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Abstract Probabilistic Relational Models (PRM) are a framework for compactly rep-

resenting uncertainties (actually probabilities). They result from the combination of

Bayesian networks (BN), Object Oriented languages and Relational Models. They are

specifically designed for their efficient construction, maintenance and exploitation for

very large scale problems, where Bayesian networks are known to perform poorly.

Actually, in large scale problems, it is often the case that BNs result from the com-

bination of patterns (small BN fragments) repeated many times. PRMs exploit this

feature by defining these patterns only once (the so-called PRM’s classes) and using

them through multiple instances, as prescribed by the Object Oriented paradigm. This

design induces low construction and maintenance costs. In addition, by exploiting the

classes’ structures, PRM’s state-of-the-art inference algorithm “Structured Variable

Elimination” (sve) significantly outperforms BN’s classical inference algorithms (e.g.,

Variable Elimination (ve), Local Conditioning (lc)). sve is actually an extension of ve

that simply exploits classes to avoid redundant computations. In this paper, we show

that sve can be enhanced using Local Conditioning. Although lc is often thought as

being outperformed by ve-like algorithms in BNs, we do think that it should play an

important role for PRMs because its features are very well suited for best exploiting

PRM classes. In this paper, relying on Faÿ and Jaffray’s works, we show how Local

Conditioning can be used in conjunction with Variable Elimination and deduce an

extension of sve that outperforms it for large scale problems. Numerical experiments

highlight the practical efficiency of our algorithm.
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1 Introduction

For the past twenty years, Bayesian networks (BN) have been the most popular knowl-

edge representation framework for reasoning under uncertainty. They actually have

many attractive features: first, they can represent very compactly different popular

uncertainty models such as probabilities (Pearl, 1988) or belief functions (Cozman,

2000). This compacity enables BNs to handle probability distributions that exceed by

far the storage capacity of all modern computers (Näım et al, 2007). Second, their

learning from either databases or experts can be achieved efficiently and is quite flex-

ible as different sources of data can be mixed together with the guarantee that the

result is actually a probability distribution (Heckerman, 1996). Finally, many powerful

exact inference techniques exploit BN’s structures to answer all sorts of probabilis-

tic queries including belief updating, i.e., computing the posterior probability of some

random variables given a set of observations (Pearl, 1988; Peot and Shachter, 1991;

Jensen et al, 1990; Shafer, 1996; Madsen and Jensen, 1999; Faÿ and Jaffray, 2000;

Allen and Darwiche, 2003), finding the most probable explanations (MPE), i.e., com-

puting a maximum probability assignment of unobserved random variables (Nilsson,

1998), finding the maximum a posteriori hypothesis (MAP), i.e., computing an assign-

ment to a subset of unobserved variables maximizing their probability (Dechter, 1999;

Park and Darwiche, 2003; Sun et al, 2007; Yuan and Hansen, 2009).

This success story stimulated the need for handling problems of ever increasing size.

However, BNs often turn out to be inadequate for very large scale problems such as,

e.g., military situation assessment where the goal is to evaluate the uncertain states of

numerous battalions in a battlefield (Mahoney and Laskey, 1996; Pfeffer et al, 1999).

BNs are actually static graphical representations, i.e., they are designed to encode

probability distributions over a given set of random variables and are not able to ad-

just their graphical structure to shifting situations where the set of random variables

is not constant over time. Therefore, whenever the number of battalions on the bat-

tlefield or their configuration changes, a fresh new BN must be designed to take into

account the new uncertain situation. Moreover, in large scale problems, many parts

of the BN are repetitions of the same pattern: for instance, many battalions have the

same configuration, and creating them all within the BN structure requires numerous

copy/paste operations. This is of course an inefficient design technique for very large

scale problems but, in addition, by not notifying the BN about these repeated patterns,

this one is unable exploit this knowledge to speed-up probabilistic inference. All these

disadvantages led researchers to seek for BN extensions with a much higher descrip-

tive power. State-of-the-art extensions can be roughly divided into two main classes:

i) those resulting from the combination of First Order Logic with uncertainty repre-

sentation, e.g., Markov Logic Networks, Bayesian Logic (Getoor and Taskar, 2007);

and ii) those combining BNs with Object-Oriented languages and Relational Models,

e.g., Probabilistic Relational Models (Pfeffer, 2000; Getoor et al, 2007), Multi-Entity

Bayesian Networks (Laskey, 2008) and Relational Bayesian Networks (Jaeger, 1997).

In this paper, we focus on Probabilistic Relational Models (PRM) because they are

very expressive and flexible. Our aim is show how the PRM’s state-of-the-art inference

algorithm called Structure Variable Elimination (SVE) (Pfeffer, 2000) can be improved

by combining it with Local Conditioning, a BN-based inference method introduced in

Diez (1996) and fully developed mathematically in Faÿ and Jaffray (2000). Local Con-

ditioning (LC) is basically a BN “directed” inference algorithm, that is, it relies on the

very BN graphical structure to perform its computations. As such, it is often thought
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as being outperformed by BN’s Variable Elimination-based inference algorithms that

rely on BN-induced undirected graphs optimized for computations (Jensen et al, 1990;

Zhang and Poole, 1994; Dechter, 1999; Madsen and Jensen, 1999). This belief makes

sense for pure BN inference as it was shown in Shachter et al (1994) that some condi-

tioning methods were special cases of Variable Elimination. However, inference methods

in PRMs depart significantly from those used in classical BNs and we will show that

Jaffray and Faÿ’s pioneering work on Local Conditioning can serve as the foundation

for new improved versions of SVE in PRMs.

The paper is organized as follows. In Section 2, we recall the basics of Bayesian

networks: we define BNs and present two of their inference algorithms: Variable Elim-

ination and Local Conditioning. In Section 3, we present PRMs as well as Structure

Variable Elimination, their inference engine. Section 4 is devoted to our combination

of SVE and LC. In particular, we show experimental results highlighting its efficiency.

Finally, we conclude in Section 5.

2 Bayesian Networks

Bayesian networks are compact representations of joint probability distributions over

sets of random variables. Although they can support continuous variables (Lauritzen,

1992; Cowell et al, 2007; Kjærulff and Madsen, 2008), we shall assume throughout

this paper that all random variables have a finite domain. This actually simplifies our

exposition and does not restrict the key ideas of the paper. For any random variable

Xi, Dom(Xi) denotes the domain of Xi, that is, the set of possible values for Xi, and

the probability distribution P (Xi) refers to P (Xi = xi) for all xi ∈ Dom(Xi).

Definition 1 A Bayesian network is a triple (V,A,P), where V = {X1, . . . , Xn}
is a set of random variables; A ⊆ V × V is a set of arcs which, together with V,

constitutes a directed acyclic graph G = (V,A); P = {P (Xi|Pai) : Xi ∈ V} is the

set of conditional probability tables (CPT) of each node/random variable Xi given the

values of its parents Pai in graph G. The BN represents a joint probability distribution

over V having the product form: P (V) = P (X1, . . . , Xn) =
∏n
i=1 P (Xi|Pai).

Thus, the BN of Figure 1 represents a probability distribution over V = {A,B,C,D,
E, F,G,H} decomposable as P (V) = P (A)P (B)P (C|A)P (D|A,B)P (E|C)P (F |D)

P (G|E,F )P (H|F ). Note the compacity of the representation: if all random variables

are of domain size 10, storing in extension the joint probability would require a table

of size 108, whereas the sum of the sizes of the tables stored in the BN is only 2420 (2

tables with 1000 cells, 4 with 100 cells and 2 with 10 cells). By definition, the arcs link-

ing the nodes represent direct probabilistic dependencies between the corresponding

random variables. Longer paths such as C ← A→ D represent indirect dependencies:

H

C

E

D

F

G

BA

Fig. 1 A Bayesian network.
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on Fig. 1, C and D are dependent but only through the value of A. For instance, A

may be the age of a person, C be her reading skill and D her shoe size; D and C are

probabilistically dependent since knowing that her shoe size is only 2 implies that she is

a baby and, hence, that she does not know how to read. The lack of an arc between two

nodes reflects the lack of a direct probabilistic dependence between these two nodes.

BNs have essentially three major advantages over joint probabilities stored in ex-

tension. First, their compacity enables handling distributions that exceed by far the

storing capacity of modern computers (Näım et al, 2007). Second, by their very defini-

tion, their construction requires only the specification of conditional probabilities. As

a consequence, different sources of data can be used to construct different parts of the

network, the product of these conditional probabilities being guaranteed to produce a

joint probability. Finally, the BN’s graphical structure can be efficiently exploited for

answering all sorts of probabilistic queries such as the computations of marginal a pri-

ori and a posteriori probabilities (Jensen et al, 1990; Shafer, 1996; Diez, 1996; Dechter,

1999; Madsen and Jensen, 1999; Faÿ and Jaffray, 2000; Allen and Darwiche, 2003),

of the most probable explanations (MPE) (Nilsson, 1998), etc. Marginal a posteriori

probability queries are of utmost importance in practical applications: consider a BN

designed for the diagnosis of potential malfunctions in a nuclear plant. This diagno-

sis essentially amounts to estimating the probability distribution of node “problem”

given (i.e., conditionally to) data brought by sensors within the power plant. Optimal

decisions can then be made on the basis of this a posteriori marginal probability.

