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Abstract

It is shown that restricted solvability need not be required to hold w.r.t. every component
for deriving the existence of additive utilities: additive representations can be shown to
exist even when restricted solvability holds w.r.t. only two components. In such cases, the
uniqueness property of these representations departs from the classical theory in that it is
between ordinal and cardinal.
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1 Introduction

This paper studies the existence of additive utility functions on Cartesian products. Classical
conditions ensuring this existence are still unsatisfactory, for they prevent the use of additive
utilities in many applications (see, e.g., Gonzales (1996)) by assuming nonnecessary axioms,
namely solvability w.r.t. every component in the algebraic approach (see Krantz (1964),Luce and
Tukey (1964) and Fishburn (1970, chapter 5) for unrestricted solvability; see Luce (1966) and
Krantz, Luce, Suppes and Tversky (1971, chapter 6) for restricted solvability) and connectedness
w.r.t. every component in the topological approach (Debreu (1960); Wakker (1989, chapter 3);
Wakker (1993)).

In this paper, some testable axioms are provided, that ensure the existence of additive rep-
resentations when restricted solvability holds w.r.t. only two components. This generalizes the
results of Gonzales (1996) in which existence theorems were stated when unrestricted solvabi-
lity holds w.r.t. two components. As shown in Gonzales (1997), the results cannot be further
extended to the case where restricted or unrestricted solvability holds w.r.t. only one component.

The paper is organized as follows. In section 2, the axioms used in the representation
theorems are defined and explained. In particular, a slightly modified version of the classical
Archimedean axiom is introduced as well as two nonclassical axioms, namely the scaling axiom
and the i-linkness axiom. The former, which was already introduced in Gonzales (1995) for 3-
dimensional Cartesian products, is a part of the second order cancellation axiom and, therefore,
is known to be necessary, and the latter is a relaxation of restricted solvability. In section 3, two
representation and uniqueness theorems are stated, assuming restricted solvability w.r.t. only
2 components. The first one concerns 3-dimensional Cartesian products, and the second is an
extension to n-dimensional Cartesian products, the difference being in the use of the i-linkness
axiom.
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2 Definitions and Axioms

Throughout this paper, we consider a Cartesian product X =
∏n
i=1Xi, n ≥ 3. As usual, given

a binary relation % over X, the indifference relation x ∼ y stands for [x % y and y % x], the
strict preference relation x � y for [x % y and Not(y % x)], and x - y ⇔ y % x. Now, let us see
some necessary conditions for the existence of additive utilities representing %.

2.1 Necessary conditions

An additive utility is a function u : X → R such that, for all x = (x1, . . . , xn), y = (y1, . . . , yn)
in X,

x % y ⇔ u(x) ≥ u(y) and u(x) =

n∑
i=1

ui(xi), u(y) =

n∑
i=1

ui(yi). (1)

Clearly, the existence of u requires the following two axioms:

Axiom 1 (weak ordering) % is a weak order of X, i.e. % is complete (for all x,y ∈ X, x % y
or y % x) and transitive (for all x,y,z ∈ X, if x % y and y % z, then x % z).

Axiom 2 (independence) For all i ∈ {1, . . . , n} and all x,y ∈ X,
if (x1, . . . , xi−1, xi, xi+1, . . . , xn) % (y1, . . . , yi−1, xi, yi+1, . . . , yn)
then (x1, . . . , xi−1, yi, xi+1, . . . , xn) % (y1, . . . , yi−1, yi, yi+1, . . . , yn).

Independence is also referred to as coordinate independence (see Wakker (1989, page 30)).
For every set N ⊂ {1, . . . , n}, define a weak order %N on

∏
i∈N Xi as follows: let a and b be two

arbitrary elements of
∏
i∈N Xi, i.e., they are |N |-tuples (ai)i∈N and b = (bi)i∈N . Then a %N b if

and only if (a, p) % (b, p) for some (n − |N |)-tuple p = (pj)j∈{1,...,n}\N ∈
∏
i 6∈N Xi, where (a, p)

stands for the n-tuple (x1, . . . , xn) in which xi = ai for all i ∈ N and xi = pi for all i 6∈ N .
Independence implies that %N does not depend on the choice of p. Of particular interest, %{1,2}
is the weak order induced by % on X1 ×X2, hereafter denoted by %12 for simplicity.

Axiom 3 (Thomsen condition w.r.t. the first 2 components) For every x1, y1, z1 ∈ X1,
x2, y2, z2 ∈ X2, if (x1, z2) ∼12 (z1, y2) and (z1, x2) ∼12 (y1, z2), then (x1, x2) ∼12 (y1, y2).

