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Abstract

Standard theories of additive utility require solvability w.r.t. all compo-
nents, which rules out applications where some of the variables are discrete.
Possible relaxations of solvability are investigated, in 3-component spaces
for the case of restricted solvability, and in n-component spaces for the case
of unrestricted solvability. An example is given showing that the Thomsen
condition—necessary for the existence of an additive representation—is
not implied by the independence axiom when there are only 2 solvable
components.
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1 Introduction

Since the results of [Debreu 60], [Luce and Tukey 64], and [Krantz et al. 71],
conditions of existence of additive representations on Cartesian products have
been extensively studied. However in the case of infinite sets, only sufficient con-
ditions are known that are easily testable (see e.g. [Fishburn 66]; [Fishburn 71];
[Jaffray 74a]; [Jaffray 74b]; [Scott and Suppes 58] for hardly testable but neces-
sary and sufficient conditions); as a matter of fact, the sufficient conditions given
in the classical theorems of the literature are not necessary since they include ei-
ther a connectedness assumption in the topological approach (see [Fishburn 70];
[Fuhrken and Richter 91], [Vind 91]; [Wakker 89]; [Wakker 93]; [Wakker 94]) or
a solvability w.r.t. every component assumption in the algebraic one (see e.g.
[Doignon and Falmagne 74]; [Fishburn 70]; [Krantz 64]; [Luce 66]; [Wakker 88];
[Wakker 91a]; [Wakker 91b]).

Throughout this paper, we weaken these nonnecessary assumptions by study-
ing the problem of the existence of additive utilities in Cartesian products in
which only two components satisfy solvability—either restricted or unrestricted.
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This can be particularly useful for problems in which some components are dis-
crete while others are continuous.

In section 2, we give and briefly discuss the definitions and axioms required
in the representation theorems. They are mostly classical; however we introduce
the scaling axiom, which is a part of the second order cancellation axiom, and
so is necessary for the existence of any additive utility, and is easily testable.
This axiom cannot be deduced from independence when restricted solvability
holds w.r.t. only 2 components, and when these components have a short range
compared to the one of the non solvable components.

In section 3, we first prove the existence of additive utilities in 3-component
Cartesian products in which restricted solvability holds w.r.t. 2 components. In
fact, we prove that the additive representation on the 2-component set can be
extended to the 3-component Cartesian product. Then we extend this prop-
erty to n-component sets when restricted solvability is replaced by unrestricted
solvability. The representations in the former case are no longer unique up to
strictly positive affine transformations.

In order to prove the additive representability on the 2-component spaces,
we use the Thomsen condition, according to the classical theorems. But in those
theorems, for 3 or more component spaces, the independence axiom implies the
Thomsen condition. The problem we address in section 4 is to know if this is still
the case here. To put it another way, is the Thomsen condition implied because
there are three components or because all three components are solvable? We
show that the second alternative is the right one.

All proofs are given in the appendix.

2 Definitions and Axioms

In this section we give the definitions and axioms needed in section 3. We
consider a Cartesian product X =

∏n
i=1Xi (n = 3 in subsection 3.1). Given

a binary preference relation % over the Cartesian product X, we introduce the
indifference relation x ∼ y ⇔ [x % y and y % x], the strict preference relation
x � y ⇔ [x % y and Not(y % x)], and x - y ⇔ y % x. We define [x, y] = {z ∈
X : x - z - y}.

First we introduce the classical axioms: the ordering axiom (1), and the
independence axiom (2), which are necessary for the existence of any additive
utility.

Axiom 1 (Ordering) % is a weak order on X, i.e. % is complete (for any
x,y ∈ X, x % y or y % x) and transitive (for any x,y,z ∈ X, if x % y and y % z,
then x % z).

Axiom 2 (Independence w.r.t. the ith component) For any x,y ∈ X, if
(x1, . . . , xi−1, xi, xi+1, . . . , xn) % (y1, . . . , yi−1, xi, yi+1, . . . , yn), then
(x1, . . . , xi−1, yi, xi+1, . . . , xn) % (y1, . . . , yi−1, yi, yi+1, . . . , yn).

The independence axiom induces a natural ordering on the Cartesian product
generated by any subset of components, i.e. for any set N ⊂ {1, 2, . . . , n} one can
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define the weak order %N on
∏
i∈N Xi as follows: for a, b ∈

∏
i∈N Xi, a %N b iff

for some p ∈
∏
i 6∈N Xi, (a, p) % (b, p).

For 2-component spaces, we define the Thomsen condition as:

Axiom 3 (Thomsen condition) For every x1, y1, z1 ∈ X1, x2, y2, z2 ∈ X2, if
(x1, z2) ∼12 (z1, y2) and (z1, x2) ∼12 (y1, z2), then (x1, x2) ∼12 (y1, y2).

Now we introduce solvability—restricted and unrestricted. This is not a
necessary condition for the additive representability, but a technicality used in
the proofs of the representation theorems. In fact, solvability enables to structure
the Cartesian product very properly. When less than 2 components are solvable,
this structure is not strong enough to ensure that what [Krantz et al. 71] call the
n-order cancellation axiom implies the n + 1th order cancellation axiom, hence
preventing the existence of easily testable conditions. Therefore solvability is
supposed to hold w.r.t. only 2 components.

Axiom 4 (Restricted solvability w.r.t. the first two components)
For any x1, x

′
1 ∈ X1, x2, x

′
2 ∈ X2, xi ∈ Xi, i ∈ {3, . . . , n}, and y ∈ X: if

(x1, x2, . . . , xn) - y - (x′1, x2, . . . , xn), then there exists x′′1 ∈ X1 such that
y ∼ (x′′1 , x2, . . . , xn). If (x1, x2, x3, . . . , xn) - y - (x1, x

′
2, x3 . . . , xn), then there

exists x′′2 ∈ X2 such that y ∼ (x1, x
′′
2 , x3, . . . , xn).

Axiom 5 (Unrestricted solvability w.r.t. the first 2 components) For
any y ∈ X and xi ∈ Xi, i 6= 1, there exists z1 ∈ X1 such that y ∼ (z1, x2, . . . , xn).
For any y ∈ X and xi ∈ Xi, i 6= 2, there exists z2 ∈ X2 such that y ∼
(x1, z2, x3, . . . , xn).

In order to avoid trivial cases, we require that the solvable components affect
the preferences, i.e. that they are essential.

Axiom 6 (Essentialness w.r.t. the solvable components)

If the ith component is solvable (i.e. it satisfies either axiom 4 or axiom 5), then
there exist xi,yi ∈ Xi and z ∈

∏
k 6=iXk such that (xi, z) � (yi, z).

Representing a weak order by a utility function is not possible if there are
more indifference classes than there are real numbers. To avoid this possibility,
the usual method is to have recourse to an Archimedean axiom. This is axiom 7.
But before giving it, we must define standard sequences and over-standard se-
quences.

Definition 1 (Standard sequence w.r.t. the first component) For any set
N of consecutive integers (positive, negative, finite or infinite), a set {xk1 : xk1 ∈
X1, k ∈ N} is a standard sequence w.r.t. the 1st component iff Not((x01, x

0
2, . . . , x

0
n)

∼ (x01, x
1
2, . . . , x

1
n)) and for all k, k+1 ∈ N , (xk1 , x

0
2, . . . , x

0
n) ∼ (xk+1

1 , x12, . . . , x
1
n).

Definition 2 (Over-standard sequence w.r.t. the first component) For
any set N of consecutive integers, a set {xk1 : xk1 ∈ X1, k ∈ N} is an over-
standard sequence w.r.t. the first component iff either (x01, x

0
2, . . . , x

0
n) ≺ (x01, x

1
2,
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. . . , x1n) and for all k, k + 1 ∈ N , (xk+1
1 , x02, . . . , x

0
n) % (xk1 , x

1
2, . . . , x

1
n), or

(x01, x
0
2, . . . , x

0
n) � (x01, x

1
2, . . . , x

1
n) and for all k, k + 1 ∈ N , (xk+1

1 , x02, . . . , x
0
n) -

(xk1 , x
1
2, . . . , x

1
n).

Parallel definitions hold for the other components.
Note that a standard sequence is a special kind of over-standard sequence.

We present the Archimedean axiom in terms of over-standard sequences instead
of standard sequences (as in the literature) because one is likely to be able to
build over-standard sequences w.r.t. non solvable components, when, due to the
absence of solvability, standard sequences fail to exist.

Axiom 7 (Archimedean axiom w.r.t. i th component)
Any strictly bounded over-standard sequence w.r.t. the ith component is finite.

Now it is time to state and explain the scaling axiom. This is a part of
the second order cancellation axiom; hence it is a necessary condition for the
additive representability.

Axiom 8 (Scaling w.r.t. the third component) Suppose that a, b ∈ X3 and
that, for any x1, y1, z1 ∈ X1 and x2, y2, z2 ∈ X2, (x1, z2, a) ≺ (y1, z2, b) and
(z1, x2, a) ≺ (z1, y2, b). Then, if (x1, x2, a) ∼ (y1, y2, b) and (x1, z2, a) ∼ (z1, y2, b),
then (y1, z2, a) ∼ (z1, x2, a).

The first two indifference relations mean that the change of strength of prefer-
ence from x2 to z2 in the plane {x3 = a} corresponds to that from y1 to z1 in the
plane {x3 = b}. But if an additive representation exists, these changes should
not be plane dependent, i.e. the change from y1 to z1 in the plane {x3 = b}
should equal that of y1 to z1 in the plane {x3 = a}, and so the change from
y1 to z1 in the plane {x3 = a} should be compensated by the change from z2
to x2, which corresponds to the third indifference relation in the scaling axiom.
Hence the axiom just states that the scale of the preference strength is not plane
dependent.

