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Abstract. In this paper, we propose to better estimate high-dimensional
distributions by exploiting conditional independences within the Particle
Filter (PF) framework. We first exploit Dynamic Bayesian Networks to
determine conditionally independent subspaces of the state space, which
allows us to independently perform propagations and corrections over
smaller spaces. Second, we propose a swapping process to transform the
weighted particle set provided by the update step of PF into a “new
particle set” better focusing on high peaks of the posterior distribution.
This new methodology, called Swapping-Based Partitioned Sampling, is
successfully tested and validated for articulated object tracking.

1 Introduction

Dealing with high-dimensional state and observation spaces is a major concern
for many research communities. There exist essentially two ways to tackle high-
dimensional problems: either reduce the dimension of the state space/search
space by approximation or exploit conditional independences naturally arising
in the state space to partition the latter into low-dimensional spaces. In this
paper, we chose the latter and focus on articulated object tracking. Actually, it
is an important computer vision task for a wide variety of applications includ-
ing gesture recognition, human tracking and event detection. However, tracking
articulated structures with accuracy and within a reasonable time is challenging
due to the high dimensionality of the state and observation spaces. In the optimal
filtering context, the goal of tracking is to estimate a state sequence {xt}t=1,...,T

whose evolution is specified by a dynamic equation xt = ft(xt−1,n
x
t ) given a

set of observations. These observations {yt}t=1,...,T , are related to the states by
yt = ht(xt,n

y
t ). Usually, ft and ht are vector-valued and time-varying transi-

tion functions, and nx
t and ny

t are noise sequences, independent and identically
distributed. All these equations are usually considered in a probabilistic way
and their computation is decomposed in two main steps. First the prediction
of the density function p(xt|y1:t−1) =

∫
xt−1

p(xt|xt−1)p(xt−1|y1:t−1)dxt−1 with

p(xt|xt−1) the prior density related to transition function ft, and then a correc-
tion step p(xt|y1:t) ∝ p(yt|xt)p(xt|y1:t−1) with p(yt|xt) the likelihood density



related to the measurement function ht. When functions ft and ht are linear, or
linearizable, and when distributions are Gaussian or mixtures of Gaussians, se-
quence {xt}t=1,...,T can be computed analytically by Kalman, Extended Kalman
or Unscented Kalman Filters [4]. Unfortunately, most vision tracking problems
involve nonlinear functions and non-Gaussian distributions. In such cases, track-
ing methods based on Particle Filters (PF) [4, 6], also called Sequential Monte
Carlo Methods (SMC), can be applied under very weak hypotheses: their prin-
ciple is not to compute the parameters of the distributions, but to approxi-

mate these distributions by a set of N weighted samples {x(i)
t , w

(i)
t }, also called

particles, corresponding to hypothetical state realizations. As optimal filtering
approaches do, PF consists of two main steps: (i) a prediction of the object
state in the scene (using previous observations), that consists of propagating

the set of particles {x(i)
t , w

(i)
t } according to a proposal function q(xt|x(i)

0:t−1,yt),
followed by (ii) a correction of this prediction (using a new available observa-
tion), that consists of weighting the particles w.r.t. a likelihood function, so that

w
(i)
t ∝ w

(i)
t−1p(yt|x

(i)
t )

p(x
(i)
t |x

(i)
t−1)

q(xt|x(i)
0:t−1,yt)

, with
∑N
i=1 w

(i)
t = 1. Particles can then be re-

sampled, so that those with highest weights are duplicated, and those with lowest
weights are removed. The estimation of the posterior distribution is then given

by
∑N
i=1 w

(i)
t δ

x
(i)
t

(xt), where δ
x
(i)
t

are Dirac masses centered on particles x
(i)
t .

There exist many models of PF, each having its own advantages. Unfortunately,
the computational cost of PF highly depends on the number of dimensions of
the state space and, for large state and observation spaces, it may be unreal-
istically high due to the large number of particles needed to approximate the

distributions and to the costs of computing weights w
(i)
t .

