
Reinforcing the Object-Oriented Aspect of Probabilistic Relational Models
Lionel Torti - Pierre-Henri Wuillemin - Christophe Gonzales

LIP6 - UPMC - France
firstname.lastname@lip6.fr

Abstract
Representing uncertainty in knowledge is a common issue in Artificial Intelligence. Bayesian
Networks have been one of the main models used in this field of research. The simplicity of their
specification is one of the reason for their success, both in industrial and in theoretical domains.
The widespread use of Bayesian Networks brings new challenges in the design and use of large-
scale systems, where this very simplicity causes a lack of expressiveness and scalability. To fill
this gap, an increasing number of languages emerged as extensions of Bayesian Networks with
many approaches: first-order logic, object-oriented, entity-relation, and so on. In this paper we
focus on Probabilistic Relational Models, an object-oriented extension. However, Probabilistic
Relational Models do not fully exploit the object-oriented paradigm, in particular they lack class
inheritance. Using Object-Oriented Bayesian Networks as a basis, we propose to lightly extend
PRMs framework resulting in stronger object-oriented aspects in probabilistic models.

Probabilistic graphical models (Koller and Fried-
man, 2009) are a general purpose framework for
dealing with uncertainty. Their applications to
many different domains has stimulated an uninter-
rupted process of creation of new frameworks based
on probability theory. Bayesian Networks (Pearl,
1988) are among the most popular framework for
uncertainty in AI.

In recent years, the Statistical Learning commu-
nity has actively proposed new probabilistic frame-
works, closing the gap between first-order logic
and probability theory (Getoor and Taskar, 2007).
New models such as Object-Oriented Bayesian
Networks (Koller and Pfeffer, 1997; Bangsø and
Wuillemin, 2000a), Multiply-Sectioned Bayesian
Networks (Yang, 2002), Probabilistic Relational
Models (Getoor et al., 2007) and Multi-Entity
Bayesian Networks (Laskey, 2008) have extended
Bayesian Networks and widen their range of appli-
cation.

In many situations, these new first-order logic-
based networks can be efficiently learned from
databases and used for answering probabilistic
queries. However, there are situations like nuclear
plant safety problems where the scarcity of data
available prevents such learning. For such prob-
lems, oriented graphical models such as Probabilis-

tic Relational Models (PRMs) are often more suit-
able than the aforementioned first-order models be-
cause they can often be modeled by interactions
with experts of the domain.

PRMs have an object-oriented basis, but they
lack fundamental mechanisms related to class in-
heritance. In software engineering, such object-
oriented designs has proved very useful for creating
complex software. In this paper, we illustrate why
these mechanisms are necessary for practical de-
sign of large-scale systems and we show how light
extensions can enforce strong object-oriented fea-
tures into the PRMs framework. In addition, we
propose a representation of PRMs with such mech-
anisms using parfactors, the state-of-the-art frame-
work for first-order probabilistic inference (Poole,
2003). All the concepts we present here are imple-
mented in our open source C++ framework called
aGrUM and can be represented in the SKOOL lan-
guage (http://agrum.lip6.fr).

Throughout this paper, we will use an analogy
with oriented-object programming in order to ease
the presentation of our framework. It is organized as
follows: after briefly introducing the classical PRM
framework, we define the notions of attribute typ-
ing and type inheritance. Then we extend the no-
tion of class inheritance with interfaces, to conclude

X1

Y1

U1 V1

W1

U2 V2

W2

U3 V3

W3

Y2

X2

(a) A Bayesian network. The gray areas do not
belong to the BN specification

E

X

Y

U V

W

ρ

F

(b) Two connected classes E
and F .

S

E e1, e2;
F f1, f2, f3;

f1.ρ = e1;
f2.ρ = e1;
f3.ρ = e2;

e1

f1 f2

e2

f3

(c) The system declaration and the in-
stance diagram corresponding to the BN
of figure 1(a).

Figure 1: Representation of a BN as a PRM: analysis of the BN (a) reveals the use of two recurrent patterns,
which are confined in two classes (b). Hence, a system equivalent to the BN may be built (c).

our contribution with the mechanisms for attribute
and reference overloading. Finally we describe how
PRMs with strong object-orientedness can be de-
scribed using parfactors.