The usefulness of this axiom arises when restricted solvability holds w.r.t. the
first two components, and the range of these components is so short that inde-
pendence does not imply the second order cancellation axiom over the whole
Cartesian product. This case cannot arise when restricted solvability holds
w.r.t. every component because it is always possible to select a and b such that
(x1, z2, a) ∼ (y1, z2, b). But if the third component is not solvable, then it is
possible that independence does not imply the second order cancellation axiom,
as is shown in the following example: let X = [1, 2] × [1, 2] × {1, 2} and % be
represented by the following utility function: u(x1, x2, x3) = [ 78 (x1 + x2)]x3 . %
violates the scaling axiom because the scale of the utility is linear for x3 = 1,
i.e. u(x1, x2, x3) = 7

8 (x1 + x2), and quadratic for x3 = 2, i.e. u(x1, x2, x3) =
[ 78 (x1 + x2)]2. This example is illustrated in figure 1, in which some indifference
curves are drawn and the shadowed areas represent the elements in each plane
that are indifferent to some elements of the other plane. The coordinates (x1, x2)

of those elements are less than or equal to 4
√

2
7−1 ≈ 1.14 in plane x3 = {2}, and
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Figure 1: the inefficiency of the independence axiom

greater than or equal to 1.5 in plane x3 = {1}. So the independence axiom, which
is satisfied, cannot induce indifference relations between elements belonging to
different planes—because if it were the case, these elements should have a com-
mon first or second coordinate—and so there remains degrees of freedom which
enable some violations of the second order cancellation axiom. For instance, in

the above example, u(2, 1.5, 1) = u(1, 1, 2) = 49
16 , u(2, 2, 1) = u(4

√
2
7−1, 1, 2) = 7

2

and u(1, 2, 1) = 21
8 = 2.625 > u(4

√
2
7 − 1, 1.5, 1) =

√
7
2 −

7
16 ≈ 1.433.

Now, let us introduce the “overlap” relation: O. It is useful for the unique-
ness of the representations when restricted solvability holds w.r.t. the first two
components—so we give the definition only for X = X1×X2×X3. As a matter of
fact, unlike the classical theorems, these representations are not unique up to pos-
itive linear transformations; for example, suppose thatX = [0, 1]×[0, 1]×{0, 4, 9}
and that % is represented on X by u(x1, x2, x3) = x1 + x2 + x3. This utility

function is additive, but v(x1, x2, x3) =

 x1 + x2 if x3 = 0
2(x1 + x2) + 4 if x3 = 4
3(x1 + x2) + 9 if x3 = 9

is also an

additive utility representing %, and v is not an affine transform of u. This prop-
erty comes from the fact that the solvable components can never compensate
a change in the third component. Hence as long as v(1, 1, 0) < v(0, 0, 4) and
v(1, 1, 4) < v(0, 0, 9), v does not need to be a positive linear transform of u to
represent %. On the contrary, if (0, 0, 4) - (1, 1, 0) and (0, 0, 9) - (1, 1, 4), the
solvability enables compensations, and the uniqueness is up to a linear transfor-
mation. In terms of values of the utility function, this case corresponds to an
“overlap” of the upper part of X1×X2×{0} and the lower part of X1×X2×{4},
and of the upper part of X1 ×X2 × {4} and the lower part of X1 ×X2 × {9}.

Definition 3 (Overlap function O) Let P(X3) be the set of subsets of X3.
The overlap function O : X3 → P(X3) is defined as follows: O(x3) = {x ∈ X3
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such that there exist an integer n and a sequence (yi3)1≤i≤n such that y03 = x3,
yn3 = x, and for any i ∈ {0, 1, . . . , n − 1} there exists (yi1, z

i
1, y

i
2, z

i
2) ∈ X2

1 ×X2
2

such that (yi1, y
i
2, y

i+1
3 ) ∼ (zi1, z

i
2, y

i
3), and either for any i ∈ {0, 1, . . . , n − 1},

yi+1
3 ≺3 y

i
3 or for any i ∈ {0, 1, . . . , n− 1}, yi+1

3 �3 y
i
3}.

The last condition of the above definition may seem restrictive, but, in fact, it
is not, because, from any sequence (yi3)1≤i≤n satisfying all the conditions above
but the last one, by solvability w.r.t. the first components, it is always possible
to extract a sequence satisfying also the last condition.

Definition 4 (Overlap relation O)
For any x3, y3 ∈ X3, x3Oy3 ⇔ O(x3) ∩ O(y3) 6= ∅.

Under the previous axioms, O is an equivalence relation.

3 Representation theorems

3.1 Restricted Solvability

In this subsection we suppose that X = X1 × X2 × X3. The following theo-
rem shows that under the classical axioms and the scaling axiom, the additive
representability on the space where restricted solvability holds can be extended
to the whole X. The representations are then unique up to stepwise positive
linear transformations. In fact, we weaken the classical solvability assumption
by enabling its violation by one component; in counterpart, we are obliged to
assume the scaling axiom.

Theorem 1 (Representability under restricted solvability) Suppose that
(X,%) satisfies axioms 1 (ordering), 2 (independence w.r.t. the non solvable
components), 4 (restricted solvability w.r.t. the first 2 components),3 (Thom-
sen condition w.r.t. the solvable components), 6 (essentialness), 7 (Archimedean
property w.r.t. every component) and 8 (scaling w.r.t. the third component).
Then there exist real-valued functions u1 on X1, u2 on X2 and u3 on X3 such
that:

for any x, y ∈ X, x - y ⇔
3∑
i=1

ui(xi) ≤
3∑
i=1

ui(yi). (1)

There also exist a set N of consecutive integers—finite or infinite—and a
sequence of elements of X3, say (xi3)i∈N , such that, for any x3 ∈ X3, there
exists i ∈ N such that x3Oxi3, and, if Card(N) > 1, for any i, i + 1 in N ,
xi+1
3 �3 x

i
3 and Not(xi3Oxi+1

3 ). If v1, v2, v3 also satisfy (1), then there exist
some constants α > 0, α1, α2 and βi, i ∈ N , such that:

for any x ∈ X1, v1(x1) = α · u1(x1) + α1

for any x ∈ X2, v2(x2) = α · u2(x2) + α2

for any x3 ∈ O(xi3), v3(x3) = α · u3(x3) + βi where, for any i, i+ 1 ∈ N ,
βi+1 ≥ βi + α · [maxx1,x2{u1(x1) + u2(x2)}+ maxy3∈O(xi

3)
u3(x3)]

− α · [minx1,x2{u1(x1) + u2(x2)}+ miny3∈O(xi+1
3 ) u3(x3)]

with equality only if either the min or the max is not reached.
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Moreover if Card(N) > 1, then u1 and u2 are bounded.

This theorem cannot be straightforwardly extended to the n-component case
because, then, the structure induced by the solvable components is not always
very strong, especially when the range of the solvable components is short com-
pared to that of the non solvable components.

3.2 Unrestricted Solvability

Of course theorem 1 applies when restricted solvability is replaced by unre-
stricted solvability. But in this case, two improvements can be done: first,
the scaling axiom always holds, and second, the theorem can be generalized to
X =

∏n
i=1Xi, with n ≥ 3.

Theorem 2 (Representability under unrestricted solvability) Suppose
that X =

∏n
i=1Xi and that (X,%) satisfies axioms 1 (ordering), 2 (independence

w.r.t. the non solvable components), 5 (unrestricted solvability w.r.t. the first 2
components), 3 (Thomsen condition w.r.t. the solvable components), 6 (essen-
tialness) and 7 (Archimedean axiom w.r.t. every component). Then, there exist
real-valued functions ui on Xi, i ∈ {1, . . . , n} such that:

for any x, y ∈ X, x - y ⇔
∑n
i=1 ui(xi) ≤

∑n
i=1 ui(yi)

Moreover if v1, . . . , vn also satisfy the equivalence above, then there exist some
constants α > 0, βi, i ∈ {1, . . . , n}, such that for any i, vi = α · ui + βi.

4 Thomsen Condition and Independence

In the theorems presented so far, the Thomsen condition is assumed to hold
so that an additive representation is known to exist for %12. However, in
[Fishburn 70] and [Krantz et al. 71], it is shown that, in 3 or more component
spaces, when solvability holds w.r.t. every component, the Thomsen condition
is implied by the independence axiom. The question that arises naturally is the
following one: is this property still true with our weaker assumptions? To put
it another way, is the Thomsen condition implied by independence just because
there exists a third component or does this component need to be solvable?
The question is important here because if the first alternative is right, then the
Thomsen condition is not required in theorem 1 and theorem 2. Unfortunately,
as is shown in this section, the second alternative is the right one. In fact, we
prove that the following theorem is true:

Theorem 3 (Independence & Thomsen condition) In 3-component Carte-
sian products, the Thomsen condition for %12 is not implied by independence
w.r.t. all the components and solvability w.r.t. only 2 components.

The proof consists in devising a general method for constructing a preference
ordering % satisfying the assumptions in a Cartesian product Ω = R × R ×
{z0, z1}, where z0 and z1 are arbitrary constants, and exhibiting a particular
ordering that does not admit an additive representation. The approach we follow
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to define % is to construct one of its utility functions U on Ω by defining its
indifference classes, or, more precisely, the indifference curves in plane {z = z0}
and plane {z = z1}. Of course, independence imposes some relations to hold
between those planes. We first explain these constraints and then derive the
construction of an example. In the latter, U not only satisfies the required
conditions, but is also derivable.

