :

• a21(location, Paris) = ”location is Paris”

• a22(location,NewY ork) = ”location is New York”

More generally, if we drop atoms arguments, then: CNF i = ∧ni
j=1 ∨

mij

k=1 aijk, with

ni (resp. mij) is the number of clauses in the ith condition (resp. of atoms in the

jth clause of CNFi.

5.4.2 Probabilistic Propagation

In this section, we mainly base our discussion on the rules model in Fig. 5.13.

To simplify our discussion, classes X and Y represent IRL classes and their cor-

responding PRMs at the same time. We omit probabilistic annotations and we

provide a possible PRM classes dependency graph in Fig. 5.14. We begin with
8We emphasize that obtaining a CNF from a Boolean expression can lead to an exponential

explosion of the formula and the conversion runs in exponential time in the worst case.

109

1 // probabilistic classes

2 class Y {

3 int Y1, Y2; // probabilistic attributes

4 }

5 class X {

6 int X1, X2; // probabilistic attributes

7 Y y;// a reference

8 }

9 // standard class

10 class B {

11 int b1;// non probabilistic attributes

12 }

Figure 5.13: A rule class model with (non) probabilistic attributes

X

X1

X2

ρ1

Y

Y1

Y2

Figure 5.14: A possible dependency graph for PRM classes X and Y

propagating the probability operator in the presence of standard rules and then we

see what happens when other constructs such as aggregates are used. We use in-

terchangeably o.X1 to denote the probabilistic attribute X1 of the object o and its

corresponding random variable’s instantiation. Once the PRM system is known,

110

i.e., objects are known and reference slots are correctly set, the ground BN9 is

not necessarily connected (isolated sub-graphs) and we emphasize that it contains

random variables corresponding to attributes of different classes. At the end, two

random variables obtained from the instantiation of the same class attribute are

regarded as different BN nodes.

5.4.2.1 Simple conditions and a general approach

In this situation, only class conditions appear in when {. . . } parts. The propaga-

tion of probability operator is straightforward and the joint posterior P(∧i≥1CNFi)

needs to be evaluated. However, we need to introduce some functional nodes to

compute new random variables that result from applying predicate in aijk. A

functional node may involve some algebraic operations such as random variables

additions or multiplications. Consider Rule 5.8.

Rule 5.8: a rule with simple conditions and the probability operator

1 Rule r8 {

2 probability≥ α

3 when{

4 b:B();

5 y:Y (b.b1 × Y1 − Y2 ≥ 0);

6 }

7 }

Let β = b.b1. In this example, we have a211(Y1, Y2, β) = β × Y 1− Y 2 ≥ 0 and the

CPT of Z = β × Y1 − Y2 should be computed. In particular, in order to check the

condition in line 5, we have to evaluate the following:

P(Z ≥ 0) =
∑

zi∈V al(Z)
zi≥0

P(Z = zi)

9see Definition 3.3.9

111

In reality, it is frequent that the rule engine interacts with different sources of

information, e.g., a database, which can supply the WM with non probabilistic

objects. The rule’s OM itself may contain non probabilistic classes, e.g., the B

objects in the previous example. This is actually an issue since we loose the

genericity when defining the new random variables resulting from functional nodes,

e.g., every time the value of β changes, a new probabilistic query needs to be

defined. To fix this issue, a solution may pre-compile the probabilistic query into

parameterized functional nodes. The latter hold a memory for non probabilistic

values and instantiate it at the execution10.

Fig. 5.15 depicts a simplified general case where we have one CNF with two

clauses and each clause has two atoms. Without loss of generality, we furthermore

limited arguments of each atom predicate to two arguments, e.g., atom a111 has

arguments t1 and t2 and results in a random variable that is also denoted by

a111. Each node in Fig. 5.15 represents a random variable, in particular, ori
(resp. and) is a (probabilistic) OR-gate that is obtained as a disjunction (resp.

conjunction) of their parents ai1 and ai2 (resp. ori), i = 1, 2. Here we have

CNF1 = (a111(t1, t2) ∨ a112(t3, t4)) ∧ (a121(t5, t6) ∨ a122(t7, t8)). Note that the BN

fragment of Fig. 5.15 is actually a class level extension of the associated PRM and

needs to be instantiated and linked to the PRM system as soon as we proceed new

WMEs, i.e., for a new WME, the rule engine must trigger a new instantiation of

the BN fragment in the PRM system and potentially drop the relations created

for specific instances of previous evaluations. In the case of several CNFs, we need

to concatenate fragments akin to those obtained in Fig. 5.15 using several AND-

gates.

Based on the previous discussion, some issues arise regarding the introduction
10this is similar to a database placeholder/wildcard, when we prepare before executing a query

that runs several times but with different values.

112

t1 t2 t3 t4 t5 t6 t7 t8

a111 a112 a121 a122

or1 or2

and

Figure 5.15: A BN fragment obtained from analyzing rule conditions

of functional nodes. First of all, the rule compiler must at least analyze each

atom and compute the expression of the resulting random variables. Then the

difficult task might be the generation of the corresponding CPTs, depending on the

complexity of the expression in aijk and whether the rule compiler is responsible for

such computations or the probabilistic engine. In this last case, the probabilistic

engine must be extended to allow for an automated definition of functional nodes,

which means to introduce new (parametrized) instructions and operators. Second,

introducing functional nodes implies a new model definition and we need to extend

the probabilistic engine to support an incremental/evolving PRM and its system.

This means that we allow for an overlay that updates the PRM, as soon as we

compile rule conditions, and its system, while executing rules actions. As we can

see in Fig. 5.15, the posterior we are looking for, P(CNF1), is obtained by querying

the leaf node and.

We emphasize that the transformation process we carried out to obtain a leaf node,

grows with the Cartesian product of the conditions and this may lead to scalability

issues. A simplified example of this situation is the following:

113

1 Rule r2{

2 probability≥ α

3 when{

4 b:B();

5 y:Y(a111(Y1, Y2, β));//β = b.b1

6 x:X (a211(X1, X2));

7 }

8 }

Here we need to iterate the same process as before and construct the leaf target

as the conjunction of leaves obtained from processing ling 5 and 6.

It remains to point out that even if we want to move probabilistic calls from inside

a when{...} declaration, it is still possible to evaluate the probability of some

particular clauses or atoms inside the condition part besides the global probability

operator’s use. Such a situation occurs when we want to constrain particular

variables in addition to the global constraint we have on top of the condition part.

This is naturally to be given a higher evaluation priority:

Rule r3{

probability≥ α

when{

x: X (a111(P(X1 ≤ 2), X2));

}

}

At the end, we apply the general probability operator to the atom a111(X2, p),

where p is the result of the probabilistic inference P(X1 ≤ 2).

114

5.4.2.2 Rules with Existence conditions and Aggregates

In this context, the extension we made in Section 5.2.1 becomes a specific case.

There, the class condition corresponds to one atom with an equality predicate and

the probabilistic aggregate exists was added to the model 11, e.g., a condition

based on the model presented in 5.13 would be:

exists X (X1 == 2);

However, this is not always the case and class condition may be composed of

a conjunction/disjunction of many atoms, which can be expressed using CNFs

having general predicate expressions as shown in the previous section. Again we

need to introduce new nodes and transformations, whose complexity depends on

the complexity of the expressions at hand. Furthermore, to simplify this study, we

suppose that we know exactly how many WMEs we have. However, in practice,

this is often known at runtime and also evolves with incremental operations that

affect the WM due to the execution of rules actions. Therefore, we need to be able

to change incrementally the auxiliary nodes as long as we change the WM. This

occurs especially when we deal with aggregates and we must be able to change

parents of auxiliary variables nodes without recomputing everything from scratch,

as we will see in exists handling. Thus, a solution for this issue is to define new

types of probabilistic aggregate, such as greaterThan, which tells whether there

exists a parent greater than a given value.

As far as the probabilistic inference is concerned, IJTI algorithm comes into play

and allows for an inference that is adaptive to changes we made in the WM.

Based on the remark that the exists condition can be converted into a disjunc-

tion, we can follow a reasoning similar to what we held for standard rules and we
11Even in that simple case, we may notice a combinatorial explosion depending on the number

of the aggregate parents, which of course depends on the size of the WM.

115

will be able to reduce exists and its negation not to computing some functional

nodes. Let us illustrate this through an example based on the class model 5.13.