1 Description of PRMs

Fig. 1(a) shows a Bayesian Network (BN) encod-
ing relations between two different kinds of patterns
(variables Xi, Yi on one hand and Uj , Vj ,Wj on the
other hand). We assume that the conditional prob-
ability tables (CPT) associated with variables with
the same capital names are identical. When using
PRMs, the main idea is to abstract each pattern as a
generic entity, called a class, which encapsulates all
the relations between the variables of the pattern.
So, in Fig.1(b), E encapsulates precisely variables
Xi and Yi as well as their probabilistic relations (arc
(Xi, Yi)) and conditional probability distributions.
The pattern of variables Uj , Vj ,Wj cannot be di-
rectly encapsulated in a class since the CPTs of vari-
ables Uj are conditional to some variables Yk (e.g.,
the CPT of U3 is P (U3|Y2) according to Fig.1(a)).
Hence classes must have a mechanism allowing to
refer to variables outside the class. In PRMs, this
mechanism is called a reference slot. Basically, the
idea is to create some function ρ connecting two
classes and allowing both classes to access the vari-
ables of the other class. Now, as shown in Fig.1(c),
the original BN can be built up from the PRM: it
is sufficient to create two instances, say e1 and e2,
of class E as well as three instances f1, f2, f3 of F

and connect them using one edge per reference slot.
Note that there is no limit to the number of times an
instance can be referenced (see e1 in Fig.1(c)).

1.1 PRM-related definitions

In this section, we present the minimal set of defi-
nitions needed for the rest of the paper. The reader
may refer to (Pfeffer, 2000) and (Getoor et al., 2007)
for a more detailed presentation.

Definition 1 (Class). A class C is defined by a
Directed Acyclic Graph (DAG) over a set of at-
tributes, i.e. random variables, A(C), a set of ref-
erences (slots) R(C), and a probability distribution
over A(C). To refer to a given random variable X
(resp. reference ρ) of class C, we use the standard
Object Oriented notation C.X (resp. C.ρ).

Definition 2 (Instance). An instance c is the use (the
instantiation) of a given class C in a BN. There are
usually numerous instances of a given class C in a
BN. Notation c.X (resp. c.ρ) refers to the instantia-
tion of C.X ∈ A(C) (resp. C.ρ ∈ R(C)) in c. By
abuse of notation, we denote the sets of such instan-
tiations as A(c) and R(c) respectively.

Fig. 1(b) shows two classes, E and F , with at-
tributesA(E) = {X, Y } andA(F) = {U, V, W}.
There is also one reference in class F denoted by ρ
which is used to define the dependencies between
E .Y and F .U . Such dependency is defined using a
path, called a reference chain, from one attribute to
another. In Fig. 1(b), the path representing the de-
pendency between E .Y and F .U is F .ρ.Y . More

Attribute Simple reference

canPrint
works

hasInk hasPaper

works

works

power

PowerSupply

printers

exists

roomroom

Computer

Room

Printer

Figure 2: The printer example.

simply, ρ.Y is said to be a parent of U in class F .

Definition 3 (System, grounded net). A system S
is the representation of a BN as a set of class in-
stances in which each reference has been linked to
another instance. Conversely, the grounded network
of a system S is the BN represented by S .

As a consequence, in a system, each random vari-
able c.X is a copy of a random variable C.X ∈
A(C) and is assigned a copy of the CPT assigned
to C.X in C. The difference between a system
and a grounded net is that all structural informa-
tion (classes, instances, references, . . .) are lost
when reasoning with a grounded net. Finally,
PRMs are considered as an object-oriented formal-
ism due to the encapsulation of attributes inside
their classes. This feature is inherited from Object-
Oriented Bayes Nets. Exploiting this encapsulation
is the core of structured inference (Pfeffer, 2000).