Suppose that U exists. By independence,

for any x, x′, y, y′ ∈ R, (x, y, z0) ∼ (x′, y′, z0)⇔ (x, y, z1) ∼ (x′, y′, z1).

This means that the indifference curves are the same in plane {z = z0} and
plane {z = z1}. Of course, even if their shape is the same in both planes,
their values differ—otherwise one would have U(x, y, z0) = U(x, y, z1), which, by
independence, would be true for any couple (x, y), and so the third component
would not be essential. This suggests that we construct two functions V : R ×
R→ R and ϕ : R→ R, describing the indifference curves in plane {z = z0} and
the transformation of the values of the indifference curves from plane {z = z0}
to plane {z = z1} respectively. In mathematical terms, U(x, y, z0) = V (x, y) and
U(x, y, z1) = ϕ ◦ V (x, y), where ϕ ◦ V (x, y) stands for ϕ(V (x, y)). Constructing
% on Ω can then be reduced to projecting the curves obtained by V onto plane
{z = z0} and plane {z = z1} and to use ϕ to change the values assigned to the
curves of plane {z = z1}.

Ensuring that the independence axiom is not violated inside the planes is
not difficult: it is sufficient that V (x, y) strictly increases with x and y—i.e.
V (x, y) ≥ V (x′, y) ⇔ x ≥ x′ and V (x, y) ≥ V (x, y′) ⇔ y ≥ y′—and that ϕ is
strictly increasing. As a matter of fact, suppose these conditions hold. Then

for any x, x′, y, y′ ∈ R, (x, y, z0) % (x′, y, z0)⇔ x ≥ x′ ⇔ (x, y′, z0) % (x′, y′, z0).

The same argument would apply if the roles of x and y had been exchanged.
Since ϕ is strictly increasing, V (x, y) ≥ V (x′, y′) ⇔ ϕ ◦ V (x, y) ≥ ϕ ◦ V (x′, y′),
so the independence holds in both planes.

Now we must examine the constraints imposed by the independence axiom
when both elements do not belong to the same plane, i.e. constraints imposed by
relations similar to (x, y, z0) % (x′, y, z1). We call these constraints “inter-plane
independence constraints”. They are explained in figure 2. Since the indifference
curves are the same in both planes, we found it convenient to superpose them in
the same drawing. To differentiate them, we drew the indifference curves of plane
{z = z0} with bold lines, unlike the ones of {z = z1}. V is strictly increasing with
x and y, so “V (x, y) = constant” are decreasing curves—provided of course that
they are continuous, which we suppose to be true—and hence can be written
equivalently as “y = function(x)”, where function is strictly decreasing. In
figure 2 we assigned to each curve its function.

Suppose that A = (x′, y, z0) ∼ B = (x′, y′′, z1). Then, by independence,
C = (x′′, y, z0) ∼ D = (x′′, y′′, z1). Suppose now that F = (x, y′, z0) ∼ A =
(x′, y, z0) ∼ G = (x′′, y′, z1). Then still by independence, E = (x, y′′, z0) ∼
D = (x′′, y′′, z1). Hence we must also have E = (x, y′′, z0) ∼ C = (x′′, y, z0).
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Figure 2: inter-plane constraints

Now, let us express this relation in terms of functions. Given an arbitrary point
C = (x′′, y) and some known functions f and h, we define{

x′′ → y′ = h(x′′)→ x = f−1(y′)
y → x′ = f−1(y)→ y′′ = h(x′).

This determines two points on the curve of g because y′′ = g(x) and x′′ = g−1(y),
or, to put it another way, h ◦ f−1 ◦ g(x′′) = g ◦ f−1 ◦h(x′′). Hence independence
inter planes implies that, for any x, h◦f−1◦g(x) = g◦f−1◦h(x). This means that
when constructing the example, if f and h are already known functions, then
any function “inside” those two—i.e. any function whose indifference curve is
between the indifference curves associated with f and h—is allowed to be chosen
with a certain degree of freedom only on a small interval which corresponds to
the interval [CE]. As for the degree of freedom, any curve will fit as long as
independence holds inside the planes. Moreover, certain curves outside f and
h—like the one at point D—are determined by the curves inside f and h. For
instance, point D is determined by A,B,C and E,F,G. In fact this is the case
for any outside curve because once the inside ones are chosen, locally near f
and h, the outside curves—like k—are imposed. But then g and k can play
the role taken previously by f and h, which impose another function deduced
from h—which is “inside” g and k—and so on. By this process, we construct an
infinite standard sequence, which, by the Archimedean axiom, implies that the
whole space can be reached.
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Now we have all the material needed to construct functions V and ϕ. For
simplicity, our example uses the line y = x as a symmetry axis. This is convenient
because it implies some symmetry between the first two components. V describes
indifference curves in R × R; we call the latter Cα, using the following rule to
evaluate α: the point of coordinates (α, α) belongs to the curve Cα. Moreover
we impose on V to satisfy V (x, x) = x for any x ∈ R. Hence Cα = {(x, y) ∈ R2 :
V (x, y) = α}. To the curve Cα we associate the function fα, i.e. Cα = {(x, y) ∈
R2 : y = fα(x)}. Of course, there is a one to one mapping between fα and Cα.

To start the construction, we have chosen as functions f and h of figure 2
functions f0 and f1. This means that fϕ(0) = f1, or ϕ(0) = 1, or, more simply,
that (0, 0, z1) ∼ (1, 1, z0). These functions can be taken arbitrarily—provided of
course that they strictly decrease and do not intersect. Here we have chosen:

f0(x) =
−9− 5x+ 3

√
9 + 2x+ x2

4
(2)

f1(x) =
−5x+ 3

√
8 + x2

4
(3)

Note that f0 and f1 are continuous, strictly decreasing, and hence one to one,
vary from +∞ to −∞ and the line y = x is a symmetry axis.

Now we must construct the inside curves. For this purpose we use a two-step
process. First we choose the “arbitrary” part of the utility function, i.e. for any
α ∈]0, 1[, and any x ∈ [Yα, Xα], where Xα is such that fα(Xα) = f−10 ◦ f1(Xα)
and Yα = fα(Xα),

fα(x) =
−9(1− α)− 5x+ 3

√
8 + (1− α)2 + 2(1− α)x+ x2

4
(4)

The value of Xα has been determined so that fα is symmetric w.r.t. the line
y = x; in practice, Xα ≈ 1 + (3/

√
2 − 1)α. Then inter-plane independence

imposes the rest of the construction as seen in figure 2. This results in the
following equation:

for any x ∈ R, fα ◦ f−10 ◦ f1(x) = f1 ◦ f−10 ◦ fα(x) (5)

Note that equation (5) is satisfied for α = 0 and α = 1, and that (4) is not in
conflict with (5) because fα decreases on [Xα, Yα] and fα(Xα) = f−10 ◦ f1(Xα).
We present in figure 3 a summary of equation (5): if A belongs to Cα, then B
must also belong to Cα, and conversely.

Curves Cα defined by (4) and (5) satisfy all the conditions imposed previously.
In particular, equation (5) extends the definition of Cα over R. The properties
of these curves are described in the following lemma.

Lemma 1 (Properties of the inside curves) Consider an arbitrary α ∈]0, 1[
and suppose that fα is defined by (4) and (5). Then fα is well defined on R,
is continuous, strictly decreases, fα(R) = R, and the line y = x is a symmetry
axis. Moreover, for any α, β ∈ [0, 1], α ≤ β ⇔ fα(x) ≤ fβ(x), for any x ∈ R.
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y = f0(x)

y = f1(x)

Figure 3: construction of the inside curves

Now that the construction of the inside curves is completed, there remains
the one of the outside curves. For this purpose we use a two-step process again.
First we describe how to construct them “locally” above f1; this is equation (6).
Second, we explain in (8) and (9) how this construction can be extended to the
whole space.

Let us come back to figure 2. In this one, point D of plane {z = z1} is
indifferent to points C and E of plane {z = z0}. This means that U(x′′, y′′, z1) =
U(x′′, y, z0), or, in terms of V and ϕ, V (x′′, y′′) = ϕ ◦ V (x′′, y). But, because of
inter-plane independence, we also know that y′′ = k(x′′) = h ◦ f−1 ◦ g(x′′). So
we can deduce the following construction for our example:

for any x ∈ R, fϕ(α)(x) = fα ◦ f−10 ◦ f1(x) = f1 ◦ f−10 ◦ fα(x) (6)

which corresponds in the following figure to: “if A and B belong to Cα, then E
and G belong to Cϕ(α)”.

