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Abstract

This paper addresses the problem of learning a Bayes net (BN) structure from a database. We
advocate first searching the Markov networks (MNs) space to obtain an initial RB and, then, re-
fining it into an optimal RB. More precisely, it can be shown that under classical assumptions our
algorithm obtains the optimal RB moral graph in polynomial time. This MN is thus optimal w.r.t.
inference. The process is attractive in that, in addition to providing optimality guarrantees, the
MN space is substantially smaller than the traditional search spaces (those of BNs and equivalent
classes (ECs)). In practice, we face the classical shortcoming of constraint-based methods, namely
the unreliability of high-order conditional independence tests, and handle it using efficient con-
ditioning set computations based on graph triangulations. Our preliminary experimentations are
promising, both in terms of the quality of the produced solutions and in terms of time responses.

1 Introduction

Effective modeling of uncertainty is essential to
most AI applications. For fifteen years probabilis-
tic graphical models like Bayesian nets (BN) and
Markov nets (MN), a.k.a. Markov random fields,
(Cowell et al., 1999; Jensen, 1996; Pearl, 1988)
have proved to be well suited and computationally
efficient to deal with uncertainties in many practical
applications. Their key feature consists in exploit-
ing probabilistic conditional independences (CIs) to
decompose a joint probability distribution over a set
of random variables as a product of functions of
smaller sets, thus allowing a compact representation
of the joint probability as well as efficient inference
algorithms (Allen and Darwiche, 2003; Madsen and
Jensen, 1999). These independences are encoded in
the graphical structure of the model, which is di-
rected for BNs and undirected for MNs. In this pa-
per, we propose an algorithm to learn a BN structure
from a data sample of the distribution of interest.

There exist three main classes of algorithms for
learning BN from data. The first one tries to de-
termine the set of all probabilistic CIs using sta-
tistical independence tests (Verma and Pearl, 1990;
Spirtes et al., 2000). Such tests have been criti-
cized in the literature as they can only be applied
with small conditioning sets, thus ruling out com-

plex BNs. A more popular approach consists in
searching the BN structures space, optimizing some
score (BDeu, MDL, etc.) measuring how well the
structure fits data (Heckerman et al., 1995; Lam and
Bacchus, 1993). Unfortunately, the number of BNs
is super-exponential in the number of random vari-
ables (Robinson, 1973) and an exhaustive compar-
ison of all the structures is impossible. One way
out is to use local search algorithms parsing effi-
ciently the BN structure space, moving from one
BN to the next one by performing simple graphical
modifications (Heckerman et al., 1995). However,
these suffer from the existence of multiple BNs rep-
resenting the same set of CIs. This not only length-
ens the search but may also trap it into local op-
tima. To avoid these problems, the third class of
approaches (Munteanu and Bendou, 2001; Chick-
ering, 2002) searches the space of BN equivalence
classes (EC). In this space, equivalent BNs are rep-
resented by a unique partially directed graph. In ad-
dition to speeding-up the search by avoiding use-
less moves from one BN to an equivalent one, this
class of algorithms possesses nice theoretical prop-
erties. For instance, under DAG-isormorphism, a
classical hypothesis on the data generative distribu-
tion, and in the limit of a large database, the GES
algorithm is theoretically able to recover the opti-
mal BN structure (Chickering, 2002). This property



is remarkable as very few search algorithms are able
to guarantee the quality of the returned structure.

Although, in theory, the EC space seems more at-
tractive than the BN space, it suffers in practice from
two problems: i) its neighborhood is exponential in
the number of nodes (Chickering, 2002) and ii) the
EC space size is roughly equal to that of the BN
space (Gillispie and Perlman, 2001). It would thus
be interesting to find a space preserving the optimal-
ity feature of the EC space exploited by GES while
avoiding the above problems. For this purpose, the
MN space seems a good candidate as, like the EC
space, its equivalence classes are singletons. More-
over, it is exponentially smaller than the BN space
and, by its undirected nature, its neighborhood is
also exponentially smaller than that of EC. This sug-
gests that searching the MN space instead of the EC
space can lead to significant improvements.