Consider the simple Rule 5.9 with two clauses and one atom for each.

Rule 5.9: an IRL rule with probability operator and one exist

1 Rule r9{

2 probability≥ α

3 when{

4 exists X (X1 ≥ β1 ∧X2 ≤ β2);

5 }

6 }

Assume for example that we have three X WMEs : x1, x2 and x3. In order

to evaluate the condition in line 4, the compiler must translate beforehand the

expression into a query of a new target. Then, we need to add this latter, at

runtime, into the PRM system. Again, we need some auxiliary random variables

to define this target. For instance, lt2β2 is a random variable introduced to test

whether its parent (x2.X2)’s value is less than or equal to β2 and hence, it takes

two values as we can see in Fig. 5.16.

Fig. 5.17 depicts the final network obtained. In particular, it shows that we need

to query the leaf node or to see whether the condition in line 4 of Rule 5.9 is

satisfied.

Figure 5.16: CPTs of x2.X2 and lt2β2, with β2 = 1 is given

116

x1.X1 x1.X2 x2.X1 x2.X2 x3.X1 x3.X2

gt1β1 gt2β1 gt3β1lt1β2 lt2β2 lt3β2

and1 and2 and3

or

Figure 5.17: A runtime BN fragment obtained after compiling the existence condition

in Rule 5.9

We would like to emphasize that after converting the exists condition into dis-

junctions, we are required to apply the same process we held for simple conditions

in the previous paragraph. The difference here is that we deal directly with in-

stances. As we can see through this simple example with one simple condition

(two clauses) and three WMEs, compiling probabilistic query from a rule condi-

tion may result in some difficult transformations and computations that cannot

be easily automated. The complexity increases more and more if the when{...}

body involves a combination of class conditions with existence conditions, which

may lead to intractable computations due to the size of the WM and the type of

the conditions we use. In this case we need to convert all exists and combine

the result with fragments obtained from processing other class conditions. The

following rule shows an example of such a situation, where we have to construct a

conjunction between the leaf obtained from processing line 5 and the one obtained

from line 6.

1 Rule r5{

2 probability≥ α

3 when {

117

4 b:B();

5 x:X (a111(X1, X2));

6 exists Y(a211(Y1, Y2, x.X1, b.b1));

7 }

8 }

Note that in the Boolean case, one can halt the pattern matching search in an

existence condition as soon as a WME is found. However in the probabilistic case,

we need to construct a graph that covers all the WMEs to evaluate the exists

condition and again, this may lead to a huge amount of computations.

Now, we discuss how rules aggregates could be processed and let us begin with

a simple example as in Rule 5.10.

Rule 5.10: An IRL rule with aggregate sum

1 Rule r10{

2 probability≥ α

3 when{

4 agg: aggregate {

5 x:X ();

6 }do{

7 sum{x.X1};

8 } where(agg ≥ 2);

9 }

10 }

A straightforward approach consists of parsing the rule and detecting the aggregate

keyword and the sum operator. Then it enriches the PRM system at the execu-

tion with a functional node that computes the sum and compares it to where

condition. Assume that we have three X WMEs and, only for the purpose of the

118

x1.X1 x2.X1 x3.X1

sumGt2

(a) creation of a function node sumGt2 (b) sumGt2’s CPT

Figure 5.18: A BN fragment obtained when compiling Rule 5.10

example, the variable X1 takes only two values. Then Rule 5.10 is equivalent to

query random variable sumGt2 in Fig. 5.18a, where sumGt2 takes the true value

when the sum on its inputs is greater than or equal to 2 and false otherwise, and

whose parents are all X WMEs. We give the CPT of sumGt2 in Fig. 5.18b.

Again, it would be an interesting enhancement if the rule compiler or the prob-

abilistic engine could also automatically generate such a CPT, because it will be

impracticable to build it manually as the number of parents grows. Just to see

what happens if we want to actually evaluate the probability, we assume that the

BN fragment in 5.18a is isolated and we have an evidence x2.X1 = 1, then the

condition in line 8 is satisfied when P(sumGt2 == true|x2.X1 = 1) = 0.5295 ≥ α,

as shown in Fig. 5.19. Therefore, we can see through this simple example that

finding an equivalent probabilistic query might not be an easy task. First, we need

to check whether the aggregate is supported by the probabilistic engine or not. In

the latter case, we need to implement it based on the compiler analysis of the rule

conditions, e.g., sumGt2 is obtained by parsing the aggregate declaration and

119

Figure 5.19: Probabilistic inference result, with evidence x2.X1 = 1

the where condition. Second, the analysis of clauses in the condition will simplify

this task or make it hard because we may introduce some new nodes as we did in

the case of standard rules.

In the presence of many aggregates each one will result in a complex node to be

combined with nodes from other conditions. Having this discussion in mind, rules

such as Rule 5.11, will result in complex computations including parsing rules,

defining functional nodes and putting all together to finally find an equivalent

probabilistic query.

Rule 5.11: A rule with two aggregates

1 Rule r11 {

2 probability≥ α

3 when {

4 b:B();

5 agg1: aggregate {

6 x : X (a111(X1, b.b1));

7 }

8 do{

9 sum{x.X2};

10 }

120

11 where(agg1 ≤ 2);

12 agg2: aggregate {

13 y : Y(a211(y.Y1, b.b2));

14 }

15 do{

16 sum{y.Y2 + agg1}

17 };

18 where(agg2 ≥ 5);

19 }

20 }

In the presence of nested aggregates, one solution would be to evaluate the most

enclosed one and combine the output with the superior aggregate block and so on.

We want to conclude this discussion by emphasizing that there exists some sup-

ported PRM aggregates such as min, max, forall and, average that can be

mapped directly to their counterparts in the rules after computing functional nodes

when needed.

5.5 Conclusion

This chapter introduced an effective approach to integrate probabilistic reasoning

into modern BRMSs. The solution we proposed is based on a loosely coupling be-

tween BRMSs and PRMs. We also highlighted the natural mapping between both

paradigms and gave an operational method to assure it. Then, after describing

the ODM BRMS, we proposed a general architecture of the coupling platform and

described our technical contribution, which is implemented as a prototype on top

of ODM.

121

We concluded this chapter with a discussion on generalizing the use of the prob-

ability operator. The point is to move any technical probabilistic (mathematical

or programming) construct from the condition definition and put it on top of the

rule. Some issues arise regarding the propagation of such an operator. Thus, we

propose a general approach to cope with this issue. In particular, we highlighted

through many examples, that the PRM engine has to support functional nodes,

including generic probabilistic aggregates and dynamic PRM systems. The rule

compiler has also to be extended to parse correctly probabilistic rules. The main

challenge here is to produce the runtime probabilistic query. We saw that the

output of this task varies from one rule construct to another and its complexity

depends on the complexity of the condition expression and the combination of the

rule constructs, such as generators, aggregates and different class conditions.

Finally, we know that the execution of a rule action may update, insert or re-

move WMEs. This clearly has an impact on the corresponding PRM as it may

cause its inconsistency. For example, the removal of an object from the WM may

unset a reference slot, hence, the PRM becomes ill-defined. This is an issue be-

cause, if the PRM is queried at this time the inference answer is clearly unsound.

To tackle this problem, we need to impose a transactional mode when the rules

engine declares the PRM system or updates WMEs or forbid querying the PRM

before completing its correct definition.

122

Chapter 6

Discussion and Future Works

We conclude this manuscript by summarizing the main contributions and dis-

cussing some directions for future works.

Summary

In the last decades, BRMSs emerged as complex platforms that help organiza-

tions to effectively manage the rules that drive and guide the business practice.

The main idea of such systems is to externalize the business logic, expressed in

terms of Business Rules, and to allow business users to be essential and main

actors in their life-cycle management. Such an approach gains more and more

acceptance among organizations as it provides an agile development of business

applications. In Chapter 1, we discuss the business rules approach. If this ap-

proach advocates the use of Business Rules Management Systems, it does not

provide explicit guidelines about handling uncertainties in the domain. In ad-

dition, there is no satisfactory method implemented in current BRMSs to cope

with this question neither. However, uncertainty is a pervasive property of data

and a good uncertainty representation coupled with a mechanism for reasoning

123

under uncertainty will render business applications more realistic. This remark

motivated our research and our choice for PGMs to cope with the issue of uncer-

tainties in BRMS. In particular we use PRMs, an OO version of directed PGMs, to

model uncertainties and answer probabilistic queries. Coupling both frameworks

has many advantages. First, they provide a declarative and expressive represen-

tation of the knowledge, which is separated from the reasoning process. Second,

conceptual similarities (classes, objects and relations) facilitate the mapping of the

object model in BRMSs with the probabilistic model in PRMs. In Chapter 3, we

present PRMs and provide a discussion about incremental probabilistic inference.