In this paper, we will thus focus only on the efficient computation of the marginal

probability of a given node Xi conditionally to some evidence (new information) on

some variables of V, i.e., we received some noisy information ei1 , . . . , eik about some

variables Xi1 , . . . , Xik respectively and we wish to compute P (Xi|ei1 , . . . , eik ). For

instance, if Dom(Xij ) = {1, 2, 3, 4}, eij may be “we now know thatXij can have neither

value 1 nor 3”. Such evidence is entered into the BN through the conditional probability

vector P (eij |Xij ). In our example, P (eij |Xij ) = [0, 1, 0, 1], that is, the vector contains

1’s for Xij ’s remaining possible values and 0’s for the now impossible values. Evidence

may also be noisy: eij = “our belief is that there is not more than a 20% chance that Xij
can have value 1”. In this case, P (eij |Xij ) = [0.2, 1, 1, 1]. In addition, it is assumed

that eij is independent of the rest of the network conditionally to Xij . This makes

sense as knowing the “true” value of Xij is the most informative possible evidence.

Therefore, conditionally to Xij , that is, given the knowledge of the “true” value of Xij ,

evidence eij can only bring redundant information to the rest of the network and is thus

independent of it. As a consequence of this hypothesis, P (V, ei1 , . . . , eik ) = P (V) ×∏k
j=1 P (eij |Xij ). Hence, after substituting P (Xij |Paij ) by P (Xij |Paij )×P (eij |Xij ),

the BN represents the a posteriori joint probability distribution P (V, ei1 , . . . , eik ).

2.1 Computation of a posteriori Marginal Probabilities by Variable Elimination

Many different algorithms do exist from computing marginal probabilities in BNs. Some

of them exploit the very structure of the BN (Pearl, 1988; Peot and Shachter, 1991;

Diez, 1996; Faÿ and Jaffray, 2000; Allen and Darwiche, 2003) while others exploit

other derived graphs called either a junction tree (Jensen et al, 1990; Jensen, 1996;

Shafer, 1996; Shenoy, 1997; Madsen and Jensen, 1999) or a pseudo tree (Dechter, 1999).

However, all these variants exploit the same key idea: that of variable elimination.

Formally, let Z = {Xi1 , . . . , Xik} ⊆ V be a set of nodes on which we received new
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evidence ei1 , . . . , eik . For simplicity, let us call eZ = {ei1 , . . . , eik}. Then:

P (Xi|eZ) =
∑

V\{Xi}

P (V|eZ) =
∑

V\{Xi}

P (V, eZ)

P (eZ)
∝

∑
V\{Xi}

P (V, eZ).

Here, there is no need to compute explicitly the fraction’s denominator because P (eZ)

is just a normalizing constant ensuring that
∑
Xi
P (Xi|eZ) = 1. Therefore, the only

quantity that needs be computed is
∑

V\{Xi} P (V, eZ) = P (Xi, eZ) which can be

normalized afterward by dividing it by
∑
Xi
P (Xi, eZ). The idea to achieve these com-

putations is simply to remove the variables of V\{Xi} one by one by marginalizing

them out, hence the name of the algorithm “Variable Elimination” (ve). Note how-

ever that the order in which variables are “eliminated” is critical for the efficiency of

the computation. Finding the optimal order is unfortunately NP-Hard (Arnborg et al,

1987) but many efficient heuristics based on the BN graphical structure can be found

in the literature (Rose et al, 1976; Kjærulff, 1990; Shoikhet and Geiger, 1997; van den

Eijkhof and Bodlaender, 2002).

Before giving a formal algorithm for Variable Elimination, let us show on an ex-

ample how it can be applied and how it is related to the BN’s graphical structure.

Consider the BN of Fig. 1 and assume that nodes B and E have received evidence eB
and eE respectively, as shown in Fig. 2.a. Let us compute P (C, eB , eE). As remarked

in the preceding subsection, the joint probability distribution P (V, eB , eE) is equal to:

P (A)P (B)P (C|A)P (D|A,B)P (E|C)P (F |D)P (G|E,F )P (H|F )P (eB |B)P (eE |E) (1)

and is compactly represented by the BN of Fig. 2.a. The first step of the algorithm con-

sists of creating a new undirected graph called a moral graph (see Fig. 2.b) whose nodes

are the random variables of V and whose edges join those nodes that appear in a same

conditional probability of the decomposition of P (V, eB , eE). For instance, P (G|E,F )

induces edges (E,F ), (E,G) and (F,G). Maximal complete subgraphs of the moral

graph thus represent the different “factors” of the decomposition of the joint proba-

bility. The ve algorithm will enforce this property all along the elimination process.

Let G be the first node to be removed from Eq. (1), that is, Eq. (1) is substituted by∑
G P (V, eB , eE). AsG appears only in factor P (G|E,F ), it is sufficient to substitute it

by
∑
G P (G|E,F ) in Eq. (1) to get

∑
G P (V, eB , eE). Let us denote by φ1(E,F ) table∑

G P (G|E,F ). Note that this is a function defined over Dom(E)×Dom(F ). The result-

ing joint distribution is P (A)P (B)P (C|A)P (D|A,B)P (E|C)P (F |D)φ1(E,F )P (H|F )

P (eB |B)P (eE |E) and is represented by the network of Fig. 2.c. In terms of graphical

operations, performing
∑
G P (G|E,F ) just amounts to removing G and its adjacent

edges (those joining it to the other variables in P (G|E,F )) from Fig. 2.b. Similarly,

H can be marginalized out by substituting P (H|F ) by φ2(F ) =
∑
H P (H|F ) and

replacing the network of Fig. 2.c by that of Fig. 2.d. Marginalizing out variable B

amounts to sum over B all the factors1 involving B, that is, computing φ3(A,D) =∑
B P (B)P (eB |B)P (D|A,B) and substituting these 3 potentials by φ3(A,D). Here

again, the “elimination” graphical counterpart consists of removing B and its adjacent

edges. At this point, the joint probability distribution over the remaining variables is:

P (A)P (C|A)φ3(A,D)P (E|C)P (F |D)φ1(E,F )φ2(F )P (eE |E) (2)

1 In the literature, factors are usually referred to as “potentials”.
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and is represented by the graph of Fig. 2.e. Until now, each time a node was eliminated,

it was sufficient to remove it (and its adjacent edges) from the graph. But consider now

the elimination of nodeD. It amounts to substitute φ3(A,D)×P (F |D), i.e., the product

of the potentials involving D in Eq. (2), by φ4(A,F ) =
∑
D φ3(A,D)× P (F |D). The

graphical counterpart operation consists of adding a new edge (A,F ) and, then, of

removing D and its adjacent edges, thus resulting in the graph of Fig. 2.f. This is the

general rule to apply (and actually that which we applied right from the start):

Rule 1 (Node elimination) To eliminate a node, first create edges between all pairs

of its adjacent nodes that were not linked yet (hence creating a maximal complete sub-

graph, i.e., a clique) and, then, remove the “eliminated” node and its adjacent edges.

Now eliminate, say, node F . This amounts to substitute φ4(A,F )φ1(E,F )φ2(F ) by

φ5(A,E) =
∑
F φ4(A,F )φ1(E,F )φ2(F ) and, in graphical terms, to substitute Fig. 2.f

by Fig. 2.g. At this point, the joint distribution is equal to P (A)P (C|A)P (E|C)P (eE |E)

φ5(A,E). Thus, the elimination of E leads to substitute P (E|C)P (eE |E)φ5(A,E) by

φ6(A,C) =
∑
E P (E|C)P (eE |E)φ5(A,E) and Fig. 2.g by Fig. 2.h. Finally, eliminating

A is performed by substituting P (A)×P (C|A)×φ6(A,C) by
∑
A P (A)P (C|A)φ6(A,C)

= P (C, eB , eE) and the computation is completed. There just remains to normalize

this quantity to get P (C|eB , eE). This process is formalized in Algorithm 1, where V

is the set of random variables of the BN and P is its set of CPTs.

H

C

E

D

F

G

BA

eB

eE

C

E

D

F

e) after removing B

A

H

C

E

D

F

G

BA

b) moral graph

H

C

E

D

F

BA

c) after removing G

C

E

D

F

BA

d) after removing H

C

E F

f) after removing D

A

CC

E

a) BN with evidence

h) after removing E

AA

g) after removing F

Fig. 2 Computing P (C, eB , eE) by Variable Elimination.

Rule 1 is important because it characterizes the complexity of the computation:

Proposition 1 (Dechter (1999)) Let w∗ be the maximal number of nodes in the

cliques created by Rule 1. Let n denote the number of variables Xi and let d denote the

maximal domain size of these variables. Then the space and time complexities of ve

are O(ndw
∗−1) and O(ndw

∗
) respectively.

Note that, whenever the BN is singly-connected —i.e., it has no loops—, it is

possible to find an elimination ordering such that the created cliques are precisely

those of the BN’s moral graph. In such a case, the complexity of ve is polynomial in

the size of its input. Otherwise, as shown in Proposition 1, the complexity is doomed to

be exponential in the treewidth w∗, hence possibly resulting in intractable instances.
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Input: a set of random variables V, a set of CPTs P, a set of evidence eZ, a set of
target nodes X

Output: P (X, eZ)
P← P ∪ {P (eij |Xij ) : eij ∈ eZ}
while V\X 6= ∅ do

let Xj be some node in V\X
remove Xj from V
let Q be the set of tables in P containing node Xj
compute table q =

∑
Xj

∏
f∈Q f

P← (P\Q) ∪ {q}
end
return table

∏
f∈P f

Algorithm 1: Variable Elimination for computing P (X, eZ).

