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Abstract

This paper presents positive and negative results concerning the exis-
tence of additive utilities on weakly ordered Cartesian products when some
components are solvable and others are not. The classical theorems involv-
ing solvability can be derived when only 2 or 3 components are solvable,
depending on whether the second order cancelation axiom or the inde-
pendence axiom holds. Counterexamples show that our results cannot be
significantly strengthened.
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1 Introduction

Because additive utilities are computationally very attractive, the problem of their
existence on weakly ordered Cartesian products has received many contributions.
In the literature, theories for infinite sets follow either topological or algebraic
approaches (see e.g. Fishburn (1970) and Fuhrken & Richter (1991) for the alge-
braic approach, Debreu (1960) and Wakker (1993) for the topological approach;
and Wakker (1988) and Krantz, Luce, Suppes & Tversky (1990) for a compari-
son between both approaches). But in both cases, the structural conditions as-
sumed are only sufficient and furthermore unnecessarily strong (see Jaffray (1974a)
and Jaffray (1974b) for necessary and sufficient—but hardly testable—conditions).
More precisely, the classical theorems assume the connectedness of the topologi-
cal spaces in the former approach (see Debreu (1960), Wakker (1989) and Wakker
(1994)), and solvability (Fishburn (1970)) or restricted solvability (see Luce (1966)
and Krantz, Luce, Suppes & Tversky (1971)) with respect to every component
of the Cartesian product in the latter approach . In this paper, we address the
problem of the existence of additive utilities in cases where at least two compo-
nents, but not necessarily all components, are solvable. This kind of problem may
typically arise when some components (but not all) are discrete. Such structures
can be found in medical decision making, for instance in problems involving life
duration and money—which can be thought of as solvable—and states of health—
which are generally not solvable.

Throughout the paper we study n-dimensional Cartesian products, with n ≥ 3.
In section 2, our main theorem shows that solvability need not be imposed on all
components. In fact, it is sufficient to impose it on two components and derive
additive representability there. It is shown that additive representability then ex-
tends to the other components—solvable or not. Note that the solvable structure
includes cases in which topological connectedness holds w.r.t. 2 components and
infinite standard sequences exist w.r.t. these components.

In section 3 we show that the results given in the previous section cannot be
improved. More precisely, in order to derive an additive utility from the combi-
nation of the independence axiom and the Thomsen condition, it is shown that
at least two solvable components are required; and with only the independence
axiom, at least three components must be solvable. For both cases we present ex-
amples in which fewer solvable components lead to the non-existence of additive
utilities.

In order to make this paper more comprehensible, all proofs are given in an
appendix.

2 Representation Theorems

In this section we consider a Cartesian product X =
∏n

i=1Xi. Given a binary
relation % over the Cartesian product X, we standardly introduce the indifference
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relation x ∼ y ⇔ [x % y and y % x], the strict preference relation x � y ⇔ [x %
y and Not(y % x)], and x - y ⇔ y % x. Without loss of generality, the solvable
components are always the first components.

We assume the following axioms:

Axiom 1 (ordering) % is a weak order on X, i.e. % is complete (for any x,y ∈
X, x % y or y % x) and transitive (for any x,y,z ∈ X, if x % y and y % z, then
x % z).

Axiom 2 (independence) For any i ∈ {1, 2, . . . , n} and any x,y ∈ X,

(x1, . . . , xi−1, xi, xi+1, . . . , xn) % (y1, . . . , yi−1, xi, yi+1, . . . , yn)
⇓

(x1, . . . , xi−1, yi, xi+1, . . . , xn) % (y1, . . . , yi−1, yi, yi+1, . . . , yn).

It is obvious that axioms 1 and 2 are necessary for the existence of an additive
utility on X. The independence axiom induces a natural ordering on the Cartesian
product generated by any subset of components in the following manner. For any
set N included in {1, 2, . . . , n} one can define the weak order %N on

∏
i∈N Xi as

follows: for a, b ∈
∏

i∈N Xi, a %N b iff for some p ∈
∏

i 6∈N Xi, (a, p) % (b, p).

Axiom 3 (solvability w.r.t. the ith component) [x ∈ X, yj ∈ Xj for all j 6=
i]⇒ [there exists zi ∈ Xi such that x ∼ (y1, . . . , yi−1, zi, yi+1, . . . , yn)].

Theorem 1 Assume that (X,%) is a weak order and that % satisfies the indepen-
dence axiom, as well as solvability w.r.t. the first two components, and that there
exists an additive utility representing %12. Then there exists an additive utility
representing %, i.e. there exist real valued functions ui on Xi, i = 1, . . . , n, such
that

for any x, y ∈ X, x % y ⇔
n∑
i=1

ui(xi) ≥
n∑
i=1

ui(yi). (1)

Moreover, this utility is an interval scale, i.e. if v1, . . . , vn also satisfy (1) then
there exist some constants a > 0 and b1, . . . , bn such that, for each i ∈ {1, . . . , n},
vi = a · ui + bi.

Sketch of proof: In the solvable components space, it is a classical result that
an additive utility exists. The principle is to extend this utility to spaces of greater
dimension by adding the nonsolvable components one by one. When adding the
ith component, select a reference point and assign any value for its utility; for any
other point xi, the idea is that the trade-off between xi and the reference point
can be compensated by a trade-off in the second component, leaving the first
component unchanged. This gives the necessary value of ui(xi); by independence,
it is obvious that this value is independent of the first component. Now, a variation
in the value of the second, third, . . ., i − 1th component can be compensated
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by a trade-off in the first component, which means that ui(xi) is independent
of the other components. Therefore, it is also sufficient for the existence of an
additive utility. The uniqueness property is due to the uniqueness in the solvable
components space. �

Theorem 1 states that the Cartesian product generated by the two solvable
components is sufficiently rich to extend its additive representability to any Carte-
sian product including it. This suggests the principle of construction of such a
utility: First set the nonsolvable components to some arbitrary values, and con-
sider the subset Y of X thus generated. Construct the additive utility in Y—this
is a classical construction. Then extend this construction by restoring—one at a
time—the initial domains of the nonsolvable components.

Theorem 1 extends the classical theorems by weakening the strong assumption
that every component be solvable. It is particularly useful for deriving additive
utilities when some components of the Cartesian product belong to finite sets that
cannot be extended to intervals in a meaningful way. In order to give more prac-
tical results, we give a few more axioms and derive some corollaries of theorem 1.

Axiom 4 (Thomsen condition w.r.t. the first 2 components) For every
x1, y1, z1 ∈ X1, x2, y2, z2 ∈ X2, [(x1, z2) ∼12 (z1, y2) and (z1, x2) ∼12 (y1, z2)] ⇒
(x1, x2) ∼12 (y1, y2).

We now introduce the notion of a standard sequence, which we use in our
following Archimedean axiom :

Definition 1 (standard sequence) For any set N of consecutive integers (pos-
itive or negative, finite or infinite), a set {xk1 : xk1 ∈ X1, k ∈ N} is a standard
sequence w.r.t. the first component iff Not((x01, x

0
2, . . . , x

0
n) ∼ (x01, x

1
2, . . . , x

1
n)) and

for all k, k + 1 ∈ N , (xk1, x
0
2, . . . , x

0
n) ∼ (xk+1

1 , x12, . . . , x
1
n).

Axiom 5 (Archimedean axiom) Any strictly bounded standard sequence w.r.t.
the first component is finite.

We now have all the material to deduce two practical corollaries.