In this paper, we propose to exploit conditional independences in the state
space to transform by swapping processes the weighted particle set provided
by the correction step of PF into a “new particle set” better focusing on high
peaks of the posterior distribution. This enables to deal with high-dimensional
state spaces by reducing the needed number of particles while increasing the
accuracy of the estimation of the probability distribution of the tracked ob-
ject’s state. This paper is organized as follows. Section 2 gives a short overview
of the existing approaches that try to solve the high-dimensionality problem
by exploiting conditional independences to decompose probabilistic computa-
tions. Section 3 recalls the Partitioned Sampling approach and, then, details our
approach. Section 4 gives experimental results on challenging synthetic video
sequences. Finally, concluding remarks and perspectives are given in Section 5.

2 Exploiting conditional independences for tracking

It has been shown in [12] that the number of particles needed to track an object
grows exponentially with the dimension of the state space of this object. For
problems of articulated object or multiple object tracking, the state space may
have very high dimensions, which makes PF unusable for real-time tracking.



Several methods aim at reducing the number of necessary particles by exploiting
conditional independences in the state space to divide it into small parts.

Partitioned Sampling (PS) [11] is one of the most popular among these meth-
ods. It exploits the fact that, in many problems, both the system dynamics and
the likelihood function are decomposable over small subspaces. The key idea,
that will be described in Section 3, is then to substitute the application of one
PF over the whole state space by a sequence of applications of PF over these
small subspaces, thus significantly speeding-up the process. However, for the ar-
ticulated object tracking purpose, PS suffers from numerous resampling steps
that increase noise and decrease the tracking accuracy over time.

The same kind of decomposition is exploited in [9] in the context of a general
PF for Dynamic Bayesian Networks (DBN). Here, the proposal distributions of
the prediction step is decomposed as the product of the conditional distributions
of all nodes of the current time slice in the network. The prediction step then
follows the topological order of the nodes of the current time slice of the DBN
and uses for each node its conditional probability as the proposal distribution.
This allows to integrate the current observations into the proposal distribution.

In [15], the sampling idea of [9] is combined with that of resampling proposed
in [11] to create a PF algorithm fitted for DBNs. This algorithm can be seen as
a generalization of PS. By following a DBN topological order for sampling and
by resampling the particles each time an observed node is processed, particles
with low likelihood for one subspace are discarded just after the instantiation of
this subspace due to the resampling step, whereas particles with high likelihood
are multiplied. This has the same effect as weighted resampling in PS.

One of the most recent and promising approach that uses a decomposition
technique is the nonparametric Belief Propagation algorithm [17, 8]. It combines
the PF framework with the well-known Loopy Belief Propagation algorithm [14]
for speeding-up computations (but at the expense of approximations). It has
been successfully applied on many problems of high dimensions [16, 2, 7]

Another popular approach is the Rao-Blackwellized Particle Filter for DBN
(RBPF) [5]. By using a natural decomposition of the conditional probability,
RBPF decomposes the state space into two parts that fulfill the following con-
dition: the conditional distribution of the second part given the first part can be
estimated using classical techniques such as Kalman filter. The distribution of
the first part is then estimated using PF and the conditional distribution of the
second part given the first one is estimated using Kalman filter. As the dimen-
sion of the first part is smaller than that of the whole state space, the sampling
step of particle filter for the first part needs fewer particles and the variance of
the estimation can be reduced. Though RBPF is very efficient for reducing the
high dimension of the problem, it can not be applied on all DBNs because the
state space cannot always be decomposed into two parts fulfilling the condition.