This remark suggests that, if there is a way to transform a multiply-connected BN into

a singly-connected one, then computations will probably be faster in the latter than in

the former. This is precisely the approach taken by Local Conditioning.

2.2 Computation of a posteriori Marginal Probabilities by Local Conditioning

Ever since a paper by Shachter et al (1994), conditioning techniques have been consid-

ered less efficient than ve by the BN community. However, this is certainly overreacted

as this paper concerned only “Global Conditioning”, but not in any case other more

flexible schemes such a “Local Conditioning” (lc). And in fact, it can be shown that

ve is a particular case of a variant of lc (Gonzales et al, 2007). lc was introduced

through an example in Diez (1996) and was later justified mathematically in Faÿ and

Jaffray (2000). The idea is twofold: first, remember that the arcs in a BN represent

direct probabilistic dependencies between random variables. As such, eliminating a

node from the BN can be viewed as making the relevant information it contains flow

toward its neighbors. The elimination scheme can thus be performed directly on the

BN, that is, on the directed graph, by sending appropriate messages along the arcs

(the information flow) (Pearl, 1988; Peot and Shachter, 1991). Second, if the value of a

node, say Xj , is known, then there is no need to keep Xj ’s outgoing arcs: indeed, after

updating accordingly the CPTs of its children, no additional information can flow to

them from Xj since the data flowed are probabilities concerning the possible values

of Xj and we already have the most informative knowledge, that of the true value of

Xj . Conversely, no data needs be flowed from its children to Xj since knowing Xj ’s

true value, no additional data can be probabilistically informative for Xj . Therefore,

if we know the “true” values of enough nodes, removing their outgoing arcs may result

in a singly-connected network in which computations are of polynomial complexity, as

seen in the preceding subsection. Of course, it is most unusual that we know the true

values of enough nodes to make the BN singly-connected. But this situation can be

enforced by reasoning by cases and this is precisely what is advocated by lc: assume

that, once the values of Xj1 , Xj2 are known, the BN becomes singly-connected, then

P (Xi|eZ) =
∑
xj1

,xj2
P (Xi, Xj1 =xj1 , Xj2 =xj2 |eZ). But then, for each pair (xj1 , xj2),

this quantity can be computed in a singly-connected network since we know the values

of Xj1 , Xj2 . In the end, there just remains to add the probabilities computed for each

pair (xj1 , xj2) to get the desired marginal a posteriori probability of Xi. A complete
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mathematical specification of this method can be found in Faÿ and Jaffray (2000).

Note that not all the outgoing arcs of the “conditioned” nodes need be removed but

only sufficiently many to remove all the loops while keeping the graph connected.

In this paper, our aim is to use ve in conjunction with lc, hence our presentation

of the latter will depart somewhat from that of Faÿ and Jaffray (2000) which relies on

the directed structure of the BN. Consider the graph of Fig. 3.a, in which arc (D,F )

does not exist anymore. Its moral graph is given in Fig. 3.b. The reader can easily

check that, using the same elimination order as in the preceding subsection, i.e., G,H,

B,D, F,E,A, no additional edge is added to the graph by ve. Now, how can we remove

arc (D,F ) from the network while still ensuring that our computations are correct?

The answer can be found in the following rule derived from Faÿ and Jaffray (2000):

Rule 2 (Arc labeling) Let L ⊆ A be the set of arcs removed by local condition-

ing. Assume that this set keeps the connectedness of the graph and that this one is

now singly-connected. For any removed arc (Xs, Xt) ∈ L, there still exists exactly one

undirected path between Xs and Xt. On all the arcs of this path, add label Xs.

Messages flowing on the arcs (Xi, Xj) of the BN should have the dimensions of

these arc’s labels as well as that of Xi.

H

C

E

D

F

G

BA

b) moral graph

H

C

E

D

F

G

a) BN with evidence

BA

eB

eE G

A

C D

E F

B

H H

C

E

D

F

G

c) labelized graph

D

D

D

D

D

BA

d) lc’s moral graph

Fig. 3 Computing P (C|eB , eE) by Local Conditioning.

Rule 2 is illustrated on Fig. 3.c, where (D,F ) is the only removed arc. In practice,

whenever a message is sent on an arc of this network, the nodes of its label cannot be

marginalized out. To describe inference in terms of ve, it is sufficient to add dimension

D to all the conditional probability tables stored into the nodes at the head of the

labeled arcs prior to performing ve. This is achieved by duplicating |Dom(D)| times

the original conditional probability tables. In our case, this amounts to state that the

joint probability distribution is decomposable as:

P (V, eB , eE) = PD(A)P (B)P (eB |B)P (C|A,D)P (D|A,B)P (E|C,D)

P (eE |E)P (F |D)P (G|E,F )P (H|F ),

where PD(A) refers to P (A) duplicated |D| times. This corresponds to the moral graph

of Fig. 3.d. Now, ve can be performed as described in Subsection 2.1 (see Table 1).

Note that, unlike usual ve, lc sets an additional rule on the possible elimination orders:

Rule 3 Let L ⊆ A be the set of arcs removed by lc. Let (Xs, Xt) be any arc in L and

let {Xs, Xi1 , . . . , Xik , Xt} be the remaining path linking Xs and Xt. Then, in ve, Xs
must be eliminated after all nodes Xi1 , . . . , Xik , Xt have been eliminated.
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Table 1 Computing P (C, eB , eE) with Local Conditioning.

elim. var potentials substituted substituting potentials
G P (G|E,F ) φ1(E,F )
H P (H|F ) φ2(F )
B P (B)P (eB |B)P (D|A,B) φ3(A,D)
F φ1(E,F )φ2(F )P (F |D) φ4(E,D)
E P (E|C,D)P (eE |E)φ4(E,D) φ5(C,D)
A P (A)P (C|A,D)φ3(A,D) φ6(C,D)
D φ5(C,D)φ6(C,D) P (C, eB , eE)

At first sight, lc seems far less efficient than ve since the moral graph on which

it works (Fig. 3.d) corresponds to a much less decomposable probability distribution

than the original one. But note that no edge is ever added to this moral graph by lc

(observe that functions φi of Table 1 fit the graph of Fig. 3.d) whereas the usual ve can

and actually does add many edges. Therefore, we should not compare ve and lc on the

basis of the original moral graphs but rather on the graphs of cliques of the “substituted

potentials”, that is, the cliques formed during the whole elimination process. Those are

displayed in Fig. 4. As can be seen, lc and ve construct very similar graphs. Actually,

these graphs have in common the following property: they are triangulated, that is,

every cycle of length 4 or more can be cut by at least one edge not belonging to the cycle

(called a fill-in). For instance, in Fig. 4.b, cycle ACEGF can be cut into two pieces by

edges (A,E) and (E,F ). The only difference between ve and lc is that the latter sets

a constraint on the fill-ins added to the original moral graph: they must be adjacent to

the node at the tail of the arc removed by Local Conditioning. For instance, on Fig. 4.a,

lc removed arc (D,F ), hence all fill-ins, i.e., (D,C) and (D,E), are adjacent to D. If

we allow lc to add new edges to the moral graph before performing its arc removals,

this constraint on fill-ins is sufficiently relaxed that ve becomes a special case of lc

(Gonzales et al, 2007).

H

C

E

D

F

GH

C

E

D

F

G

BA

b) ve’s triangulated graph

BA

a) lc’s triangulated graph

Fig. 4 The “substituted potentials” graphs of ve and lc.

3 Probabilistic Relational Models

Bayesian networks have been widely used in real-world applications. But, over the

years, an increasing need for tractable large scale complex systems arose, for which

BNs turned out to be inadequate. Actually, in such systems, the effort they require for

their construction, their maintenance and their exploitation for answering probabilistic

queries is unrealistically high to be of practical interest. The BN language contains

only the concepts of random variables and their probabilistic dependencies. This is

simply too basic a language for very large scale problems where advanced concepts such
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as “similarity” between random variables, repeated “patterns” in BN sub-structures,

“contexts”, are compulsory to be efficient. This led to the development of new BN-based

graphical languages having these advanced concepts as part of their primitives. These

new models can mainly be divided into two parts : i) those that were derived from the

unification of First Order Logic with uncertainty representations, e.g., Markov Logic

Networks, Bayesian Logic (Getoor and Taskar, 2007); and ii) those that resulted from

analogies with Object-Oriented languages and Relational Models, e.g., Probabilistic

Relational Models (Pfeffer, 2000; Getoor et al, 2007), Multi-Entity Bayesian Networks

(Laskey, 2008), Relational Bayesian Networks (Jaeger, 1997).

To simplify our presentation without loss of generality, we focus in this paper on

Probabilistic Relational Models (PRM). We now provide a minimal set of definitions

of the primitives of the PRM language. For a more detailed presentation of PRMs, see

Pfeffer (2000) and Getoor and Taskar (2007).

3.1 PRM Specification

PRMs exploit the Object Oriented paradigm to specify large scale Bayesian networks.