To support this claim, we propose a learning al-
gorithm that mainly performs its search in the MN
space. More precisely, it is divided into three dis-
tinct phases. In the first one, we use a local search
algorithm that finds an optimal MN searching the
MN space. It is well-known that only chordal MNs
are precisely representable by BNs (Pearl, 1988).
As it is unlikely that the MN we find at the end of
the first phase is actually chordal, its transformation
into a BN must come along with the loss of some
CIs. Finding a set of CIs that can be dispensed with
to map the MN into a BN while fitting data as best
as possible is not a trivial task. Phase 2 exploits the
relationship between BNs and their moral graphs to
transform the MN into a BN whose moral graph is
not far from the MN obtained at the end of phase 1.
Then, in a third phase, this BN is refined into one
that better fits data. This last phase uses GES sec-
ond step. The whole learning algorithm preserves
GES theoretical optimality guarantee. Furthermore,
the BN at the end of phase 2, which possesses inter-
esting theoretical properties, is obtained in polyno-
mial time. Phase 3 is exponential but has an anytime
property. Preliminary experimental results suggest
that our learning algorithm is faster than GES and
produces better quality solutions.

The paper is organized as follows. Section 2 pro-
vides some background on MNs and BNs. Then,
Section 3 describes how we obtain the optimal MN.
Section 4 shows how it can be converted into a BN.

Finally Section 5 mentions some related work and
presents some experimental results.

2 Background

Let V be a set of random variables with joint prob-
ability distribution P (V). Variables are denoted by
capitalized letters (other than P ) and sets of vari-
ables (except V) by bold letters.

Markov and Bayes nets are both composed of:
i) a graphical structure whose nodes are the vari-
ables in V (hereafter, we indifferently refer to nodes
and their corresponding variables) and ii) a set of
numerical parameters. The structure encodes proba-
bilistic CIs among variables and then defines a fam-
ily of probability distributions. The set of parame-
ters, whose form depends on the structure, defines a
unique distribution among this family and assesses
it numerically. Once a structure is learned from
data, its parameters are assessed, generally by max-
imizing data likelihood given the model.

A MN structure is an undirected graph while a
BN one is a directed acyclic graph (DAG). MNs
graphically encode CIs by separation. In an undi-
rected graph G, two nodes X and Y are said to be
separated by a disjoint set Z, denoted by X ⊥G Y |
Z, if each chain between X and Y has a node in Z.
BNs criterion, called d-separation, is defined simi-
larly except that it distinguishes colliders on a chain,
i.e., nodes with their two adjacent arcs on the chain
directed toward them. In a DAG, X and Y are said
to be d-separated by Z, denoted by X ⊥B Y | Z, if
for each chain between X and Y there exists a node
S s.t. if S is a collider on the chain, then neither S

nor any of its descendant is in Z, else S is in Z. Ex-
tending Pearl’s terminology (Pearl, 1988), we will
say that a graph G, directed or not, is an I-map (I
standing for independency), implicitly relative to P ,
if X ⊥G Y | Z =⇒ X � PY | Z. We will also
say that a graph G is an I-map of another graph G ′

when X ⊥G Y | Z =⇒ X ⊥G′ Y | Z. When two
structures are I-maps of one another, they represent
the same family and are thus said to be equivalent.

The complete graph, which exhibits no separation
assertion, is a structure containing all the possible
distributions and is, as such, always an I-map. Of
course, in a learning prospect, our aim is to recover
from data an I-map as sparse as possible. More pre-



cisely, in both MN and BN frameworks, an I-map G
is said to be optimal (w.r.t. inclusion) relatively to P

if there exists no other I-map G ′ such that i) G is an
I-map of G ′ and ii) G is not equivalent to G ′.