The above axioms can easily be tested empirically. Unfortunately, they are not sufficient to
ensure additive representability. For instance, if % on X = {0, 1, 2, 3}2 is represented by u, as
defined in table 1, then % satisfies weak ordering; independence holds because u(x1, x2) increases

x1\x2 0 1 2 3

0 0 3 6 9

1 6 9 12 18

2 15 21 24 27

3 24 30 33 36

Table 1: u(x1, x2)

with x1 and x2; there exist neither distinct x1, y1, z1 ∈ X1 nor distinct x2, y2, z2 ∈ X2 such that
(x1, z2) ∼ (z1, y2) and (z1, x2) ∼ (y1, z2), so that axiom 3 trivially holds on X. However, no
additive utility v represents % else v1(0) + v2(3) = v1(1) + v2(1), v1(1) + v2(0) = v1(0) + v2(2)
and v1(2) + v2(2) = v1(3) + v2(0), which would imply that v1(2) + v2(3) = v1(3) + v2(1), or,
equivalently, that (2, 3) ∼ (3, 1). And this is impossible since u(2, 3) = 27 < u(3, 1) = 30.

The above example highlighted a violation of the following axiom, which can be easily proved
to be necessary for additive representability, for all integers m > 0:
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Axiom 4 (mth-order cancellation axiom) Consider m+1 elements xi = (xi1, . . . , x
i
n) ∈ X,

i ∈ {1, . . . ,m + 1}. Let y1, . . . , ym+1 ∈ X be such that (y1j , . . . , y
m+1
j ) is a permutation of

(x1j , . . . , x
m+1
j ) for every j ∈ {1, . . . , n}. Then [xi % yi for all i 6= m+ 1]⇒ xm+1 - ym+1.

Independence and the Thomsen condition are special cases of cancellation axioms. Note that
if the (m+1)st-order cancellation axiom holds, the mth-order one also holds. From a theoretical
point of view, these axioms are useful since they are necessary for additive representability.
But in practical situations, when their order increases, they make utility assessments difficult
to perform because they require to test numerous preference relations. One possible way to
circumvent this problem is to assume some (nonnecessary) structural conditions which enable to
derive any cancellation axiom from independence and the Thomsen condition. In the classical
framework, such structural conditions are connectedness of topological spaces (Debreu (1960)
and Wakker (1989)), and restricted solvability w.r.t. every component (Krantz et al. (1971)).

2.2 Structural assumption to avoid testing high-order cancellation axioms

Hereafter we require that restricted solvability holds w.r.t. only two components: X1 and X2

(Gonzales (1997) showed that when restricted solvability holds only w.r.t. 1 component, the
mth-order cancellation axiom does not necessarily imply the (m+ 1)st-order one).

Axiom 5 (restricted solvability w.r.t. the first two components) For every x1, y1 ∈ X1,
x2, y2 ∈ X2, xi ∈ Xi, i ∈ {3, . . . , n}, and every z ∈ X, if (x1, x2, . . . , xn) - z - (y1, x2, . . . , xn),
then there exists t1 ∈ X1 such that z ∼ (t1, x2, . . . , xn). Similarly, if (x1, x2, x3, . . . , xn) - z -
(x1, y2, x3, . . . , xn), then there exists t2 ∈ X2 such that z ∼ (x1, t2, x3, . . . , xn).

Usually, the structure induced by restricted solvability is strong enough to ensure that high-
order cancellation axioms can be derived from low-order ones. However, this is true only when
the solvable components play a role in the preference relation %. Hence, the following axiom:

Axiom 6 (essentiality w.r.t. the first 2 components) For every i in {1, 2}, there exist
xi, yi ∈ Xi and z ∈

∏
k 6=iXk such that (xi, z) � (yi, z).

Under axioms 1, 5 and 6, all cancellation axioms can be induced from independence and the
Thomsen condition in (X1×X2,%12). However, this property cannot be extended to the whole
of (X,%), as shown in the next example, which is a variation of Gonzales (1997, subsection 3.4).
Let m be an odd number greater than or equal to 3 and consider a preference relation % on
X = [0, 18 ]× [0, 18 ]× {0, 1, . . . ,m2} × {0, 2(m− 1), 2m}, representable by the utility function:

u(x1, x2, x3, x4) =


x1 + x2 + x3 + x4 if x4 < 2m,
x1 + x2 + x3 +m2 + 2m− 2.5 if x4 = 2m and x3 even,
x1 + x2 + x3 +m2 + 2m− 3 if x4 = 2m and x3 odd.

(2)

Restricted solvability, essentiality and the Thomsen condition hold w.r.t. the first two compo-
nents because %12 is representable by x1 +x2. By definition of u, it is obvious that the first two
components satisfy independence, and, more generally, it can be shown that lemma 1 holds.

Lemma 1 Let m be an odd number ≥ 3, and % on [0, 18 ]×[0, 18 ]×{0, . . . ,m2}×{0, 2(m−1), 2m}
be represented by u as defined in (2). Then % satisfies the (m+ 1)st-order cancellation axiom.