The framework introduced in [3] is somewhat related to ours. This is a par-
allel PF for DBNs that uses the same decomposition of the joint probability as
a Bayesian Network (BN) to reduce the number of particles required for track-
ing. The state space is divided into several subspaces that are in some respect



relatively independent. The particles for these subspaces can then be generated
independently using different proposal densities. This approach offers a very flex-
ible way of choosing the proposal density for sampling each subspace. However
the definition of different subspaces requires the DBN to have a particular inde-
pendence structure, limiting the generalization of this algorithm. In our paper,
we address more general problems where no such independences hold. We fo-
cus on PS [11, 12] for its simplicity and generalization potential. In [1], PS was
proved to be one of the best algorithm for tracking problems of high dimension.
We believe that PS can be improved by better exploiting the independences in
DBNs. This idea will be presented in the next section.

3 Proposed approach

3.1 Partitioned Sampling (PS)

PS is an effective Particle Filter (PF) designed for tracking complex objects with
large state space dimensions using only a reduced number of particles. Its key
idea is to divide the state space into an appropriate set of partitions and to apply
sequentially a PF on each partition, followed by a specific “weighted resampling”
ensuring that the sets of particles represent the joint distribution of the whole
state space and are focused on its peaks.

Let g : X 7→ R be any strictly positive continuous function, with X the state

space. Given a set of particles Pt = {x(i)
t , w

(i)
t }Ni=1 with weights w

(i)
t , weighted

resampling proceeds as follows: let ρt be defined as ρt(i) = g(x
(i)
t )/

∑N
j=1 g(x

(j)
t )

for i = 1, . . . , N . Select independently indices k1, . . . , kN according to probability

ρt. Finally, construct a new set of particles P ′t = {x′(i)t , w′
(i)
t }Ni=1 defined by

x′
(i)
t = x

(ki)
t and w′

(i)
t = w

(ki)
t /ρt(ki). MacCormick [10] shows that P ′t represents

the same probability distribution as Pt while focusing on the peaks of g.
PS’s key idea is to exploit some decomposition of the system dynamics w.r.t.

subspaces of the state space in order to apply PF only on those subspaces. This
leads to a significant reduction in the number of particles needed for tracking.
So, assume that state space X can be partitioned as X = X 1×· · ·×XP as well as
observation space Y = Y1×· · ·×YP . For instance, a system representing a hand
could be defined as X hand = X palm×X thumb×X index×Xmiddle×X ring×X little.
Assume in addition that the dynamics of the system follows this decomposition,
i.e., that:

ft(xt−1, n
x
t ) = fPt ◦ fP−1t ◦ · · · ◦ f2t ◦ f1t (xt−1), (1)

where ◦ is the usual function composition operator and where each function
f it : X 7→ X modifies the particles’ states only on subspace X i 1.

The PF scheme consists of resampling particles, of propagating them using
proposal function ft and, finally, of updating their weights using the observations
at hand. Here, the same result is achieved by substituting the ft propagation

1 Note that, in [10], functions f i
t are more general since they can modify states on

X i×· · ·×X p. However, in practice, particles are often propagated one X j at a time.



step by the sequence of applications of the f it as given in Eq. (1), each one
followed by a weighted resampling that produces new particles sets focused on
the peaks of a function g. To be effective, PS thus needs g to be peaked with the
same region as the posterior distribution restricted to X i. When the likelihood
function decomposes as well on subsets X i, i.e., when:

p(yt|xt) =

P∏
i=1

pi(yit|xit), (2)

where yit and xit are the projections of yt and xt on Yi and X i, weighted resam-
pling focusing on the peaks of the posterior distribution on X i can be achieved
by first multiplying the particles’ weights by pi(yit|xit) and, then, by performing
a usual resampling. Note that Eq. (2) naturally arises when tracking articulated
objects. This leads to the condensation diagram given in Fig. 1, where opera-
tions “∗f it” refer to propagations of particles using proposal function f it as defined
above, “×pit” refer to the correction steps where particle weights are multiplied
by pi(yit|xit) (see Eq. (2)), and “∼” refer to usual resamplings. MacCormick and
Isard show that this diagram produces mathematically correct results [12].