1.2 Real Object-Oriented PRMs

The following discussion provides insight about
how PRMs lack fundamental concepts of the object-
oriented paradigm and how such concepts can
greatly improve the representative power of PRMs.
We will illustrate our point with a simple exam-
ple of a printer breakdown diagnosis illustrated in
Fig. 2. We consider a network with a power supply,
black & white printers, color printers and comput-
ers. Printer’s types, brands and ages vary from one
printer to another. Printers and computers are placed

in rooms and each computer is connected to every
printer in the same room. All printers and comput-
ers are connected to the same power supply. Our
main objective is to answer the following query: us-
ing a given computer, can I print? We can also think
of other queries, not asked by a user but rather by
an intervening technician: is a paper jam respon-
sible for the printer’s breakdown? Is the magenta
cartridge of a color printer empty? Etc.

From the computer point of view, our system
needs to take into account: (i) the fact that a printer
prints in color is irrelevant for black & white print-
ings; (ii) breakdowns can have different causes, but
we only need to know whether printing is possible
or not. From the technician perspective, we shall
consider that: (i) different printers have different
types of breakdowns, which can sometimes be par-
tial, e.g. a color printer with no more cyan ink can
still print in black & white; (ii) different types or
brands imply different probabilities of breakdowns;
(iii) the printer’s features shall be taken into account
since specific queries can be asked for each printer,
e.g., can I print in color? Is the A3-tray empty? Etc.

These points of views force our system to be
both generic (the computer’s perspective) and spe-
cific (the technician’s perspective). This is precisely
why a strong object-oriented framework is needed.
Let us do an analogy with computer programming.
A class defines general concepts common to a fam-
ily of objects. It is possible to define new concepts
using inheritance: if class B inherits from class A,
it inherits A’s properties but can also specialize the
concepts represented by A. Either by overloading
A’s attributes and methods (behavior specialization)
or by adding new attributes and methods (function-
ality specialization). The next section proposes an
extension of PRMs which will serve as a basis to
strengthen class inheritance and we will show that
this can be done with small and intuitive changes.

2 Attribute typing and type inheritance

Attribute typing arises naturally when using PRMs
as a modeling framework: similarly to classes that
represent repeated patterns in a system, an attribute
type describes a family of random variables sharing
the same domain. For instance, types Boolean and
state would be the types of all the random variables

=DBoolean { false, true }

=Dstate { OK, NOK }

=Dmalfunction { OK, broken, malfunctioning }

Figure 3: An illustration of type inheritance with
attribute types Boolean, state and malfunction.

with domains {false, true} and {OK,NOK}, re-
spectively.

Definition 4 (Attribute typing). An attribute type τ
describes a family of distinct discrete random vari-
ables sharing the same domain Dτ = {l1, . . . , ln},
where n is the domain size of τ .

Types such as Boolean and state are frequently
encountered when dealing with experts. For in-
stance, they can be used to describe the states of
equipments subject to breakdowns. In this case,
type state enables a finer description of the possi-
ble failures than just the OK/NOK state. This can
prove critical for some industrial applications: con-
sider an air conditioner in a computer server room
working improperly; then, assigning it state mal-
function may help diagnose the servers malfunc-
tions. Type state can be viewed as a specializa-
tion of type Boolean. Specializing general concepts
into more specific ones is the goal of inheritance.
Type inheritance is the process of decomposing la-
bels into a partition of more specific and precise de-
scriptions of a domain. To properly define this con-
cept, we will need an additional notion, that of Do-
main Generalization Function (DGF):

Definition 5 (Domain Generalization Function). A
Domain Generalization Function (DGF) is a surjec-
tive function Φ : Dτ → Dλ where τ and λ are two
distinct attribute types.

Obviously, given two distinct attribute types τ
and λ, there exists a DGF Φ : Dτ → Dλ if and
only if |Dτ | ≥ |Dλ|. DGFs will be used to define
type inheritance in PRMs:

Definition 6 (Type inheritance). An attribute type τ
inherits from another attribute type λ if it is defined
using a DGF Φ : Dτ → Dλ.