Roughly, in an Object Oriented programming language like Java or C++, a program

is made of a set of classes, which are generic definitions of complex data structures,

and of a set of instances, which are the instantiations of these data structures that are

created and handled at runtime. For instance, to manage the employees of a company,

we may define a generic class employee whose fields are the name and the address of an

employee. For a given employee, say John Smith, we may create an instance of employee

with the name field set to John Smith and the address field set to New York, NY, USA.

We may also create a second instance of class employee for another person by setting

this instance’s name field to Mary Doe and its address field to Paris, France. In the

PRM framework, classes correspond to BN fragments and a large scale BN is created by

putting together multiple instances of these fragments. The resulting network is called

a system or a relational skeleton. Of course, as in usual Object Oriented programming

languages, PRM support inheritance, i.e., it is possible to define subclasses specializing

general classes (e.g., engineer and manager may be subclasses of employee). PRM also

support encapsulation, i.e., classes may include other classes (here BN fragments) as

some of their fields. Encapsulation requires an additional notion, that of a reference:

as classes are only definitions, defining that a given field of a class X is of class Y does

not give any insight at runtime as to which instance of class Y a given instance of type

X should refer to. References fill this gap by indicating at runtime which particular

instances should be used by encapsulation. They are in essence functions mapping

instances of class X to instances of class Y. For instance, let department be a new

class for our company and let accounting and engineering be two instances of this

class. Let us add a new field “dpt” of type department to our employee class. Then,

using references, it is possible to express that John Smith’s “dpt” field is actually

engineering. As can be seen, the richness of the PRM language enables easily to

hierarchically decompose a large scale complex system into multiple subsystems easier

to handle. Let us now formalize the above concepts:

Definition 2 (Classes and instances) A class C is defined by a Directed Acyclic

Graph (DAG) over a set of random variables V(C), a set of references (or slots) R(C),

and a probability distribution over V(C). To refer to a given random variable X (resp.
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reference ρ) of class C, we use the standard Object Oriented notation C.X (resp. C.ρ).

In addition, C denotes the set of classes of a PRM.

An instance c is the use (or the instantiation) of a given class C in a system s.

There are usually numerous instantiations of a given class C in a system. I(C) denotes

the set of all instantiations of C. Notation c.X (resp. c.ρ) refers to the instantiation of

C.X ∈ V(C) (resp. C.ρ ∈ R(C)) in c. By abuse of notation, we denote the sets of such

instantiations as V(c) and R(c) respectively.

Thus, a class defines a family of objects (or instances) sharing the same proper-

ties: DAG, random variables and class references. The DAG, together with the random

variables, defines a BN fragment. As a consequence, in a PRM, each random variable

C.X of V(C) corresponds to a node in C’s own DAG and is assigned a conditional

probability table defined over X and its parents PaX in C. Classes are represented by

rounded boxes, as shown in Fig. 5.a. This figure illustrates a diagnosis problem in a

local network containing both printers and computers: each printer and computer is

located in a room; each room uses the power supply delivered by a dedicated circuit

supplied by a main power supply. There may be several computers and/or printers per

room and each computer may be connected to zero, one or more printers. This example

is modeled by 4 classes: PowerSupply, Room, Printer and Computer. Class Computer ex-

hibits a BN fragment with 3 random variables Computer.exists, Computer.state and

Computer.canPrint which represent the fact that the computer is connected to at least

one ready printer, the computer’s power state and the fact that the computer is able to

print respectively. Random variables state, circuit1 and cicuit2 represent the power

states of PowerSupply, Printer and Room respectively. Arcs contained within a given

class form the DAG of the BN fragment of the class. Arcs from one class to another

indicate the use of a reference. For instance, arc (Room.circuit1,Computer.state) in-

dicates that the state of a computer depends on the state of its dedicated electric circuit

(and the reference represented by the dashed arc pointing to the dashed ellipse “room”

shows which one it is). On the graph of Fig. 5.b, we show different instantiations of

these classes (displayed as boxes): here, we have a system with 2 rooms, the first one

containing 2 computers with one printer attached to each computer, and the second one

room room

state

P : PowerSupply

R1:Room R2:Room

P2:Printer P3:PrinterP1:Printer P4:Printer

C1:Computer C2:Computer C3:Computer

stateexists

state

pow

PowerSupply

Random variable

Simple reference

Complex reference

canPrint

printers

circuit2 circuit1

a) class dependency graph b) one corresponding system

ComputerPrinter

Room

Fig. 5 A Class Dependency Graph and a system (relational skeleton).
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containing only one computer connected to two printers. Note that several instances

can be created for a given class (e.g., there are 3 computers). The dashed edges repre-

sent the actual references. Those are indeed used both to define dependencies between

classes and between instances. Note the compacity of the PRM representation: the

PRM classes and instances of Fig. 5 represent the plain BN of Fig. 6. Before going

further into the details of PRM, we should give more precise definitions of references:

P3.state P4.state

C3.canPrintC2.canPrintC1.canPrint

C1.exists C1.state C2.exists C2.state C3.exists C3.state

P2.stateP1.state

P.state

R1.circuit2 R1.circuit1 R2.circuit2 R2.circuit1

Fig. 6 Grounded network of the system of Figure 5.

Definition 3 (References and reference chains) A reference C.ρ is a relation

between class C and another class, say B. If this relation is binary, the reference is said

to be simple; if it is n-ary, the reference is called complex. Each reference ρ of C has an

owner denoted by Owner[ρ] = C and a range denoted by Range[ρ] = B. For a given

instance c ∈ I(C), we denote c.ρ’s instance owner by Owner[c.ρ] = c and c.ρ’s instance

range by Range[c.ρ] = b, where b is an instance of class B.

A reference chain, or slot chain, ρ1, ρ2, . . . , ρi is a sequence of references in which

Range[ρk] = Owner[ρk+1] for all k = 1, . . . , i − 1. A reference chain is simple if ∀i, ρi
is simple, else it is said to be complex.

In the graph of Fig. 5.a, class Computer contains a simple reference whose owner is

of course Computer and whose range is Room. This reference enables to condition the

power state of the computer to the power state of its electric circuit. Class Computer

also contains a complex reference whose range is Printer. This reference indicates

which printers are connected to a given computer. As several printers can actually be

connected to a computer (see, e.g., computer C3 on Fig 5.b), the reference is com-

plex. Given definitions of classes, instances and references, it is now possible to define

formally a system:

Definition 4 (System, relational skeleton) A system (or relational skeleton) s is

a set of instances I with every reference of every instance c ∈ I correctly defined, i.e.,

∀C ∈ C, ∀c ∈ I(C), ∀ρ ∈ R(c), ∃y ∈ I(Range[C.ρ]) such that Range[c.ρ] = y.

As shown with the printers-computers connections, there are cases where the num-

ber of instances referenced by a given reference varies from one instance to the other
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(computer C3 references 2 printers while C1 references only one). As a consequence, the

number of parents of some random variables like Computer.exists cannot be known

at the class level, i.e., when the class is defined, but is known only at the instance level.

This is an issue since the classical method for encoding probabilities in a BN is to

use Conditional Probability Tables (CPT), which implies that the number of parents

must be known and fixed in advance. Thus, specifying a CPT for Computer.exists

would require either to define a family of CPTs at class level —one for each possible

number of parents—, or to specify the CPT at instance level for each instance of the

Computer class. Both solutions are cumbersome: first, it is impossible to specify a fam-

ily for all the possible numbers of parents; and, second, specifying CPTs at instance

level is unattractive because it requires too much work and, in addition, it is desirable

to separate the semantics of these CPTs from the instantiations. This calls for a new,

more flexible, way of specifying these CPTs and leads to the concept of aggregators:

Definition 5 (Aggregator) An aggregator is a deterministic function defined over a

set of random variables {ci.X} and such that ∀i, ci ∈ I(C).

In our example of Figure 5, the CPT of Computer.exists is actually an aggregator

defined over the states of all the printers connected to a computer and returning a

Boolean indicating whether at least one of these printers is ready. For instance, for

computer C3, the aggregator returns false if and only if both printers P3 and P4

have a non-ready state. For computer C1, the aggregator returns false if and only

if printer P1 is not ready. By enabling the PRM framework to contain a family of

generic deterministic functions such as “exists”, “forall”, “mean”, “min”, “max”, etc,

it is possible use aggregators at class level: since these functions are deterministic, it

is possible to automatically generate their corresponding CPT when the aggregators

are instantiated. As a consequence, using aggregators, it is not necessary to distinguish

at class level between variables with usual CPTs and variables with aggregators. Note

however that this solution is less expressive than the pseudo code used in MEBN

(Laskey, 2008), but it is much simpler to use and to implement. It is also generally

sufficient for the majority of real-world problems.

We finish our overview of PRMs with the definition of the grounded BN of a system,

that is, the BN that is equivalent to the PRM in terms of uncertainty representation. We

consider in this paper only closed world systems, i.e., systems in which all instances and

relations between these instances are completely specified2. For closed world systems,

grounded BNs are defined as:

Definition 6 (Grounded BN) A grounded Bayesian Network is the BN equivalent

of a system. It is built straightforwardly by creating a node for each random variable

of each instance and adding arcs between those nodes in order to respect the instances

relations and the DAGs of the classes. Aggregators are mapped into their corresponding

CPTs. An algorithm linear in time for generating such grounded BN can be found in

Pfeffer (2000). Fig. 6 shows the grounded BN associated with the system of Fig. 5.