Properties of these curves are described in the following lemma:

Lemma 2 (Properties of fϕ(α)) Consider an arbitrary α in [0, 1], and sup-
pose that fϕ(α) is defined by equation (6). Then fϕ(α) is well defined on R, is
continuous, strictly decreases, fϕ(α)(R) = R, the line y = x is a symmetry axis
and, for any β ∈ [0, 1], α ≤ β ⇔ fϕ(α)(x) ≤ fϕ(β)(x) for any x ∈ R. Moreover

for any x ∈ R, fϕ(α)(x) ◦ f−1ϕ(0) ◦ fϕ(1)(x) = fϕ(1) ◦ f−1ϕ(0) ◦ fϕ(α)(x) (7)

Now it is time to give the global construction of the example. Equations (5)
and (7) reveal that functions fϕ(α) and fα have the same kind of inter-plane
independence property. Hence fϕ2(α)—where ϕ2 stands for ϕ ◦ ϕ—can be de-
fined from fϕ(α) in a similar way to that of fϕ(α) from fα. This gives rise to
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xx1 = f−11 ◦ fα(x0)

CαC′
f−10 ◦ fα(x0)

= f−10 ◦ f1(x1)
x0

f1 ◦ f−10 ◦ fα(x0)

fα ◦ f−10 ◦ f1(x1)

fα(x0) = f1(x1) C∞

Cϕ(α)

Figure 4: construction of the outside curves

equations (8) and (9), in which α ∈ [0, 1] and k ∈ N—ϕ0 is supposed to be the
identity on R.

fϕk+1(α)(x) =

{
fϕk(α) ◦ f−1ϕk(0)

◦ fϕk(1)(x)

fϕk(1) ◦ f−1ϕk(0)
◦ fϕk(α)(x)

(8)

fϕ−k−1(α)(x) =

{
fϕ−k(α) ◦ f−1ϕ−k(0)

◦ fϕ−k(1)(x)

fϕ−k(1) ◦ f−1ϕ−k(0)
◦ fϕ−k(α)(x)

(9)

The process of construction ensures that fϕk+1(α) and fϕ−k−1(α) are well
defined and continuous on R, strictly decrease and admit y = x as a symmetry
axis, that fϕk+1(α)(R) = R and that fϕ−k−1(α)(R) = R. Moreover, if α, β ∈ [0, 1],
then α ≤ β ⇔ fϕk(α)(x) ≤ fϕk(β)(x) for any x ∈ R and any integer k. Note that,

by induction and since ϕ(0) = 1, it is easy to show that f−1
ϕk(0)

◦fϕk(1) = f−10 ◦f1.

The construction of the ordering is now completed, and there remains only
to prove that it satisfies all the expected properties. This is done in the following
theorem:

Lemma 3 (Properties of %) The binary relation % represented by functions
fϕk(α) is a well defined weak order on Ω and satisfies independence and the
Archimedean axiom. Moreover, the first two components are solvable.

Till now the construction has been conducted on a very abstract level, and
it is rather difficult to imagine the shape of the indifference curves. Hence we
provide in figure 5 the drawing of some of them locally around the origin of
the axes. Unlike what could be thought of from the figure, the curves are not
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Figure 5: some indifference curves around the axes

deduced from other curves by translations — but it cannot be seen on the figure
because the deviation from the translation is very small.

To conclude, it must be shown that the Thomsen condition does not hold
everywhere in Ω. And as a matter of fact, if

x1 =

(
−23− 15

√
33 +

√
7282 + 18

√
33

)
/32,

x2 =
(
−17 +

√
337
)
/8,

y1 =
(
−5 + 3

√
33
)
/8

y2 =

(
85− 5

√
337 + 3

√
2

√
569− 17

√
337

)
/32,

then, U(x2, .5) = U(x1, y1) = 1
3 , U(.5, y1) = U(x2, y2) = 1 and U(.5, .5, z0) =

.5 < U(x1, y2) ≈ .501088. Hence there exists no additive representation of %.

13



5 conclusion

In this paper, we studied theorems of existence of additive utility functions for
spaces in which solvability does not hold w.r.t. every component. Such cases typ-
ically arise when some components are discrete while others are continuous. The
scope of the paper concerns only preference spaces that are Cartesian products.
Our main results are:

• Under restricted solvability w.r.t. 2 components:

– In 3-component spaces, we proved the existence of additive utility
functions under the classical necessary axioms (see [Krantz et al. 71]
and [Fishburn 70]) and a new axiom called the scaling axiom.

– Utilities are then unique up to stepwise positive affine transforma-
tions.

• Under Unrestricted solvability w.r.t. 2 components:

– In n-component spaces, we proved the existence of additive utility
functions under the classical axioms.

– Utilities are then unique up to positive affine transformations.

• We proved that the Thomsen condition is not implied by independence
when only two components of the Cartesian product are solvable.

• Our proofs use neither the algebraic nor the topological approach. In fact,
they follow a new approach, which is called the analytic approach.

6 Appendix: Proofs

6.1 Proofs of section 3

In order to prove the main theorem we first introduce two lemmas. Lemma 4
shows that when two planes intersect (in terms of indifference relations), the
common elements are always either the most preferred or the least preferred.
Lemma 5 is the restriction of theorem 1 to the case in which the third component
can take only two values.

Lemma 4 (Intersection of different planes) Suppose that (X,%) satisfies
axioms 1, 2, 4, and consider arbitrary elements x1 and x1 of X1, x2 and x2
of X2 and a,b of X3 such that a ≺3 b. Define Y = [x1, x1] × [x2, x2] × {a, b}
and Z = {(y1, y2, y3) ∈ Y : there exists (y′1, y

′
2, y
′
3) ∈ Y such that (y1, y2, y3) ∼

(y′1, y
′
2, y
′
3) and y′3 6= y3}. Then, for any (y1, y2, a) ∈ Y \Z and any (y01 , y

0
2 , y

0
3) ∈

Z, (y1, y2, a) ≺ (y01 , y
0
2 , y

0
3). And for any (y1, y2, b) ∈ Y \Z, (y01 , y

0
2 , y

0
3) ≺

(y1, y2, b).

In the following proof, we first suppose the above lemma to be false; then,
using restricted solvability, we show that this leads to a nonsense.
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Proof of lemma 4: Consider two arbitrary elements (y1, y2, a) ∈ Y \Z and
(y01 , y

0
2 , y

0
3) ∈ Z, and suppose that (y01 , y

0
2 , y

0
3) - (y1, y2, a). By hypothesis,

there exists (y11 , y
1
2 , b) ∈ Z such that (y11 , y

1
2 , b) ∼ (y01 , y

0
2 , y

0
3) - (y1, y2, a) ≺

(y1, y2, b). If y2 -2 y
1
2 , (y11 , y

1
2 , b) - (y1, y2, a) ≺ (y1, y

1
2 , b), and by restricted

solvability w.r.t. the first component, there exists (y21 , y
1
2 , b) ∼ (y1, y2, a), and

so (y1, y2, a) ∈ Z, which contradicts our hypothesis. So y12 ≺2 y2; This implies
that (y11 , y

1
2 , b) ≺ (y11 , y2, b). But then either (y11 , y

1
2 , b) - (y1, y2, a) - (y11 , y2, b),

which implies by restricted solvability w.r.t. the second component that there
exists (y11 , y

2
2 , b) ∼ (y1, y2, a), or (y11 , y2, b) ≺ (y1, y2, a) ≺ (y1, y2, b), which

implies by restricted solvability w.r.t. the first component that there exists
(y21 , y2, b) ∼ (y1, y2, a). Hence the preference relation (y01 , y

0
2 , y

0
3) - (y1, y2, a) al-

ways leads to a contradiction. A similar proof holds for (y01 , y
0
2 , y

0
3) ≺ (y1, y2, b).

�

Lemma 5 (Representability when Card(X3) = 2) Suppose that X = X1×
X2×{a, b} and (X,%) satisfies axioms 1, 2, 4, 3 (Thomsen condition w.r.t. the
solvable components), 6, 7 and 8. Then there exist real-valued functions u1 on
X1, u2 on X2 and u3 on {a, b} such that:

for any x, y ∈ X1 ×X2 × {a, b}, x - y ⇔
3∑
i=1

ui(xi) ≤
3∑
i=1

ui(yi).

If v1, v2, v3 also satisfy the equivalence above, then there exist some constants
α > 0, α1, α2, α3 and α4 such that:

for any x ∈ X1, v1(x1) = α · u1(x1) + α1

for any x ∈ X2, v2(x2) = α · u2(x2) + α2

if there exists (x1, x2, a) ∼ (y1, y2, b) then v3 = α · u3 + α3

otherwise v3(a) = α · u3(a) + α3 and v3(b) = α · u3(b) + α4

where α4 ≥ α3 +α · [u3(a) + maxx1,x2
{u1(x1) + u2(x2)}]

−α · [u3(b) + minx1,x2{u1(x1) + u2(x2)}]
with equality only if either the min or the max is not reached.

The proof of this lemma consists in using classical axioms to show that
an additive utility exists in X1 × X2, and, then to extend this property on
X1×X2×{a, b} by using preference relations. The latter imply some necessary
conditions to hold between u3(a) and u3(b). We show that these conditions are
also sufficient for the existence of additive utilities.

Proof of lemma 5: According to the classical theorems, %12 is representable
by an additive utility function u1+u2. Hence, onX1×X2×{a} andX1×X2×{b},
x - y ⇔ U(x) =

∑3
i=1 ui(xi) ≤ U(y) =

∑3
i=1 ui(yi). Moreover, on these sets,

U is cardinal. We are going to show in the sequel that it is possible to select a
value for u3(b) such that U is a utility function over X1 ×X2 × {a, b}.

First case: for any (x1, x2), (x′1, x
′
2), (x1, x2, a) ≺ (x′1, x

′
2, b):

u1(X1) +u2(X2) is bounded, where ui(Xi) = {ui(xi), xi ∈ Xi}. As a matter
of fact, if its least upper bound were +∞, it would be possible to create an
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infinite strictly increasing standard sequence in X1 × X2 × {a}, which would
contradict the Archimedean axiom since it would be bounded by (x′1, x

′
2, b). The

same argument applies for the greatest lower bound. Thus γ = supx1,x2
{u1(x1)+

u2(x2)} and δ = infx1,x2
{u1(x1)+u2(x2)} are finite. Now it is clear that u3(b) >

u3(a) + γ − δ when γ and δ can be reached by some element of X1 × X2, and
u3(b) ≥ u3(a) + γ − δ otherwise, are necessary and sufficient conditions for U to
represent %.