However, the (m+ 2)nd-order cancellation axiom does not hold because

(0, 0, i(m− 1) + 1, 0) ∼ (0, 0, (i− 2)(m− 1) + 1, 2(m− 1)), i ∈ {2, 4, . . . ,m+ 1}
(0, 0, 1, 2m) ∼ (0, 0, (m+ 1)(m− 1) + 1, 2(m− 1)),

(0, 0, (i− 2)(m− 1), 2(m− 1)) ∼ (0, 0, i(m− 1), 0), i ∈ {2, 4, . . . ,m+ 1}
(0, 0, (m+ 1)(m− 1), 2(m− 1)) ≺ (0, 0, 0, 2m).
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Therefore restricted solvability w.r.t. only 2 components is not sufficient a structural assumption
to avoid testing numerous cancellation axioms (when |X| = 4). Why? Simply because, in the
above example, % is a lexicographic order, in which the nonsolvable components dominate the
solvable ones. Thus the solvable components are too “weak” to propagate any structure to the
whole space. This example suggests that trade-offs in the nonsolvable components should be
compensated by trade-offs in the solvable ones. Hence the following definition:

Definition 1 (i-link) Let i ∈ {3, . . . , n}. xi and zi are i-linked — henceforth denoted xiOizi —
if there exists a sequence (yki )pk=0 of elements of Xi such that y0i = xi, y

p
i = zi and such that, for

every k ∈ {0, 1, . . . , p− 1}, there exist ak+1, bk ∈
∏i−1
j=1Xj such that (ak+1, yk+1

i ) ∼1...i (bk, yki ).

Note that relation Oi is an equivalence relation. It is illustrated in figure 1, in which links
are represented by edges: let % be represented on X = [0, 1]2 × {1, 2, 3, 4} × {0, 78} by utility
[2+x1+x2]

x3 +x4. Then, every x3 and y3 are 3-linked because A = (1, 1, 1, 0) ∼ B = (0, 0, 2, 0),

B

F

K
M

I

A

HG

J

C

D

L

E

x3 = 2 x3 = 3

x3 = 2

x4 = 78

x4 = 0

x3 = 1

x3 = 1

X1 X1 X1

x3 = 3

X1

x3 = 4

x3 = 4

X2

X2

Figure 1: i-linkness.

C = (1, 1, 2, 0) ∼ D = (14 , 2
3
√

2 − 9
4 , 3, 0) ∼ E = (0, 0, 4, 0), or because H = (1, 1, 1, 1) ∼ I =

(0, 0, 2, 1), J = (1, 2
√

3 − 3, 2, 1) ∼ K = (0, 3
√

12 − 2, 3, 1), L = (34 ,
3
4 , 3, 1) ∼ M = (14 ,

4

√
343
8 −

9
4 , 4, 1). Similarly, x4 = 0 and x4 = 78 are 4-linked because F = (12 ,

1
2 , 4, 0) ∼ G = (0, 1, 1, 78).

Note that if independence holds, links w.r.t. the ith components do not depend on the values
assigned to components (i+ 1) to n. I-linkness propagates through links the structure induced
by restricted solvability, to the whole space. In particular, the combination of i-linkness and the
second order cancellation axiom implies all the other cancellation axioms.

Axiom 7 (I-linkness) For every xi, zi ∈ Xi, i ∈ {3, . . . , n− 1}, xi and zi are i-linked.

2.3 Avoiding testing the second-order cancellation axiom

In the preceding subsection, it was mentioned that under i-linkness, essentiality and restricted
solvability w.r.t. 2 components the second order cancellation axiom entails cancellation axioms of
every order. In this case, it may be wondered whether independence and the Thomsen condition
still imply the second order cancellation axiom. Unfortunately, it is no more true when restricted
solvability w.r.t. only 2 components, as is shown by the following example.

Let X = [1, 2]× [1, 2]× {1, 2}, and suppose that % is represented by:

u(x1, x2, x3) =

{
x1 + x2 if x3 = 1,
exp(x1 + x2)− 4 if x3 = 2.

(3)

It is easily shown that % is a weak order satisfying independence, and the Thomsen condition on
X1×X2. However, the second order cancellation axiom cannot hold because (2, exp(2)−6, 1) ∼
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(1, 1, 2), (ln(8) − 1, 1, 2) ∼ (2, 2, 1) and Not[(1, 2, 1) ∼ (ln(8) − 1, exp(2) − 6, 1)]. This can
be explained as follows: in spaces where restricted solvability holds, i.e., [1, 2] × [1, 2] × {1}
and [1, 2]× [1, 2]×{2}, cancellation axioms of every order are implied by independence and the
Thomsen condition. So, a violation of a cancellation axiom can only occur when comparing some
elements with distinct nonsolvable components. However, in this case, the Thomsen condition
cannot be applied and, whenever (x1, x2, 1) ∼ (y1, y2, 2), x1 and x2 are greater than or equal to
exp(2)−6 ≈ 1.39, and y1 and y2 are less than or equal to ln(8)−1 ≈ 1.07, so that independence
can only be used through strict preference relations. Unfortunately, such relations are much
weaker than those deduced by indifferences because they allow some degree of freedom — which
induced the above violation of the cancellation axiom. This suggests determining the parts of X
where independence can be used through indifference relations. Hence the following definition:

Definition 2 (directly-single-dimensionally-matching) Let a, b ∈
∏n
j=3Xj. If there exist

x1, y1 ∈ X1 and c2 ∈ X2 such that (x1, c2, a) ∼ (y1, c2, b), or x2, y2 ∈ X2 and c1 ∈ X1 such that
(c1, x2, a) ∼ (c1, y2, b), then a and b are said to be directly-single-dimensionally-matched.