Though they are strongly related, BNs and MNs
are not able to represent precisely the same in-
dependence shapes. MNs are mostly used in the
image processing and computer vision community
(Pérez, 1998), while BNs are particularly used in
the AI community working on modeling and predic-
tion tools like expert systems (Cowell et al., 1999).
In the latter prospect, BNs are mostly preferred for
two reasons. First, the kind of independences they
can express using arcs orientations are considered
more interesting than the independence shapes only
representable by MNs (Pearl, 1988). Secondly, as
BNs parameters are probabilities (while those of
MNs are non-negative potential functions without
any real actual meaning), they are considered easier
to assess, to manipulate and to interpret. In BNs,
the direction is exploited only through V-structures,
that is, three-node chains whose central node is a
collider the neighbors of which are not connected by
an arc. This idea is expressed in a theorem (Pearl,
1988) stating that two BNs are equivalent if and
only if they have the same V-structures and the same
skeleton, where the skeleton of a DAG is the undi-
rected graph resulting from the removal of its arcs
direction.

MNs are unable to encode V-structure informa-
tion since it is a directed notion. As a DAG with-
out V-structure is chordal (i.e. triangulated), it is not
surprising that a result (Pearl et al., 1989) states that
independences of a family of distributions can be
represented by both MNs and BNs frameworks if
and only if the associated structure is chordal. In
the general case where the graph is not chordal, it is
possible to get an optimal MN from a BN by mor-
alization. The moral graph of a DAG is the undi-
rected graph obtained by first adding edges between
non adjacent nodes with a common child (i.e. the
extremities of V-structures) and then removing the
arcs orientations. It is easily seen that the moral
graph of a BN is an optimal undirected I-map of this
graph, even if some independences of the BN have
been necessarily loosed in the transformation. The
converse, i.e. getting a directed I-map from a MN,
is less easy and will be addressed in Section 4.

Like most works aiming to recover an optimal
structure from data, we will assume that the under-
lying distribution P is DAG-isomorph, i.e. that there
exists a DAG B∗ encoding exactly the indepen-
dences of P (s.t. X ⊥B∗ Y | Z⇐⇒ X � PY | Z).
Under this assumption, B∗ and equivalent BNs are
obviously optimal. Using the axiomatic in (Pearl,
1988), it can be shown that, in the MN frame-
work, the DAG-isomorphism hypothesis entails the
so-called intersection property, leading to the exis-
tence of a unique optimal MN, say G∗ (Pearl, 1988).
Moreover, G∗ is the moral graph of B∗.

3 Markov network search

Searching the BN or the EC space is often per-
formed as an optimization process, that is, the algo-
rithm looks for a structure optimizing some good-
ness of fit measure, the latter being a decomposable
scoring function that involves maximum likelihood
estimates. For MNs, the computation of these esti-
mates is hard and requires time-expensive methods
(Murray and Ghahramani, 2004) (unless the MN is
triangulated, which is not frequent). Hence score-
based exploration strategies seem inappropriate for
MN searches. Using statistical CI tests and com-
bining them to reveal the MN’s edges seems a more
promising approach. This is the one we follow here.

Algorithm LEARNMN
Input : database
Output : moral graph G = (V , E2)

1. E1 ← ∅
2. foreach edge (X, Y ) 6∈ E1 do

search, if necessary, a new SXY

s.t. X ⊥(V,E1) Y | SXY

3. if ∃ (X, Y ) 6∈ E1 s.t. X 6 � Y |SXY then
4. add edge (X, Y ) to E1 and go to line 2
5. E2 ← E1
6. foreach edge (X, Y ) ∈ E2 do

search, if necessary, a new SXY

s.t. X ⊥(V,E2\{(X,Y )}) Y | SXY

7. if ∃ (X, Y ) ∈ E2 s.t. X � Y |SXY then
8. remove edge (X, Y ) from E2 and go to line 6
9. return G = (V , E2)

End of algorithm

Unlike most works where learning a MN amounts
to independently learn the Markov blanket of all the
variables, we construct a MN in a local search man-
ner. Algorithm LEARNMN consists in two con-
secutive phases: the first one adds edges to the
empty graph until it converges toward a graph G1 =



(V, E1). Then it removes from G1 as many edges as
possible, hence resulting in a graph G2 = (V, E2).