3.2 Swapping-Based Partition Sampling (SBPS)

The hypotheses used by PS can best be explained on a dynamic Bayesian network
(DBN) representing the conditional independences between random variables of
states and observations [13]. Assume for instance that an object to be tracked
is composed of 3 parts: a torso, a left arm and a right arm. Let x1

t ,x
2
t ,x

3
t repre-

sent these parts respectively. Then, the probabilistic dependences between these
variables and their observations y1

t ,y
2
t ,y

3
t , can be represented by the DBN of

Fig. 2. In this figure, Eq. (2) implicitly holds because, conditionally to states
xit, observations yit are independent of the other random variables. In addition,
the probabilistic dependences between substates x1

t ,x
2
t ,x

3
t suggest that the dy-

namics of the system is decomposable on X 1 ×X 2 ×X 3. As a consequence, the
condensation diagram of Fig. 1 can be exploited to track the object.

Through the d-separation criterion [14], DBNs offer a strong framework for
analyzing probabilistic dependences among sets of random variables. By this
criterion, it can be remarked that, on Fig. 2, x2

t and x3
t are independent con-

ditionally to (x1
t ,x

2
t−1) and (x1

t ,x
3
t−1) respectively. As a consequence, for each

particle, PS’s propagations/corrections over subspaces X 2 and X 3 can be per-
formed independently since, in this case, x1

t and xt−1 are known and fixed. This
suggests the new condensation diagram of Fig. 3.

∗f1
t ×p1t

∗fP
t ×pPt p(xt|y1:t)

∗f2
t ×p2t

p(xt−1|y1:t−1)

· · ·

∼

∼

Fig. 1. Partitioned Sampling condensation diagram.
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Fig. 2. A Dynamic Bayesian network for body tracking.

∗f1
t ×p1t ∼

∗f2
t ×p2t

∗f3
t ×p3t

∼ p(xt|y1:t)

p(xt−1|y1:t−1)

Fig. 3. Condensation diagram exploiting conditional independences.

Proposition 1. The set of particles resulting from the Particle Filter of Fig. 3
represents probability distribution p(xt|y1:t).

Proof. Propagations performed in parallel concern subspaces that are probabilis-
tically independent. So, they produce the same result as if they were performed
sequentially. Hence, the only difference between PS and the PF of Fig. 3 is that
fewer resamplings are performed. But resamplings do not change the probability
distributions represented by the particle sets. Hence the result. 2

There are two major differences between PS and the PF of Fig. 3: the latter
performs fewer resamplings, thus introducing less noise in the particle set and,
more importantly, it enables to produce better fitted particles by swapping their
subparts. Actually, consider again our body tracking example and assume that

we generated the 3 particles x
(i)
t of Fig. 4.a where X 1 is the middle part of the

object and X 2 and X 3 are its left and right parts respectively, and where the
shaded areas represent the object’s true state. According to the DBN of Fig. 2,
for fixed values of x1

1:t, the sets of left and right parts of the particles repre-
sent p(x2

t , y
2
1:t|x1

1:t) and p(x3
t , y

3
1:t|x1

1:t) respectively (summing out variables x2
j ,x

3
j

from the DBN). Hence, after permuting the values of the particles on X 2 (resp.
X 3) for a fixed value of x1

1:t, distribution p(x2
t , y

2
1:t|x1

1:t) (resp. p(x3
t , y

3
1:t|x1

1:t))
remains unchanged. A fortiori, this does not affect the representation of the
joint posterior distribution

∫
p(x1

1:t, y
1
1:t)p(x

2
t , y

2
1:t|x1

1:t)p(x
3
t , y

3
1:t|x1

1:t)dx
1
1:t−1 =

p(xt,y1:t). On Fig. 4.a, particles x
(1)
t and x

(3)
t have the same state on X 1. Thus

their right parts can be permuted, resulting in the new particle set of Fig. 4.b.