PRM support several other features that we will not detail here such as random

variable typing, inheritance, structural and existential uncertainties. Even if they are

important for the PRM formalism, they are not for the purpose of the paper, i.e., for

showing that Jaffray and Faÿ’s local condition can improve PRM inference algorithms.

2 By opposition, in open world systems, all required but absent instances are created as
anonymous instances and added to the system.
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So far, we have described a language much more expressive than the simple node-

arc language of Bayesian networks. It is important to understand that i) PRMs are

an extension of BNs (every BN can be defined as a PRM); and ii) very large and very

complex models can easily be built using PRMs. This raises new challenges for inference

in such large scale problems. In the next section, we describe sve, the state-of-the-art

inference algorithm in PRMs.

3.2 SVE: Structured Variable Elimination

Structured Variable Elimination (SVE, Pfeffer (2000)) is an extension of Variable Elim-

ination (Zhang and Poole, 1994; Dechter, 1999) adapted to the PRM formalism. The

main idea of sve is to reduce (if not erase completely) redundant computations by

performing them as much as possible at class level instead of at instance level. More

precisely, classical Variable Elimination performs inference on the grounded BN, that

is, at instance level (directly on the random variables) and, as a consequence, it most

often performs distinct computations for all the instances of the same class, even when

all these computations are exactly identical. To avoid such redundancies, sve tries to

perform as much as possible computations at a class level, that is, whenever possi-

ble, it first performs one single computation per class and, then, uses the result for

all the instances of the class. As such, it avoids as much as possible the redundancies

resulting from the existence of multiple instances of the same class in the PRM. Note

however that it is not always possible to preprocess computations at class level for all

the instances because some instances contain target random variables (those for which

we compute a posteriori marginal probabilities) while others contain random variables

with different evidence.

To avoid redundancies, sve exploits the structural information encoded in the

classes. To do this, it distinguishes two kinds of random variables/nodes: the inner

nodes and the output nodes. The inner nodes of a class C are those nodes of C whose

children all belong to C. By opposition, output nodes have at least one child defined

in another class. In Fig. 7, variables A, B, C, D and E are inner nodes whereas F

and G are output nodes. Inner nodes can be considered as internal to the class as they

interact with other classes only through the output nodes3. As a consequence, they

can be eliminated without any interaction with other classes or, in other words, they

can be eliminated without affecting in any way the structure of the system. Hence they

can be eliminated at class level (once for all the instances) and should be eliminated

3 In terms of Object Oriented programming languages, inner nodes are very similar to private
fields, and output nodes correspond to public fields.

Output nodesInnner nodes

class C

C E

B

D

A

F

G

P (V(C)|PaV(C)) = P (A)P (B|PaB)P (C|A,PaC)

P (D|B,C)P (E|C)P (F |D)P (G|A)

elim. potentials substituted substituting potentials
A P (A)P (C|A,PaC)P (G|A) φ1(C,G,PaC)
B P (B|PaB)P (D|B,C) φ2(C,D,PaB)
C P (E|C)φ1(C,G,PaC)φ2(C,D,PaB) φ3(D,E,G,PaB ,PaC)
D P (F |D)φ3(D,E,G,PaB ,PaC) φ4(E,F,G,PaB ,PaC)
E φ4(E,F,G,PaB ,PaC) φ5(F,G,PaB ,PaC)

Fig. 7 Inner and outer nodes in a class, and the inner nodes elimination.
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first. The table in Fig. 7 shows the potentials resulting from the elimination of inner

nodes. Once all inner nodes have been eliminated, the remaining potentials of the class

are defined over the output nodes and the set of referenced parents (e.g., in Fig. 7, the

actual parents except A of B and C). sve thus eliminates the inner nodes at class level

and uses the resulting potentials each time an instance of the given class is found in

the system, thus avoiding redundant computations. There is however a limitation to

this method: it cannot be used when some inner nodes have received evidence because

evidence usually differ from one instance to the other and thus it is not possible to add

the P (eij |Xij ) probabilities on a per class inner nodes elimination basis. Therefore,

for instances that received observations, inner nodes elimination must be performed

locally, i.e., at the instance level.

Applied to all classes and instances in a system, this inner elimination builds a set of

potentials defined only over output nodes. Now, remember that i) output nodes have at

least one child in another class; and ii) the edges in the system (the relational skeleton)

correspond to references, i.e., to edges between nodes belonging to different classes.

Hence, if there does not exist any reference chain of size greater than 1, the graphical

structure of the system precisely corresponds to the BN of the output nodes and we can

thus use ve to eliminate all the nodes that are not target nodes. If there exist longer

reference chains, then these are represented by directed paths in the graphical structure

of the system. In any case, the actual random variables referenced by references and

reference chains do belong to ancestor instances in the system. Hence, using ve with a

bottom-up elimination order, it is possible to recursively eliminate all the instances from

the PRM while ensuring that, at each step, the PRM still represents a joint distribution.

The bottom-up order indeed guarantees that before an instance is eliminated, all of its

child instances have already been eliminated. Therefore, its output nodes can also be

eliminated, thus reducing the number of variables in the set of potentials.

Fig. 8, in which the different ci represent instances of different classes, shows how a

bottom-up elimination proceeds. Assume the target variable is located in c1. Since c6
is a leaf instance, it can be eliminated. Similarly, instance c7, which is also a leaf, can

be eliminated. Fig. 8(b) shows the remaining instances after these two eliminations.

The recursive elimination goes on with c4, which is now a leaf and can be eliminated

(Fig. 8(c)), and proceeds until all instances except c1 have been eliminated. Now, the a

posteriori probability of the target variable can be extracted from this instance since,

being an instance, it contains a grounded BN (fragment). Note that if c6 and c7 are two

instances of a same class, then computations performed to eliminate c7 are the same

as those for eliminating c6. Hence, it is possible to reuse the latter for c7’s elimination:

those computations can be performed at class level and are said to be lifted.

sve is formalized in Algorithm 2. Note that we did not show the most general

version of sve: we assumed that the system is a DAG, that is, it contains no directed

cycles. In the most general version of PRMs, there exist situations in which cycles

in the system are allowed as they do not induce incoherent underlying probability

distributions. This is the case, for instance, for the system of Fig. 9. To deal with such

cases, more complex versions of sve do exist (Pfeffer, 2000). However, we chose not

to describe them as they are more complicated and require additional treatment to

distinguish the situations in which cycles are allowed from those in which they are

forbidden (as they may induce incoherent probability distributions).
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c6 c7

c4c3 c5

c1 c2

(a) Step 1.

c4c3 c5

c1 c2

(b) Step 2.

c3 c5

c1 c2

(c) Step 3.

Fig. 8 Illustration of sve’s Bottom-Up Elimination.

4 A new algorithm combining SVE and Local Conditioning

4.1 A generic combining algorithm

Algorithm 2 is most of the time very efficient for computing marginal a posteriori prob-

abilities. However, it has two major drawbacks: i) when there are numerous evidence,

computations are essentially performed at instance level (the “if” part of the algorithm)

and, thus, sve’s efficiency is quite limited; ii) when the system contains numerous loops

(i.e., undirected cycles), the bottom-up elimination scheme creates multiple fill-ins that

can result in inefficient computations. To illustrate this point, consider the application

of Algorithm 2 to compute the probability that computer C3 can print in the example

of Fig. 5. Computer C1’s instance has no child and no evidence, so it can be eliminated

at class level. This results in a potential, say ψ1(Printer.state,Room.circuit1) added

to T and another potential φ1(P1.state,R1.circuit1) = ψ1 added to S. In graphical

terms, the system of Fig. 10.a is substituted by that of Fig. 10.b. Note that potential φ1

induced a fill-in between nodes P1.state and R1.circuit1. Eliminating Computer C2’s

instance amounts to get ψ1 in T and add a new potential φ2(P2.state,R1.circuit1) =

ψ1 to S, thus creating new fill-in (P2.state,R1.circuit1) as shown in Fig. 10.c. Now

Printers P1 and P2’s instances can be removed as they have no child. Here, class-

level computations do nothing since variable state is an output node. For P1, φ1 is

multiplied by potential P (P1.state|R1.circuit2) before variable P1.state is elimi-

nated. This produces a new potential φ3(R1.circuit1,R1.circuit2) and a new fill-in

(R1.circuit1,R1.circuit2) as shown Fig. 10.d. Similarly, printer P2’s elimination adds

a new potential φ4(R1.circuit1,R1.circuit2) to S and the same fill-in. And so on.