At each step of phase 1, we compute the depen-
dence of each pair of non-adjacent nodes (X,Y )
conditionally to any set SXY separating them in
the current graph. We determine the pair with the
strongest dependence (using a normalized differ-
ence to the χ2 critical value) and we add the cor-
responding edge to the graph and update separators.

Lemma 1. Assuming DAG-isomorphism and sound
statistical tests, graph G1 resulting for the first
phase of LEARNMN is an I-map.

Sketch of proof. At the end of phase 1, ∀ (X,Y ) 6∈
E1, there exists SXY s.t. X ⊥G1

Y | SXY and
X � Y | SXY . By DAG-isomorphism, it can be
shown that G1 contains the skeleton of B∗, and, then,
that it also contains its moralization edges. �

In the second phase, which takes an I-map G1 as
input, LEARNMN detects the superfluous edges in
G1 and iteratively removes them.

Proposition 1. Assuming DAG-isomorphism and
sound statistical tests, the graph G2 returned by
LEARNMN is the optimal MN G∗.

Sketch of proof. At the end of phase 2, ∀ (X,Y ) ∈
G2, there exists SXY s.t. X ⊥(V ,E2\{(X,Y )}) Y |
SXY and X 6 � Y | SXY . We show using DAG-
isomorphism that this phase cannot delete any edge
in G∗ and, then, that it discards all other edges. �

It is well known that the main shortcoming of in-
dependence test-based methods is the unreliability
of high-order tests, so we must keep sets SXY as
small as possible. Finding small SXY requires a
more sophisticated approach than simply using the
set of neighbors of one of X or Y . Actually, the best
set is the smallest one that cuts all the paths between
X and Y . This can be computed using a min-cut in
a max-flow problem (Tian et al., 1998). Although
the set computed is then optimal w.r.t. the quality
of the independence test, it has a major drawback:
computing a min-cut for all possible pairs of nodes
(X,Y ) is too prohibitive when the graph involves
numerous variables. Moreover, pairs of close nodes
require redundant computations. An attractive alter-
native results from the similarities between min-cuts
and junction trees: a min-cut separates the MN into
several connected components, just as a separator

cuts a junction tree into distinct connected compo-
nents. Hence, we propose a method, based on join
trees (Jensen, 1996), which computes the separators
for all pairs at the same time in O(|V|4), as com-
pared to O(|V|5) in (Tian et al., 1998). Although the
separators we compute are not guaranteed to be op-
timal, in practice they are most often small. Here is
the key idea: assume G0 is triangulated and a corre-
sponding join tree J0 is computed. Then two cases
can obtain: i) X and Y belong to the same clique, or
ii) they belong to different cliques of J0. In the sec-
ond case, let C0, . . . ,Ck be the smallest connected
set of cliques such that X ∈ C0 and Y ∈ Ck, i.e.,
C0 and Ck are the nearest cliques containing X and
Y . Then any separator on the path C0, . . . ,Ck cuts
all the paths between X and Y in G0 and, thus, can
act as an admissible set SXY . Assuming the trian-
gulation algorithm produces separators as small as
possible, selecting the smallest one should keep sets
SXY sufficiently small to allow independence tests.
As for the first case, there is no separator between X

and Y , so the junction tree is helpless. However, we
do not need assigning to SXY all the neighbors of X

or Y , but only those that belong to the same bicon-
nected component as X and Y (as only those can be
on the chains between X and Y ). Such components
can be computed quickly by depth first search algo-
rithms. However, as we shall see, the triangulation
algorithm we used determines them implicitly.