Actually, the working memory in BRMSs evolves incrementally and, to ensure an

effective coupling with a probabilistic engine, we need to extend probabilistic in-

ference algorithms to take incrementality into account. In Chapter 4, we present,

IJTI, a new inference algorithm that deals exactly with such an issue. The key

idea of the proposed algorithm is taking into account previous computations to

optimize the current inference by computing only what is exactly needed. We

then highlight its effectiveness through experimental tests on real and randomly

generated data. In Chapter 5, we present a method to couple BRMSs with PRMs

exploiting shared similarities. Then we apply our approach to IBM ODM, which

is a leading industrial BRMS. We also present the architectural basis and show

how our prototype allows for an inter-operability between BRMSs and PRMs.

Future work

The research presented throughout this manuscript opens many other research

perspectives. In particular, the IJTI algorithm can be easily adapted to the PRM

inference. For this purpose, we need, first, to ensure a transactional mode that

guarantees the coherence of the model during updates caused by the working

124

memory. One should have an automatic consistency checking before probabilistic

inference is engaged. Second, the probabilistic inference itself could be optimized

by taking into account structural properties encoded in the PRM and lift a part

of inference to the PRM class level. This would optimize inference at runtime as

we can (re)use class computations at instance level.

Moreover, as soon as we deal with aggregators/generators in the rules, e.g, from,in,

it becomes necessary to automatically generate their PRM counterpart as and

when we compile the rules. This immediately opens the issue of PRMs non-

supported operators and the idea of extending this model. Another difficult com-

pilation aspect, yet more interesting, is the use of several operators within the

same rule and how this impacts the PRM construction.

After each working memory update, the Rete algorithm tries to optimize the ex-

pression re-evaluations, while taking into account the previous state. For example

the Rete network shares nodes in the compiled network whenever shared conditions

appear in the rules. It would be interesting to develop a two-sided optimization

that supervises PRM and working memory updates, e.g, taking into consideration

the PRM variables independence. Or better yet, to try to optimize updates prop-

agations as part of a tight coupling but to the cost of algorithmic complexity and

finding a trade-off between implementation and performance. Finally, this work

also opens doors to introduce uncertain reasoning in rules temporal expressions to

process complex events over uncertain data or events.

125

126

Appendix A

Proofs

Proof of Proposition 4.3.4: Note that V-j(i) = {i} ∪ ⋃k∈Adj-j(i) V-i(k) and, for

k ∈ Adj-j(i), l′ ∈ V-i(k), we have Adjj(l′) = Adji(l′). Using Definition 4.3.3, one

can thus rewrite µi→j into:

µi→j =
⋃

l′∈V-j(i)
{l}=Adjj (l′)

λl′→l = λi→j ∪
⋃

k∈Adj-j(i)

µk→i︷ ︸︸ ︷⋃
l′∈V-i(k)

{l}=Adjj (l′)

λl′→l = λi→j ∪
⋃

k∈Adj-j(i)
µk→i �

Proof of Theorem 4.3.5 – mutual exclusivity: if property 1) is satisfied,

then T contains no edge, therefore properties b) and c) cannot be satisfied.

Now, assume that there exist r1, r
′
1 such that µr′

1→r1 = µr1→r′
1

= Tε (property

2). Let r2 be any clique in V(T). Without loss of generality, assume that r1 lies

on the path i1 = r2, i2, . . . , ip = r′1 between r2 and r′1. Then, by Proposition 4.3.4,

µi2→r2 ⊇ µi3→i2 ⊇ · · · ⊇ µr′
1→r1 = Tε. Therefore, properties b) and c) cannot hold

simultaneously. �

Proof of Theorem 4.3.5 – r’s existence: if A(T) = ∅, then property a) holds

and r is the unique node of T . Now, assume that A(T) 6= ∅. If there exists an

edge (i, j) ∈ E(T) such that µi→j = µj→i = Tε, then r = i satifies property b).

Otherwise, neither properties a) nor b) hold. Assume that property c) neither

127

holds. Then, for all edges (i, j), exactly one of µi→j or µj→i is equal to Tε and

the other one belongs to {∅, ε, T}. Let (i0, j0) be such that µi0→j0 = Tε and

µj0→i0 6= Tε. Then, if |Adj(i0)| = 1, clique i0 satisfies property c), a contradiction.

As we assume that property b) neither holds, there exists i1 ∈ Adj(i0) such that

µi1→i0 = Tε and µi0→i1 6= Tε. The same reasoning holds for i1, hence either i1
is a leaf, which contradicts property c) or i1 has another neighbor i2 such that

µi2→i1 = Tε and µi1→i2 6= Tε. By induction, we create a path i1, . . . , in of maximal

size. This path is necessarily finite since T is a finite tree, hence clique in is a

leaf which, therefore, satisfies property c), a contradiction. Consequently, when

properties a) and b) do not hold, property c) holds. �

One can now prove separately the optimality for each property of Theorem 4.3.5,

since these properties are mutually exclusive:

Proof of Theorem 4.3.5 – property 1’s optimality: r is the only node in T .

Choosing it as a root is therefore optimal. �

Lemma A.0.1. Let i, j ∈ V(T) be such that ε ∈ µj→i and µi→j = ∅, then ∀l ∈

V-j(i) : δ(l) = δ(j) + len(l−j).

Proof. Note that when ε /∈ µj→i, T is up-to-date in the current inference and

there is no need to perform any computation. The proof is achieved by induction

on n = len(l−j). For n = 1, we have l = i , so by Equation (4.2) and the fact

that ε ∈ µj→i and i ∈ Adji(j), we get δj→i(i) = 1. As a consequence, δ(i) =∑
(k′,k)∈A(T)\{(j,i)} δk′→k(i) + 1. Yet, as T /∈ µi→j we have δj→i(j) = 0; so δ(j) =∑
(k′,k)∈A(T))\{(j,i)} δk′→k(j). Since ε /∈ µi→j, δi→j(i) = δi→j(j) = 0. For (k′, k) 6=

(i, j), (j, i), we have Adji(k) = Adjj(k) and Adji(k′) = Adjj(k′). In this case, it

follows that δk′→k(i) = δk′→k(j). We conclude that δ(i) = δ(j) + 1.

Now suppose this property is satisfied for n − 1 > 1, let us prove that it

remains true for n. Let l be such that len(l− j) = n − 1. Let {p} = Adji(l).

128

Then δ(l) = 1 + ∑
(k′,k)∈A(T)\{(p,l)} δk′→k(l) because δp→l(l) = 1 (since ε ∈ µp→l

and {l} = Adjl(p)). Knowing that T /∈ µl→p, we get δp→l(p) = 0, it follows that

δ(p) = ∑
(k′,k)∈A(T)\{(p,l)} δk′→k(p). Now using the same reasoning as in the case

n = 1 and by remarking δl→p(p) = δl→p(l) = 0 because ε /∈ µl→p, we conclude that

δ(l) = 1 + ∑
(k′,k)∈A(T)\{(p,l)} δk′→k(l) = 1 + ∑

(k′,k)∈A(T)\{(p,l)} δk′→k(p) = 1 + δ(p).

By applying the induction hypothesis on l, where len(l−j) = n − 1, we obtain :

δ(l) = 1 + δ(p) = 1 + n− 1 + δ(j) = δ(j) + n. �

Lemma A.0.2. Let V1 = {r ∈ V(T) : ∃k ∈ Adj(r), µr→k = µk→r = Tε}, then for

any r, r′ in V1 we have δ(r) = δ(r′).

Proof. Assume that |V1| > 1. By Proposition 4.3.4, the nodes in V1 form a con-

nected subgraph. Let r, r′ ∈ V1 be such that (r, r′) ∈ E(T). Finally, let (k′, k) ∈

A(T) \ {(r, r′), (r′, r)}. If k′ /∈ {r, r′}, then either k = r, k = r′ or k /∈ {r, r′}

and in all these cases we have: Adjr(k′) = Adjr′(k′), hence δk′→k(r) = δk′→k(r′).