Corollary 1 Suppose (X,%) satisfies the weak ordering (axiom 1), independence
(axiom 2), solvability w.r.t. 2 components (axiom 3), Thomsen condition w.r.t.
the solvable components (axiom 4) and the Archimedean axiom (axiom 5). Then
there exists an additive utility representing %. Moreover, this utility is an interval
scale.

From an operational point of view, axiom 4 is more difficult to test than
axiom 2. In the classical theorems for Cartesian products of dimensions greater
than or equal to 3, this axiom does not appear because it is implied by the
independence axiom and solvability. We will see next that the same result can be
obtained when solvability holds w.r.t. 3 components.
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Corollary 2 Suppose (X,%) satisfies the weak ordering (axiom 1), independence
(axiom 2), solvability w.r.t. three components (axiom 3) and the Archimedean ax-
iom (axiom 5). Then there exists an additive utility representing for %. Moreover,
this utility is an interval scale.

3 Negative Results : Counterexamples

In this section we present counterexamples showing that the results mentioned
above cannot be significantly strengthened. More precisely, we first show that
corollary 1 would not be true any more without solvability w.r.t. two compo-
nents. Secondly, we show that one cannot drop the Thomsen condition if only
two components are solvable.

3.1 Two Solvable Components Are Required In Corol-
lary 1

In this subsection we give an example in which only one component is solvable,
which satisfies axioms 1, 2, 4, 5, and which yet admits no additive utility.

Consider a two-dimensional Cartesian product X = R×{0, 2, 4, 6} and a weak
order % on X represented by the utility function U : X → R defined as:

U(x, y) =


f(x) if y = 0 where f(x) = x
g(x) if y = 2 where g(x) = x+ 2
h(x) if y = 4 where h(x) = x+ 4
k(x) if y = 6 where k(x) = 5.5 + 2p+ 0.5(z + 1)2

and x = z + 2p, z ∈ [−1, 1[.

Since we defined % by one of its utility functions, % is a weak order; so
axiom 1 holds. Independence is guaranteed by the fact that functions f , g, h and
k are all strictly increasing—which means that U(x, y) ≥ U(x′, y) ⇔ x ≥ x′ ⇔
U(x, y′) ≥ U(x′, y′)—and that the graphs of the functions never intersect each
other—which means that U(x, y) ≥ U(x, y′) ⇔ y ≥ y′ ⇔ U(x′, y) ≥ U(x′, y′).
The Archimedean axiom is satisfied for any standard sequence {xk1 : xk1 ∈ X1, k ∈
N, Not((x01, x

0
2) ∼ (x01, x

1
2)) and for all k, k + 1 ∈ N , (xk1, x

0
2) ∼ (xk+1

1 , x12)} for
which x02, x

1
2 ∈ {0, 2, 4} because, on R×{0, 2, 4}, U is additive. Note that for any

x, x + 6 ≤ k(x) ≤ x + 6.5, and so standard sequences in which x02 or x12 equal 6
have no accumulation point; hence we can conclude that the Archimedean axiom
is satisfied.

The most difficult part is to show that axiom 4 (the Thomsen condition)
holds. This is obviously satisfied on R × {0, 2, 4} since the utility on this set
is U(x, y) = x + y. Now, the Thomsen condition implies that [(x, y′) ∼ (x′, y)
and (x′′, y) ∼ (x, y′′)] ⇒ (x′, y′′) ∼ (x′′, y′). Replace y by 2, y′ by 4 and y′′ by
6. Then we obtain—see figure 1—[A = (x, 4) ∼ B = (x′, 2) and D = (x′′, 2) ∼
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Figure 1: graph of the utility function U .

C = (x, 6)] ⇒ [F = (x′, 6) ∼ E = (x′′, 4)]. Let us translate these indifferences in
terms of functions: A ∼ B means that h(x) = g(x′), and so, since g is one to one,
x′ = g−1 ◦ h(x); similarly, D ∼ C is equivalent to x′′ = g−1 ◦ k(x) and F ∼ E
means that h(x′) = k(x′′). Combining these relations, we obtain that, for any
x ∈ R, k ◦ g−1 ◦ h(x) = h ◦ g−1 ◦ k(x). Replacing h(x) and g(x) by their values,
one would obtain: k(x+ 2) = k(x) + 2. Had we replaced y and y′ by other values,
we would have obtained the following equalities:

k ◦ f−1 ◦ g(x) = g ◦ f−1 ◦ k(x) and k ◦ f−1 ◦ h(x) = h ◦ f−1 ◦ k(x), for any x ∈ R

which are equivalent respectively to

k(x+ 2) = k(x) + 2 and k(x+ 4) = k(x) + 4, for any x ∈ R.

From our definition of the function k, it is obvious that all these equalities hold,
and so does the Thomsen condition.

So axioms 1, 2, 4 and 5 hold, the first component is solvable, and yet there
exists no additive utility because (0, 6) ∼ (2, 4), (2, 0) ∼ (0, 2), (.5, 2) ∼ (2.5, 0)
and (2.5, 4) � (.5, 6).
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3.2 Three Solvable Are Components Required In Corol-
lary 2

For three or more component spaces, under solvability assumptions, the Thomsen
condition is implied by the independence axiom. The question that arises natu-
rally is the following one: is this property still true with our weaker assumptions?
To put it another way, is the Thomsen condition implied by the independence
just because there exists a third component or does this component need to be
solvable? The question is important because if the first alternative is right, then
one does not need the Thomsen condition to derive the additive representability
of %12 in corollary 1.

3.2.1 The Two-Component Case

The first case that arises is the one in which % is a preference relation in a
two-dimensional Cartesian product. Then, solvability is supposed to hold w.r.t.
all components. This case has been well studied in the literature. Examples
are known for which independence holds but not the Thomsen condition, thus
forbidding additive representability. For instance, let % on R2 be represented by
the function U : R2 → R such that U(x, y) = x + y + min{x, y}. % satisfies
independence but not the Thomsen condition since (.2, .2) ∼ (.5, .05), (.7, .05) ∼
(.2, .4) and (.5, .4) � (.7, .2).

3.2.2 The Three-Component Case

In this subsection, our aim is to generalize the previous subsection to the case of
3-component Cartesian products. More precisely, we prove the following theorem:

Theorem 2 On 3-component Cartesian products, the Thomsen condition for %12

is not implied by independence w.r.t. all the components and solvability w.r.t. only
2 components.

The proof consists in devising a general method for constructing on a Cartesian
product Ω = R×R×{z0, z1}, where z0 and z1 are arbitrary constants, a preference
ordering % satisfying the assumptions and exhibiting a particular one which does
not admit an additive utility. We suppose in the sequel that z0 ≺3 z1. The
approach we follow to define % is to construct one of its utility functions U on
Ω by defining the indifference classes of %, or, more precisely, the indifference
curves in the planes {z = z0} and {z = z1}. Of course independence imposes
some relations between those planes. We first explain these constraints and then
construct an example.