In order to produce triangulations in polynomial
time (determining an optimal one is NP-hard), we
used the simplicial and almost-simplicial rules ad-
vocated by (Eijkhof et al., 2002) as well as some
heuristics. These rules give high-quality triangula-
tions but are time-consuming. So, to speed-up the
process, we used incremental triangulations as sug-
gested by (Flores et al., 2003). The idea is to update
the triangulation only in the maximal prime sub-
graphs of G0 involved in the modifications resulting
from LEARNMN’s lines 4 and 8. In addition to the
join tree, a join tree of max prime subgraphs is thus
maintained by the algorithm. It turns out that merg-
ing in this tree the adjacent cliques that are linked
by a separator containing more than one node of V
precisely produces G0’s biconnected components.

Once the join tree constructed, extracting for each
pair of nodes (X,Y ) not belonging to the same
clique its minimal separator is achieved by the col-



lect/distribute algorithms below. In the latter, mes-
sages Mij transmitted from a clique Cj to Ci are
vectors of pairs (X,S) such that the best condi-
tioning sets between nodes Y in Ci\(Ci ∩ Cj)
and X is S. An illustrative example is given on
Figure 1: messages near solid arrows result from
COLLECT({BCD},{BCD}) and those in dashed
arrows from DISTRIBUTE({BCD},{BCD},∅).

Algorithm COLLECT
Input : pair (Ci,Cj)
Output : message Mij

1. Mij ← an empty vector message
2. foreach neighbor Ck of Ci except Cj do
3. Mik ← Collect(Ck,Ci)
4. foreach pair (X,S) in Mik do
5. foreach node Y in Ci\(Ci ∩Ck) do
6. if SXY 6= S then
7. SXY ← S

8. done
9. add (X, min(Ci ∩Ck,S)) to Mij

10. done
11. done
12. foreach node X in Ci\(Ci ∩Cj) do
13. add (X,Ci ∩Cj) to Mij

14. return Mij

End of algorithm

Algorithm DISTRIBUTE
Input : pair (Ci,Cj), message Nij

Output :
1. foreach pair (X,S) in Nij do
2. foreach node Y in Ci\(Ci ∩Cj) do
3. if SXY 6= S then
4. SXY ← S

5. done
6. done
7. foreach neighbor Ck of Ci except Cj do
8. N← empty message vector
9. foreach pair (X,S) in Nij do

10. add (X, min(Ci ∩Ck,S)) to N

11. call Distribute (Ck,Ci,N)
12. N

′ ← message Mik sent during collect
13. foreach pair (X,S) in N

′ do
14. add (X, min(Ci ∩Ck,S)) to Nij

15. done

End of algorithm

BCDB

BD BDF

C CE

B BG

AB
(A, {B}), (E, {C})

(A, {B})

(A, {B}), (E, {C})

(G, {B})(G, {B}), (F, {B, D})

(A, {B})

∅

(E, {C})

Figure 1: Messages sent during Collect/diffusion.

Because we use a polynomial algorithm to tri-
angulate the maximal prime subgraphs, the com-
plexity of the whole process recovering the opti-
mal MN is also polynomial. Hence, under DAG-
isomorphism, we obtain the moral graph of the op-
timal BN in polynomial time. As the first step of
inference algorithms consists in moralizing the BN,
and triangulating this moral graph to produce a sec-
ondary structure well-suited for efficient computa-
tions, the MN we obtain is optimal w.r.t. inference.

4 From the Markov Net to the Bayes Net

Once the MN is obtained, we transform it into a BN
B0 using algorithm MN2BN.