Otherwise, let k′ = r′ then k 6= r and we have also 1 Adjr(k) = Adjr′(k) and

again δk′→k(r) = δk′→k(r′). As a consequence: ∑(k′,k)∈A(T)\{(r,r′),(r′,r)} δk′→k(r) =∑
(k′,k)∈A(T)\{(r,r′),(r′,r)} δk′→k(r′). By Equation (4.2), we get:

δr→r′(r) + δr′→r(r) = δr→r′(r′) + δr′→r(r′) = 2. We conclude that

δ(r)−∑(k′,k)∈A(T)\{(r,r′),(r′,r)}δk′→k(r) = δ(r′)−∑(k′,k)∈A(T)\{(r,r′),(r′,r)}δk′→k(r′). Hence

δ(r) = δ(r′). �

Proof of Theorem 4.3.5 – property 2’s optimality: Under the notations

of property 2), it is sufficient to prove that for any i not in V1, δ(r) ≤ δ(i)
2. Without loss of generality, assume that i ∈ V-r ′(r). Let (k, k′) ∈ A(i− r),

where A(i− r) is the set of arcs induced from i− r. We either have {k′} =

Adjr(k) or {k} = Adjr(k′). Assume for instance that {k′} = Adjr(k) , k 6= r,
1if k′ = r then k 6= r′ and the equality also verified.
2all the nodes are computationally equivalent if ∀i ∈ V(T), i ∈ V1 since V(T) = V1

129

the second case should be treated similarly. Then µk′→k = Tε and by apply-

ing Equation 4.2, Tab. A.1 summarizes the results we obtain. we conclude that

Table A.1: Computed messages number

µk→k′ δk→k′(i) + δk′→k(i) δk→k′(r) + δk′→k(r)

∅ 1 0

T 1 1

ε 2 1

∑
(k′,k)∈A(i−r) δk′→k(r) ≤

∑
(k′,k)∈A(i−r) δk′→k(i).(1)

Now for (k, k′) /∈ A(i−r) it is easy to see that δk→k′(i) = δk→k′(r) and hence :∑
(k,k′)∈A(T)\A(i−r) δk′→k(r)=∑(k,k′)∈A(T)\A(i−r) δk′→k(i). (2).

By comparing (1) and (2) we get that δ(r) ≤ δ(i) for i /∈ V1. So far, we obtain,

by Lemma A.0.2, for any i in V1, δ(r) = δ(i) and for any i not in V1, δ(r) ≤ δ(i),

therefore we have r ∈ Argmini∈V(T) δ(i). �

Proof of Theorem 4.3.5 – property 3’s optimality: Let i in V(T) s.t.

i 6= r.

first case: µAdji(r)→r = ∅. Assume that T, ε ∈ V-i(r), because otherwise there is

no need to perform any computation, as either there is no query or no modification

in T ; so by Lemma A.0.1 we have δ(i) = δ(r) + len(i−r) because i ∈ V-r(Adji(r)).

Hence δ(r) < δ(i).

second case: we omit the case µAdji(r)→r ∈ {T, ε}, but one should use the same

methodology as in property 2)’s proof and the fact that for any k, k′ in i−r s.t

{k′} = Adjr(k) : µk→k′ = µi→Adjr(i) and examine δk′→k(r) and δk′→k(i). �

Proof of Proposition 4.3.6 : Given a root r, δi→j(r) corresponds, by con-

struction, to the fact that ψi→j is necessary during the current inference and was

130

invalidated in the previous one. As a consequence, the current inference needs to