Suppose that U exists, satisfying all the conditions described above. By inde-
pendence,

for any x, x′, y, y′ ∈ R, (x, y, z0) ∼ (x′, y′, z0)⇔ (x, y, z1) ∼ (x′, y′, z1).
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This means that the indifference curves are the same in the planes {z = z0}
and {z = z1}. Of course, even if their shape is the same in both planes, their
values differ—otherwise one would have U(x, y, z0) = U(x, y, z1), which, by in-
dependence, would be true for any couple (x, y), and so z0 would be indiffer-
ent to z1. This suggests that we construct two functions V : R × R → R and
ϕ : R → R, describing the indifference curves in the plane {z = z0} and the
transformation of the values of the indifference curves from the plane {z = z0}
to the plane {z = z1} respectively. In mathematical terms, U(x, y, z0) = V (x, y)
and U(x, y, z1) = ϕ ◦V (x, y). The construction of % on Ω can then be reduced to
projecting the curves obtained by V onto the planes {z = z0} and {z = z1} and
using ϕ to change the values associated with the curves of the plane {z = z1}.

Ensuring that the independence axiom is not violated inside the planes is not
difficult: it is sufficient that V (x, y) strictly increases in x and y—i.e. V (x, y) ≥
V (x′, y) ⇔ x ≥ x′ and V (x, y) ≥ V (x, y′) ⇔ y ≥ y′—and that ϕ is strictly
increasing. As a matter of fact, suppose these conditions hold. Then

for any x, x′, y, y′ ∈ R, (x, y, z0) % (x′, y, z0)⇔ x ≥ x′ ⇔ (x, y′, z0) % (x′, y′, z0).

The same argument would apply if the roles of x and y had been exchanged.
Since ϕ is strictly increasing, V (x, y) ≥ V (x′, y′)⇔ ϕ ◦ V (x, y) ≥ ϕ ◦ V (x′, y′), so
independence holds in both planes.

Now we must examine the constraints imposed by the independence axiom
when both elements do not belong to the same plane, i.e. constraints imposed by
relations similar to (x, y, z0) % (x′, y, z1). We call these constraints “inter-plane
independence constraints”. They are explained in figure 2. Since the indifference
curves are the same in both planes, we found it convenient to superpose them in
the same drawing. To differentiate them, we drew the indifference curves of the
plane {z = z0} with bold lines, unlike that of {z = z1}. V is strictly increasing
in x and y, so “V (x, y) = constant” are decreasing curves—provided of course
that they are continuous, which we suppose to be true—and hence can be written
equivalently as “y = function(x)”, where the function is strictly decreasing. In
figure 2 we assigned to each curve its function.

Suppose that A = (x′, y, z0) ∼ B = (x′, y′′, z1). Then, by independence, C =
(x′′, y, z0) ∼ D = (x′′, y′′, z1). Suppose now that F = (x, y′, z0) ∼ A = (x′, y, z0) ∼
G = (x′′, y′, z1). Then, still by independence, E = (x, y′′, z0) ∼ D = (x′′, y′′, z1).
Hence we must also have E = (x, y′′, z0) ∼ C = (x′′, y, z0). Now, let us express
this relation in terms of functions. Given an arbitrary point C = (x′′, y) and some

known functions f and h, we define

{
x′′ → y′ = h(x′′)→ x = f−1(y′)
y → x′ = f−1(y)→ y′′ = h(x′).

This determines two points on the curve y = g(x) because y′′ = g(x) and x′′ =
g−1(y), or, to put it another way, h ◦ f−1 ◦ g(x′′) = g ◦ f−1 ◦ h(x′′). Hence
independence inter planes implies that for any x, h ◦ f−1 ◦ g(x) = g ◦ f−1 ◦
h(x). This means that when constructing the example, if f and h are already
known functions, then any function “inside” those two—i.e. any function whose
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Figure 2: the inter-plane constraints.

indifference curve is between the indifference curves associated with f and h—is
allowed to be chosen with a certain degree of freedom only on a small interval
which corresponds to the interval [CE]. As for the degree of freedom, any curve
will fit as long as independence holds inside the planes. Moreover, certain curves
outside f and h—like the one at point D—are determined by the curves inside f
and h. For instance, point D is determined by A,B,C and E,F,G. In fact this
is the case for any outside curve because once the inside ones are chosen, locally
near f and h, the outside curves—like k—are imposed. But then g and k can
play the role taken previously by f and h, which impose another function deduced
from h—which is “inside” g and k—and so on. By this process, we construct an
infinite standard sequence, which, by the Archimedean axiom, implies that the
whole space can be reached.

Now we have all the material needed to construct functions V and ϕ. For
simplicity, our example uses the line y = x as a symmetry axis. This is convenient
because it implies some symmetry between the first two components. V describes
indifference curves in R × R; we call the latter Cα, using the following rule to
evaluate α: the point of coordinates (α, α) belongs to the curve Cα. Moreover we
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impose on V to satisfy V (x, x) = x for any x ∈ R. Hence Cα = {(x, y) ∈ R2 :
V (x, y) = α}. To the curve Cα we associate the function fα, i.e. Cα = {(x, y) ∈
R2 : y = fα(x)}. Of course, there is a one to one mapping between fα and Cα.

To start the construction, we have chosen as functions f and h of figure 2 the
functions f0 and f1. This means that fϕ(0) = f1, or ϕ(0) = 1, or, more simply,
that (0, 0, z1) ∼ (1, 1, z0). These functions can be taken arbitrarily—provided of
course that they are strictly decreasing and do not intersect. Here we have chosen:

f0(x) =

{
−2x if x ≤ 0
−x

2
if x ≥ 0

(2)

f1(x) =

{
−2x+ 3 if x ≤ 1
3−x
2

if x ≥ 1.
(3)

Note that f0 and f1 are continuous, strictly decreasing, and hence one to one,
vary from +∞ to −∞ and the line y = x is a symmetry axis.1

Now we must construct the inside curves. For this purpose we use a two-step
process. First we choose the “arbitrary” part of the function to correspond with
the utility given in the previous subsection:

for any α ∈]0, 1[, fα(x) =

{
−2x+ 3α if x ∈ [α−1

2
, α]

3α−x
2

if x ∈ [α, 2α + 1].
(4)

Then the inter-plane independence imposes the rest of the construction as seen in
figure 2. This results in the following equation:

for any x ∈ R, fα ◦ f−10 ◦ f1(x) = f1 ◦ f−10 ◦ fα(x). (5)

Note that Eq. (5) is satisfied for α = 0 and α = 1, and that (4) is not in conflict
with (5) because fα increases on [α−1

2
, 2α + 1] and f−10 ◦ f1(2α + 1) = α−1

2
. We

present in figure 3 a summary of Eq. (5): if A belongs to Cα, then B must also
belong to Cα, and conversely.

Curves Cα defined by (4) and (5) satisfy all the conditions imposed previously.
In particular, Eq. (5) extends the definition of Cα over R. The properties of these
curves are described in the following lemma.

Lemma 1 Consider an arbitrary α in ]0, 1[, and suppose that fα is defined by
Eq. (4) and Eq. (5). Then fα is well defined on R, is continuous, strictly decreases,
fα(R) = R, and the line y = x is a symmetry axis. Moreover

for any α, β ∈ [0, 1], α ≤ β ⇔ fα(x) ≤ fβ(x), for any x ∈ R.

1The construction given below is very long, although its principle is quite simple. The only
way to shorten it significantly seems to me to select an example in which all indifference curves,
Cα, are translations of C0 w.r.t. the line y = x. However such an example seems very difficult to
elicit; According to some of my experiments, such a curve C0, if tending asymptotically toward
f0 of equation 2, should be “close” to the hyperbole y = f0(x) = (−9− 5x+ 3

√
9 + 2x+ x2)/4.
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Figure 3: construction of the inside curves.