Remark that we substituted 2 particles, x
(1)
t and x

(3)
t , which had low weights due

to their bad estimation of the object’s right or left part states, by one particle

x′t
(1)

with a high weight and another one x′t
(3)

with a very low weight. After
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Fig. 4. The particle swapping scheme: a) before swapping; b) after swapping

resampling, the later will most probably be discarded and, therefore, swapping
will have focused particles on the peaks of the posterior distribution. Note how-
ever that not all permutations are allowed: for instance, none can involve particle

x
(2)
t because its center part differs from that of the other particles.

Let us now formulate SBPS. Assume again that state space X is decomposed
as X = X 1×· · ·×XP and that the probabilistic dependences between all random
variables xit and yit, i = 1, . . . , P , are represented by a DBN G. Let {P1, . . . , PK}
be a partition of {1, . . . , P} such that, for all i, {xjt}j∈Pi are mutually indepen-
dent conditionally to (∪i−1h=1 ∪k∈Ph

xkt ) ∪ xt−1. Such sets are easily identified by
d-separation on DBN G [14]. By definition, after processing P1, . . . , Pi−1, all the
variables of each set Pi can be processed independently. Denote the elements of
Pi by {i1Pi

, . . . , ikiPi
}. Then, the SBPS algorithm can be described by the conden-

sation diagram of Fig. 5, where operations “
Pi” refer to the particle subpart
swappings briefly described previously. Remark that, after the resampling op-
eration of part Pi, the high weighted particles will be duplicated, which will
enable swapping when processing next part Pi+1. Swappings need however to be
further formalized. Let pa(Xi

t) denote the parents of node Xi
t in G in time slice

t and let Link(Xi
t) be the set of nodes in all time slices such that there exists

an undirected path in G linking them to Xi
t while not passing through any node

in (pa(Xi
t))1:t. Assume now that SBPS was executed up to (but not including)

operation 
Pk . Let r ∈ Pk be some part of the object. Then, for each value of
(pa(xrt ))1:t, substates xrt of the particles represent p(xrt ,y

r
1:t|pa(xrt )1:t). Thus,

permuting substates xrt among particles with the same value of (pa(xrt ))1:t does
not change this distribution. However, if xst is a child of xrt , then not permuting
similarly substates xst of these particles changes p(xst ,y

s
1:t|pa(xst )1:t), hence re-

sulting in incorrect computations. More generally, it is easily shown that all the
values of the substates in Link(xrt ) (and only those values) need be permuted
to ensure that no conditional probability is affected by the swapping. By condi-
tional independences w.r.t. pa(xrt )1:t, the product of all these distributions is the
joint probability. So, operation 
Pk refers to permuting some values of Link(xrt )
for some r ∈ Pk and among particles having the same substate pa(xrt )1:t. In
practice, whenever pa(xrt )t is identical for two particles, the continuous nature
of the state space make it highly probable that one particle is a copy of the
other due to resampling. Hence, their pa(xrt )1:t values should also be identical.
So, our implementation approximates the posterior distributions by performing
swapping for fixed values of pa(xrt )t instead of pa(xrt )1:t.

Proposition 2. The set of particles resulting from SBPS represents p(xt|y1:t).
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Fig. 5. Swapping-based Partitioned Sampling condensation diagram.

Proof. If we do not swap particles, the proof follows from Proposition 1. If some
swapping occurs, say on substate xrt , then, as mentioned previously, distribution
p(xrt ,y

r
1:t|pa(xrt )1:t) remains unchanged. By definition, swapping also occurs on

the neighbors xst of xrt and their neighbors, so that the conditional distribution
of xst remains unchanged. By induction on neighborhoods in G, no conditional
distribution is ever affected by swapping and the result follows. 2