recompute only such a message for any i, j in V(T). �

131

132

Appendix B

Other experimental results

0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40
evidences %

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

tim
e
ga

in
 %

alarm-0-0.3
0.03
0.06
0.11

0.17
0.22
0.28

0.33
0.39

0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40
evidences %

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

tim
e
ga

in
 %

alarm-0-0.4
0.03
0.06
0.11

0.17
0.22
0.28

0.33
0.39

0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40
evidences %

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

tim
e
ga

in
 %

alarm-0-0.35
0.03
0.06
0.11

0.17
0.22
0.28

0.33
0.39

0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40
evidences %

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

tim
e
ga

in
 %

alarm-0-0.2
0.03
0.06
0.11

0.17
0.22
0.28

0.33
0.39

133

0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40
evidences %

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

tim
e
ga

in
 %

alarm-0-0.25
0.03
0.06
0.11

0.17
0.22
0.28

0.33
0.39

0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40
evidences %

0.4

0.5

0.6

0.7

0.8

0.9

1.0

tim
e
ga

in
 %

alarm-0-0.1
0.03
0.06
0.11

0.17
0.22
0.28

0.33
0.39

0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40
evidences %

0.4

0.5

0.6

0.7

0.8

0.9

1.0

tim
e
ga

in
 %

alarm-0-0.15
0.03
0.06
0.11

0.17
0.22
0.28

0.33
0.39

0.1 0.2 0.3 0.4 0.5
evidences %

0.0

0.2

0.4

0.6

0.8

1.0

tim
e
ga

in
 %

alarm-0.1-0.1

0.03
0.06
0.11
0.17

0.22
0.28
0.33

0.39
0.44
0.5

0.1 0.2 0.3 0.4 0.5
evidences %

0.0

0.2

0.4

0.6

0.8

1.0

tim
e
ga

in
 %

insurance-0.1-0.2
0.03
0.06
0.11
0.17

0.22
0.28
0.33

0.39
0.44
0.5

0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40
evidences %

0.2

0.4

0.6

0.8

1.0

tim
e
ga

in
 %

insurance-0-0.3
0.03
0.06
0.11

0.17
0.22
0.28

0.33
0.39

134

0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40
evidences %

0.2

0.4

0.6

0.8

1.0

tim
e
ga

in
 %

insurance-0-0.4
0.03
0.06
0.11

0.17
0.22
0.28

0.33
0.39

0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40
evidences %

0.2

0.4

0.6

0.8

1.0

tim
e
ga

in
 %

insurance-0-0.35
0.03
0.06
0.11

0.17
0.22
0.28

0.33
0.39

0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40
evidences %

0.2

0.4

0.6

0.8

1.0

tim
e
ga

in
 %

insurance-0-0.2
0.03
0.06
0.11

0.17
0.22
0.28

0.33
0.39

0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40
evidences %

0.2

0.4

0.6

0.8

1.0

tim
e
ga

in
 %

insurance-0-0.25
0.03
0.06
0.11

0.17
0.22
0.28

0.33
0.39

0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40
evidences %

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

tim
e
ga

in
 %

insurance-0-0.1
0.03
0.06
0.11

0.17
0.22
0.28

0.33
0.39

0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40
evidences %

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

tim
e
ga

in
 %

insurance-0-0.15
0.03
0.06
0.11

0.17
0.22
0.28

0.33
0.39

135

0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40
evidences %

0.2

0.3

0.4

0.5

0.6

0.7

tim
e
ga

in
 %

win95-0-0.4

0.03
0.06
0.11

0.17
0.22
0.28

0.33
0.39

0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40
evidences %

0.2

0.3

0.4

0.5

0.6

0.7

tim
e
ga

in
 %

win95-0-0.35
0.03
0.06
0.11

0.17
0.22
0.28

0.33
0.39

0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40
evidences %

0.2

0.3

0.4

0.5

0.6

0.7

tim
e
ga

in
 %

win95-0-0.3
0.03
0.06
0.11

0.17
0.22
0.28

0.33
0.39

0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40
evidences %

0.2

0.3

0.4

0.5

0.6

0.7

tim
e
ga

in
 %

win95-0-0.25
0.03
0.06
0.11

0.17
0.22
0.28

0.33
0.39

0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40
evidences %

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

tim
e
ga

in
 %

win95-0-0.2
0.03
0.06
0.11

0.17
0.22
0.28

0.33
0.39

0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40
evidences %

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

tim
e
ga

in
 %

win95-0-0.15
0.03
0.06
0.11

0.17
0.22
0.28

0.33
0.39

0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40
evidences %

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

tim
e
ga

in
 %

win95-0-0.1
0.03
0.06
0.11

0.17
0.22
0.28

0.33
0.39

0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40
evidences %

0.2

0.3

0.4

0.5

0.6

tim
e
ga

in
 %

diabetes-0-0.1
0.03
0.06
0.11

0.17
0.22
0.28

0.33
0.39

136

0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40
evidences %

0.0

0.2

0.4

0.6

0.8

1.0

tim
e
ga

in
 %

alarm-0.1-0.2
0.03
0.06
0.11

0.17
0.22
0.28

0.33
0.39

0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40
evidences %

0.0

0.2

0.4

0.6

0.8

1.0

tim
e
ga

in
 %

alarm-0.1-0.3
0.03
0.06
0.11

0.17
0.22
0.28

0.33
0.39

0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40
evidences %

0.0

0.2

0.4

0.6

0.8

1.0

tim
e
ga

in
 %

alarm-0.1-0.1
0.03
0.06
0.11

0.17
0.22
0.28

0.33
0.39

0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40
evidences %

0.0

0.2

0.4

0.6

0.8

1.0

tim
e
ga

in
 %

alarm-0.1-0.15
0.03
0.06
0.11

0.17
0.22
0.28

0.33
0.39

137

0.0 0.1 0.2 0.3 0.4 0.5

target percentages

0.000

0.005

0.010

0.015

0.020

0.025

0.030

ti
m
e
/
s

0-0.1-0.44

Lazy Propagation

Incremental Inference

0.0 0.1 0.2 0.3 0.4 0.5

evidence percentages

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

ti
m
e
/
s

0-0.1-0.5

Lazy Propagation

Incremental Inference

0.0 0.1 0.2 0.3 0.4 0.5

evidence percentages

0.000

0.005

0.010

0.015

0.020

0.025

0.030

ti
m
e
/
s

0-0.1-0.44

Lazy Propagation

Incremental Inference

0.0 0.1 0.2 0.3 0.4 0.5

target percentages

0.000

0.005

0.010

0.015

0.020

0.025

0.030

ti
m
e
/
s

0-0.1-0.33

Lazy Propagation

Incremental Inference

0.0 0.1 0.2 0.3 0.4 0.5

target percentages

0.000

0.005

0.010

0.015

0.020

0.025

0.030

ti
m
e
/
s

0-0.1-0.39

Lazy Propagation

Incremental Inference

0.0 0.1 0.2 0.3 0.4 0.5

evidence percentages

0.000

0.005

0.010

0.015

0.020

0.025

0.030

ti
m
e
/
s

0-0.1-0.39

Lazy Propagation

Incremental Inference

138

0.0 0.1 0.2 0.3 0.4 0.5

target percentages

0.000

0.005

0.010

0.015

0.020

0.025

0.030

ti
m
e
/
s

0-0.1-0.28

Lazy Propagation

Incremental Inference

0.0 0.1 0.2 0.3 0.4 0.5

evidence percentages

0.000

0.005

0.010

0.015

0.020

0.025

ti
m
e
/
s

0-0.1-0.33

Lazy Propagation

Incremental Inference

0.0 0.1 0.2 0.3 0.4 0.5

target percentages

0.000

0.005

0.010

0.015

0.020

0.025

0.030

ti
m
e
/
s

0-0.1-0.17

Lazy Propagation

Incremental Inference

0.0 0.1 0.2 0.3 0.4 0.5

target percentages

0.000

0.005

0.010

0.015

0.020

0.025

0.030

ti
m
e
/
s

0-0.1-0.22

Lazy Propagation

Incremental Inference

0.0 0.1 0.2 0.3 0.4 0.5

evidence percentages

0.000

0.005

0.010

0.015

0.020

0.025

ti
m
e
/
s

0-0.1-0.22

Lazy Propagation

Incremental Inference

139

Bibliography

[1] Agli, H., Bonnard, P., Gonzales, C., Wuillemin, P.H.: Uncertain Reasoning

for Business Rules. In: CEUR Proceedings of the 8th International Web Rule

Symposium Rule Doctoral Consortium. RuleML (2014)

[2] Agli, H., Bonnard, P., Gonzales, C., Wuillemin, P.H.: Business Rules Uncer-

tainty Management with Probabilistic Relational Models. In: Proceedings

of the 10th International Web Rule Symposium. pp. 53–67. RuleML (2016)

[3] Agli, H., Bonnard, P., Gonzales, C., Wuillemin, P.H.: Incremental junction

tree inference. In: Proceedings of the 16th International Conference on In-

formation Processing and Management of Uncertainty in Knowledge-Based

Systems. pp. 326–337. IPMU (2016)

[4] Agli, H., Bonnard, P., Gonzales, C., Wuillemin, P.H.: Un algorithme d’arbre

de jonction incrémental. In: Proceedings of 8èmes Journées Francophones

des Réseaux Bayésiens, JFRB (2016)

[5] Agli, H., Bonnard, P., Gonzales, C., Wuillemin, P.H.: Inférence incrémentale

pour les modèles probabilistes relationnels et application aux systèmes à base

de règles orientés objet. Revue d’Intelligence Artificielle (2017), submitted

[6] Agli, H., Bonnard, P., Wuillemin, P.H., Perez, K.: Des règles métier pour la

gestion de l’incertain. In: Proceedings of 7èmes Journées Francophones des

Réseaux Bayésiens, JFRB (2014)

[7] Aït-Kaci, H., Bonnard, P.: Probabilistic production rules. Tech. rep., Inter-

national Business Machine (2011)

[8] Allen, D., Darwiche, A.: New Advances in Inference by Recursive Condi-

140

tioning. In: Proceedings of the 9th Conference on Uncertainty in Artificial

Intelligence. UAI (2003)

[9] Appleton, D.S.: Business rules: The missing link. Datamation, 30 pp. 145–

150 (1984)

[10] Arru, M.: Introduction of probabilistic reasoning in JRules. Master’s thesis,

Polytech Nantes (2011)

[11] Bahar, R., Frohm, E., Gaona, C., Hachtel, G., Macii, E., Pardo, A., Somenzi,

F.: Algebric decision diagrams and their applications. Formal Methods in

System Design 10, 171–206 (1997)

[12] Bangsø, O., Wuillemin, P.H.: Object oriented Bayesian networks: A frame-

work for topdown specification of large Bayesian networks and repetitive

structures. Tech. rep., Aalborg University, Denmark (2000)

[13] Barker, V.E., O’Connor, D.E., Bachant, J., Soloway, E.: Expert systems

for configuration at digital: Xcon and beyond. Communications ACM 32,

298–318 (1989)

[14] Barzilay, R., McCullough, D., Rambow, O., DeCristofaro, J., Korelsky, T.,

Lavoie, B.: A new approach to expert system explanations. In: Proceedings

of the 9th International Workshop on Natural Language Generation. pp.

78–87 (1998)

[15] BayesFusion, LLC: SMILE : Structural Modeling, Inference, and Learning

Engine, https://www.bayesfusion.com/smile-engine

[16] Bobek, S., Nalepa, G.J.: Compact representation of conditional probability

for rule-based mobile context-aware systems. In: Proceedings of 9th Inter-

national Symposium. pp. 83–96. RuleML (2015)

141

https://www.bayesfusion.com/smile-engine

[17] Bodlaender, H.L.: A tourist guide through treewidth. Acta Cybernetica 11,

1–23 (1993)

[18] BOSCH: Visual Rules, https://www.bosch-si.com/bpm-and-brm/

visual-rules/business-rules-management.html

[19] Boyer, J., Mili, H.: Agile Business Rule Development - Process, Architecture,

and JRules Examples. Springer (2011)

[20] Brownston, L., Farrell, R., Kant, E., Martin, N.: Programming Expert

Systems in OPS5: An Introduction to Rule-based Programming. Addison-

Wesley Longman Publishing Co., Inc. (1985)

[21] Buchanan, B., Feigenbaum, E., Lederberg, J.: Heuristic DENDRAL: a pro-

gram for generating explanatory hypotheses in organic chemistry. In: Pro-

ceedings of the 1st Hawaii International Conference on System Sciences . pp.