Second case: there exists (x01, x
1
1, x

0
2, x

1
2) such that (x01, x

0
2, a) ∼ (x11, x

1
2, b):

Clearly if there exists an additive utility, the following equation is true:

u3(b) = u3(a) + u1(x01)− u1(x11) + u2(x02)− u2(x12) (10)

Now let E = {(x1, x2, x3) : there exists (y1, y2, y3) ∼ (x1, x2, x3) and y3 6= x3}.
By lemma 4, in order to prove that U is a utility over X1 × X2 × {a, b}, it
is sufficient to prove it on E. For this purpose, consider two arbitrary ele-
ments (x21, x

2
2, a) and (x31, x

3
2, b) of E. By definition, there exist (x41, x

4
2, b) ∼

(x21, x
2
2, a) and (x51, x

5
2, a) ∼ (x31, x

3
2, b). Let x1 = min-1

{xi1, 0 ≤ i ≤ 5}, x1 =

max-1
{xi1, 0 ≤ i ≤ 5}, x2 = min-2

{xi2, 0 ≤ i ≤ 5} and x2 = max-2
{xi2, 0 ≤

i ≤ 5}. Call A1 = [x1, x1], A2 = [x2, x2], A3 = {a, b} and A = A1 × A2 ×
A3. Let B = {(x1, x2, x3) ∈ A : there exists (y1, y2, y3) ∈ A, (y1, y2, y3) ∼
(x1, x2, x3) and x3 6= y3}. Proving that, given (10), U is a utility on B is suf-
ficient to prove it on A and also on E because (x21, x

2
2, a) and (x31, x

3
2, b) are

arbitrary elements of E. The advantage in introducing A is that it contains
(x11, x

1
2, b) and (x01, x

0
2, a)—so that if U is a utility on A, (10) is satisfied—and

that, on A, u3(b) can be redefined more conveniently.

Case 2.1: (x1, x2, b) - (x1, x2, a):

It is known that (x1, x2, a) ≺ (x1, x2, b); so, by restricted solvability w.r.t. the
first component, there exists a1 ∈ A1 such that (a1, x2, a) ∼ (x1, x2, b). Suppose
that u3(b) = u3(a) + u1(a1)− u1(x1). Then, by independence, for any x2 ∈ A2,
(a1, x2, a) ∼ (x1, x2, b), and U(a1, x2, a) = U(x1, x2, b).

Case 2.1.a: (x1, x2, b) - (x1, x2, b):

Consider an element (x1, x2, a) ∈ B. By hypothesis, (x1, x2, b) ∼ (a1, x2, a) -
(x1, x2, a) ≺ (x1, x2, b) - (x1, x2, b) - (x1, x2, b) ∼ (a1, x2, a); so there exists
x2 ∈ A2 such that (x1, x2, a) ∼ (a1, x2, a), x′1 ∈ A1 such that (x′1, x2, b) ∼
(x1, x2, a), and x′2 ∈ A2 such that (x′1, x2, b) ∼ (x1, x

′
2, b). But then, by transi-

tivity of %, (x1, x
′
2, b) ∼ (a1, x2, a). By the previous paragraph, x′2 ∼2 x2 and

U(x1, x
′
2, b) = U(a1, x2, a). Now, for any (x1, x2, a) ∈ B, consider (x1, x2, a); we

know that there exists (x′1, x2, b) ∼ (x1, x2, a) and that u1(x′1)+u2(x2)+u3(b) =
u1(x1) + u2(x2) + u3(a). By independence, for any x2, (x′1, x2, b) ∼ (x1, x2, a)
and of course u1(x′1) + u2(x2) + u3(b) = u1(x1) + u2(x2) + u3(a). Since U is
already known to be a utility on {(x1, x2, a) ∈ B} and {(x1, x2, b) ∈ B}, it is
also a utility on B.

Case 2.1.b: (x1, x2, b) � (x1, x2, b):
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For any (x1, x2, a) ∈ B such that x1 -1 a1, it is known that (a1, x2, a) ∼
(x1, x2, b) - (x1, x2, a) - (a1, x2, a). Hence, by restricted solvability w.r.t. the
2nd component, there exists x′2 such that (x1, x2, a) ∼ (a1, x

′
2, a); and, of course,

U(x1, x2, a) = U(a1, x
′
2, a) since U is a utility function on {(x, y, a) ∈ B}. Sim-

ilarly, for any (x1, x2, b) such that (x1, x2, b) - (x1, x2, b), there exists, x′2 such
that (x1, x2, b) ∼ (x1, x

′
2, b), and their utilities are equal.

Suppose that there exists a2 such that (a1, x2, a) ∼ (a2, x2, a). Then, obvi-
ously, (x1, x2, b) - (a1, x2, a) ∼ (a2, x2, a) ∼ (x1, x2, b) - (a1, x2, b) ∼ (a2, x2, b).
Hence, by restricted solvability w.r.t. the 1st component, there exists y1 such
that (a2, x2, a) ∼ (y1, x2, b) ∼ (x1, x2, b), and, of course, by the definition of
U , the utility values of the last 3 triples are equal. Now, by independence,
for any x2, (a2, x2, a) ∼ (y1, x2, b), and their utilities are equal. Of course, for
any (x1, x2, a) ∈ B such that a1 -1 x1 -1 a2, either (a1, x2, a) - (x1, x2, a) -
(a1, x2, a), and , by restricted solvability w.r.t. the 2nd component, there exists
x′2 such that (a1, x

′
2, a) ∼ (x1, x2, a), or (a2, x2, a) - (x1, x2, a) - (a2, x2, a),

and, by restricted solvability w.r.t. the 2nd component, there exists x′2 such that
(a2, x

′
2, a) ∼ (x1, x2, a). In any case, by the definition of U , the utility values of

the triples in the last indifferences are equal.
If there exist a3, y2 such that (a2, x2, a) ∼ (a3, x2, a) ∼ (y2, x2, b), then, the

process described in the preceding paragraph can obviously be applied. By
induction, one can create two sequences, (ai) and (yi), such that, for any i,
(ai, x2, a) ∼ (ai+1, x2, a) ∼ (yi, x2, b). Note that those are standard sequences,
and so, by the Archimedean axiom, they must be finite, say imax = N . Note
that N can be equal to 1, that is, there exists no a2 such that (a1, x2, a) ∼
(a2, x2, a). So, for any (x1, x2, a) ∼ (x′1, x

′
2, b) such that x1 -1 aN , U(x1, x2, a) =

U(x′1, x
′
2, b).

Now, there remains the case in which there exists no aN+1 such that (aN , x2, a)
∼ (aN+1, x2, a); in other terms, (x1, x2, a) ≺ (aN , x2, a) - (x1, x2, a). Hence,
by restricted solvability w.r.t. the 2nd component, there exists α such that
(aN , x2, a) ∼ (x1, α, a) ∼ (yN−1, x2, b), and their utilities are equal. But, then,
(aN , α, a) ∼ (yN−1, α, b) ≺ (aN , x2, a) ∼ (yN−1, x2, b) ≺ aN , x2, b) ∼ (x1, α, b).
By restricted solvability w.r.t. the 1st component, there exists yN such that
(yN , α, b) ∼ (x1, α, a) ∼ (yN−1, x2, b), and their utility values are equal. Hence,
by independence, for any x2, (yN , x2, b) ∼ (x1, x2, a), and their utility values are
equal. Hence, it becomes obvious that U as defined is a utility function on B.

Case 2.2: (x1, x2, a) % (x1, x2, b):

By restricted solvability w.r.t. the 2nd component, there exists a2 ∈ A2 such
that (x1, a2, b) ∼ (x1, x2, a). It is shown as in case 2.1 that U is a utility on B.

Case 2.3: (x1, x2, a) ≺ (x1, x2, b) and (x1, x2, a) ≺ (x1, x2, b):

This gathers the remaining cases. (x1, x2, b) - (x1, x2, a). So (x1, x2, a) ≺
(x1, x2, b) - (x1, x2, a) ≺ (x1, x2, b). Therefore, for any (x1, x2, x3) in B, there
exists y1 ∈ A1 and y2 ∈ A2 such that (x1, x2, x3) ∼ (y1, x2, b) ∼ (x1, y2, a). In
particular, there exists a2 ∈ A2 such that (x1, a2, a) ∼ (x1, x2, b). If u3(b) =
u3(a) + u1(x1)− u1(x1) + u2(a2)− u2(x2), then U(x1, a2, a) = U(x1, x2, b).
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Now consider two elements of B : (x1, x2, a) ∼ (x1, x2, b). By the scal-
ing axiom, [(x1, x2, a) ∼ (x1, x2, b) and (x1, a2, a) ∼ (x1, x2, b)] ⇒ (x1, a2, a) ∼
(x1, x2, a), and of course U(x1, a2, a) = U(x1, x2, a), which implies that u1(x1)+
u2(a2) = u1(x1) + u2(x2). But U(x1, x2, a) = u1(x1) + u2(x2) + u3(a) =
u3(b) + u1(x1) + u2(x2)− u2(a2) + u2(x2) = u3(b) + u1(x1) + u2(a2) + u2(x2)−
u2(a2) = U(x1, x2, b). Since U is a utility on plane {(x1, x2, a) ∈ B} and plane
{(x1, x2, b) ∈ B}, it is also a utility on B.