Fig.3 illustrates type inheritance: in this figure,
arcs represent the specialization of concepts. For

works

room
hasPaper

hasInk

Printer

(a) Dependencies of the Printer class.

works

room hasPaper hasInk

black
magenta

cyan

yellow

ColorPrinter

(b) Dependencies of the ColorPrinter class, which is a sub-
class of Printer.

Figure 4: Example of class inheritance. Dashed
arcs represent dependencies with attributes in an-
other class.

instance, attribute type malfunction has two labels,
broken and malfunction, which are specializations
of label NOK of attribute type state. As is, attribute
inheritance is only a semantic relation: state’s label
OK is a sort of true, broken is a sort of false, etc.
We will show how to exploit such concepts proba-
bilistically in the following sections.

3 Classes and interfaces

As in oriented-object programing, class inheritance
in PRMs starts by a copy of the super class into
its subclass. This implies that all attributes, refer-
ences, dependencies, i.e. arcs, and CPTs are copied
into the subclass. However, the content of the su-
per class is only a basis for the subclass, as new at-
tributes, references and dependencies can be added
to the inherited structure. The first definitions of
class inheritance for probabilistic models can be
found in (Koller and Pfeffer, 1997) and (Bangsø and
Wuillemin, 2000b). Note that these definitions dif-
fer greatly. In this paper, we propose some exten-
sions of the work by Bangsø and Wuillemin.

3.1 Class inheritance

Fig. 4 illustrates class inheritance on the printer ex-
ample of Fig. 2. Here, we introduced a new class,
namely ColorPrinter, which is a subclass of Printer.
Fig. 4(b) is a representation of the ColorPrinter
class dependencies. This example suggests several
remarks: (i) all the attributes and references belong-
ing to class Printer also belong to ColorPrinter; (ii)
new attributes have been added; (iii) attribute Col-
orPrinter.hasInk has additional parents (and thus a
new CPT).

The first remark is similar with oriented-object
programming languages: a subclass inherits the at-
tributes and references of its super class. This im-
plies that when an element is not overloaded, it is
not necessary to redeclare it. The second remark
is the functionality specialization of class inheri-
tance: by adding new attributes, a subclass becomes
more specific and offers new possibilities for enter-
ing evidence and submitting queries. In Fig. 4(b),
attributes black, magenta, cyan and yellow represent
the different kinds of inks used in a color printer, a
feature that is not necessarily present in all print-
ers. The third and fourth remarks are examples of
attribute overloading, which consist of: (i) enabling
changes in the values of the attribute’s CPTs; (ii)
adding or removing parents; (iii) overloading an at-
tribute’s type (this point is explained below).

3.2 Interface implementation

In modern programming languages, interfaces are
used to handle multiple inheritance and to manip-
ulate objects at a high abstract level. They define
a set of methods which are guaranteed to exist in
any class implementing them. Note that interfaces
do not provide the bodies (the execution codes) of
these methods but only their signatures. An inter-
face in a PRM follows the same principle: it is a set
of attributes and references; it defines neither proba-
bilistic dependencies nor CPTs. As in programming
languages, a PRM interface cannot be instantiated.

A PRM interface can be used to define dependen-
cies between classes using abstraction: given two
classes X and Y , if Y has an attribute depending on
an attribute of X , then the only information needed
is the type of X’s attribute. As a consequence, the
minimal set of information required to define proba-

Printer
<<interface>>

room: Room
hasInk: Boolean
hasPaper: Boolean
works: state

BWPrinter
room: Room
hasInk: inkState
hasPaper: paperState
works: malfunction

ColorPrinter
room: Room
black: inkState
magenta: inkState
cyan: inkState
yellow: inkState
hasInk: Boolean
hasPaper: paperState
works: malfunction

Figure 5: Two implementations of an interface.

bilistic dependencies is composed of references and
attribute’s types.

Fig. 5 shows an example of an interface imple-
mentation, where the two classes BWPrinter and
ColorPrinter implement interface Printer (which is
no longer a class for this example). The Printer in-
terface defines the minimal set of attributes and ref-
erences any printer must declare: a reference to its
room, whether it has ink, paper and whether it is
working.