482–485. HICSS (1968)

[22] Buchanan, B.G., Shortliffe, E.H.: Rule Based Expert Systems: The Mycin

Experiments of the Stanford Heuristic Programming Project. Addison-

Wesley (1984)

[23] Butz, C.J., dos Santos, A.E., Oliveira, J.S., Gonzales, C.: A simple method

for testing independencies in bayesian networks. In: Proceedings of the 29th

Canadian Conference on Artificial Intelligence. pp. 213–223 (2016)

[24] Cooper, G.F.: The computational complexity of probabilistic inference using

Bayesian belief networks. Artificial Intelligence 42, 393–405 (1990)

[25] Cowell, R.G., Dawid, A.P., Lauritzen, S.L., Spiegelhalter, D.J.: Probabilistic

Networks and Expert Systems: Exact Computational Methods for Bayesian

Networks. Springer (2007)

142

https://www.bosch-si.com/bpm-and-brm/visual-rules/business-rules-management.html
https://www.bosch-si.com/bpm-and-brm/visual-rules/business-rules-management.html

[26] Dagum, P., Luby, M.: Approximating probabilistic inference in Bayesian

belief networks is NP-hard. Artificial Intelligence 60, 141–153 (1993)

[27] D’Ambrosio, B.: Incremental probabilistic inference. In: Proceedings of the

9th International Conference on Uncertainty in Artificial Intelligence (UAI).

pp. 301–308. UAI (1993)

[28] Darlington, K.: Effectiveness of explanation facilities for intelligent systems.

Ph.D. thesis, London South Bank University, UK (2014)

[29] Darwiche, A.: Dynamic Join Trees. In: Proceedings of the 14th Conference

on Uncertainty in Artificial Intelligence (UAI). pp. 97–104. UAI (1998)

[30] Darwiche, A.: A Logical Approach to Factoring Belief Networks. In: Pro-

ceedings of the 8th International Conference on Principles and Knowledge

Representation and Reasoning. pp. 409–420. KR (2002)

[31] Darwiche, A.: Modeling and Reasoning with Bayesian Networks. Cambridge

University Press (2009)

[32] Darwiche, A.: Inference in Bayesian networks: A historical perspective. In:

R. Decther, H.G., Halpern, J. (eds.) Heuristics, Probability, and Causality:

a Tribute to Judea Pearl, pp. 105–120. College Publications (2010)

[33] Date, C.: What Not How: The Business Rules Approach to Application

Development. Addison-Wesley (2000)

[34] Dawid, A.P.: Conditional independence in statistical theory. Journal of the

Royal Statistical Society. Series B (Methodological) 41, 1–31 (1979)

[35] De Raedt, L., Kimmig, A.: Probabilistic (logic) programming concepts. Ma-

chine Learning 100, 5–47 (2015)

143

[36] Dechter, R.: Bucket Elimination: A Unifying Framework for Probabilistic

Inference. In: Proceedings of the 12th Conference on Uncertainty in Artificial

Intelligence. pp. 211–219. UAI (1996)

[37] Diaz, O., Iturrioz, J., Piattini, M.G.: Promoting business policies in object-

oriented methods. Journal of Systems and Software. 41, 105–115 (1998)

[38] Duda, R., Shortliffe, E.: Expert systems research. Science pp. 261–268 (1983)

[39] Durkin, J.: Expert Systems: a view of the field. IEEE Expert 11, 56–63

(1996)

[40] Elkan, C.: The paradoxical success of fuzzy logic. In: Proceedings of the 11th

National Conference on Artificial Intelligence (AAAI). pp. 698–703 (1993)

[41] Erl, T.: SOA Design Patterns. Prentice Hall (2008)

[42] Feigenbaum, E., McCorduck, P.: The fifth generation: Artificial Intelligence

and Japan’s computer challenge to the world. Addison-Wesley (1983)

[43] FICO: FICO Blaze Advisor Decision Rules Man-

agement System, http://www.fico.com/en/products/

fico-blaze-advisor-decision-rules-management-system#overview

[44] Flores, M.J., Gámez, J.A., Olesen, K.G.: Incremental Compilation of

Bayesian Networks. In: Proceedings of the 19th Conference on Uncertainty

in Artificial Intelligence (UAI). pp. 233–240. UAI (2003)

[45] Forgy, C.: Ops5 user’s manual. Tech. rep., CMU-CS-81-135, Carnegie-Mellon

University, Pittsburgh (1981)

[46] Forgy, C.: Rete: A Fast Algorithm for the Many Pattern/Many Object

Pattern Match Problem. Artificial Intelligence 19, 17–37 (1982)

144

http://www.fico.com/en/products/fico-blaze-advisor-decision-rules-management-system#overview
http://www.fico.com/en/products/fico-blaze-advisor-decision-rules-management-system#overview

[47] Geiger, D.: Graphoids: A Qualitative Framework for Probabilistic Inference.

Ph.D. thesis, University of California at Berkeley (1990)

[48] Getoor, L., Taskar, B.: Introduction to Statistical Relational Learning,

Adaptive Computation and Machine Learning. MIT Press (2007)

[49] Gonzales, C., Torti, L., Wuillemin, P.H.: aGrUM: a Graphical Universal

Model framework. In: Proceedings of the 30th International Conference on

Industrial Engineering, Other Applications of Applied Intelligent Systems

(2017)

[50] Graham, I.: Business Rules Management and Service Oriented Architecture:

A Pattern Language. Wiley (2007)

[51] Graham, I.: Service Oriented Business Rules Management Systems. Tech.

rep., TriReme (2005)

[52] Hall, C., Harmon, P.: The 2006 BPTrends Report on Business Rules Prod-

ucts. Tech. rep., Business Process Trends (2006)

[53] Halle, B.V.: Business Rules Applied: Building Better Systems Using the

Business Rules Approach. John Wiley & Sons (2001)

[54] Halle, B.V., Goldberg, L.: Business Rule Revolution: Running Business the

Right Way. Happy About (2006)

[55] Halpern, J.Y.: Reasoning about uncertainty. MIT Press (2003)

[56] Hanson, E., Hasan, M.S.: Gator: An optimized discrimination network for

active database rule condition testing. Tech. rep., TR93-036, University of

Florida (1993)

145

[57] Hart, P.E., Duda, R.O., Einaudi, M.T.: PROSPECTOR—a computer-based

consultation system for mineral exploration. Journal of the International

Association for Mathematical Geology 10, 589–610 (1977)

[58] Hay, D.C., Healy, K.A.: Defining business rules what are they really? Tech.

rep., Business Rules Group (July 2000)

[59] Heckerman, D., Breese, J.S.: Causal independence for probability assessment

and inference using Bayesian networks. IEEE Transactions on Systems, Man,

and Cybernetics - Part A: Systems and Humans 26, 826–831 (1996)

[60] Heckerman, D., Meek, C., Koller, D.: Probabilistic Entity-Relationship Mod-

els, PRMs and Plate Models. In: Getoor, L., Taskar, B. (eds.) Introduction

to Statistical Relational Learning, pp. 201–239. MIT Press (2004)

[61] Heckerman, D.E., Shortliffe, E.H.: From certainty factors to belief networks.

Artificial Intelligence in Medicine 4, 35–52 (1992)

[62] Hilwa, A.: Worldwide business rules management systems forecast, 2015-

2019: Gazing into the cloud. Tech. rep., International Data Corporation

(2015)

[63] IBM: Operational Decision Manager, https://www.ibm.com/support/

knowledgecenter/SSQP76_8.9.0/welcome/kc_welcome_odmV.html

[64] Infoholic: Global Business Rules Management System (BRMS) Market,

Trends & Forecast: 2015-2020. Tech. rep., Infoholic Research (2015)

[65] InRule Technology, Inc.: Inrules, http://www.inrule.com/products/

[66] Jaeger, M.: Relational Bayesian Networks. In: Proceedings of the 13th Con-

ference on Uncertainty in Artificial Intelligence. pp. 266–273. UAI (1997)

146

https://www.ibm.com/support/knowledgecenter/SSQP76_8.9.0/welcome/kc_welcome_odmV.html
https://www.ibm.com/support/knowledgecenter/SSQP76_8.9.0/welcome/kc_welcome_odmV.html
http://www.inrule.com/products/

[67] Jordan, M.I.: Graphical models. Statistical Science 19, 140–155 (2004)

[68] Kersting, K., De Raedt, L., Kramer, S.: Interpreting Bayesian logic pro-

grams. In: Working Notes of the AAAI-2000 workshop on learning statistical

models from relational data. pp. 29–35 (2000)

[69] Kim, J.H., Pearl, J.: A Computational Model for Causal and Diagnostic

Reasoning in Inference Systems. In: Proceedings of the 8th International

Joint Conference on Artificial Intelligence. IJCAI (1983)

[70] Kjærulff, U.: Triangulation of graphs – algorithms giving small total state

space. Tech. rep., University of Aalborg, Institute for Electronic Systems,

Department of Mathematics and Computer Science (1990)

[71] Knolmayer, G., Herbst, H., Schlesinger, M.: Enforcing Business Rules by the

Application of Trigger Concepts. In: Proceedings of the Priority Programme

Informatics Research, Information Conference Module 1. pp. 24–30 (1994)

[72] Koller, D., Friedman, N.: Probabilistic Graphical Models: Principles and

Techniques. MIT Press (2009)

[73] Koller, D., Pfeffer, A.: Object-Oriented Bayesian Networks. In: Proceedings

of the 13th Annual Conference on Uncertainty in Artificial Intelligence. pp.