So far we have proved the existence of an additive utility on X1×X2×{a, b}.
It remains to prove the uniqueness property. But since the values given for u3(b)
were always necessary and sufficient, the uniqueness property is obvious. �

The following proof is similar to the one above.

Proof of theorem 1: Let x03, x
1
3 of X3. By lemma 5, there exist real-valued

functions u1 on X1, u2 on X2 and u3 on {x03, x13} such that % is represented by
U = u1 + u2 + u3. Without loss of generality, we suppose that x03 - x

1
3. We are

to prove that this additive representation can be extended to X1×X2× [x03, x
1
3].

First case: there exists (x01, x
0
2, x

1
1, x

1
2) such that (x11, x

1
2, x

1
3) ∼ (x01, x

0
2, x

0
3):

A necessary condition for U to represent % is that u3(x13) = u3(x03)+u1(x01)−
u1(x11) + u2(x02)− u2(x12). Let us prove that it is also a sufficient condition. By
restricted solvability and lemma 4, for any x3 ∈ [x03, x

1
3], there exist (x1, x2),

(x′1, x
′
2) and (x′′1 , x

′′
2) such that (x1, x2, x3) ∼ (x′1, x

′
2, x

0
3) ∼ (x′′1 , x

′′
2 , x

1
3). So, by

lemma 5, if u3(x3) = u3(x03)+u1(x′1)−u1(x1)+u2(x′2)−u2(x2), % is representable
by U on X1×X2×{x03, x3} and if u3(x3) = u3(x13) +u1(x′′1)−u1(x1) +u2(x′′2)−
u2(x2), % is representable by U on X1×X2×{x3, x13}. But both values of u3(x3)
are equal because U represents % on X1×X2×{x03, x13}. Hence U represents % on
X1×X2×{x03, x3, x13}. Since x3 is arbitrary, and, for any (x1, x2), by restricted
solvability there exists (x′1, x

′
2) such that either (x1, x2, x3) ∼ (x′1, x

′
2, x

0
3) or

(x1, x2, x3) ∼ (x′1, x
′
2, x

1
3), % is representable by an additive utility on X1×X2×

[x03, x
1
3]. Moreover, by the process of construction, this function is cardinal.

Second case: for any (x01, x
0
2, x

1
1, x

1
2), (x11, x

1
2, x

1
3) � (x01, x

0
2, x

0
3):

Case 2.1: x13Ox03:

In other words, there exists (zi3)1≤i≤n such that, for any i in {0, ..., n −
1}, zi+1

3 �3 zi3 and there exist (z1, z2) and (z′1, z
′
2) such that (z1, z2, z

i+1
3 ) ∼

(z′1, z
′
2, z

i
3).

By case 1, by selecting an appropriate value for u3(zi+1
3 ) from the one of

u3(zi3), U is a utility on X1 × X2 × [zi3, z
i+1
3 ], and this function is cardinal.

Now when comparing one element of X1 × X2 × [zi−13 , zi3] and one element of
X1×X2× [zi3, z

i+1
3 ], there exists by lemma 4 an element of X1×X2×{zi3} which

is preferred to one element and not preferred to the other. Hence U is a utility
function on X1 ×X2 × [zi−13 , zi+1

3 ], and, by induction, on X1 ×X2 × [x03, x
1
3].

Case 2.2: Not(x13Ox03):
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Here, for any x3 ∈ O(x03), and any x1, x2, x
1
1, x

1
2, (x1, x2, x3) ≺ (x11, x

1
2, x

1
3).

So, by lemma 5, u1(X1) and u2(X2) are bounded. By case 2.1, for any z3 in
O(x03), one can select a value for u3(z3) to extend U over X1×X2× [x03, z3], and
to the limit, over X1 × X2 × O(x03). Now, by the Archimedean axiom, U has
a least upper bound, say β0, on this set. Similarly one can define an additive
utility U1 over X1×X2×O(x13) such that U1 = u1+u2+u13. And U1 is bounded
below on X1 ×X2 × O(x13). Call α1 this lower bound.

Case 2.2.a: there is no x23 ∈ [x03, x
1
3] such that not(x23Ox03) and not(x23Ox13):

Define U on X1×X2×O(x13) as U(x1, x2, x3) = U1(x1, x2, x3) +γ where γ is
such that α1 + γ > β0 when α1 and β0 are reached, and α1 + γ ≥ β0 otherwise.
It is obvious that U is a utility over X1 ×X2 × [x03, x

1
3], and that choosing γ as

above is necessary and sufficient. So the representation is no more cardinal.

Case 2.2.b: there exists x23 ∈ [x03, x
1
3] such that not(x23Ox03) and not(x23Ox13):

Following the above reasoning, there exists an additive utility U2 = u1+u2+
u23 on X1×X2×O(X2

3 ) and U2 is bounded by α2 and β2. More generally, let O∼
be the set of equivalence classes of O, and consider Z = {z̃3 ∈ O∼ : for any z3 ∈
z̃3, z3 ∈ [x03, x

1
3]}. Suppose that Card(Z) is infinite; then it is possible to extract

from Z an infinite sequence (z̃3n) such that for any zn3 ∈ z̃3n and any zn+1
3 ∈ z̃3n+1,

zn+1
3 �3 z3n. From this sequence one can extract an infinite increasing over-

standard sequence (zn3 ) which is bounded by (x11, x
1
2, x

1
3). This contradicts the

Archimedean axiom. Hence Card(Z) is a finite number N .
We already know that there exists an additive utility U i on X1×X2×O(zi3)

such that U i(x1, x2, x3) = u1(x1) + u2(x2) + ui3(x3) and U i is bounded. Let αi
and βi be its greatest lower bound and its least upper bound respectively. Now
on [zi3, z

i+1
3 ] it is possible to apply case 2.2.a; hence we can show inductively that

U can be constructed over X1 ×X2 × [x03, x
1
3].

Now consider an arbitrary element x3 �3 x13. By a similar process, we
construct U on X1 ×X2 × [x13, x3]. But, by lemma 4, for any element of X1 ×
X2× [x03, x

1
3] and X1×X2× [x13, x3], there is always an element of X1×X2×{x03}

which is preferred to one of them and less preferred to the other one. Hence U
is a utility function on X1 ×X2 × [x03, x3]. U can be extended on X.

By the previous paragraphs, x03 is an arbitrary element of X3, and, for any
x3 %3 x

0
3, there exists no infinite sequence (xi3) such that x03 -3 x

i
3 -3 x3 and

not(xi3Oxi+1
3 ). Moreover, there exists an additive utility on X1 ×X2 × [x03, x3];

so, for any integer n, any sequence (xi3) such that n ≤ u3(xi3) ≤ n + 1 and
not(xi3Oxi+1

3 ), is finite. Hence O∼ is denumerable. So there exists a sequence
(xi3) such that for any i, xi+1

3 �3 x
i
3 and for any x3 of X3, there exists i such that

x3Oxi3. This sequence is in fact created by taking one element in each indifference
class of O. The uniqueness of the additive representation is immediate. �

The principle of the following proof is to aggregate the non solvable compo-
nents twice, using different aggregations. Then, using theorem 1, we show that
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additive representations exist for both aggregations, and that these are equal
(up to a positive affine transformation). This equality implies some properties
between the two utilities, which is shown to lead to an additive decomposability
of the whole space X.

Proof of theorem 2: By unrestricted solvability, it is obvious that the scaling
axiom always holds. First, suppose that X = X1 ×X2 ×X3. Then theorem 1
can be applied, with card(N) = 1.

Suppose now that theorem 2 holds for n-dimensional Cartesian products.
Let us prove that it is also true for n+ 1. X =

∏n+1
i=1 Xi. Let Y1 = X1 ×Xn+1

and Y2 = X2 × Xn+1. Then X = Y1 × X2 ×
∏n
i=3Xi = X1 × Y2 ×

∏n
i=3Xi.

Components on Y1 and Y2 are still solvable, so there exist real valued functions
u1, u2, . . . , un on Y1, X2, . . . , Xn and v1, v2, . . . , vn on X1, Y2, . . . , Xn respectively
such that U =

∑n
i=1 ui and V =

∑n
i=1 vi represent % and are cardinal.

Now consider the set
∏n
i=1Xi × {x0n+1} where {x0n+1} is an arbitrary ele-

ment of Xn+1. By the cardinal property of U and V , there exist some constants
αx0

n+1
, βi,x0

n+1
such that, for any x1, . . . , xn, v(x1) = αx0

n+1
u1(x1, x

0
n+1)+β1,x0

n+1
,

v2(x2, x
0
n+1) = αx0

n+1
u2(x2)+β2,x0

n+1
and vi = αx0

n+1
ui+βi,x0

n+1
. Hence, for i ≥ 3

and any xn+1, x
′
n+1, vi = αxn+1

ui + βi,xn+1
= αx′n+1

ui + βi,x′n+1
. Since essen-

tialness holds w.r.t. the ith component, αxn+1
= αx′n+1

and βi,xn+1
= βi,x′n+1

.

Hence There exists constants α > 0, β1(xn+1), β2(xn+1), βi such that v(x1) =
αu1(x1, xn+1)+β1(xn+1), v2(x2, xn+1) = αu2(x2)+β2(xn+1) and vi = αui+βi.