Algorithm MN2BN
Input : UG G = (V , E)
Output : DAG B = (V ′,A)

1. A ← ∅ ; V ′ ← V
2. While |V| > 1 Do
3. Choose X ∈ V in a single clique of G
4. E← {Y ∈ V : (Y, X) ∈ E}
5. For all Y ∈ E Do
6. E ← E\{(Y, X)} and A ← A ∪ {(Y → X)}
7. V ← V\{X}
8. For all (Y, Z) ∈ E×E Do
9. G ← DEMORALIZE(G, (Y, Z))

10. Done
11. Return B = (V ′,A)

End of algorithm

Algorithm DEMORALIZE
Input : UG G = (V , E) ; Edge (X, Y ) ∈ E
Output : UG G′ = (V , E ′)

1. E ′ ← E\{(X, Y )}
2. Search Z ⊂ V s.t. X ⊥(V,E′) Y | Z
3. If X � Y |Z Then Return G′ = (V , E ′)
4. Else Return G′ = (V , E)

End of algorithm

Before stating the properties of MN2BN, let us
illustrate it with an example. Consider the graphs in
Figure 2. Assuming a DAG-isomorph distribution,
B∗ represents the optimal BN. Suppose we obtained
the optimal MN G∗: we now apply MN2BN to it. In
G = G∗, F and R belong to a single clique. Assume
MN2BN chooses F . After saving its neighbors set
in G (l.4), F is removed from G (l.7) as well as its
adjacent edges (l.6), which results in a new current
graph G = G1. The empty DAG B is altered by
adding arcs from these neighbors toward F , hence
resulting in the next current DAG B = B1. By di-
recting F ’s adjacent arcs toward F , we may create
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Figure 2: A MN2BN run example

V-structures, hence some of the edges remaining in
G between F ’s neighbors may correspond to mor-
alization edges and may thus be safely discarded.
To this end, for each candidate edge, DEMORALIZE

tests whether its deletion would introduce spurious
independence in the DAG by searching a separator
in the current remaining undirected graph G. If not,
we discard it from G. In our example, there is only
one candidate edge, (C, J). We therefore compute
a set separating C from J in G1 without (C, J), say
K , and test if C � J | K . As this independence
does not hold in a distribution exactly encoded by
B∗, the test fails and the edge is kept. For the second
iteration, only node R belongs to a single clique.
The process is similar but, this time, moralization
edge (K,L) can be discarded. The algorithm then
goes on similarly and finally returns B6 = B0. It
is easily seen that B0 is a DAG which is an I-map
of B∗ and that its moral graph is G∗. Note that by
mapping G∗ into B6, not all moralization edges have
been identified. For instance, (C,F ) was not.

Now, let us explain why MN2BN produces
DAGs closely related to the optimal BN we look for.

Proposition 2. Assuming a DAG-isomorph distri-
bution and sound statistical tests, if MN2BN is ap-
plied to G∗, the returned graph B0 is a DAG that is
an I-map of B∗, and its moral graph is G∗. More-
over, the algorithm runs in polynomial time.

Sketch of proof. By induction on V , we prove that,
at each iteration, G is the moral graph of a subgraph
of B∗. This entails the existence of a node in a single
clique at each iteration. Then we prove that given a

DAG B, its moral graph G and a node X belonging
to a single clique of G, there exists a DAG B ′ s.t.: i)
B′ is an I-map of B, ii) G is the moral graph of B ′

and iii) X has no child in B′. Finally, we prove the
proposition by induction on V . �

B0 encodes at least as many independences as G∗

and possibly more if some moralization edges have
been discarded. In the case where MN2BN selects
nodes in the inverse topological order of B∗, B0 is
actually B∗. However, this should not happen very
often and recovering B∗ requires in general to refine
B0 by identifying all remaining hidden V-structures.
Under DAG-isomorph distribution and sound statis-
tical tests, the second phase of GES (Chickering,
2002) is known to transform an I-map of the genera-
tive distribution into B∗. Applied to B0, it can there-
fore be used as the refinement phase of our algo-
rithm. This one has an exponential complexity but
benefits from an anytime property, in the sense that
it proceeds by constructing a sequence of BNs shar-
ing the same moral graph and the quality of which
converges monotonically from B0 to B∗. This last
phase preserves the GES score-based optimality.