Now that the construction of the inside curves is completed, there remains the
construction of the outside curves. For this purpose we use a two-step process
again. First we describe how to construct them “locally” above f1; this is Eq. (6).
Second, we explain in (8) and (9) how this construction can be extended to the
whole space.

Let us come back to figure 2. In this one, point D of the plane {z = z1} is in-
different to points C and E of the plane {z = z0}. This means that U(x′′, y′′, z1) =
U(x′′, y, z0), or, in terms of V and ϕ, V (x′′, y′′) = ϕ ◦ V (x′′, y). But we also know
that, by inter-plane independence, y′′ = k(x′′) = h◦f−1 ◦g(x′′). So we can deduce
the following construction for our example:

for any x ∈ R, fϕ(α)(x) = fα ◦ f−10 ◦ f1(x) = f1 ◦ f−10 ◦ fα(x), (6)

which corresponds in the following figure to: “if A and B belong to Cα, then E
and G belong to Cϕ(α)”.

Properties of these curves are described in the following lemma:

Lemma 2 Consider an arbitrary α in [0, 1], and suppose that fϕ(α) is defined
by Eq. (6). Then fϕ(α) is well defined on R, is continuous, strictly decreases,
fϕ(α)(R) = R, the line y = x is a symmetry axis, and, for any β ∈ [0, 1], α ≤ β ⇔
fϕ(α)(x) ≤ fϕ(β)(x) for any x ∈ R. Moreover

for any x ∈ R, fϕ(α)(x) ◦ f−1ϕ(0) ◦ fϕ(1)(x) = fϕ(1) ◦ f−1ϕ(0) ◦ fϕ(α)(x). (7)
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Figure 4: construction of the outside curves.

Now it is time to give the global construction of the example. Equations (5)
and (7) reveal that functions fϕ(α) and fα have the same kind of inter-plane
independence property. Hence fϕ2(α)—where ϕ2 stands for ϕ ◦ ϕ—can be defined
from fϕ(α) in a similar way to that of fϕ(α) from fα. This gives rise to Eq. (8) and
Eq. (9), in which α ∈ [0, 1] and k ∈ N—ϕ0 is supposed to be the identity on R.

fϕk+1(α)(x) =

{
fϕk(α) ◦ f−1ϕk(0)

◦ fϕk(1)(x)

fϕk(1) ◦ f−1ϕk(0)
◦ fϕk(α)(x).

(8)

fϕ−k−1(α)(x) =

{
fϕ−k(α) ◦ f−1ϕ−k(0)

◦ fϕ−k(1)(x)

fϕ−k(1) ◦ f−1ϕ−k(0)
◦ fϕ−k(α)(x).

(9)

The process of construction ensures that fϕk+1(α) and fϕ−k−1(α) are well defined
and continuous on R, strictly decrease and admit y = x as a symmetry axis,
that fϕk+1(α)(R) = R and that fϕ−k−1(α)(R) = R. Moreover, if α, β ∈ [0, 1], then
α ≤ β ⇔ fϕk(α)(x) ≤ fϕk(β)(x) for any x ∈ R and any integer k.

Note that f−1
ϕk(0)
◦ fϕk(1) = f−10 ◦ f1; as a matter of fact, f1 = (f1 ◦ f−10 )0 ◦ f1, by

(6), fϕ(1) = (f1 ◦ f−10 )◦ f1, and, for an arbitrary k > 2, if fϕk(1) = (f1 ◦ f−10 )k−1 ◦ f1
and fϕk−1(1) = (f1 ◦ f−10 )k−2 ◦ f1, then by (8), fϕk+1(1) = fϕk(1) ◦ f−1ϕk(0)

◦ fϕk(1) =

fϕk(1) ◦ f−1ϕk−1(1)
◦ fϕk(1) = (f1 ◦ f−10 )k ◦ f1 ◦ f−11 ◦ (f0 ◦ f−11 )k−1 ◦ (f1 ◦ f−10 )k ◦ f1 =

(f1 ◦ f−10 )k+1 ◦ f1. So for any k ∈ N, fϕk(1) = (f1 ◦ f−10 )k ◦ f1. But ϕ(0) = 1, so
f−1
ϕk(0)

◦ fϕk(1) = f−11 ◦ [(f1 ◦ f−10 )−1]k−1 ◦ (f1 ◦ f−10 )k ◦ f1 = f−10 ◦ f1.
The construction of the ordering is now completed, and it remains only to

prove that it satisfies all the expected properties. This is done in the following
theorem:

13



Theorem 3 The binary relation % represented by functions fϕk(α) is a well de-
fined weak order on Ω and satisfies the independence and Archimedean axioms.
Moreover, the first two components are solvable.

Up till now, the construction has been conducted on a very abstract level, and
it is rather difficult to imagine the shape of the indifference curves. Hence we
provide in figure 5 the drawing of some of them, locally around the origin of the
axes.

6 7431 2 5

3

5

6

y

2

1

7

4

x

C
0

C
1

C
ϕ 2(1)C

ϕ(1)

C
ϕ 2(.5)C

ϕ(.25)

C
ϕ(.75)

C
.5

C
ϕ−1(0)

C
ϕ−1(.25)

Figure 5: some indifference curves around the axes.

To conclude, it must be shown that the Thomsen condition does not hold every-
where in Ω. As a matter of fact, U(.2, .2, z0) = U(.5, .05, z0) = .2, U(.7, .05, z0) =
U(.2, .4, z0) = 4/15 and U(.5, .4, z0) = 13/30 > U(.7, .2, z0) = 11/30. Hence there
exists no additive utility representing %.

14



3.2.3 The n-Component Case

So far we have proved that the combination of solvability w.r.t. 2 components and
the independence axiom is not sufficient to derive the additive representability of
% for three component spaces. But this result can be extended: suppose that
Ω = R × R × {z0, z1} × {z0, z2} × . . . × {z0, zp} where z0, z1,. . . ,zp are arbitrary.
Use the indifference curves defined in the preceding subsection and suppose that

U(x, y, zi1 , zi2 , . . . , zip) = ϕi1+i2+···+ip ◦ U(x, y, z0, . . . , z0),

where, for any j ∈ {1, . . . , p}, ij ∈ {0, j}.
First, consider an arbitrary j ∈ {1, . . . , p(p+1)

2
} and α ∈ R, and define ψ = ϕj.

fψ(0) ◦ f−10 ◦ fα = fϕj(0) ◦ f−10 ◦ fα = (f1 ◦ f−10 )j ◦ fα. By repeated use of (5),
we obtain fψ(0) ◦ f−10 ◦ fα = fα ◦ (f−10 ◦ f1)j = fα ◦ f−10 ◦ fψ(0). This generalizes
formula (5). fψ(α) = fϕj(1)◦f−1ϕj(0)

◦fϕj−1(α) = f1◦f−10 ◦fϕj−1(α) and so, by induction

on j, fψ(α) = (f1 ◦ f−10 )j ◦ fα = fψ(0) ◦ f−10 ◦ fα, which generalizes formula (6).
Similarly one can generalize (8) and (9) as follows: for any k ∈ N,

fψk+1(α)(x) = fψk(α) ◦ f−1ψk(0)
◦ fψk+1(0)(x) = fψk+1(0)(x) ◦ f−1

ψk(0)
◦ fψk(α)

fψ−k−1(α)(x) = fψ−k(α) ◦ f−1ψ−k+1(0)
◦ fψ−k(0)(x) = fψ−k(0)(x) ◦ f−1

ψ−k+1(0)
◦ fψ−k(α).