Now u1(x1, xn+1) +
∑n
i=2 ui(xi) = 1

αv1(x1)− β1(xn+1)
α +

∑n
i=2 ui(xi). Hence

an additive representation exists for
∏n+1
i=1 Xi. The uniqueness up to strictly

positive linear transformations comes from the fact that if
∑n+1
i=1 ui is a util-

ity representing % on X,
∑n
i=1 ui also represents % on

∏n
i=1Xi, and that the

uniqueness up to positive linear transformations is supposed to hold on this set.
�

6.2 Proofs of Section 4

Proof of lemma 1: Xα is such that fα(Xα) = f−10 ◦ f1(Xα). So, (4) does
not conflict with (5). It is easy to see that, according to (4), fα is continuously
decreasing on [Yα, Xα], and, according to (2) and (3), f0 and f1 are continuously
decreasing over R. Now, it is not difficult to see that, for any x ∈ R, f1◦f−1o (x) >
x+ 1 and f−1o ◦ f1(x) < x− 1.

Hence, since f−10 ◦ f1(Xα) = Yα, by (5), fα is well defined on ] − ∞, Xα],
and moreover is continuously decreasing on this set. By symmetry of (2), (3)
and (4) w.r.t. the line y = x, fα is well defined on R, is continuously decreasing,
and is symmetric w.r.t. the line y = x. By the previous paragraph and (5), it is
obvious that fα(R) = R.

Now, consider α, β ∈ [0, 1] such that α ≤ β. By equation (4)—and equa-
tions (2) and (3) if α or β is equal to 0 or 1—it is obvious that for any
x ∈ [Yβ , Xα], fα ≤ fβ . On [Yα, Yβ ], the inequality fα(x) ≤ fβ(x) must also
hold, otherwise fβ would not be one to one. Now if there existed an x in R
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such that fα(x) > fβ(x), then by repeated uses of (5), there would exist an
x′ ∈ [Yα, Xα] such that fα(x′) > fβ(x′), which has been shown to be impossible.
Conversely, if for any x ∈ R, fα(x) ≤ fβ(x), then this is true in particular for
any x ∈ [Yβ , Xα]. But then by equation (4)—and (2) or (3)—α ≤ β. �

Proof of lemma 2: By (5), fϕ(α) is well defined on R for any α ∈ [0, 1]. Since
fα, f0 and f1 are continuous, strictly decrease, vary from +∞ to −∞ and are
symmetric w.r.t. the line y = x, fϕ(α) has the same properties. By lemma 1, for
any α, β ∈ [0, 1], α ≤ β ⇒ fα(x) ≤ fβ(x) for any x ∈ R, and it follows from the
change of variable y = f−11 ◦f0(x), and the fact that f−11 ◦f0(x) varies from −∞
to +∞, that α ≤ β ⇒ fα ◦ f−10 ◦ f1(y) ≤ fβ ◦ f−10 ◦ f1(y) for any y ∈ R.

fϕ(1) = f1 ◦ f−10 ◦ f1 and fϕ(0) = f1 — since by hypothesis ϕ(0) = 1;

so fϕ(α)◦f−1ϕ(0)◦fϕ(1) = fα◦f−10 ◦f1◦f
−1
1 ◦f1◦f

−1
0 ◦f1 = fα◦f−10 ◦f1◦f

−1
0 ◦f1 =

f1 ◦ f−10 ◦ fα ◦ f−10 ◦ f1 = f1 ◦ f−10 ◦ f1 ◦ f−11 ◦ fα ◦ f−10 ◦ f1 = fϕ(1) ◦ f−1ϕ(0) ◦ fϕ(α),
hence proving that equation (6) holds. �

In order to prove lemma 3, we first introduce the two lemmas, namely
lemma 6 and lemma 7. The first one shows that the whole space is well de-
fined, i.e. that any point in R × R corresponds to a point (x, fϕk(α)(x)), and
that the curves Cα never intersect. The second lemma shows that, not only the
curves never intersect, but also the distance between two curves is never null.

Lemma 6 (The space is well defined) Assume that, for any α ∈ [0, 1], Cα
is given by (2), (3) or (4) and (5). Suppose that Cϕk(α) and Cϕ−k(α) are given
for any k ∈ N by (6) and (8), and (6) and (9) respectively. Then ϕ is well
defined on R and Cβ is well defined for any β ∈ R. Moreover ϕ is one to one
and strictly increases from −∞ to +∞, for any (x, y) ∈ R2, there exists α ∈ R
such that (x, y) ∈ Cα, and the following hold: for any α, β, x, x′, y1, y2 ∈ R,

α ≤ β ⇔ fα(x) ≤ fβ(x) for any x ∈ R
α, β ∈ R, y1 = fα(x) = fβ(x′) & y2 = fϕ(α)(x)⇒ y2 = fϕ(β)(x

′).

The principle of this proof is to show by induction w.r.t. k that any point in
the domain {(x, y) : fϕk(0) ≤ y ≤ fϕk(1)} belongs to an indifference curve Cα.
Then, it is shown that, when k varies from −∞ to +∞, the set above is R×R.
So, the space is well defined.

Proof of lemma 6: By (4) and (5), it is easily seen that every point in the
domain {(x, y) : f0(x) ≤ y ≤ f1(x)} belongs to an indifference curve Cα. Now
suppose that for k ≥ 0, every point in {(x, y) : fϕk(0)(x) ≤ y ≤ fϕk(1)(x)}
belongs to a curve Cϕk(α). Consider an arbitrary point (x0, y0) in {(x, y) :
fϕk+1(0)(x) ≤ y ≤ fϕk+1(1)(x). By hypothesis, fϕk+1(0)(x0) ≤ y0 ≤ fϕk+1(1)(x0).

So y1 = f0 ◦ f−11 (y0)is such that fϕk(0)(x0) ≤ y1 ≤ fϕk(1)(x0). By hypothesis,
there exists a curve Cϕk(α) such that (x0, y1) ∈ Cϕk(α). So y1 = fϕk(α)(x0)

and y0 = f1 ◦ f−10 ◦ fϕk(α)(x0) = fϕk(1) ◦ f−1ϕk(0)
◦ fϕk(α)(x0). So any point in

{(x, y) : fϕk+1(0)(x) ≤ y ≤ fϕk+1(1)(x)} belongs to an indifference curve Cβ . A
similar proof holds when k is negative.
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Now we must extend this local property to the whole R2. Suppose that, for
k ≥ 0, fϕk(1)(x) ≥ −x+ 2 + k. Note that this is true for k = 0—for which fϕk(1)

corresponds to f1. fϕk+1(1) = (f1 ◦ f−10 ) ◦ fϕk(1); But one can easily show that,

for any x ∈ R, f1 ◦ f−10 (x) > x+ 1; so, fϕk+1(1)(x) ≥ −x+ 2 + k + 1.
Now, by induction, this must be true for any k ≥ 0. So any point (x0, y0)

in the {(x, y) : f0(x) ≤ y ≤ −x + 2 + k} is also in {f0(x) ≤ y ≤ fϕk(1)(x)}.
But we have seen in the previous paragraph that, then, there exists a curve Cα
containing (x0, y0). And limk→+∞{f0(x) ≤ y ≤ −x+ 2 + k} = {f0(x) ≤ y}. So
any point in the last set belongs to an indifference curve. A similar proof would
show that any point in the set {y ≤ f0(x)} belongs to an indifference curve.

So, any point of R2 belongs to a curve Cα. This is true in particular for
any point on the line y = x. Hence Cα is defined for any α ∈ R. The principle
of construction guarantees that ϕ is defined over R. Suppose now that α and
β are real numbers such that ϕ(α) = ϕ(β). Then fϕ(α) = fϕ(β). But, by the

previous paragraphs, there exist k, k′ ∈ N and γ, δ ∈ [0, 1] such that α = ϕk(γ)
and β = ϕk

′
(δ). Then fϕ(α) = fϕk(1) ◦ f−1ϕk(0)

◦ fϕk(γ) = f1 ◦ f−10 ◦ fϕk(γ) and

fϕ(β) = f1 ◦ f−10 ◦ fϕk′ (δ). Since f1 ◦ f−10 is one to one, fϕk(γ) = fϕk′ (δ). Hence

ϕk(γ) = ϕk
′
(δ) and so α = β, which implies that ϕ is one to one.

It is already known that for any integer k, and for any α, β ∈ [0, 1],
α ≤ β ⇔ fϕk(α)(x) ≤ fϕk(β)(x), for any x ∈ R

But by (8) and (9), fϕk+1(0)(x) = fϕk(1)(x); so for any integers k, k′,

ϕk(α) ≤ ϕk′(β)⇔ fϕk(α)(x) ≤ fϕk′ (β)(x) for any x ∈ R
So, for any α, β ∈ R, α ≤ β ⇔ fα(x) ≤ fβ(x) for any x ∈ R, and since f1 ◦ f−10

is strictly increasing, fα(x) ≤ fβ(x) ⇔ f1 ◦ f−10 ◦ fα(x) ≤ f1 ◦ f−10 ◦ fβ(x) ⇔
fϕ(α)(x) ≤ fϕ(β)(x). So ϕ also strictly increases.

Now, to complete the proof, suppose that x, x′, y1, y2, α, β ∈ R are such that
y1 = fα(x) = fβ(x′) and y2 = fϕ(α)(x). Then fϕ(α)(x) = f1 ◦ f−10 fα(x) =

f1 ◦ f−10 ◦ fβ(x′) = fϕ(β)(x
′). So y2 = fϕ(β)(x

′). �

Lemma 7 (Distance between fα and fβ) For any α, β ∈ [0, 1], there exists
a constant m(α, β) such that m(α, β) ≤ fβ(x)− fα(x) for any x ∈ R. Moreover,
β ≥ α⇔ m(α, β) ≥ 0.