To put it another way, the trade-off between x1 and y1 or the trade-off between x2 and y2
matches the trade-off between a and b; or a change from a to b or from b to a can be compensated
by a change in only one solvable component.

Definition 2 is very appealing because if all the nonsolvable components are directly-single-
dimensionally-matched, if independence holds, as well as the Thomsen condition, restricted
solvability and essentiality w.r.t. at least two components, then every cancellation axiom holds.
But it is still not general enough to enable a valuable generalization of the classical representation
theorems because restricted solvability may hold while definition 2 does not (for instance when
% is representable on X = [0, 1] × [0, 1] × [0, 3] by x1 + x2 + x3). Therefore, the following
generalization of directly-single-dimensionally-matching shall be introduced:

Definition 3 (single-dimensionally-matching) Let a, b ∈
∏n
j=3Xj. a, b are single-dimen-

sionally-matched if there exists a sequence (yk)pk=0 of elements of
∏n
j=3Xj such that y0 = a,

yp = b, and yk and yk+1 are directly-single-dimensionally-matched for every k ∈ {0, . . . , p− 1}.

A graphical interpretation of this definition is provided in figure 2: consider a preference
relation % on X = [0, 10]×[0, 10]×{0, 6, 14, 17} representable by the utility function x1+x2+x3.
Directly-single-dimensionally-matching does not hold for a = 0 and b = 17. Yet, 0 and 17 are

10

A

x3 = 0 x3 = 6

B

9

10

x3 = 17

1

x3 = 14

X2

X2

280
0

10

0

X1X1

FE

D

C

47

Figure 2: single-dimensionally-matching of 0 and 17.

single-dimensionally-matched because the sequence y0 = 0, y1 = 6, y2 = 14 and y3 = 17
satisfies the requirement of definition 3: indeed, (8, x2, 0) ∼ (2, x2, 6) for every x2 (see A and B).
Similarly, (x1, 9, 6) ∼ (x1, 1, 14) for every x1 — C ∼ D — and (7, x2, 14) ∼ (4, x2, 17) — E ∼ F .
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Definition 3 can be viewed as a restriction of i-linkness and as a relaxation of restricted solva-
bility. If restricted solvability w.r.t. components 3 to n is substituted by single-dimensionally-
matching (and the classical Archimedean axiom is slightly modified as shown page 6), then
independence and axiom 3 imply the second order cancellation axiom. But if there exist a and
b not single-dimensionally-matched, must the latter be tested everywhere in X? No, because it
can be shown that independence, axiom 3 and the following axiom (which is a strong weakening
of the second order cancellation axiom) imply the second order cancellation axiom.

Axiom 8 (scaling axiom) Let a, b ∈
∏n
j=3Xj. If a and b are not single-dimensionally-

matched, then, for every x1, y1, z1 ∈ X1 and every x2, y2, z2 ∈ X2,

[(z1, x2, a) ∼ (x1, z2, b) and (z1, y2, a) ∼ (y1, z2, b)]⇒ (x1, y2, a) ∼ (y1, x2, a). (4)

Equation (4) is a simple generalization of the Thomsen condition.

2.4 Archimedean property

Axioms 1 to 8 are still not sufficient to ensure representability: a well known counterexample is
the lexicographic order in R2. This results from the fact that representability requires that %
admits “fewer” indifference classes than there are real numbers. Usually an Archimedean axiom
is added to prevent such cases to occur, but in the framework of this paper, this one is not very
appealing because it is stated in terms of indifference relations, which may fail to exist due to
the nonsolvability of some components. But it can be reformulated in a more flexible way, for
example by replacing ∼’s by %’s (thus allowing some degree of freedom):

Definition 4 (strong standard sequence w.r.t. the ith component) For any set N of con-
secutive integers, a set {xk1 such that xk1 ∈ X1, k ∈ N} is a strong standard sequence w.r.t. the
1st component if and only if either (x01, x

0
2, . . . , x

0
n) ≺ (x01, x

1
2, . . . , x

1
n) and (xk+1

1 , x02, . . . , x
0
n) %

(xk1, x
1
2, . . . , x

1
n) for all k, k+1 ∈ N , or (x01, x

0
2, . . . , x

0
n) � (x01, x

1
2, . . . , x

1
n) and (xk+1

1 , x02, . . . , x
0
n) -

(xk1, x
1
2, . . . , x

1
n) for all k, k + 1 ∈ N . The set {(x02, . . . , x0n), (x12, . . . , x

1
n)} is called the mesh of

the sequence. Parallel definitions hold w.r.t. the other components.