Fig. 5 is an alternative representation of classes
using a UML syntax. Such syntax is necessary to
point out attribute’s and reference’s types. It is more
concise than the traditional representation of PRMs,
i.e., the class dependency graph, see (Getoor et al.,
2007). As already said, when creating a class, there
is no need to know the dependency structure of the
other classes to which it is related: only attribute
and reference types are necessary for this task.

3.3 Multiple inheritance

Multiple inheritance is one of the major issues when
defining an object-oriented formalism. The problem
arises when diamond-shaped inheritance appears, as
illustrated in Fig. 6. An ambiguity results from how
the properties of class A are inherited by class D
since two distinct paths exist from A to D (through
B or C). Furthermore, if some properties of A are
overloaded in B and C, which one should be inher-
ited by D? Such issue can be dealt by using inter-

A

BC

D

Figure 6: A diamond-shaped inheritance graph.

<state>works OK Broken malfunction
OK 1 0 0

NOK 0 1 1

Table 1: The CPT of BWPrinter.works cast descen-
dant which is of type state.

faces: since an interface only declares the existence
of properties, each class implementing a given inter-
face must declare and define itself those properties.
The major drawback of this approach is that there is
no reuse of properties definitions, i.e. there is code
duplication. Another solution consists of explicitly
declaring from which superclass a given property is
inherited. But this proves to be cumbersome and
bug prone. For this reason, we chose to use the
interface-based solution. In addition, the notion of
an interface is well suited for the PRM framework.
Note that a class can implement as many interfaces
as it designer wants to.

4 Attribute and reference overloading

In object-oriented programming languages, over-
loading is used to modify inherited properties. This
is exactly what PRM attribute overloading and ref-
erence overloading do. In section 3.1, we showed
how attribute overloading could be performed using
inheritance. Now, by adding attribute typing, it be-
comes possible to also overload attribute’s types.

4.1 Type overloading

People familiar with PRMs will remark that,
in Fig. 5, if a class has a dependency over
Printer.works it expects an attribute of type state
and defines its conditional probability tables accord-
ingly. However, connecting such a class to an in-
stance of BWPrinter results in an incoherent prob-
ability distribution since the attribute referenced is
of type malfunction. To fix this kind of problem we
need the concept of cast descendants.

Cast Descendants are automatically generated at-
tributes which are used to cast beliefs of an attribute
into one of its super type. By exploiting Domain
Generalization Functions (DGFs), it is possible to
use deterministic tables to obtain beliefs with the
correct domain size. Tab. 1 shows the conditional
probability table of BWPrinter.works cast descen-
dant, which casts type malfunction into type state.
Algorithm 1 illustrates more formally how cast de-
scendants are generated. The goal variable is the
overloaded type and a the attribute whose type is a
subtype of goal. The algorithm simply adds chil-
dren to a until the goal type is reached. Procedure
generateCastCPT() uses DGFs to generate deter-
ministic tables as shown in Table 1.

Data: Type goal, Attribute a
Type t = a.type;
Attribute current = a;
while t 6= goalType do

Attribute child = new Attribute();
child.type = t.super;
child.cpt = generateCastCPT(t.super, t);
current.addChild(child);
current = child;
t = t.super;

end

Algorithm 1: Cast descendant generation.

4.2 Reference overloading and instantiation

As seen previously, it is possible to define refer-
ences in classes as well as in interfaces. We have
shown how interfaces can be used to define proba-
bilistic dependencies and since we introduced class
inheritance and interface implementation, we can
obviously use reference overloading. Given two
classesX and Y , if Y is a subclass ofX and if there
exists a reference ρ in X referencing a class Z (or
an interface I), then Y can overload ρ with a refer-
ence referencing any subclass of Z (or referencing
any implementation of I).

Instantiating a reference amounts to linking it to
an instance of the correct class in a given system.
Given an instance x of class X and a reference x.ρ
referencing a class Z (or an interface I) x.ρ can
be instantiated in any instance of a subclass of Z
(or any instance of a class implementing I). Class
inheritance, interface implementation and cast de-
scendants guarantee the existence of attributes de-

fined in a class (or interface) in any of its subclass
(or implementation), which is sufficient to ensure a
coherent probabilistic distribution.