By a proof similar to the one of theorem 3, it is possible to prove that % repre-
sented by U is a weak order on Ω that satisfies the independence and Archimedean
axioms, and that the first two components are solvable. And yet

U(.2, .2, z0, . . . , z0) = U(.5, .05, z0, . . . , z0) = .2
U(.7, .05, z0, . . . , z0) = U(.2, .4, z0, . . . , z0) = 4/15
U(.5, .4, z0, . . . , z0) = 13/30 > U(.7, .2, z0, . . . , z0) = 11/30.

Hence there exists no additive utility representing %.

4 Conclusion

Throughout, sufficient conditions for the existence of additive utilities have been
given. It has been shown that the structural assumption usually used to en-
sure additive representability can be weakened to “unrestricted” solvability w.r.t.
2 components. However, this assumption drives additive utilities toward +∞
and −∞, which might raise some problems. For instance, components could be
bounded (e.g. the mass of an object, or its speed). In the literature, the usual way
to deal with such a problem is to substitute solvability (axiom 3) by restricted
solvability (see axiom 6 below).

Axiom 6 (unrestricted solvability w.r.t. the ith component) Let x ∈ X,
ai, bi ∈ Xi and yj ∈ Xj for all j 6= i, be such that (y1, . . . , yi−1, ai, yi+1, . . . , yn) %
x % (y1, . . . , yi−1, bi, yi+1, . . . , yn). Then, there exists ci ∈ Xi such that x ∼
(y1, . . . , yi−1, ci, yi+1, . . . , yn).
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Therefore, it would be very appealing if our results could be extended to cases
in which restricted solvability holds w.r.t. 2 components. However, this extension
is not straightforward because, unlike unrestricted solvability, restricted solvability
structures the space of preferences only locally. For instance, suppose that X =
[1, 2]×[1, 2]×1, 2 and that % is represented by u(x, y, z) = [7

8
(x+y)]z. It is obvious

that restricted solvability holds w.r.t. the first two components. It can be shown
that independence, the Thomsen condition w.r.t. the first two components and
the Archimedean axiom hold; but no additive utility exists because u(2, 1.5, 1) =

u(1, 1, 2) = 49
16

, u(2, 2, 1) = u(4
√

2
7
− 1, 1, 2) = 7

2
and u(1, 2, 1) = 21

8
= 2.625 >

u(4
√

2
7
− 1, 1.5, 1) =

√
7
2
− 7

16
≈ 1.433. This example as well as some sufficient

conditions to deal with restricted solvability w.r.t. 2 components are studied in
Gonzales (1995). However, the latter require more structural and cancellation
axioms than the conditions presented here.

5 Acknowledgment

I am greatly indebted to Jean-Yves Jaffray and Peter Wakker for their help on
the content and presentation of this paper. I am also grateful to the referees for
their helpful comments.

6 Appendix: Proofs

Proof of theorem 1: Fix an arbitrary element of
∏n

i=3Xi: (x03, . . . , x
0
n). It is

known that (x1, x2) -12 (y1, y2) ⇔ (x1, x2, x
0
3, . . . , x

0
n) - (y1, y2, x

0
3, . . . , x

0
n). By

hypothesis, %12 is representable by an additive utility; so there exist real valued
functions u1 and u2 on X1 and X2 respectively such that:

(x1, x2, x
0
3, . . . , x

0
n) - (y1, y2, x

0
3, . . . , x

0
n)⇔ u1(x1) + u2(x2) ≤ u1(y1) + u2(y2).

Now for i = 3, 4, . . . , n, let ui(x
0
i ) be arbitrary real numbers. Clearly,

(x1, x2, x
0
3, . . . , x

0
n) - (y1, y2, x

0
3, . . . , x

0
n)

⇔ u1(x1) + u2(x2) +
∑n

i=3 ui(x
0
i ) ≤ u1(y1) + u2(y2) +

∑n
i=3 ui(x

0
i ).

By solvability w.r.t. the first component, for any yi of Xi, there exists an
element x1(yi) in X1 such that (x1(yi), x

0
2, . . . , x

0
n) ∼ (x01, . . . , x

0
i−1, yi, x

0
i+1, . . . , x

0
n).

Define
ui(yi) = u1(x1(yi))− u1(x01) + ui(x

0
i ).

Note that x1(x
0
i ) = x01, hence ui(x

0
i ) is well defined. We are to show that functions

ui, defined as above, form an additive utility function.
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Now suppose that in
∏k

i=1Xi ×
∏n

i=k+1{x0i },

(x1, . . . , xk, x
0
k+1, . . . , x

0
n) - (y1, . . . , yk, x

0
k+1, . . . , x

0
n)

⇔
∑k

i=1 ui(xi) +
∑n

i=k ui(x
0
i ) ≤

∑k
i=1 ui(yi) +

∑n
i=k ui(x

0
i ).

Consider an arbitrary element y = (y1, . . . , yk+1, x
0
k+2, . . . , x

0
n) of the set

∏k+1
i=1 Xi×∏n

i=k+2{x0i }. By solvability w.r.t. the second component, there exists y′2 such
that (y1, y2, y3, . . . , yk, x

0
k+1, . . . , x

0
n) ∼ (x01, y

′
2, x

0
3, . . . , x

0
n), and, from the equiva-

lence above,
∑k

i=1 ui(yi) = u1(x
0
1) + u2(y

′
2) +

∑k
i=3 ui(x

0
i ). Then, by the inde-

pendence axiom, y ∼ (x01, y
′
2, x

0
3, . . . , x

0
k, yk+1, x

0
k+1, . . . , x

0
n). But, by the defini-

tion of ui, there exists a point x1(yk+1) in X1 such that (x1(yk+1), x
0
2, . . . , x

0
n) ∼

(x01, ..., x
0
k, yk+1, x

0
k+2, ..., x

0
n) and uk+1(yk+1) = u1(x1(yk+1))− u1(x01) + uk+1(x

0
k+1).

Therefore, y ∼ (x1(yk+1), y
′
2, x

0
3, . . . , x

0
n) and

∑k+1
i=1 ui(yi) = u1(x1(y1)) + u2(y

′
2) +∑k+1

i=3 ui(x
0
i ). So any element of

∏k+1
i=1 Xi ×

∏n
i=k+2{x0i } has an equivalent in

X1 ×X2 ×
∏n

i=3{x0i }, and their utilities are equal. So in
∏k+1

i=1 Xi ×
∏n

i=k+2{x0i },

(x1, . . . , xk+1, x
0
k+2, . . . , x

0
n) - (y1, . . . , yk+1, x

0
k+2, . . . , x

0
n)

⇔
∑k+1

i=1 ui(xi) +
∑n

i=k+2 ui(x
0
i ) ≤

∑k+1
i=1 ui(yi) +

∑n
i=k+2 ui(x

0
i ).

Since this property was true for k = 2, by induction it is also true for any k ∈
{2, . . . , n}. So there exists an additive utility representing %.

To complete the proof, let us show the uniqueness up to scale and location.
First, u1 and u2 are interval scales. As a matter of fact, their existence, combined
with solvability w.r.t. the first two components, ensure that on X1 × X2, the
Thomsen condition and the Archimedean axiom, and, more generally, all the
hypotheses of the classical theorem hold. Using the latter, we conclude that the
uniqueness is up to scale and location.