Axiom 9 (Strengthened Archimedean axiom w.r.t. ith component) Any bounded strong
standard sequence w.r.t. the ith component is finite, i.e., if {xki ∈ Xi, k ∈ N} is a strong stan-
dard sequence with mesh {(x01, . . . , x0i−1, x0i+1, . . . , x

0
n), (x11, . . . , x

1
i−1, x

1
i+1, . . . , x

1
n)} and if there

exist y, z ∈ X such that y - (x01, . . . , x
0
i−1, x

k
i , x

0
i+1, . . . , x

0
n) - z for all k ∈ N , then N is finite.

3 Existence and uniqueness theorems

The following theorems extend the classical existence theorem of Krantz et al. (1971).

Theorem 1 Let % be a binary relation on X = X1 × X2 × X3. Suppose that (X,%) satis-
fies: i) weak ordering, independence, the Thomsen condition w.r.t. the first two components,
the strengthened Archimedean axiom w.r.t. every component) and the scaling axiom; and ii) re-
stricted solvability w.r.t. the first two components and essentiality w.r.t. the first two components.
Then % is representable by an additive utility u =

∑3
i=1 ui. Moreover, there exist a set N of

consecutive integers—finite or infinite—and a sequence (xi3)i∈N of elements of X3 such that:
• for all x3 ∈ X3, there exists i ∈ N such that x3 O3 x

i
3,

• for all i, i+ 1 in N (if Card(N) > 1), xi+1
3 �3 x

i
3 and Not(xi3 O3 x

i+1
3 ).

• if Card(N) > 1, then u1 and u2 are bounded.
If v = v1 + v2 + v3 also represents %, then there exist some constants α > 0, α1, α2 and βi,
i ∈ N , such that:
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

for all x1 ∈ X1, v1(x1) = α · u1(x1) + α1

for all x2 ∈ X2, v2(x2) = α · u2(x2) + α2

for all x3 O3 x
i
3, v3(x3) = α · u3(x3) + βi where

βi+1 ≥ βi + α · [supx1,x2{u1(x1) + u2(x2)}+ supy3 O3 xi3
u3(y3)]

− α · [infx1,x2{u1(x1) + u2(x2)}+ infy3 O3 x
i+1
3

u3(y3)]

with equality only if the inf and/or the sup is not attained.

This theorem simply states that additive representability on the space where restricted solva-
bility holds, i.e., X1 × X2, can be extended to the whole X. Moreover, additive utilities are
cardinal within equivalence classes of O3. Note that properties i) are all necessary for additive
representability whereas properties ii) are only structural. Note also that axiom 7 (i-linkness) is
not required — it is useful only for spaces of dimension greater than 3. If restricted solvability
holds w.r.t. the three components, then independence implies the second order cancellation ax-
iom; therefore, in this case, the Thomsen condition and the scaling axiom need not be required.

The preceding theorem cannot be straightforwardly extended to X =
∏n
i=1Xi. For instance,

if % is representable on X = [0, 1]2×{0, 1, 2, 3}2 by u(x1, x2, x3, x4) = x1 + x2 + v(x3, x4) where
v is defined by table 1 on page 2, then the strengthened Archimedean axiom holds w.r.t. the
first 2 components since x1 + x2 is additive, and w.r.t. the other components because x3 and
x4 belong to a finite set; independence holds as well as the Thomsen condition, but violations
of the second order cancellation axiom (see page 2) prevent additive representability. For this
reason, the i-linkness axiom must be used in representation theorems. This leads to:

Theorem 2 Suppose that X =
∏n
i=1Xi and that (X,%) satisfies: i) weak ordering, inde-

pendence, scaling, the strengthened Archimedean axiom w.r.t. every component, the Thomsen
condition on X1 × X2; and ii) i-linkness, restricted solvability w.r.t. the first two components
and essentiality w.r.t. the first two components. Then % is representable by an additive utility
u =

∑n
i=1 ui. Moreover, there exist a set N of consecutive integers—finite or infinite—and a

sequence of elements of Xn, (xin)i∈N , such that:
• for all xn ∈ Xn, there exists i ∈ N such that xn On xin,
• for all i, i+ 1 in N (if Card(N) > 1), xi+1

n �n xin and Not(xin On xi+1
n ).

• if Card(N) > 1, then functions ui, i = 1, . . . , n− 1, are bounded.
If v = v1 + · · ·+ vn also represents %, then there exist some constants α > 0, α1, . . . , αn−1 ∈ R
and βi ∈ R, i ∈ N , such that:

for all xi ∈ Xi, i < n, vi(xi) = α · ui(xi) + αi
for all xn On xin, vn(xn) = α · un(xn) + βi where

βi+1 ≥ βi + α · [supx1,...,xn−1
{
∑n−1

i=1 ui(xi)}+ supyn On xin
un(yn)]

− α · [infx1,...,xn−1{
∑n−1

i=1 ui(xi)}+ infyn On x
i+1
n

un(yn)]

with equality only if the inf and/or the sup is not attained.