302–313. UAI (1997)

[74] Korver, M., Lucas, P.J.F.: Converting a rule-based expert system into a

belief network. Medical Informatics 18, 219–241 (1993)

[75] Laird, J.E., Newell, A., Rosenbloom, P.S.: SOAR: An architecture for gen-

eral intelligence. Artificial Intelligence 33, 1 – 64 (1987)

[76] Laskey, K.B.: MEBN: A language for first-order Bayesian knowledge bases.

Artificial Intelligence 172, 140 – 178 (2008)

147

[77] Lauritzen, S., Dawid, A.P., Larsen, B.N., Leimer, H.G.: Independence prop-

erties of directed Markov fields. Networks 20, 491–505 (1990)

[78] Lauritzen, S., Spiegelhalter, D.J.: Local computations with probabilities on

graphical structures and their applications to expert systems. Journal of the

Royal Statistical Society 50, 157–224 (1988)

[79] Leith, P.: The rise and fall of the legal expert system. European Journal of

Law and Technology 1, 1–16 (2010)

[80] Li, W., van Beek, P., Poupart, P.: Performing Incremental Bayesian Infer-

ence by Dynamic Model Counting. In: Proceedings of the National Confer-

ence on Artificial Intelligence (AAAI). pp. 1173–1179 (2006)

[81] Lin, Y., Druzdzel, M.J.: Relevance-Based Sequential Evidence Processing

in Bayesian Networks. In: Proceedings of the 11th International Florida

Artificial Intelligence Research Society Conference (FLAIRS). pp. 446–450.

FLAIRS (1998)

[82] Lucas, P., van der Gaag, L.: Principles of Expert Systems. Addison-Wesley

Longman Publishing Co., Inc. (1991)

[83] Madsen, A.L., Jensen, F.V.: Lazy propagation: A junction tree inference al-

gorithm based on lazy evaluation. Artificial Intelligence 113, 203–245 (1999)

[84] Mahoney, S.M., Laskey, K.B.: Network engineering for complex belief net-

works. In: Proceedings of the 12th International Conference on Uncertainty

in Artificial Intelligence. pp. 389–396. UAI (1996)

[85] Melle, W.: A domain-independent production-rule system for consultation

programs. In: Proceedings of the 6th International Joint Conference on Ar-

tificial Intelligence. pp. 923–925. IJCAI (1979)

148

[86] Microsoft: BizTalk Server, https://www.microsoft.com/france/

serveur-cloud/biztalk/default.aspx

[87] Miranker, D.P.: TREAT: A New and Efficient Match Algorithm for AI Pro-

duction Systems. Ph.D. thesis, Columbia University (1987)

[88] Moore, J., Swartout, W.: Explanation in expert systems: a survey. Univer-

sity of Southern California, Information Sciences Institute (1988)

[89] Moore, J.D.: Participating in Explanatory Dialogues: Interpreting and Re-

sponding to Questions in Context. MIT Press (1994)

[90] Morgan, T.: Business Rules and Information Systems: Aligning IT with

Business Goals. Addison-Wesley Professional (2002)

[91] Newell, A.: Human Problem Solving. Prentice-Hall, Inc. (1972)

[92] Ng, K.C., Abramson, B.: Uncertainty management in expert systems. IEEE

Expert: Intelligent Systems and Their Applications 5, 29–48 (1990)

[93] O.M.G Specifications: Semantics of business vocabulary and business rules.

Tech. rep., Object Management Group (2015)

[94] Onisko, A., Lucas, P.J.F., Druzdzel, M.J.: Comparison of rule-based and

Bayesian network approaches in medical diagnostic systems. In: Proceedings

of the 8th Conference on Artificial Intelligence in Medicine in Europe. LNCS,

vol. 2101, pp. 283–292 (2001)

[95] OpenRules, Inc.: Open Source Business Decision Management System,

http://openrules.com/

[96] Oracle Business Rules: http://www.oracle.com/technetwork/

middleware/business-rules/overview/index.html

149

https://www.microsoft.com/france/serveur-cloud/biztalk/default.aspx
https://www.microsoft.com/france/serveur-cloud/biztalk/default.aspx
http://openrules.com/
http://www.oracle.com/technetwork/middleware/business-rules/overview/index.html
http://www.oracle.com/technetwork/middleware/business-rules/overview/index.html

[97] Pearl, J., Paz, A.: Graphoids: Graph-Based Logic for Reasoning about Rel-

evance Relations or When would x tell you more about y if you already know

z? In: Proceedings of the 7th European Conference on Artificial Intelligence.

pp. 357–363. ECAI (1986)

[98] Pearl, J.: Reverend Bayes on Inference Engines: A Distributed Hierarchical

Approach. In: Proceedings of the Second AAAI Conference on Artificial

Intelligence. pp. 133–136. AAAI (1982)

[99] Pearl, J.: A Constraint-Propagation Approach to Probabilistic Reasoning.

In: Proceedings of Workshop on Uncertainty and Probability in Artificial

Intelligence. pp. 31–42 (1985)

[100] Pearl, J.: Fusion, propagation, and structuring in belief networks. Artificial

Intelligence 29, 241–288 (1986)

[101] Pearl, J.: Evidential reasoning using stochastic simulation of causal models.

Artificial Intelligence 32, 245–257 (1987)

[102] Pearl, J.: Probabilistic Reasoning in Intelligent Systems: Networks of Plau-

sible Inference. Morgan Kaufmann (1988)

[103] Pearl, J.: Belief networks revisited. Artificial Intelligence 59, 49 – 56 (1993)

[104] Pegasystems Business Rules Platform : https://www.pega.com/

business-rules-platform

[105] Perez, K.: Probabilistic Production Rules. Master’s thesis, École des Mines

de Saint-Etienne (2013)

[106] Pfeffer, A.J.: Probabilistic Reasoning for Complex Systems. Ph.D. thesis,

Stanford University (2000)

150

https://www.pega.com/business-rules-platform
https://www.pega.com/business-rules-platform

[107] Poo, D.C.C.: Implementing an evolutionary structural software model. Jour-

nal of Systems and Software 22, 81–90 (1993)

[108] Poo, D.C.C., Lee, S.: Tartan: Interweaving objects with rules in information

systems development. Journal of Systems and Software 33, 3–14 (1996)

[109] Progress Software Corporation: Progress Corticon, https://www.

progress.com/corticon

[110] Red Hat: JBoss BRMS, https://www.redhat.com/en/technologies/

jboss-middleware/business-rules

[111] Robert, C., Casella, G.: Monte Carlo Statistical Methods. Springer-Verlag

New York (2004)

[112] Ross, R.G.: Business Rules Manifesto. Tech. rep., The Business Rules Group

(2003)

[113] Ross, R.G.: Principles of the Business Rule Approach. Addison-Wesley

(2003)

[114] Ross, R.G., Lam, G.S.: Building Business Solutions: Business Analysis with

Business Rules. Business Rule Solutions (2011)

[115] Russell, S., Norvig, P.: Artificial Intelligence, a modern approach. Prentice

Hall (2003)

[116] Sang, T., Bearne, P., Kautz, H.: Performing Bayesian Inference by Weighted

Model Counting. In: Proceedings of the 20th National Conference on Arti-

ficial Intelligence (AAAI). pp. 475–481. AAAI (2005)