5 Parfactor representation of PRMs

A large part of the statistical relational learn-
ing community has chosen first-order probabilis-
tic models as their main framework. Actually, the
only exact inference algorithm for first-order proba-
bilistic models is lifted probabilistic inference (de
Salvo Braz et al., 2005) and (Brian et al., 2008).
Parfactors are the common formalization used in
these approaches. It is important to note that, like
most first-order probabilistic models, parfactors are
more generic than PRMs: they can be used to repre-
sent complex systems impossible to represent using
PRMs. However, they are less suited for modeling
large-scale systems. Hence it is useful to be able to
express PRMs in such a formalism. We will give a
short definition of parfactors, or parametric factors,
as they are given in (Poole, 2003).

Definition 7 (Parfactor). A parfactor is a triple
〈C, V, t〉 where C is a set of constraints on param-
eters, V is a set of parametrized random variables
and t is a table representing a factor from random
variables of V to <+.

Algorithm 2 details formally how an attribute can
be converted into a set of parfactors. We will detail

Input: Class c, Attribute attr
Output: Parfactor fctr
Parfactor fctr;
Add a isA() constraint over c’s type;
Add a parametrized variable named by attr and prefixed
by attr’s type;
foreach parent prt of attr do

if prt not in A(c) then
Add a isA() constraint over prt’s class type;
foreach reference ρ in the slot chain from attr to
prt do

Add a relational constraints in fctr
matching ρ;
Add a isA() constraint over ρ range type;

end
end
Add a parametrized variable named by prt and
prefixed by prt’s type;

end
Copy in fctr’s table attr’s CPT;
return fctr

Algorithm 2: Parfactor generation of an at-
tribute.

this algorithm using attribute ColorPrinter.works of
Fig. 4(b). Since we represent PRMs, a parfactor’s
table will always be the conditional probability ta-
ble of an attribute. Classes and instances are rep-
resented as parameters of parametric random vari-
ables, which are the equivalent of attributes in the
PRM formalism. To ensure the exact representation
of the structure encoded by the classes of a PRM, it
is necessary to use two different types of constraints.

To represent classes, class inheritance and in-
terface implementation we will use isA()-like con-
straints (e.g. isAPrinter(X)). Relations can be ex-
pressed as binary constraints in which each param-
eter has a isA() constraint (e.g. room(X,R) ∧
isAPrinter(X) ∧ isARoom(R)). The Color-
Printer.works attribute in Fig. 4 can be represented
by the following parfactor:

〈 {isAColorPrinter(X) ∧ isARoom(Y)∧
isAPowerSupply(Z) ∧ room(X,Y) ∧ power(Y,Z)},
{malfunction works(X), paperType hasPaper(X),
Boolean hasInk(X), state works(Z)}, t 〉

The first part of this parfactor is composed of type
constraints (isAColorPrinter(), isARoom() and is-
APowerSupply()) and relational constraints (room()
and power()). The second part contains the depen-
dencies of the parfactor, which are the parametrized
random variables malfunction works(X), pa-
perType hasPaper(X), Boolean hasInk(X) and
state works(Z). The Cartesian product of their
values is mapped to the values in t, which represent
the CPT of ColorPrinter.works.

The isA() constraints encode the inheritance
scheme of a PRM if, for each instance i of a sys-
tem, a grounded variable is declared for each type
of i, i.e. for all of its super classes and imple-
mented interfaces. For example, an instance colo-
ria of the ColorPrinter class will be represented
with the following grounded variables: isAColor-
Printer(coloria) and isAPrinter(coloria).