With real-world databases, LEARNMN can fail
to recover precisely G∗. In this case, departing from
our theoretical framework, we lose our guarantee
of accuracy. We also lose the guarantee to always
find a node belonging to a single clique. However,
MN2BN can easily be modified to handle this situ-
ation: if no node is found on line 3, just add edges to
G so that a given node forms a clique with its neigh-
bors. Whatever the node chosen, B0 is guaranteed



to be an I-map of the distribution represented by the
input MN. However, the node should be carefully
chosen to avoid deviating too much from the MN
passed in argument to MN2BN, as each edge addi-
tion hides conditional independences.

5 Related works and experiments

In this paper, we have presented an algorithm that
exploits attractive features of the MN space to
quickly compute an undirected I-map close to the
optimal one. This graph is then directed and fed to
GES second phase to obtain an optimal BN. The key
idea is to learn as much as possible the polynomi-
ally accessible information of the generative distri-
bution, namely its undirected part, and postpone to
the end the task concentrating the learning computa-
tional complexity, namely the V-structure recovery.
Most algorithms of the constraint-based approach,
like IC (Verma and Pearl, 1990) or PC (Spirtes et al.,
2000), deal at some stage with undirected learning
but they do not explicitly separate this stage from
the directed one. That is, they generally search a
power set to extract V-structures information before
achieving a whole undirected search. In (Dijk et al.,
2003), the two phases are disjoint but the authors are
more concerned with finding the skeleton (which is
not an I-map) rather than the moral graph. As they
only allow CI tests conditioned by a set of size no
greater than 1, the search is mostly delegated to a
directed score-based search. (Cheng et al., 2002)
makes much stronger distribution assumptions.

Like GES, under DAG-isomorphism and sound
CI test hypotheses, our method is able to find the
optimal BN it looks for. However, these hypothe-
ses probably do not hold in practice. To assess the
discrepancy between theory and real world, we per-
formed a series of experiments on classical bench-
marks of the Bayes Net Repository1 . For each BN,
we generated by logic sampling 10 databases of size
500, 2000 and 20000. For each database, we ran
LEARNMN, GES (the WinMine toolkit software)
and a K2 implemented with a BIC score and fed
with the original BN topological ordering. K2 is
thus already aware of some crucial learning infor-
mation that LMN and GES must discover. For GES,
we recorded as time response only the time required

1http://compbio.cs.huji.ac.il/Repository

for GES phase 1 but, as the toolkit does not provide
the network found at the end of phase 1, we used
the better one resulting from phase 2. For both GES
and K2, we did not consider directly the output BN
but its moral graph, to compare it with the MN out-
put by LMN. Note that the GES toolkit was unable
to handle some of the graphs. Both time and quality
results reported are means and standard deviations
for the 10 databases. The first table shows running
times in seconds for LMN and GES (on a 3.06GHz
PC). The second one shows for each algorithm the
number of edges spuriously added (+) and missed (-
) w.r.t. the original BN moral graph (whose number
of edges appears in the first row).

According to these preliminary tests, we consider
our approach as promising. W.r.t GES, we find
that LMN is not time-consuming, as GES running
time grows much faster than that of LMN when
database size increases. As for networks quality, it
is noticeable that, for all algorithms, the smaller the
database, the weaker the dependences represented
in the database and hence the fewer the edges recov-
ered. LMN finds clearly more edges than GES and
K2, despite the latter’s ordering knowledge which
gives it a strong advantage. LMN adds fewer spu-
rious edges than GES but more than K2 (which ex-
ploits its ordering knowledge). We think that LMN
did not detect some of the unnecessary edges be-
cause nodes involved had so many neighbors that
χ2 tests were meaningless, despite our efforts. This
suggests alternating multiple phases of edge addi-
tions and deletions, so as to avoid situations dete-
riorating due to big clusters of neighbors. We also
should try to tune the χ2 confidence probability.
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