Suppose that vi, i = 1, 2, . . . , n, are functions having the same property as ui,
and consider any element yk of Xk, for k in {3, . . . , n}. Let x1(yk) be such that
(x1(yk), x

0
2, . . . , x

0
n) ∼ (x01, . . . , x

0
k−1, yk, x

0
k+1, . . . , x

0
n). Then vk(yk) = v1(x1(yk)) −

v1(x
0
1)+vk(x

0
k). By hypothesis, it is already known that there exists some constants

a > 0, b1, b2 such that v1 = a · u1 + b1 and v2 = a · u2 + b2. So vk(yk) =
a · u1(x1(yk)) − a · u1(x01) + vk(x

0
k) = a · uk(yk) + vk(x

0
k) − a · uk(x0k). But x0k is a

constant so vk(x
0
k)− a · uk(x0k) is also a constant. Hence functions ui are interval

scales. �

Proof of corollaries 1 and 2: Obvious because axioms 4, 5 and 3 (solvability
w.r.t. 3 components) guarantee the existence of additive utilities on X1 ×X2. �

Proof of lemma 1: By Eq. (2) and Eq.(3), we deduce the following equations:

f−10 ◦ f1(x) =


x− 3

2
if x ∈]−∞, 1]

x−3
4

if x ∈ [1, 3]
x− 3 if x ∈ [3,+∞]
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f1 ◦ f−10 (x) =


x+ 3

2
if x ∈]−∞,−1

2
]

4x+ 3 if x ∈ [−1
2
, 0]

x+ 3 if x ∈ [0,+∞].

So by Eq. (5), for any α in ]0, 1[, fα ◦ f−10 ◦ f1(2α + 1) = fα(α−1
2

). Hence,
Eq. (4) does not contradict Eq. (5). Using (4) and (5), we define fα over [α−4

2
, α−1

2
]

since f−10 ◦ f1 is obviously continuous and increasing, f−10 ◦ f1(α−12
) = α−4

2
and

f−10 ◦ f1(2α + 1) = α−1
2

. f−10 ◦ f1 and f1 ◦ f−10 being continuous and strictly
increasing over [α−1

2
, 2α+ 1], fα is continuous and strictly decreases on [α−4

2
, α−1

2
].

By induction, we construct fα on ] −∞, 2α + 1] since it is easily shown that for
any k in N, f−10 ◦ f1(α−1−3k2

) = α−4−3k
2

. Of course the construction by induction
ensures that fα is continuous and strictly decreasing.

Moreover for any k in N, f1 ◦ f−10 ◦ fα(α−1−3k
2

) = 2α + 1 + 3k, which ensures
that limx→−∞ fα(x) = +∞. The line y = x being a symmetry axis for f0 and
f1 on R, and for fα on [α−1

2
, 2α + 1], it is also a symmetry axis for fα on R.

Hence fα is well defined on [−2α − 1,+∞[, continuous, strictly increasing and
limx→+∞ fα(x) = −∞.

Now, consider α, β ∈ [0, 1] such that α ≤ β. By Eq. (4)—and Eq. (2) and
Eq. (3) if α or β is equal to 0 or 1—it is obvious that for any x ∈ [β−1

2
, 2α + 1],

fα ≤ fβ. On [α−1
2
, β−1

2
], the inequality fα(x) ≤ fβ(x) must also hold, otherwise fβ

would not be one to one. Now if there existed an x in R such that fα(x) > fβ(x),
then by repeated uses of (5), there would exist an x′ ∈ [α−1

2
, 2α + 1] such that

fα(x′) > fβ(x′), which has been shown to be impossible. Conversely, if for any
x ∈ R, fα(x) ≤ fβ(x), then this is true in particular for any x ∈ [β−1

2
, 2α + 1].

But then by Eq. (4)—and (2) or (3)—α ≤ β. �

Proof of lemma 2: By (5), we know that fϕ(α) is well defined on R for any
α ∈ [0, 1]. Since fα, f0 and f1 are continuous, strictly decrease, vary from +∞
to −∞ and are symmetric w.r.t. the line y = x, fϕ(α) has the same properties.
By lemma 1, for any α, β ∈ [0, 1], α ≤ β ⇔ fα(x) ≤ fβ(x) for any x ∈ R, and it
follows from the change of variable y = f−11 ◦ f0(x), and the fact that f−11 ◦ f0(x)
varies from −∞ to +∞, that α ≤ β ⇔ fα ◦ f−10 ◦ f1(y) ≤ fβ ◦ f−10 ◦ f1(y) for any
y ∈ R.

fϕ(1) = f1 ◦ f−10 ◦ f1 and fϕ(0) = f1 — since by hypothesis ϕ(0) = 1;
so fϕ(α) ◦ f−1ϕ(0) ◦ fϕ(1) = fα ◦ f−10 ◦ f1 ◦ f−11 ◦ f1 ◦ f−10 ◦ f1 = fα ◦ f−10 ◦ f1 ◦ f−10 ◦ f1 =

f1 ◦ f−10 ◦ fα ◦ f−10 ◦ f1 = f1 ◦ f−10 ◦ f1 ◦ f−11 ◦ fα ◦ f−10 ◦ f1 = fϕ(1) ◦ f−1ϕ(0) ◦ fϕ(α),
hence proving that Eq. (6) holds. �

In order to prove theorem 3, we first introduce two lemmas, namely lemmas 3
and 4.

Lemma 3 Suppose that for any α ∈ [0, 1], Cα is given by (2), (3) or (4) and (5).
Suppose that Cϕk(α) and Cϕ−k(α) are given for any k ∈ N by (6) and (8), and (6)
and (9) respectively. Then ϕ is well defined on R and Cβ is well defined for any
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β ∈ R. Moreover ϕ is one to one and strictly increases from −∞ to +∞; for any
(x, y) ∈ R2, there exists α ∈ R such that (x, y) ∈ Cα, and the following hold:

for any α, β ∈ R, α ≤ β ⇔ fα(x) ≤ fβ(x) for any x ∈ R,
for any x, x′, y1, y2, α, β ∈ R, fα(x) = fβ(x′)⇒ fϕ(α)(x) = fϕ(β)(x

′).

Proof of lemma 3: By (4), every point in the polyhedron defined by {y ≤
f1(x); y ≥ f0(x); y ≤ 4x + 3; y ≥ x−3

4
} belongs to an indifference curve Cα. It is

easily shown that any point in the domain {y ≤ f1(x); y ≥ f0(x); y ≤ 4x+ 9 + 3;
y ≥ 4x + 3} is obtained by (5) from a point in the previous polyhedron; and, by
induction, that, for any k > 1, any point in the polyhedron {y ≤ f1(x); y ≥ f0(x);
y ≤ 4x + 9k + 3; y ≥ 4x + 9k − 6} is obtained by formula (5) from a point in
{y ≤ f1(x); y ≥ f0(x); y ≤ 4x+ 9(k− 1) + 3; y ≥ 4x+ 9(k− 1)− 6}. By using the
symmetry axis y = x, we conclude that every point in the polyhedron {y ≤ f1(x);
y ≥ f0(x)} belongs to an indifference curve Cα.