Finally, let us show how 
Pk can determine attractive swappings, i.e., how
high-peaked regions can be discovered. For simplicity, we will only describe swap-
ping on the example of Fig. 6, but the principle can easily be generalized. Assume
that X = X 1 × X 2 × X 3 × X 4, where parts are defined from left to right. In
addition, assume that P1 = {2}, P2 = {3} and P3 = {1, 4}, i.e., P3 corresponds
to the extremal sides of the object. Let us describe operation 
P3 . Just before
propagating part P3, SBPS has constructed particles with equal weights (due to
its resamplings). In the rectangles of parts X 2 and X 3, identical letters indicate
identical substate values (e.g., particles 1 and 2 have the same value on X 2). Just
before executing 
P3 , particles have been propagated on the extremal sides of
the object (resulting in Fig. 6.a) and operations ×p1t and ×p4t have updated their
weights. These weights (unormalized for clarity reasons) are displayed inside the
rectangles corresponding to X 1 and X 4 and the total weights of the particles
are shown on their right side (According to the DBN, these weights are equal

to p1(yt|x1,(i)
t )× p4(yt|x4,(i)

t )). To find the best swappings, we exploit the data
structure given in Fig. 6.b: the circle nodes correspond to the values of the parti-
cles on pa(x1

t )t and pa(x4
t )t. The values within rectangles correspond to the set

of values and weights of the particles on x1
t and x4

t for each value of their parents
pa(x1

t )t and pa(x4
t )t. Finally, there exists an edge between two circles if and only

if there exists at least one particle with the values of both circles. For instance,
edge (A,D) is induced by particle 2. By definition, all the rectangle values that
are attached to a given circle (e.g., 5 and 2) can be swapped since they have the
same parent values in the DBN. As there exists an edge between two circles if
and only if there exists a particle with both circle values, we can conclude that
any value attached to one such circle can be combined by swapping with any
value attached to the other circle. For instance, 5, which is attached to A, can
be combined with 1 (attached to C) or 4 or 2 (attached to D). To get the best
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Fig. 6. Details on the swapping process.

particle, we shall only consider combinations with the highest rectangle values,
hence, for the pair (A,D), we shall only consider combining 5 with 4. The same
shall be done for nodes attached to B and the first new particle constructed
is the one with the highest product (here 5 × 4 from pair (A,D)). Once this
combination has been used, remove values 5 and 4 from the graph and iterate.
When no more rectangle is attached to a circle, this one is removed from the
graph. This process is fast and very effective to produce high-weight particles.

4 Experimental results

We have tested our method and compared it to PS on synthetic video sequences
because we wanted to highlight its interest in terms of dimensionality reduction
and tracking accuracy without having to take into account specific properties
of images (noise, etc.). Moreover, it is possible to simulate specific motions and
then to test and compare with accuracy our method with PS. For that, we have
generated our own synthetic video sequences, each one containing 300 frames,
showing two different kinds of articulated objects: chains or squids. A chain is
the concatenation of P colored rectangles (P is also called the length of the
object), and a squid is made of two chains crossing in their middle part: in a
sense, a chain can be defined by a central rectangle, and two tentacles starting
from this central part, while a squid has four tentacles starting from its central
part. Chains and squids are translating and distorting over time, see examples
of squids in Fig. 10 and 11, and of a chain in Fig. 8. The goal, here, is to observe
the capacity of PS and SBPS to deal with articulated objects composed of a
varying number of parts and subject to weak or strong motions.

The tracked articulated object is modeled by a set of P rectangles whose
corners are labeled C1, . . . , C4. The state space contains parameters describing
each rectangle, and is defined by xt = {x1

t ,x
2
t , . . . ,x

P
t }, with xit = {xit, yit, θit},

where (xit, y
i
t) denotes the coordinates of the center of the ith rectangle, and

θit is its orientation, i = 1, . . . , P . A particle x
(j)
t = {x1,(j)

t ,x
2,(j)
t , . . . ,x

P,(j)
t },

j = 1, . . . , N , is thus a possible configuration of an articulated object. In the
first frame, particles are uniformly generated around the object. During the pre-
diction step, particles are propagated following a random walk whose variance
has been manually chosen. The weights of the particles are then computed using
the current observation (i.e. the current frame). Finally, the particle’s weights
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Fig. 7. Tracking errors for PS and SBPS approaches for a chain object of length P = 11
with, from left to right and from top to bottom, N = 5, 10, 20, 30, 40, 50 particles.
Motions in frames [50, 100] and [150, 200] are stronger than in the other frames.

are given by w
(j)
t = w

(j)
t−1p(yt|x

(j)
t ) ∝ w(j)

t−1e
−λd2 , with d the Bhattacharyya dis-

tance between the histograms of the target (prior) and the reference (previously
estimated) regions. Parameter λ was set to 50 in all our tests.