Finally, cast descendants can be represented by
including types names in the parametric variables
declarations. For example malfunction works(X)
stands for the attribute ColorPrinter.works of type
malfunction. Then, by generating parfactors for
each cast descendant, the constraints names will en-
sure the correct structure. For example, the cast de-
scendant ColorPrinter.works will be declared as:

〈 {isAColorPrinter(X)}
{state works(X), malfunction works(X)}, t 〉

At first sight, such a representation seems cum-
bersome but it illustrates the expressive power of
parfactors and of first-order probabilistic models.
First-order logic can be used to express very com-
plex relations: only two types of constraints are nec-
essary to represent all the notions presented in this
paper. However such expressive power has a ma-
jor flaw as semantics and relations are hidden in
the mass of constraints declarations. When deal-
ing with large-scale systems, creating and maintain-
ing such knowledge base can be extremely diffi-
cult. PRMs with the strengthened object-oriented
aspect we proposed here are a proposition to man-
age such knowledge with a formalism less expres-
sive but much more scalable.

6 Conclusion

We proposed a strong object-oriented representation
of PRMs by introducing interfaces, attribute typing,
type inheritance, attribute and reference overload-
ing. Such notions strengthen the expressive power
of PRMs when dealing with structured and known
systems. In addition, we have shown how PRMs
with these features can easily be represented as par-
factors, closing a gap between PRMs and more re-
cent first-order probabilistic models. Strengthening
the object-oriented features of PRMs enables a bet-
ter representation of complex systems as well as
the creation of new models in fields such as trou-
bleshooting, reliability and risk management, where
such models were often difficult to represent until
now. Parfactors are used in the state-of-the-art lifted
probabilistic inferences. Enabling the expression of
PRM models into such formalisms will help com-
paring different first-order probabilistic implemen-
tations. However there is still room for improve-
ments, especially for the graphical representation of
PRMs and the implementation of user-friendly tools
for model design and maintenance. Finally, the per-
spective of exploiting hierarchical knowledge can
lead to new inference algorithms in PRMs.

Acknowledgments: this work has been supported
by the DGA and has benefited comments, sugges-
tions and ideas from the SKOOB consortium mem-
bers (http://skoob.lip6.fr).

References
O. Bangsø and P.-H. Wuillemin. 2000a. Top-down

construction and repetitive structures representation in
Bayesian networks. In Proc. of FLAIRS 2000, pages
282–286.

Olav Bangsø and Pierre-Henri Wuillemin. 2000b. Ob-
ject Oriented Bayesian Networks: A framework for
topdown specification of large Bayesian networks and
repetitive structures. Technical report, Department
of Computer Science, Aalborg University., Aalborg,
Denmark.

Milch Brian, Luke S. Zettlemoyer, Kristian Kersting,
Michael Haimes, and Leslie Pack Kaelbling. 2008.
Lifted probabilistic inference with counting formulas.
In Proceedings of the 23rd AAAI Conference on Arti-
ficial Intelligence, pages 1062–1068.

R. de Salvo Braz, E. Amir, and D Roth. 2005. Lifted
first- order probabilistic inference. In Proceedings of
the 19th International Joint Conference on Artificial
Intelligence, pages 1319–1325.

L. Getoor and B. Taskar. 2007. Introduction to Statisti-
cal Relational Learning. The MIT Press.

Lise Getoor, Nir Friedman, Daphne Koller, Avi Pfeffer,
and Benjamin Taskar. 2007. Probabilistic relational
models. In L. Getoor and B. Taskar, editors, An Intro-
duction to Statistical Relational Learning. MIT Press.

Daphne Koller and Nir Friedman. 2009. Probabilistic
Graphical Models. The MIT Press.

D. Koller and A. Pfeffer. 1997. Object-oriented
Bayesian networks. In Proceedings of the 13th An-
nual Conference on Uncertainty in AI, pages 302–313.

K.B. Laskey. 2008. MEBN: A language for first-order
Bayesian knowledge bases. Artificial Intelligence,
172:140–178.

J. Pearl. 1988. Probabilistic Reasoning in Intelligent
Systems: Networks of Plausible Inference. Morgan
Kaufman.

A.J. Pfeffer. 2000. Probabilistic Reasoning for Complex
Systems. Ph.D. thesis, Stanford University.

David Poole. 2003. First-order probabilistic inference.
In Proceedings of the 18th International Joint Confer-
ence on Artificial Intelligence, pages 985–991.

Xiang Yang. 2002. Probabilistic Reasoning in Multi-
Agent Systems: A Graphical Models Approach. Cam-
bridge University Press.