As can be seen, sve’s bottom-up elimination scheme is quite similar to ve in terms

of the fill-ins added: in our example, substitute each instance by a single node and

c2

c3
c1

i1 : c1

i3 : c3

i2 : c2A B

C

D E

GF

H K

L

Fig. 9 A system with a directed cycle.
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Input: a set of classes C, a set of instances I, a set of evidence eZ, a target node Xi
Output: P (Xi, eZ)
let S and T be empty sets of potentials
while I 6= ∅ do

let i ∈ I be an instance without any child in the system
let e be the set of evidence on the nodes of V(i)
let Q be the potentials in S containing some variables belonging to i
let V(Q) be the variables of the potentials in Q that do not belong to instance i
if some inner nodes of i contain evidence in e then

let P be the set of CPTs/aggregators of the nodes in V(i)
φ← VariableElimination (V(i) ∪V(Q),P ∪Q, e,R(i) ∪V(Q) ∪ {Xi})

else
let ci be the class of i
let P be the set of CPTs/aggregators of the nodes in V(ci)
let O be the set of output nodes of V(ci) (i.e., referenced by other classes)
if class ci has not been visited yet then

ψ ← VariableElimination (V(ci),P, ∅,R(ci) ∪ {Xi} ∪O)
add ψ as the potential of class ci to set T
mark class ci as visited

end
let ψ be the potential of class ci in set T
φ← VariableElimination (R(i) ∪O ∪V(Q), {ψ} ∪Q, e,R(i) ∪V(Q) ∪ {Xi})

end
remove i from I
S← (S\Q) ∪ {φ}

end
return table

∏
φ∈S φ

Algorithm 2: Structured Variable Elimination for computing P (Xi, eZ).

each reference by an arc, then the application of a bottom-up elimination scheme on

the resulting graph (that of Fig. 11.a) produces the fill-ins of Fig. 11.b. Now assume

that, before performing the bottom-up elimination, we apply Local Conditioning by

cutting node P1State. Then, as shown in Subsection 2.2, this amounts to add variable

P1State to the CPTs of all the other nodes and removing arc (P1State,C1). Then,

applying the bottom-up elimination produces the fill-ins indicated in Fig. 11.c. It is

easily seen that whenever variable circuit2 has a bigger domain size than that of

P1State, the computations with Local Conditioning outperform those of sve.

Let us now see how lc can be introduced into the PRM framework. The principle of

lc consists of cutting loops in BNs by removing some arcs and enforcing the property

that there remains exactly one (undirected) path joining their extremities. Actually,

we can generalize lc by dropping the constraint that there remains precisely one path

and only require that the extremities of the removed arcs be still connected by at least

one path. In this case, lc’s arc labeling rule can be extended as follows:

Rule 4 (Extended Arc labeling) Let (V,A,P) be a BN. Let E ⊆ A be the set

of arcs removed by local conditioning. Assume that this set keeps the connectedness of

the graph. For any removed arc (Xs, Xt) ∈ E, add label Xs to all the arcs of all the

undirected paths linking Xs and Xt.

Proposition 2 (Extended Local Conditioning) Let (V,A,P) be a BN and let

E ⊆ A be a set of arcs satisfying Rule 4. Denote by Li the union of the labels of the arcs

in A whose heads are Xi (if no such arc exists, then Li = ∅). For any P (Xi|Pai) ∈
P, let f(Xi,Pai,Li) denote P (Xi|Pai) if Li = ∅ else the potential obtained from

P (Xi|Pai) by adding to it dimensions Li, i.e., by duplicating it |Li\Pai| times. Let
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a) the printer/computer example
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C3.exist
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C3.canPrint
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d) after printers P1 and P2’s eliminations

Fig. 10 Computing the probability that computer C3 can print.

power

circuit2 circuit1

C1

P1state

b) sve’s fill-ins

power

circuit2 circuit1

C1

P1state

c) sve with local conditioning

power

circuit2 circuit1

C1

P1state

a) the PRM substitution

Fig. 11 sve’s Fill-ins and those resulting from Local Conditioning.

P′ = {f(Xi,Pai,Li) : Xi ∈ V}. Finally, let σ be an elimination ordering satisfying

Rule 3. Then applying ve(V,P′, eZ,X) (Algorithm 1) eliminating nodes according to

ordering σ results in a correct computation of P (X, eZ).

Proof of Proposition 2: Function f(Xi,Pai,Li) is either an original potential P (Xi|Pai)

or potential P (Xi|Pai) with additional dimensions that are nodes of the Bayesian net-

work. As a consequence,
∏
f∈P′ f =

∏
p∈P p since these products are tensorial. In other

words, P and P′ represent the same probability distributions. Consequently, applying

ve with P′ produces the same result as applying it with P. In ve, any elimination

ordering produces the same result (although some orders require more computations).

Hence applying ve(V,P′, eZ,X) with elimination ordering σ results in a correct com-

putation of P (X, eZ). �

Proposition 2 is attractive because it allows performing only partial local condi-

tioning, that is, some cycles in a BN can be dealt with using Local Conditioning while
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others can be dealt with using Variable Elimination. This will be useful for our combi-

nation of sve and lc. Now, the important feature for applying this extended version

of lc, which we may call elc, is that for each removed arc (Xs, Xt) there still remains

at least one path in the BN linking Xs and Xt. In terms of PRMs, this is equivalent to

state that, whenever some arc (Xs, Xt) is removed from the grounded network, there

should remain one path linking Xs and Xt in this network. Of course, it is never de-

sirable to work directly with the grounded network since this one does not contain the

knowledge about inner nodes used for lifting inference. In addition, this graph is much

larger than both the Class Dependency Graph (CDG, see Fig. 5) and the Relational

Skeleton. So, to combine sve with elc, it would seem better to work directly with

the relational skeleton. However, this is not a good idea because it is possible to cut

some arcs in this graph keeping the relational skeleton connected while disconnecting

the grounded network. Actually, consider the CDG and its relational skeleton defined

in Fig. 12. Clearly, removing arc (c1 : C1, c3 : C3) in the relational skeleton keeps it

connected. But, as seen in the grounded Network on the right of Fig. 12, this would

disconnect node B from D and C. Thus, performing elc in such a graph would not

produce a correct result. So this calls for yet another graph, called a Connected Instance

Graph, that is roughly as compact as the relational skeleton but that also contains in-

formation about the connected parts of grounded BN. This graph relies on the notion

of a Connected class:

Definition 7 (Connected Class) A class C is said to be connected if and only if

its DAG is connected, that is, for any pair of attributes (X,Y ) ∈ V(C), there exists a

path linking X and Y containing only attributes of C.

Any class C can be mapped into a set of connected classes {C1, . . . ,Ck}: it is

sufficient to create a new class Ci for each connected component of the DAG of C. The

DAG of Ci is this connected component, V(Ci) is the set of attributes of the connected

component, set R(Ci) is the subset of references of R(C) used by the nodes in V(Ci),
and the conditional probability tables of the class are those of C corresponding to

the attributes in V(Ci). Of course, the relational skeleton can be mapped accordingly,

that is, each instance of class C can be substituted by one instance of each class Ci,
i = 1, . . . , k, and the references are mapped accordingly. We call the result (both the

CDG of the connected classes and its relational skeleton) a Connected PRM.

Definition 8 (Connected Instance Graph) Let G be a PRM and G′ be its cor-

responding connected PRM. The Connected Instance Graph G′′ of PRM G is a di-

rected graph whose nodes are the instances of the connected PRM G′ and whose arcs

represent the references between these instances. In other words, there exists an arc

C

A B

C1 C1D

C2 C3E

C1

C3C2

C4

c2 : C2 c3 : C3

c1 : C1

c4 : C4

C

A B

D

E

c1

c4

c2 c3

Fig. 12 Applying elc in the relational skeleton.
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(Xs, Xt) ∈ G′′ if and only if instance Xt has at least one reference whose range is

Xs. In G′′, each arc is labeled by the set of references it represents. More precisely,

each label is a set of pairs (A,B) meaning that there exists an arc (Xs.A,Xt.B) in the

grounded Bayes Net.

For instance, the PRM of Fig. 12 can be converted into the connected PRM of

Fig. 13.a and the relational skeleton can be converted into that of Fig. 13.b. Finally,

Fig. 13.c shows the connected instance graph. Using this graph, it is possible to char-

acterize the sets of arcs that can be removed while preserving the connectedness of the

grounded Bayes Net:

Proposition 3 Let E = {(Xsi , Xti), i = 1, . . . , k} be a set of arcs of the Connected

Instance Graph (CIG) such that, after their removal, there still remains at least one

path in the CIG linking each pair of instances (Xsi , Xti). Let Li denote the union of

the labels of the CIG’s arcs (Xsi , Xti) ∈ E. Then, after removing all the arcs of ∪ki=1Li
from the grounded BN, there still remains at least one path in the grounded BN linking

their extremities.

Proof of Proposition 3: Let G denote the original grounded BN and G′ that resulting

from the removal of the arcs of ∪ki=1Li. Let (A,B) be an arc belonging to G but

not to G′, i.e., (A,B) ∈ ∪ki=1Li. Let Xsi and Xti denote the instances in the CIG

containing A and B respectively. By definition, there remains in the CIG a path, say

Xp1 = Xsi , . . . , Xpr = Xti , linking instances Xsi and Xti . Consequently, for each pair

of instances (Xpj , Xpj+1), there remain some arcs in G′ linking some node(s) of Xpj
and some node(s) of Xpj+1 . Moreover, by definition of the connected classes, each of

these instances corresponds to a connected subgraph of grounded BN G′ (remember

that the arcs internal to the instances do not belong to ∪ki=1Li). As a consequence,

there remains at least one path in G′ linking A and B. �

c′′1 : C′′
1

c3 : C3

c′1 : C′
1

c2 : C2

C2 C3E

CC′
1

C2

A
C′

1 B
C′′

1

C′′
1D

C3

C4

a) Connected classes b) relational skeleton c) connected instance graph

c4 : C4

c′1 : C′
1

c2 : C2

c′′1 : C′′
1

c3 : C3

(A,C)

(C,E)

(B,D)

(D,E)

c4 : C4

Fig. 13 A connected PRM and its connected instance graph.