In both approaches, the articulated object’s joint distribution is estimated
by starting from its center part. PS then propagates and corrects particles part
after part to derive a global estimation of the object. SBPS considers tentacles of
objects as totally independent, and thus propagates, swaps and corrects simul-
taneously in all tentacles. PS and SBPS are compared by measuring the tracking
error as the distance between the ground truth and the estimated articulated
object at each instant. This distance is given by the sum of the Euclidean dis-
tances between each corner Ci of each estimated rectangle and its corresponding
corner Ci of the same rectangle in the ground truth. All the results presented in
this paper correspond to a mean over 100 runs.

Our first test concerns the tracking of a chain object of length P = 11. To
test the stability of our approach, we have generated video sequences in which
motions during two specific temporal intervals (frames [50, 100] and [150, 200])
are strong. Comparative results of tracking errors of PS and SBPS are reported
in Fig. 7, for different numbers N of particles. We can see on these graphs
that SBPS always outperforms PS, which shows its stability especially when the
motion becomes strong: the tracking error drastically increases for PS whereas
that of SBPS is relatively stable. Visual results of tracking are shown on Fig. 8
with N = 30 particles for this object: the estimation of the articulated object is
represented by the concatenated white rectangles. Over 100 runs, the tracking
error resulting from our approach was reduced by 19% as compared to PS.

Table 1 summarizes all the tests performed on different video sequences show-
ing chains of length P = 3, 5, 7, 9, 11 or squid of length P = 5, 9, 13, 17, 21,



Fig. 8. Zooms on tracking results obtained for PS (top line) and SBPS (bottom line)
on frames 100, 150 and 200, for a chain object of length P = 11 with N = 30 particles.
White articulated objects represent the mean estimations of the articulated object.
Mean tracking error: 1670 pixels for PS, and 1286 pixels for SBPS.

for values N = 5, 10, 20, 30, 40, 50. Tracking errors (in pixels) over all the se-
quences are reported for both approaches, and the percentage of reduction of
tracking error obtained with our approach, denoted by ↘ %, is computed as(
1− SBPS

PS

)
× 100. As another example, we also reported the tracking errors for

a squid object of size P = 17 in Fig. 9. We can see that our approach always
decreases the tracking error. This is especially noticeable for high values of P .
Even for small objects (P = 3) and a large number of particle (N = 50), which
should be highly sufficient to provide good tracking results, SBPS outperforms
PS, decreasing the error by 7%. The visual tracking results for a squid object of
size P = 5 using N = 5 particles are given in Fig. 10: mean tracking error is 1454
pixels for PS , and 503 pixels for SBPS. All these results show why exploiting
both independence between the different object’s parts and subpart swapping is
highly efficient: “much better” particles are constructed which, in turn, allows
to better estimate the joint probability of the articulated object. This advantage
is illustrated by Fig. 11 for a squid object of length P = 13 (frames 50, 100,
150 and 200): we have voluntarily used a small number of particle for tracking
(N = 5) and have drawn into the frames the “best” particle, i.e. the one with
the highest weight. If we compare PS (top line) and SBPS (bottom line), we can
see the benefit of swapping: unlike the best particle of SBPS, that of PS totally
misses the articulated object.