[117] SAP: NetWeaver Business Rules Management, https://archive.sap.com/

documents/docs/DOC-26748

151

https://www.progress.com/corticon
https://www.progress.com/corticon
https://www.redhat.com/en/technologies/jboss-middleware/business-rules
https://www.redhat.com/en/technologies/jboss-middleware/business-rules
https://archive.sap.com/documents/docs/DOC-26748
https://archive.sap.com/documents/docs/DOC-26748

[118] Shachter, R.D., Peot, M.A.: Simulation approaches to general probabilistic

inference on belief networks. In: Proceedings of the 5th Annual Conference

on Uncertainty in Artificial Intelligence. pp. 221–234. UAI (1990)

[119] Shafer, G., Pearl, J.: Readings in Uncertain Reasoning. Morgan Kaufman

(1990)

[120] Shenoy, P., Shafer, G.: Axioms for Probability and Belief-Function Propa-

gation. In: Yager, R.R., Liu, L. (eds.) Classic Works of the Dempster-Shafer

Theory of Belief Functions, pp. 499–528. Springer Berlin Heidelberg (2008)

[121] Smets, P.: Imperfect information: Imprecision and uncertainty. In: Motro,

A., Smets, P. (eds.) Uncertainty Management in Information Systems: From

Needs to Solutions, pp. 225–254. Springer US (1997)

[122] Sottara, D.: Integration of symbolic and connectionist AI techniques in the

development of Decision Support Systems applied to biochemical processes.

Ph.D. thesis, University of Bologna (2010)

[123] Standish: The CHAOS report. Tech. rep., The Standish Group International

Inc (1995)

[124] Standish: The CHAOS report. Tech. rep., The Standish Group International

Inc (2004)

[125] Swartout, W., Moore, J.: Second generation expert systems. In: David,

J.M., Krivine, J.P., Simmons, R. (eds.) Explanation in Second Generation

Expert Systems, pp. 543–585. Springer-Verlag New York, Inc. (1993)

[126] Swartout, W., Paris, C., Moore, J.: Explanations in knowledge systems:

design for explainable expert systems. IEEE Expert 6, 58–64 (1991)

152

[127] Torti, L.: Inférence probabiliste structurée dans les modèles graphiques prob-

abilistes orientés-objet. Ph.D. thesis, Pierre et Marie Curie University (2012)

[128] Tsalgatidou, A., Loucopoulos, P.: An object-oriented rule-based approach to

the dynamic modelling of information systems. In: Proceedings of the Inter-

national Working Conference on Dynamic Modelling of Information Systems

. pp. 165–188 (1991)

[129] Verma, T., Pearl, J.: Causal Networks: Semantics and Expressiveness. In:

Proceedings of the 4th Annual Conference on Uncertainty in Artificial Intel-

ligence. pp. 69–78. UAI (1988)

[130] Vlasselaer, J., Van den Broeck, G., Kimmig, A., Meert, W., Raedt, L.D.:

Tp-compilation for inference in probabilistic logic programs. International

Journal of Approximate Reasoning 78, 15 – 32 (2016)

[131] Weske, M.: Business Process Management. Springer-Verlag Berlin Heidel-

berg (2012)

[132] Wick, M.R., Slagle, J.R.: An explanation facility for today’s expert systems.

IEEE Expert 4, 26–36 (1989)

[133] Wick, M.R.: Second generation expert system explanation. In: David, J.M.,

Krivine, J.P., Simmons, R. (eds.) Second Generation Expert Systems, pp.

614–640. Springer Berlin Heidelberg (1993)

[134] Wiegerinck, W., Kappen, B., Burgers, W.: Bayesian networks for expert

systems: Theory and practical applications. In: Babuška, R., Groen, F.C.A.

(eds.) Interactive Collaborative Information Systems, pp. 547–578. Springer

Berlin Heidelberg (2010)

153

[135] Ye, L.R., Johnson, P.E.: The impact of explanation facilities on user accep-

tance of expert systems advice. MIS Quarterly 19, 157–172 (1995)

[136] Zadeh, L.A.: Fuzzy sets. Information and Control 8, 338–353 (1965)

[137] Zhang, N.L., Poole, D.: A simple approach to Bayesian network computa-

tions. In: Proceedings of the 10th Biennial Canadian Conference on Artificial

Intelligence. pp. 171–178 (1994)

154

Notations and Acronyms

P a probability distribution

DAG Directed acyclic graph

G = (V ,A) a directed graph over nodes (random variables) V and arcs A

CPT Conditional Probability Table

CNF Conjunctive Normal Form

PGM Probabilistic Graphical Model

BN Bayesian Network

BR Business Rule

RBS Rules-based System

BRMS Business Rules Management Systems

KB Knowledge Base

WM Working Memory

WME Working Memory Element

IT Information Technology

POJO Plain Old Java Object

IDE Integrated Development Environment

OM Object Model

AI Artificial Intelligence

155

Subject Index

Action Rules, 94

Aggregate, 98

Aggregator, 53

Agility, 2, 9

AI, 3, 4

alpha-node, 22

Backward Chaining, 24

BAL, 94

Bayesian Networks, 32

Belief Propagation, 46

BN, 32

BOM, 94

BR, 12

BRMS, 2

BRMS,RBS, 14

BRs, 11

Business policy, 11

Business Rule, 12

Business Rules, 2, 11

Business Rules Approach, 2, 11

Business Rules Management Systems, 2

Certainty Factors, 109

Clique, 62

Clique graph, 62

CNF, 111

Collect, 66

Concepts Catalog, 13

Conflict Resolution, 21

Conflict Set, 21

CPT, 34

d-Separation, 41

DAG, 33

Distribution, 66

Explanation, 26

Factor, 63

Fire, 21

Forward Chaining, 24

Ground BN, 55

IJTI, 68

Incremental Junction Tree Inference, 68

Incrementality, 6, 59

156

Independence Structure, 35

Inference Engine, 21

IRL, 96

Join tree algorithm, 61

Junction Tree, 63

Junction Tree algorithm, 46

Knowledge Base, 19

MAP, 45

Marginal distribution, 44

Markov Blanket, 39

Markovian Assumption, 38

Message-Passing, 46

MPE, 44

Network Parameterization, 36

O3PRM, 104

Object Models, 15

Object-Oriented, 15

ODM, 5

OMG, 12

OO-BRMS, 16

Pattern, 97

PGMs, 5

Policies, 1, 10, 11

Poly Tree algorithm, 46

Posterior Marginal, 44

Prior Marginal, 44

PRM, 55

PRM class, 50

PRM Instance, 52

PRMs, 32, 49

Probabilistic Conditional Independence,

38

Probabilistic Graphical Models (PGMs),

31

Probabilistic Relational Models, 32

RBS, 3

RBS, Rule-based System, 15

Recursive Conditioning, 47

Reference Slot, 51

Relational Skeleton, 52

Rete, 22, 98, 100

Rete algorithm, 18

Rete network, 22

Rule-based Expert Systems,RBS, 18

Rules, 1

Running intersection property, 63

SBVR, 12

Separation of Concerns, 2, 14

Slot chain, 54

SOA, 2, 14

Technical Rules, 96

157

Terms, 13

Trail, 40

Uncertainty, 3, 4

User Interface, 25

WME, 21, 109

Working Memory, 20

Working Memory Element, 21

XOM, 94

158

	 Introduction
	General Context
	Motivation
	Contributions and Outline

	 IT for Business Rules Management
	Introduction
	Business Rules Approach overview
	Business Rules Management Systems
	Features of a BRMS
	Rule-based Expert Systems

	Discussion and Conclusion

	 Bayesian Networks for Uncertainty Management
	Introduction
	Bayesian Networks
	Definition and Design
	Graphical Semantics
	Reasoning with BNs

	Probabilistic Relational Models
	Conclusion

	Incremental Junction Tree Inference
	Introduction
	Junction Tree algorithm
	Incremental Junction Tree Inference
	Optimal Roots
	A new Incremental Inference

	Evaluation
	Messages Optimization
	Time Optimization

	Conclusion

	Business Rules Uncertainty Management
	Introduction
	Coupling BRs with PRMs
	Uncertain OO-BRs Principles
	Model Extension

	Application to IBM ODM
	Overview
	A Complex Compilation Process
	A Loosely Coupling-based Execution

	Towards Advanced techniques
	Preliminary
	Probabilistic Propagation

	Conclusion

	Discussion and Future Works
	Proofs
	Other experimental results
	Bibliography
	Subject Index