As for the preceding theorem, only properties i) are necessary for additive representability.

4 Appendix: Proofs

Proof of lemma 1: The proof is organized as follows: in step 1, it is shown that independence
holds; in step 2, a condition on the third and fourth components is shown to be implied by a
violation of the (m + 1)st-order cancellation axiom by %; this condition implies either the
violation of this axiom by %12 in X1 × X2, which is shown to be impossible in step 3, or its
violation by %34 in X3×X4, which is shown in step 4 to amount to a violation of the (m+ 1)st-
order cancellation axiom by another relation %∗, which has been proved to be impossible.

7



first step: independence

% is representable by the utility function u(x1, x2, x3, x4) = x1 + x2 + v(x3, x4), where:

v(x3, x4) =


x3 + x4 if x4 < 2m,
x3 +m2 + 2m− 2.5 if x4 = 2m and x3 even,
x3 +m2 + 2m− 3 if x4 = 2m and x3 odd;

So, clearly, independence holds w.r.t. the first two components. Let us show that independence
also holds w.r.t. the third component. Suppose that, for some x1, x2, x3, x4, y1, y2, y4,

(x1, x2, x3, x4) % (y1, y2, x3, y4). (5)

Then x4 ≥ y4; indeed, in table 2, in which values of v are given for some x3, x4, figures increase

x3\x4 0 2(m− 1) 2m

0 0 2m− 2 m2 + 2m− 2.5

1 1 2m− 1 m2 + 2m− 2

2 2 2m m2 + 2m− .5
...

...
...

...

m2 − 1 m2 − 1 m2 + 2m− 3 2m2 + 2m− 3.5

m2 m2 m2 + 2m− 2 2m2 + 2m− 3

Table 2: Values of v in function of x3 and x4.

from left to right, and the difference between any two elements of a same row is greater than 1, so
that if y4 > x4, then u(y1, y2, x3, y4) ≥ u(0, 0, x3, y4) = v(x3, y4) > v(x3, x4)+1 > v(x3, x4)+ 1

4 =
u(18 ,

1
8 , x3, x4) ≥ u(x1, x2, x3, x4), which would contradict (5). Now, if x4 > y4, then, for the same

reason, u(x1, x2, y3, x4) > u(y1, y2, y3, y4)+ 3
4 for all y3 ∈ X3, so that (5) implies (x1, x2, y3, x4) %

(y1, y2, y3, y4) for all y3. Since x3 is arbitrary, (5) is equivalent to (x1, x2, y3, x4) % (y1, y2, y3, y4)
for all y3. If, on the contrary, x4 = y4, then (5) is equivalent to

x1 + x2 + x3 + x4 ≥ y1 + y2 + x3 + x4 if x4 < 2m,
x1 + x2 + x3 +m2 + 2m− 2.5 ≥ y1 + y2 + x3 +m2 + 2m− 2.5 if x4 = 2m and x3 even,
x1 + x2 + x3 +m2 + 2m− 3 ≥ y1 + y2 + x3 +m2 + 2m− 3 if x4 = 2m and x3 odd.

For all x3 ∈ X3 and for all x4 ∈ X4, this is clearly equivalent to x1 + x2 ≥ y1 + y2. This last
inequality being independent of x3, (5) is thus equivalent to (x1, x2, y3, x4) % (y1, y2, y3, x4) for
all y3 ∈ X3. Therefore, independence holds w.r.t. the third component.

Independence also holds w.r.t. the fourth component: suppose that

(x1, x2, x3, x4) % (y1, y2, y3, x4). (6)

As in the preceding paragraph, since elements of table 2 increase from top to bottom, and since
the difference between any two elements of a same column is greater than or equal to 1

2 , (6)
implies that x3 ≥ y3. The case x3 = y3 has been discussed in the preceding paragraph. If
x3 > y3, then, for all y4, v(x3, y4) ≥ v(y3, y4) + 1

2 , so that, for all x1, y1, x2, y2, u(x1, x2, x3, y4) ≥
u(y1, y2, y3, y4), and, thus, independence holds w.r.t. the fourth component.

8



second step: condition on the third and fourth components

Let (xi1, x
i
2, x

i
3, x

i
4) and (yi1, y

i
2, y

i
3, y

i
4), i ∈ {1, . . . ,m+ 2}, be some elements of X such that

• for every j ∈ {1, 2, 3, 4}, (y1j , . . . , y
m+2
j ) is a permutation of (x1j , . . . , x

m+2
j ),

• for every k < m+ 2, (xk1, x
k
2, x

k
3, x

k
4) % (yk1 , y

k
2 , y

k
3 , y

k
4 ).