Now suppose that, for k ≥ 0, every point in the domain {y ≤ fϕk(1)(x);
y ≥ fϕk(0)(x)} belongs to a curve Cϕk(α). Consider an arbitrary point (x0, y0) in
the domain defined by {y ≤ fϕk+1(1)(x); y ≥ fϕk+1(0)(x)}. By hypothesis, y0 is
such that y0 ≤ fϕk+1(1)(x0) and y0 ≥ fϕk+1(0)(x0). So y1 = f0 ◦ f−11 (y0) is such
that fϕk(0)(x0) ≤ y1 ≤ fϕk(1)(x0). And by hypothesis there exists a curve Cϕk(α)

such that (x0, y1) ∈ Cϕk(α). So y1 = fϕk(α)(x0) and y0 = f1 ◦ f−10 ◦ fϕk(α)(x0) =
fϕk(1) ◦ f−1ϕk(0)

◦ fϕk(α)(x0). So any point in the domain defined by {fϕk+1(0)(x) ≤
y ≤ fϕk+1(1)(x)} belongs to an indifference curve Cβ. The same kind of proof holds

when k is negative. Now we must extend this local property to the whole R2.
Suppose that for k ≥ 0,

fϕk(1)(x) ≥
{

3(k + 1)− 2x if x ≤ k + 1
3(k+1)−x

2
otherwise.

Note that this is true for k = 0—for which fϕk(1) corresponds to f1. fϕk+1(1) =
(f1 ◦ f−10 )k+1 ◦ f1 = (f1 ◦ f−10 ) ◦ fϕk(1); so using the expression of f1 ◦ f−10 given in
the proof of lemma 1, we deduce that:

fϕk+1(1)(x) ≥


3(k + 2)− 2x if x ≤ k + 1

3 + 3(k+1)−x
2

if x ∈ [k + 1, 3(k + 1)]
3 + 6(k + 1)− 2x if x ∈ [3(k + 1), 3(k + 1) + 1]
3(k+2)−x

2
if x ≥ 3(k + 1) + 1.

But in [k + 1, k + 2], 3 + 3(k+1)−x
2

≥ −2x+ 3(k + 2),

in [k + 2, 3(k + 1)], 3 + 3(k+1)−x
2

≥ 3(k+2)−x
2

,

and in [3(k + 1), 3(k + 1) + 1], 3 + 6(k + 1)− 2x ≥ 3(k+2)−x
2

.

So fϕk+1(1)(x) ≥
{

3(k + 2)− 2x if x ≤ k + 2
3(k+2)−x

2
otherwise.

Since this property is true for k = 0, by induction, it is true for any k ≥ 0. So
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any point (x0, y0) in the polyhedron defined by {f0(x) ≤ y ≤ gk(x)} where

gk(x) =

{
3(k + 1)− 2x if x ≤ k + 1
3(k+1)−x

2
otherwise

is also in the polyhedron {f0(x) ≤ y ≤ fϕk(1)(x)}. But we have seen in the
previous paragraph that then there exists a curve Cα containing (x0, y0). And
limk→+∞{f0(x) ≤ y ≤ gk(x)} = {f0(x) ≤ y}. So any point in the last set belongs
to an indifference curve. A similar proof would show that any point in the set
{y ≤ f0(x)} belongs to an indifference curve.

So any point of R2 belongs to a curve Cα. This is true in particular for any point
on the line y = x. Hence Cα is defined for any α ∈ R. The principle of construction
guarantees that ϕ is defined over R. Suppose now that α and β are real numbers
such that ϕ(α) = ϕ(β). Then fϕ(α) = fϕ(β). But by the preceding paragraphs,
there exist k, k′ ∈ N and γ, δ ∈ [0, 1] such that α = ϕk(γ) and β = ϕk

′
(δ). Then

fϕ(α) = fϕk(1) ◦ f−1ϕk(0)
◦ fϕk(γ) = f1 ◦ f−10 ◦ fϕk(γ) and fϕ(β) = f1 ◦ f−10 ◦ fϕk′ (δ). Since

f1 ◦ f−10 is one to one, fϕk(γ) = fϕk′ (δ). Hence ϕk(γ) = ϕk
′
(δ) and so α = β, which

implies that ϕ is one to one.
It is already known that, for any integer k, and for any α, β ∈ [0, 1],

α ≤ β ⇔ fϕk(α)(x) ≤ fϕk(β)(x), for any x ∈ R.
But by (8) and (9), fϕk+1(0)(x) = fϕk(1)(x); so for any integers k, k′,

ϕk(α) ≤ ϕk
′
(β)⇔ fϕk(α)(x) ≤ fϕk′ (β)(x) for any x ∈ R.

So for any α, β ∈ R, α ≤ β ⇔ fα(x) ≤ fβ(x) for any x ∈ R, and since f1 ◦ f−10 is
strictly increasing,

fα(x) ≤ fβ(x)⇔ f1 ◦ f−10 ◦ fα(x) ≤ f1 ◦ f−10 ◦ fβ(x)⇔ fϕ(α)(x) ≤ fϕ(β)(x).
So ϕ is strictly increasing.

Now, to complete the proof, suppose that x, x′, y1, y2, α, β ∈ R are such that
y1 = fα(x) = fβ(x′) and y2 = fϕ(α)(x). Then fϕ(α)(x) = f1 ◦ f−10 fα(x) = f1 ◦ f−10 ◦
fβ(x′) = fϕ(β)(x

′). So y2 = fϕ(β)(x
′). �

Lemma 4 For any α, β ∈ [0, 1], there exists a constant m(α, β) such that m(α, β)
≤ fβ(x)− fα(x) for any x ∈ R. Moreover, α ≤ β ⇔ m(α, β) ≥ 0.

Proof of lemma 4: The principle of construction of fα, for α ∈ [0, 1], is to cre-
ate the function on a small interval with Eq. (4) and then to extend the definition
on R thanks to (5). But if x is greater than or equal to 4, fα(x) ≤ −.5 because
fα ≤ f1 and f1(4) = −.5. And, from the expression of f1 ◦ f−10 given in the proof
of lemma 1, f1 ◦f−10 ◦fα(x) = fα(x)+ 3

2
. So, in (5), the extension of fα on [4,+∞[

is made thanks to translations. This is similar for the extension on ] −∞,−1.5]
because f0 ≤ fα and f0(−1.5) = 3, which, following the expression of f−10 ◦ f1
given in the proof of lemma 1, implies translations.

Hence the difference fβ(x)− fα(x) need only be calculated on {x ∈ [−1.5, 4]}.
But in this set, by lemma 1, it is known that fα and fβ are continuous. So, since
[-1.5,4] is a closed interval, fβ(x)−fα(x) has maximum and minimum values which
are reached. Moreover, and again by lemma 1, α ≤ β ⇔ fα(x) ≤ fβ(x). Hence
the minimum of fβ(x)− fα(x) on [-1.5,4] is 0 if and only if α = β. �
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Proof of theorem 3: In this proof it will be shown successively that % is a
weak order on Ω, that the first two components are solvable, that the independence
axiom is satisfied and that the Archimedean axiom holds. First % is a well defined
weak order on Ω because, by lemma 3, for any (x, y) ∈ R2, there exists α ∈ R such
that (x, y) ∈ Cα and there exists β ∈ R such that ϕ(β) = α, so that (x, y) ∈ Cϕ(β).

For any α ∈ R, fα is defined on R and is one to one. So, for any y ∈ R
(resp. x ∈ R), there exists an x ∈ R (resp. y ∈ R) such that fα(x) = y. This
guarantees solvability w.r.t. x (resp. y) in the plane {z = z0}. ϕ being one to one,
continuous and varying from −∞ to +∞, there exists β ∈ R such that ϕ(β) = α;
and since U(x, y, z1) = ϕ ◦ U(x, y, z0), solvability w.r.t. x (resp. y) holds in the
plane {z = z1}. So the first two components are solvable.