Proof of lemma 7: Let m(α, β) = minx∈R{fβ(x) − fα(x)}. If α = β, then
m(α, β) = 0. Now, let us suppose that β > α. By lemma 1, α ≤ β ⇔ fα(x) ≤
fβ(x) for any x ∈ R. In Particular, this is true on any closed interval [y, z]; but
then, minx∈[y,z]{fβ(x)−fα(x)} is a strictly positive real number. So, ifm(α, β) =
0, then either limx→−∞(fα(x)−fβ(x)) = 0 or limx→+∞(fα(x)−fβ(x)) = 0. But
both cases are impossible because f0(x) tends to −3−2x (resp. (−3−x)/2) when
x tends toward −∞ (resp. +∞), and f1(x) tends toward −2x (resp. −x/2) when
x tends toward −∞ (resp. +∞). Hence, if β > α, then m(α, β) > 0. Conversely,
if m(α, β) > 0, then fβ(x) > fα(x), and so, by lemma 1), β > α. �

In the following proof, it is mainly shown that independence as well as the
Archimedean axiom. The former is shown by equation α ≤ β ⇔ fα ≤ fβ ⇔
ϕ(α) ≤ ϕ(β). The latter is shown by constructing standard sequences and
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showing that, if they are infinite, then the indifference curves involved can be
arbitrarily far away from the origin of the axes.

Proof of lemma 3: In this proof, it will be shown successively that % is a
weak order on Ω, that the first two components are solvable, that independence
holds, as well as the Archimedean axiom.

First % is a well defined weak order on Ω because, by lemma 6, for any
(x, y) ∈ R2, there exists α ∈ R such that (x, y) ∈ Cα and there exists β ∈ R such
that ϕ(β) = α, so that (x, y) ∈ Cϕ(β).

For any α ∈ R, fα is defined on R and is one to one. So for any y ∈ R
(resp. x ∈ R), there exists an x ∈ R (resp. y ∈ R) such that fα(x) = y. This
guarantees the solvability w.r.t. x (resp. y) in the plane {z = z0}. ϕ being one
to one, continuous and varying from −∞ to +∞, there exists β ∈ R such that
ϕ(β) = α; and since U(x, y, z1) = ϕ ◦ U(x, y, z0), the solvability w.r.t. x (resp.
y) holds in the plane {z = z1}. So the first two components are solvable.

Let x0, x1, y0, y1 ∈ R be such that (x0, y0, z0) - (x1, y1, z0). By lemma 6,
there exist α, β ∈ R such that α ≤ β, (x0, y0) ∈ Cα and (x1, y1) ∈ Cβ . ϕ is
strictly increasing and one to one so α ≤ β ⇔ ϕ(α) ≤ ϕ(β) ⇔ U(x0, y0, z0) =
α ≤ U(x1, y1, z0) = β ⇔ ϕ ◦ U(x0, y0, z0) = ϕ(α) ≤ ϕ ◦ U(x1, y1, z0) = ϕ(β) ⇔
(x0, y0, z1) - (x1, y1, z1). Hence independence holds w.r.t. the third component.

Now let x, y0, y1 ∈ R be such that (x, y0, z0) - (x, y1, z0). There exist
α, β ∈ R such that (x, y0) ∈ Cα and (x, y1) ∈ Cβ with α ≤ β. By lemma 6,
α ≤ β ⇔ fα(x) ≤ fβ(x) for any x ∈ R. So α ≤ β ⇔ y0 ≤ y1; thus for any
x′ ∈ R, (x′, y0, z0) - (x′, y1, z0). By independence w.r.t. the third component,
(x, y0, z1) - (x, y1, z1) ⇔ (x, y0, z0) - (x, y1, z0) ⇔ [(x′, y0, z0) - (x′, y1, z0) for
any x′ ∈ R] ⇔ [(x′, y0, z1) - (x′, y1, z1) for any x′ ∈ R]. By symmetry be-
tween components x and y, (x0, y, z1) - (x1, y, z1) ⇔ (x0, y, z0) - (x1, y, z0) ⇔
[(x0, y

′, z0 - (x1, y
′, z0) for any y′ ∈ R] ⇔ [(x0, y

′, z1) - (x1, y
′, z1) for any

y′ ∈ R]. Hence inside planes, independence holds w.r.t. the first two compo-
nents.

Let x, y0, y1 ∈ R be such that (x, y0, z0) ∼ (x, y1, z1). Then there exists α ∈ R
such that (x, y1) ∈ Cα and (x, y0) ∈ Cϕ(α). Thus, y1 = fα(x) while y0 = fϕ(α)(x).
But by lemma 6, for any x′ ∈ R, there exists β ∈ R such that (x′, y1) ∈ Cβ and
then (x′, y0) ∈ Cϕ(β). So, for any x′ ∈ R, (x′, y0, z0) ∼ (x′, y1, z1). Now suppose
that x, y0, y1 ∈ R are such that (x, y0, z0) - (x, y1, z1). Then there exists y2 such
that (x, y0, z0) - (x, y2, z0) ∼ (x, y1, z1). By the beginning of this paragraph
and the previous one, for any x′ ∈ R, (x′, y0, z0) - (x′, y2, z0) ∼ (x′, y1, z1).
By symmetry, (x, y0, z1) - (x, y1, z0) ⇒ (x′, y0, z1) - (x′, y1, z0) for any x′ ∈ R.
Hence independence holds w.r.t. the first component. And by symmetry between
x and y, it also holds w.r.t. the second component.

As for the Archimedean axiom, consider a standard sequence w.r.t. the first
component: {xk1 : xk1 ∈ R, k ∈ N, Not((x01, x

0
2, z0) ∼ (x01, x

1
2, z0)), and for all

k, k + 1 ∈ N, (xk1 , x
1
2, z0) ∼ (xk+1

1 , x02, z0)}. Note that by the solvability w.r.t.
the second component, any standard sequence w.r.t. the first component can be
transformed into a sequence like the one above. In the sequel we suppose that
(x01, x

0
2, z0) ≺ (x01, x

1
2, z0); a similar proof would hold for the converse.
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There exist α, β such that x02 = fα(x01) and x12 = fβ(x01); hence x12 =
fβ ◦ f−1α (x02). Similarly there exists γ1 such that x12 = fγ1(x11). But since
(x01, x

1
2, z0) ∼ (x11, x

0
2, z0), the following equation is true:

fγ1 = fβ ◦ f−1α ◦ fβ

There exists γ2 such that x12 = fγ2(x21). But then since (x11, x
1
2, z0) ∼ (x21, x

0
2, z0),

the following equation is true:

fγ2 = fγ1 ◦ f−1β ◦ fγ1
fγ2 = (fβ ◦ f−1α )2 ◦ fβ

By induction, when examining xk1 , the following equation would be found:

fγk = (fβ ◦ f−1α )k ◦ fβ

Now α (resp. β) can be written as ϕn(ν) (resp. ϕm(µ)), with µ and ν in
[0, 1]. Then fγk = (fµ ◦ (f−10 ◦ f1)m ◦ (f−10 ◦ f1)−n ◦ f−1ν )k ◦ fβ or, equivalently,
fγk = (fµ ◦ (f−10 ◦ f1)m−n ◦ f−1ν )k ◦ fµ ◦ (f−10 ◦ f1)m.

If m = n, then fγk = [(fµ ◦ f−1ν )]k ◦ fµ ◦ (f−10 ◦ f1)m and µ > ν. So, by
lemma 7, fµ ≥ fν +m(ν, µ), and so fγk ≥ (Id +m(ν, µ))k ◦ fµ ◦ (f−10 ◦ f1)m. So,
if k tends toward +∞, then the standard sequence cannot be bounded.

If m = n + 1, then fγk = [(fµ ◦ f−10 ) ◦ (f1 ◦ f−1ν )]k ◦ fµ ◦ (f−10 ◦ f1)m. By
lemma 7, fµ ≥ f0 +m(0, µ) and f1 ≥ fν +m(ν, 1). Hence fγk ≥ (Id +m(0, µ) +
m(ν, 1))k ◦ fµ ◦ (f−10 ◦ f1)m where Id stands for the identity function. Since one
cannot have µ = 0 and ν = 1 at the same time — otherwise, α = β — the
standard sequence cannot be bounded when k tends toward +∞.

Now, suppose that m > n + 1. µ and ν belong to [0, 1]; so, for any x ∈ R,
f0(x) ≤ fµ(x), fν(x) ≤ f1(x). Moreover f−10 ◦ f1 strictly increases. Hence,
fγk > (f0◦(f−10 ◦f1)m−n◦f−11 )k◦f0◦(f−10 ◦f1)m = f0◦(f−10 ◦f1)k(m−n−1)+m. But,
for any x, f−10 ◦f

−1
1 (x) > x−3 and f0(x) > −x. So fγk(x) > g(x) = −x+3[k(m−

n− 1) +m]. The intersection of g with the line y = x gives x = 3[k(m−n−1)+m]
2 .

And fγk is above g, so γk >
3[k(m−n−1)+m]

2 . Hence, limk→+∞γk = +∞. And
so the standard sequence cannot be bounded, which achieves the proof that the
Archimedean axiom holds. �
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Additivité de Fonctions d’Utilité sur un Espace Partiellement ou Totalement
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