If those elements violate the (m+1)st-order cancellation axiom, then (xm+2
1 , xm+2

2 , xm+2
3 , xm+2

4 ) %
(ym+2

1 , ym+2
2 , ym+2

3 , ym+2
4 ) and there exists an index i in {1, . . . ,m+2} such that (xi1, x

i
2, x

i
3, x

i
4) �

(yi1, y
i
2, y

i
3, y

i
4). Without loss of generality, suppose that i = m+ 2 (if it is not the case, just per-

mute index i and m+ 2). Now, since independence holds, %34 is well defined and

for all k ∈ {1, . . . ,m+ 2}, (xk3, x
k
4) %34 (yk3 , y

k
4 ), (7)

else, since whenever two elements of table 2 are nonequal, their difference is greater than or equal
to 1

2 , one would get u(y1, y2, y
k
3 , y

k
4 ) ≥ u(0, 0, yk3 , y

k
4 ) = v(yk3 , y

k
4 ) ≥ v(xk3, x

k
4)+ 1

2 = u(0, 0, xk3, x
k
4)+

1
2 = u(18 ,

1
8 , x

k
3, x

k
4)+ 1

4 ≥ u(x1, x2, x
k
3, x

k
4)+ 1

4 , which would make (xk1, x
k
2, x

k
3, x

k
4) % (yk1 , y

k
2 , y

k
3 , y

k
4 )

impossible.

third step: if (xk
3, x

k
4) ∼34 (yk

3 , y
k
4) for every k ∈ {1, . . . ,m + 2}

Then, substituting (yk3 , y
k
4 ) by (xk3, x

k
4) for all k ∈ {1, . . . ,m + 2}, one gets m + 2 elements

(xk1, x
k
2, x

k
3, x

k
4) of X and m+ 2 other elements (yk1 , y

k
2 , x

k
3, x

k
4) such that

• for all j ∈ {1, 2}, (y1j , . . . , y
m+2
j ) is a permutation of (x1j , . . . , x

m+2
j ),

• for all k < m+ 2, (xk1, x
k
2, x

k
3, x

k
4) % (yk1 , y

k
2 , x

k
3, x

k
4), and so (xk1, x

k
2) %12 (yk1 , y

k
2 ),

• (xm+2
1 , xm+2

2 , xm+2
3 , xm+2

4 ) � (ym+2
1 , ym+2

2 , xm+2
3 , xm+2

4 ) and (xm+2
1 , xm+2

2 ) �12 (ym+2
1 , ym+2

2 ).
Therefore, %12 also violates the (m+ 1)st-order cancellation axiom. However, this is impossible
because %12 is representable by the additive utility function x1 + x2, and because cancellation
axioms of any order are necessary for additive representability.

fourth step: if there exists k such that (xk
3, x

k
4) �34 (yk

3 , y
k
4)

By (7), the xi3’s and xi4’s are such that
• for all j ∈ {3, 4}, (y1j , . . . , y

m+2
j ) is a permutation of (x1j , . . . , x

m+2
j ),

• for all k < m+ 2, (xk3, x
k
4) %34 (yk3 , y

k
4 ),

• (xm+2
3 , xm+2

4 ) �34 (ym+2
3 , ym+2

4 ),
which is a violation of the (m+ 1)st-order cancellation axiom by %34.

In Gonzales (1997), it was showed that, for every odd number m greater than or equal to 3,
if a preference relation %∗ is representable on Y = R×{0, 2, 4, . . . , 2m} by the following utility:

w(x1, x2) =

{
x1 + x2 if x2 < 2m
.5(x1 mod 2)2 + 2(x1 div 2) +m2 + 2m− 2.5 if x2 = 2m,

then the (m + 1)st-order cancellation axiom holds. Here, X3 = {0, . . . ,m2} ⊂ R and X4 =
{0, 2(m−1), 2m} ⊂ {0, 2, 4, . . . , 2m}, so that X3×X4 ⊂ Y . Moreover, for every x3, x4 ∈ X3×X4,
v(x3, x4) = w(x3, x4). Therefore, the violation of the (m+ 1)st-order cancellation axiom by %34

implies also its violation by %∗ in Y . However, this is impossible according to Gonzales (1997,
subsection 3.4). Thus, % necessarily satisfies the (m+1)st-order cancellation axiom, and lemma 1
holds. �

Lemma 2 Let X = X1×X2×X3 be such that % satisfies axioms 1 (weak ordering), 2 (indepen-
dence) and 5 (restricted solvability w.r.t. the first 2 components). Then, whenever (x1, x2, x3) -
(y1, y2, y3) - (z1, z2, x3), there exists (a1, a2) ∈ X1 ×X2 such that (a1, a2, x3) ∼ (y1, y2, y3).
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Proof of lemma 2: %1 and %2 are well defined by independence. Suppose that (x1, x2, x3) -
(y1, y2, y3) - (z1, z2, x3). Then either x1 -1 z1 or x2 -2 z2.