Let x0, x1, y0, y1 ∈ R be such that (x0, y0, z0) - (x1, y1, z0). By lemma 3,
there exist α, β ∈ R such that α ≤ β, (x0, y0) ∈ Cα and (x1, y1) ∈ Cβ. ϕ is
strictly increasing and one to one so α ≤ β ⇔ ϕ(α) ≤ ϕ(β) ⇔ U(x0, y0, z0) =
α ≤ U(x1, y1, z0) = β ⇔ ϕ ◦ U(x0, y0, z0) = ϕ(α) ≤ ϕ ◦ U(x1, y1, z0) = ϕ(β) ⇔
(x0, y0, z1) - (x1, y1, z1). Hence independence holds w.r.t. the third component.

Now let x, y0, y1 ∈ R be such that (x, y0, z0) - (x, y1, z0). There exist α, β ∈ R
such that (x, y0) ∈ Cα and (x, y1) ∈ Cβ with α ≤ β. Then, by lemma 3, α ≤
β ⇔ fα(x) ≤ fβ(x) for any x ∈ R. So α ≤ β ⇔ y0 ≤ y1; thus for any x′ ∈ R,
(x′, y0, z0) - (x′, y1, z0). By independence w.r.t. the third component, (x, y0, z1) -
(x, y1, z1) ⇔ (x, y0, z0) - (x, y1, z0) ⇔ [(x′, y0, z0) - (x′, y1, z0) for any x′ ∈ R] ⇔
[(x′, y0, z1) - (x′, y1, z1) for any x′ ∈ R]. By symmetry between components x and
y, we also have (x0, y, z1) - (x1, y, z1) ⇔ (x0, y, z0) - (x1, y, z0) ⇔ [(x0, y

′, z0 -
(x1, y

′, z0) for any y′ ∈ R]⇔ [(x0, y
′, z1) - (x1, y

′, z1) for any y′ ∈ R]. Hence inside
the planes, independence holds w.r.t. the first and second components.

Let x, y0, y1 ∈ R be such that (x, y0, z0) ∼ (x, y1, z1). Then there exists α ∈ R
such that (x, y1) ∈ Cα and (x, y0) ∈ Cϕ(α). Thus y1 = fα(x) while y0 = fϕ(α)(x).
But by lemma 3, for any x′ ∈ R, there exists β ∈ R such that (x‘, y1) ∈ Cβ and then
(x′, y0) ∈ Cϕ(β). So for any x′ ∈ R, (x′, y0, z0) ∼ (x′, y1, z1). Now suppose that
x, y0, y1 ∈ R are such that (x, y0, z0) - (x, y1, z1). Then there exists y2 such that
(x, y0, z0) - (x, y2, z0) ∼ (x, y1, z1). By the beginning of this paragraph and the
previous one, for any x′ ∈ R, (x′, y0, z0) - (x′, y2, z0) ∼ (x′, y1, z1). By symmetry,
the following must also be true: (x, y0, z1) - (x, y1, z0) ⇒ (x′, y0, z1) - (x′, y1, z0)
for any x′ ∈ R. Hence independence holds w.r.t. the first component. And by
symmetry between x and y, it also holds w.r.t. the second component.

As for the Archimedean axiom, consider a standard sequence w.r.t. the first
component: {xk1 : xk1 ∈ R, k ∈ N, Not((x01, x

0
2, z0) ∼ (x01, x

1
2, z0)) and for all k,

k + 1 ∈ N, (xk1, x
1
2, z0) ∼ (xk+1

1 , x02, z0)}. Note that by solvability w.r.t. the second
component, any standard sequence w.r.t. the first component can be transformed
into a sequence like the one above. In the sequel we suppose that (x01, x

0
2, z0) ≺

(x01, x
1
2, z0); a similar proof would hold for the converse.

There exist α, β such that x02 = fα(x01) and x12 = fβ(x01), so that x12 = fβ ◦
f−1α (x02). Similarly, there exists γ1 such that x12 = fγ1(x

1
1). But since (x01, x

1
2, z0) ∼
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(x11, x
0
2, z0), the following equation is true:

fγ1 = fβ ◦ f−1α ◦ fβ.

There exists γ2 such that x12 = fγ2(x
2
1). But then, since (x11, x

1
2, z0) ∼ (x21, x

0
2, z0),

the following equation is true:

fγ2 = fγ1 ◦ f−1β ◦ fγ1 = (fβ ◦ f−1α )2 ◦ fβ.

By induction, when examining xk1, the following equation would be found:

fγk = (fβ ◦ f−1α )k ◦ fβ.

Now α (resp. β) can be written as ϕn(ν) (resp. ϕm(µ)), with µ and ν in
[0, 1]. Then fγk = (fµ ◦ (f−10 ◦ f1)m ◦ (f−10 ◦ f1)−n ◦ f−1ν )k ◦ fβ or, equivalently,
fγk = (fµ ◦ (f−10 ◦ f1)m−n ◦ f−1ν )k ◦ fµ ◦ (f−10 ◦ f1)m.

µ and ν belong to [0, 1]; so, for any x ∈ R, f0(x) ≤ fµ(x) ≤ f1(x) and
f0(x) ≤ fν(x) ≤ f1(x). Moreover f−10 ◦ f1 strictly increases. Hence, fγk > (f0 ◦
(f−10 ◦f1)m−n◦f−11 )k◦f0◦(f−10 ◦f1)m = f0◦(f−10 ◦f1)k(m−n−1)+m. But f−10 ◦f−11 (x) >
x − 3 and f0(x) > −x for any x. So fγk(x) > g(x) = −x + 3[k(m − n − 1) + m]

for any x. The intersection of g with the line y = x gives x = 3[k(m−n−1)+m]
2

. And

fγk is above g, so γk >
3[k(m−n−1)+m]

2
. Hence if m > n + 1, limk→+∞γk = +∞.

Therefore, the standard sequence cannot be bounded upward.
If m = n+1, then fγk = [(fµ ◦f−10 )◦ (f1 ◦f−1ν )]k ◦fµ ◦ (f−10 ◦f1)m. By lemma 4,

fµ ≥ f0 +m(0, µ) and f1 ≥ fν +m(ν, 1). Hence fγk ≥ (Id +m(0, µ) +m(ν, 1))k ◦
fµ ◦ (f−10 ◦ f1)m where Id stands for the identity function. The same reasoning
as the one in the previous paragraph leads to the unboundedness of the standard
sequence.

If m = n, then fγk = [(fµ ◦ f−1ν )]k ◦ fµ ◦ (f−10 ◦ f1)m. Here since m = n, µ > ν.
So by lemma 4, fµ ≥ fν +m(ν, µ), and so fγk ≥ (Id +m(ν, µ))k ◦ fµ ◦ (f−10 ◦ f1)m.
So there exists no upper bound, and this achieves the proof that the Archimedean
axiom holds. �
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� the asymmetric part of %.

≺ the converse of �.

%N the restriction of the preference relation % on the set
∏

i∈N Xi, with N ⊆
{1, . . . , n}.

R the set of the real numbers.

N the set of the integers.

◦ the binary operator such that f ◦ g(·) = f(g(·)), where f and g are some
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f−1 the inverse of f , i.e. f−1 ◦ f = Id.

fk fk = f ◦ f ◦ · · · ◦ f (k times).
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