Proposition 3 opens the path for adapting Local Conditioning to PRMs: the idea

is to work directly in the CIG. In this graph, cutting a set of arcs E as indicated in the

proposition is equivalent to cutting the arcs corresponding to the labels in the grounded

BN. By the proposition, the extremities of each arc cut in the grounded BN are still

connected by a path in this BN. Hence, elc can safely be applied to perform inference.

The labeling rule used by elc can now be straightforwardly adapted for CIGs:
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Rule 5 (Arc labeling in CIGs) Let E = {(Xsi , Xti), i = 1, . . . , k} be a set of arcs

removed from the CIG but yet satisfying the conditions of Proposition 3. Let Li denote

the set of labels of each arc (Xsi , Xti) in the CIG. For any removed arc (Xsi , Xti) ∈ E,

add label Li to all the arcs of all the (undirected) paths linking Xsi and Xti .

By Rule 5, the set of arcs actually cut in the grounded BN are added as labels

to all the arcs in the CIG that link the pairs of nodes in E. Thus, after removing

E from the CIG and updating the labels of the CIG’s arcs accordingly, those labels

precisely indicate the nodes that should not be eliminated from the potentials by sve

when eliminating instances: indeed, prior to removing E, a pair (A,B) in the label of a

given arc (Xs, Xt) indicates that there exists in the grounded BN an arc (Xs.A,Xt.B).

Hence, when eliminating instance Xt, sve would not eliminate attribute Xs.A from the

potentials (else the computations would be incorrect). On the other hand, if pair (A,B)

has been added by Rule 5 due to E’s removals, then there existed an arc (Xu, Xv) ∈ E

such that arc (Xu.A,Xv.B) belonged to the grounded BN of the original PRM. As

this arc has been removed from the grounded BN due to E’s removals, elc enforces

that attribute Xu.A shall not be eliminated when eliminating the potentials of instance

Xt. Overall, if L = {(Aj , Bj), j = 1, . . . , r} is the label of arc (Xs, Xt), then, when

eliminating instance Xt, sve shall never eliminate the set of attributes {Aj : j =

1, . . . , r}. One simple way to enforce this is to add L′ = {Aj : j = 1, . . . , r} to the set

of references of instance Xt (since sve will never eliminate the attributes referenced

by the instance it currently eliminates).

So far, the principle for combining elc and sve is identical to that of lc. However,

in the case of PRMs, an additional rule must be applied due to that fact that sve elim-

inates all the nodes of a given instance except its references. Thus, if we were only to

add L′ as references to instance Xt but not to Xs, it could be the case that eliminating

Xs would marginalize-out variables in L′ even though there still remain other instances

with references to L′, hence resulting in an incorrect computation. For instance, in the

CIG of Fig. 14, where arc (c4, c1) has been cut, label (A,B) has been added to all the

other arcs of the CIG. Adding A as reference only to the heads of these arcs amounts to

change the references of c1, c2 and c4. Now, if sve is applied with elimination sequence

c1, c2, c3, c4 and c5, then c1’s elimination produces a potential φ1(G,A). The elimi-

nation of c2 produces a potential φ2(A,C, F ) (remember that A is only a reference in

c2, hence A is not considered as belonging to c2 and, consequently, eliminating c2 does

not require computing the product of P (E|C,F,A) by φ1(G,A)). Now, c3’s elimina-

tion amounts to perform φ3(C) =
∑
A,F P (F )φ2(A,C, F )

∑
G P (G|F )φ1(G,A). As A

E

c2 : C2

C

D

c5 : C5

G

F

A

B

c1 : C1

(A,B)
(F,E) (C,E)

(A,B)
(C,A)
(A,B)

c3 : C3

c4 : C4

(G,B)
(A,B)

Fig. 14 References to be added to the CIG.
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is not a reference in c3, it has been eliminated. But this leads to an incorrect compu-

tation because there still remains references to A in c4 and c5, and marginalizing-out

several times the same variable is not equivalent to marginalizing it out only once.

This suggests a simple way to fix this problem: whenever an arc (Xs, Xt) is cut by

elc from the CIG, its set of labels, say L′, should be added to both extremities of the

arcs on the remaining paths between Xs and Xt except the last node of all these paths

eliminated by sve. Thus, only the last eliminated instance of all these paths can elim-

inate the attributes of L′. To enforce this elimination, we must thus indicate that this

instance contains all the attributes in L′. In addition, for efficiency reasons, we shall

also prevent sve to combine potentials of variables L′ within the other instances of the

paths (i.e., to add such potentials in set Q of Algorithm 2) because these premature

combinations increase the inference computational burden. For instance, in Fig. 14, if

instances are eliminated w.r.t. order c1, c2, c4, c3, c5, then c1 and c2’s eliminations

produce potentials φ1(G,A) and φ2(A,C, F ) respectively. Now, sve’s elimination of

c4 shall amount to compute combination P (A|C)× φ1(G,A)× φ2(A,C, F ), hence re-

sulting in a potential φ4(A,C, F,G), which has a higher dimension than what can be

achieved by ve. Actually, combinations are necessary only when attributes/variables

are eliminated (see Lazy Propagation on this matter (Madsen and Jensen, 1999)). As A

is not eliminated because it is also a reference in c4, the combination can be postponed

until instance c5, the last one, is eliminated. The whole process can now be formalized

in Algorithm 3.

Input: a set of classes C, a set of instances I, a set of evidence eZ, a target node Xi
Output: P (Xi, eZ)
compute the CIG G of the PRM
select a set of arcs E in CIG G that satisfy the conditions of Proposition 3
remove these arcs from G and update the labels of the arcs according to Rule 5
compute an instance elimination order σ that will be used by sve
foreach arc (Xs, Xt) ∈ E do

foreach node Xr on all the paths linking Xs and Xt in G do
if Xr is not the last eliminated node (w.r.t. σ) on these paths then

add the tails of the arcs of (Xs, Xt)’s label as references to Xr
and consider the attributes referenced as not belonging to instance Xr

else
add the tails of the arcs of (Xs, Xt)’s label as new attributes to Xr

end

end

end
return sve(C, I, eZ, Xi) using elimination ordering σ

Algorithm 3: Combining sve with elc for computing P (Xi, eZ).

Proposition 4 The result of Algorithm 3 is mathematically sound.

Proof of Proposition 4: Let ∪ki=1Li be the set of arcs as described in Proposition 3 and

let G′ denote the grounded BN resulting from their removals. The set E of arcs chosen

to be cut in the CIG satisfies Proposition 3. Hence, for each arc (A,B) ∈ ∪ki=1Li cut

in grounded BN G′, there remains a path linking A and B in G′. Let Xs and Xt be

the instances containing A and B in the CIG respectively. By Rule 5, label (A,B) is

added to all the paths in the CIG linking Xs and Xt and, in particular, A is added as

a reference to all the nodes of these paths except the last one that will be eliminated
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according to ordering σ. Now let C1 = A, . . . , Cr = B be any path in G′ linking A

and B. If each arc on this path were labeled by A, then by adding dimension A to

all the conditional probability tables of this path, elc would produce a correct result

(as shown in Proposition 2). Actually, a close look at the proof of Proposition 2 shows

that adding dimension A is not strictly speaking compulsory: what is important is

never to remove dimension A from the tables before attribute A is actually eliminated

by ve (and A is always the last attribute eliminated in path C1 = A, . . . , Cr = B).

But path C1 = A, . . . , Cr = B corresponds to a path, say D1 = Xs, . . . , Dk = Xt,

in the CIG. Moreover, by sve, each time an instance is eliminated, the attributes it

references are not eliminated. As a consequence, by adding A to the set of references

of instances Di (except the last one), we guarantee that A cannot be eliminated from

probability tables until the last instance containing A is eliminated. This guarantees

that the computations performed by sve actually follow the conditions of Proposition 2

and, as a consequence, the correctness of the computation. �

Algorithm 3 provides a very generic way for combining sve with elc and, as such,

does not preclude any elimination ordering σ compatible with the rules of sve. However,

as was shown at the beginning of this section, the speed of the computations is closely

related to the ordering chosen. We shall now propose an efficiency way for determining

good orderings.

4.2 Efficient elimination orderings

In usual Bayesian network inference, the best elimination orderings are determined by

optimizing triangulations of moral graphs (Rose et al, 1976; Shoikhet and Geiger, 1997;

Kjærulff, 1990; van den Eijkhof and Bodlaender, 2002). As such, the optimal ordering

almost always differs from a bottom-up elimination. In this respect, sve is not optimal

since it enforces this bottom-up elimination. However, we shall see now how this can

be overcome using Local Conditioning. For convenience, we will present the key idea

on BNs rather than PRMs and, then, we will show how this can be adapted to PRMs.