Finally, Table 2 reports the mean computation times (in seconds), over 100
runs, for tracking two different objects: a chain of length P = 9 and a squid of
length P = 17, depending on the number N of particles. Of course, we can see
that PS is faster than SBPS, but previous tests show that SBPS requires fewer
particles to provide a tracking as good as PS. For instance, for a chain of length
P = 9, using SBPS and N = 20, in 2.31 seconds, we get similar tracking results
than those with PS using N = 30 (in 3.22 seconds). Similarly, for a squid of
length P = 17, using SBPS and N = 20, in 4.11 seconds, we get similar tracking
results than those with PS using N = 40 (in 8.16 seconds).



Table 1. Comparison of tracking mean errors (in pixels) over all the sequences obtained
by PS and SBPS depending on the object (chain or squid), its length P , and the number
N of particles.↘ %=

(
1− SBPS

PS

)
×100 is the error reduction percentage using SBPS.

Chain Squid

P = 3 P = 5 P = 7 P = 9 P = 11 P = 5 P = 9 P = 13 P = 17 P = 21

N = 5

PS 514 1565 3440 8546 12666 1999 18473 37710 66659 77864

SBPS 469 1480 1706 6638 7374 812 6408 9125 12397 13075

↘ % -9% -6% -50% -33% -42% -60% -76% -76% -82% -84%

N = 10

PS 187 315 1302 1528 3199 289 894 1862 2339 7786

SBPS 167 293 1044 1215 2161 193 627 746 1407 2225

↘ % -11% -7% -20% -21% -33% -34% -30% -60% -40% -72%

N = 20

PS 136 193 949 1529 1944 153 596 519 1046 2610

SBPS 125 185 813 1192 1495 114 428 405 696 1374

↘ % -9% -5% -15% -23% -24% -26% -29% -22% -34% -48%

N = 30

PS 123 164 819 1313 1606 120 510 404 772 1919

SBPS 112 160 706 1069 1309 97 377 327 527 1127

↘ % -9% -3% -14% -19% -19% -20% -27% -20% -32% -42%

N = 40

PS 115 159 768 1199 1440 108 467 349 666 1615

SBPS 108 147 671 997 1211 91 351 287 460 1016

↘ % -7% -8% -13% -17% -16% -16% -25% -18% -31% -38%

N = 50

PS 112 141 735 1109 1306 102 426 317 592 1534

SBPS 105 138 648 956 1151 88 337 265 428 943

↘ % -7% -3% -12% -14% -12% -14% -21% -17% -28% -39%

5 Conclusion

We have introduced a new framework, Swapping-Based Partitioned Sampling,
exploiting conditional independences to simultaneously propagate, correct and
swap particles in independent subspaces. As a result, the particle sets produced
are more concentrated on high peaks of the posterior distribution than in the
classical Partition Sampling. Thus, our estimations of the probability densities
of the tracked object are more accurate. Empirical tests have shown that SBPS
always outperforms PS, especially in cases where the object motion is strong
and when the dimension of the state space is high (i.e., the number of parts is
large). There still remains to validate our approach on real video sequences.
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Fig. 10. Zooms on tracking results obtained for PS (top line) and SBPS (bottom line)
on frames 50, 100, 200 and 250, for a squid of length P = 5 with N = 5 particles.
White articulated objects represent the mean estimations of the articulated object.
Mean tracking error: 1454 pixels for PS, and 403 pixels for SBPS.

Table 2. Computation times (in sec.) of PS and SBPS for the tracking of a chain and
of a squid of lengths P = 9 and P = 17 respectively, for different values of N .

N = 5 N = 10 N = 20 N = 30 N = 40 N = 50

Chain: P = 9
PS 0.70 1.21 2.18 3.22 4.2 5.15

SBPS 0.72 1.30 2.31 3.45 4.43 5.41

Squid: P = 17
PS 1.18 2.12 4.01 6.02 8.16 10.28

SBPS 1.20 2.15 4.11 6.21 8.37 10.69

Fig. 11. Zooms on the best particles (i.e. with the highest weight) of PS (top line) and
SBPS (bottom line) approaches, drawn in white for a squid object of length P = 13,
with N = 5. From left to right, frames 50, 100, 150 and 200.