We will first show how ve’s computations can be organized within the very structure

of a BN and illustrate this on Fig. 15. This is a variant of (Gonzales et al, 2007;

Ben Naceur and Gonzales, 2004) adapted to bottom-up elimination schemes. The key

idea is the following: at the beginning, all the CPTs of the BN are stored in their

corresponding nodes in the BN. Whenever a random variable Y is eliminated, a node,

say X, is selected among the set VY ⊆ V of nodes having a potential containing this

variable (note that X may differ from Y ). Then all the nodes in VY \{X} send to

X their potentials. X can thus combine them all and eliminate random variable Y .

As a result, X contains a new potential and all the nodes of VY \{X} store no more

potentials. The process is iterated until all the variables that need be eliminated have

actually been eliminated. The arcs of the BN are used to send potentials from one node

to another. Thus, when a node of VY \{X} needs sending its potential to X but there

exists no arc between this node and X in the BN, we add this arc to the BN. By this

process, whenever a node has sent its potential to another one, it will never receive

nor send any new potentials since it does not contain a potential anymore. Among all

the nodes of VY , the very node X that receives all the potentials is chosen so that

no other node in VY is its ancestor. This rule will enable us to derive subsequently a

bottom-up elimination rule.
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Let us illustrate the process on the BN of Fig. 15.a. Assume that we perform ve with

elimination ordering H, I,E,D,C,B,A, F,G. For the moment, as shown on Fig. 15.a,

each node of the BN stores its own conditional probability table. Eliminating H and I

amounts to substitute potentials P (H|E,F ) and P (I|F,G) by 1lEF =
∑
H P (H|E,F )

and 1lFG =
∑
I P (I|F,G) respectively. Here, no potentials had to be sent across the

BN and, now, H and I store 1lEF and 1lFG respectively (see Fig. 15.b). Eliminating

E requires computing 1lBF =
∑
E P (E|B) × 1lEF and, consequently, one of those

two potentials need be sent over arc (E,H). By our rule, H must send its potential

to E (see Fig. 15.c). Note that, from now on, H cannot receive any more potential

since it does not contain one anymore, hence arc (F,H) will never be used during

the computation and can thus be considered as cut (the dashed arc in Fig. 15.c).

Similarly, eliminating D and C amounts to compute P (F |A) =
∑
C P (C|A)P (F |C)

and P (G|A) =
∑
D P (D|A)P (G|D), and to send potentials from F to C and from G

to D respectively. As F and G have sent their potentials, no potential will ever pass

through arcs (F, I) and (G, I) (dashed arcs in Fig. 15.c). Shaded nodes indicate those

nodes that have no more potentials and, thus, that will not be used anymore for the

remaining inference. The elimination of B involves E sending its potential to B and the

latter computing 1lAF =
∑
B P (B|A)1lBF (Fig. 15.d). Similarly, the elimination of A

involves B, C and D sending their potentials to A (the highest node among A,B,C,D

in the BN) and A computing P (F,G) =
∑
A P (A)1lAFP (F |A)P (G|A) (Fig. 15.e).

Eliminating F now requires computing P (G) =
∑
F P (F,G)1lFG but these potentials

are stored in A and I respectively and there exists no arc between A and I. We thus

add arc (A, I) and I can send its potential to A (Fig. 15.f). Once this is done, I contains

no more potential and only A contains a potential (i.e., P (G)) in the BN.
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Fig. 15 Variable Elimination on a BN.
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Fig. 16 Arc labeling and Local Conditioning.

If we do not take into account the dashed arcs, the whole process described above

has constructed a tree. This is easily proved by induction since each node sends its

potential only once. The dashed arcs can thus be considered as arcs cut by Local

Conditioning. Labeling the arcs of Fig. 15.f, as described by Rule 2 in Section 2,

results in the labeled graph of Fig. 16.b. Now, if lc is performed in the graph of

Fig. 16.b using a bottom-up elimination order, say for instance H, I, F, C,E,B,G,D,A,

then it is easily seen that precisely the same computations as those of the preceding

paragraph will be performed. This result is general and its proof is similar to that of

Proposition 4 of Ben Naceur and Gonzales (2004). The reason why it works is twofold:

first, by construction, the graph of Fig. 16.a does not contain any directed cycle and,

as such, can be considered as a BN; second, whenever an arc is cut, say for instance

(F,H), when the node at the tail of this arc (here F ) was at last eliminated in the

preceding paragraph, all the potentials that contained it were sent through the arcs of

the BN to a given node (here A) that combined them all. Thus, there existed in the

BN a path linking F and H to A and, on this path, there was no marginalizing-out of

F . This precisely corresponds to the principle of lc. Finally, as shown in the following

proposition, lc’s computations within the graph of Fig. 16.b with a bottom-up ordering

produces the same computations as sve in the preceding paragraph.

Proposition 5 Let G be any BN and σ be any elimination ordering of the variables.

Let G′ be the labeled BN obtained as described above and let σ′ be a bottom-up elim-

ination ordering. Then applying lc on G′ produces the same result as ve on G with

ordering σ, with precisely the same computations.

Proof of Proposition 5: The proof of the correctness of the computations is the same

as that of Proposition 4 of Ben Naceur and Gonzales (2004) except that, here, we use

a bottom-up elimination ordering instead of a top-down order. Let us now show that

computations within G′ with ordering σ′ are the same as those within G with ordering

σ. By construction, eliminations with sve in G were actually performed by sending

potentials along the arcs of G′ and whenever a node had received the messages from

all of its children, it computed their combination (product) before marginalizing-out

a variable. lc in G′ does precisely the same: whenever a node, say X, is eliminated

by lc, its descendants have already been eliminated (bottom-up elimination) and thus

have already sent their potentials to X so that the latter can combine them. As for

the marginalization, the same variable is marginalized-out by sve in G and lc in G′

because, by construction of G′, if Y is the parent of X, then the label of arc (Y,X)

contains all the variables that sve did not eliminate. Hence, such a variable cannot be

eliminated by lc. By induction, this result applies for all the nodes eliminated. �
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The adaptation of the above principle to PRMs is rather straightforward: to get an

efficient inference engine, moralize and triangulate the CIG (Rose et al, 1976; Shoikhet

and Geiger, 1997; Kjærulff, 1990; van den Eijkhof and Bodlaender, 2002). This trian-

gulation provides a “good” instance elimination ordering. Now, create a new labeled

CIG as described in Fig. 15. This new CIG is a tree and, as shown above, a bottom-up

instance elimination ordering within this tree provides the most efficient computations

while satisfying the bottom-up rule of sve.

4.3 Experimentations

To conclude this section, let us highlight the practical efficiency of our combination of

sve with Local Conditioning with some numerical experiments. In these experiments,

we always used the CDG of Fig. 5. In the first set of experiments, the PRM contains 40

rooms, each one containing precisely 30 computers. Each computer is connected to two

printers unless when the room contains only one printer, in which case computers are

connected to this printer. In addition, each room contains the same number of printers.

To illustrate the gain brought by lc, we performed inferences with the numbers of

printers per room varying from 1 to 10. Fig. 17 reports the execution times (in second)

with a 2.4GHz Intel Core Duo running linux and the aGrUM graphical model library4.

Conditioning was performed on node Printer.State. On the left side of the figure,

random variable Printer.State and Room.Circuit2’s domain sizes are respectively 2

and 6. In this case, local conditioning creates better fill-ins than sve. This is clearly

confirmed by the response times. On the right side, we increased the domain size of

Printer.State from 2 to 3. This resulted in sve having better fill-ins, which is again

confirmed by the experiment’s results. These experiments illustrate the dependence of

the efficiency of Algorithm 3 on the fill-ins added. Whenever lc can select better fill-ins

than sve with its bottom-up elimination order, Algorithm 3 outperforms sve.

To illustrate another aspect involved in the complexity of the PRM, we fixed the

number of printers per room to 6, the number of rooms to 40 and we modified the

number of computers per room. Here, we reverted the domain size of Printer.State

back to 2. As we can see on Fig. 18, our combination of sve and lc outperforms sve

alone and, the bigger the PRM, the more the combination outperforms sve.

4 See http://agrum.lip6.fr
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5 Conclusion

In this paper, we showed that Local Conditioning is a valuable tool for inference in

the PRM framework. Its features are indeed particularly well suited for the efficient

exploitation of PRM classes. This contrasts with the BN framework where Variable

Elimination often outperforms Local Conditioning. In the paper, we essentially focused

on the way lc could be combined harmoniously with sve, the state-of-the-art algorithm

for performing inference within PRMs. We also showed that, by selecting carefully

the nodes on which to condition (or equivalently their removed outgoing arcs), the

combination of lc with sve could significantly outperform sve alone. More importantly,

we showed how this combination could free sve from its bottom-up elimination order

constraint, thus improving it to junction-tree based approaches efficiency level.

However, we think that Local Conditioning should not merely be used to select

the best fill-ins to add during the computation, as we did here. Rather, it seems to

have a great potential to improve inference when numerous evidence are entered into

the PRM. Indeed, sve is most efficient when it performs class-level computations. But

when evidence are entered into the network, the computations in the instances they

belong to are performed only at instance level, hence reducing drastically the efficiency

of sve. Now conditioning on the nodes which received evidence avoids this pitfall

because it consists of reasoning separately on each possible value of these nodes before

merging these separate results. As a consequence, evidence can be processed only at

the final merging step and all the other computations —actually those that hold the

main computational complexity— can be performed at class level. Thus, applying lc

in these cases should significantly speed-up inference.
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