If x1 -1 z1, then either (x1, z2, x3) - (y1, y2, y3), in which case (x1, z2, x3) - (y1, y2, y3) -
(z1, z2, x3), which implies by axiom 5 that there exists a1 such that (a1, z2, x3) ∼ (y1, y2, y3),
or (x1, z2, x3) � (y1, y2, y3), in which case (x1, x2, x3) - (y1, y2, y3) ≺ (x1, z2, x3), which implies
by axiom 5 that there exists a2 such that (x1, a2, x3) ∼ (y1, y2, y3). A similar proof holds when
x2 -2 z2. �

Lemma 3 Let X = X1 ×X2 × {a, b} be such that (X,%) satisfies axioms 1 (weak ordering), 2
(independence), and 5 (restricted solvability w.r.t. the first 2 components), and be such that a ≺3

b. Define Y = {(y1, y2, y3) ∈ X : there exists (x1, x2, x3) ∈ X such that (x1, x2, x3) ∼ (y1, y2, y3)
and y3 6= x3}. If Y 6= ∅ and X\Y 6= ∅ then, for all (y1, y2, y3) ∈ Y and all (x1, x2, a), (z1, z2, b) ∈
X\Y , (x1, x2, a) ≺ (y1, y2, y3) ≺ (z1, z2, b).

Proof of lemma 3: If Y = ∅ or X\Y = ∅ then lemma 3 trivially holds; so suppose that Y 6= ∅
and X\Y 6= ∅. Let (x1, x2, a) ∈ X\Y and (y1, y2, y3) ∈ Y be such that (y1, y2, y3) - (x1, x2, a).
Since (y1, y2, y3) ∈ Y , there exists (z1, z2, b) ∈ Y such that (z1, z2, b) ∼ (y1, y2, y3). Therefore,
(z1, z2, b) - (x1, x2, a). But by definition of ≺3 and independence, and since a ≺3 b, (x1, x2, a) ≺
(x1, x2, b); so, the following preference relation holds: (z1, z2, b) - (x1, x2, a) ≺ (x1, x2, b). But
then, by lemma 2, there exist b1, b2 such that (x1, x2, a) ∼ (b1, b2, b), hence contradicting the
assumption that (x1, x2, a) ∈ X\Y . A similar proof holds for (y1, y2, y3) ≺ (z1, z2, b). �

Lemma 4 Let X = X1×X2×{a, b}. If (X,%) satisfies axiom 1 (ordering), 2 (independence),
3 (Thomsen condition w.r.t. the first 2 components), 5 (restricted solvability w.r.t. the first
2 components), 6 (essentiality w.r.t. the first two components), 9 (strengthened Archimedean
axiom) and 8 (scaling), then % is representable by an additive utility u. If v is another additive
utility representing % and if a -3 b then there exist some constants α > 0, α1, α2, α3, α4 such
that: 

for all x1 ∈ X1, v1(x1) = α · u1(x1) + α1

for all x2 ∈ X2, v2(x2) = α · u2(x2) + α2

if there exist x1, y1 ∈ X1 and x2, y2 ∈ X2 such that (x1, x2, a) ∼ (y1, y2, b)
then v3(x3) = α · u3(x3) + α3, for all x3 ∈ {a, b}
else v3(a) = α · u3(a) + α3 and v3(b) = α · u3(b) + α4

where α4 ≥ α3 + α · [u3(a) + supx1,x2{u1(x1) + u2(x2)}]
− α · [u3(b) + infx1,x2{u1(x1) + u2(x2)}]

with equality only if the inf and/or the sup is not attained.

Proof of lemma 4: The proof is constructive: in a first step, the existence of an additive
utility representing %12 on X1×X2 is proved; then, using the definition of %12, it is shown that
% is representable by an additive utility on X1×X2×{a} and on X1×X2×{b}. In the second
step, this utility is extended to represent % on X. For this purpose, we show that if an additive
utility, say u, exists, then some relationships between u3(a) and u3(b) must hold; then, these
relationships are shown to be not only necessary but also sufficient for additive representability.

first step: %12 is representable by an additive utility

Independence holds, so %12 is well defined. According to the hypotheses of lemma 4, (X1 ×
X2,%12) satisfies the conditions of (the classical) theorem 13 of Krantz et al. (1971, page 302)
which ensures that %12 is representable by an additive utility u, unique up to scale and location.
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According to the definition of %12 given on page 2 and by independence w.r.t. the third
component, (x1, x2) %12 (y1, y2) ⇔ (x1, x2, a) % (y1, y2, a) ⇔ (x1, x2, b) % (y1, y2, b). So, for all
arbitrary real numbers u3(a) and u3(b), and all (x1, x2), (y1, y2) ∈ X1 ×X2, the following hold:

(x1, x2, a) % (y1, y2, a) ⇔ u1(x1) + u2(x2) + u3(a) ≥ u1(y1) + u2(y2) + u3(a),
(x1, x2, b) % (y1, y2, b) ⇔ u1(x1) + u2(x2) + u3(b) ≥ u1(y1) + u2(y2) + u3(b),

and, moreover, u1, u2, u3 on {a} and u3 on {b}, are unique up to scale and location. Now, in
order to get an additive utility on X, it is sufficient (and necessary) to choose u3(a) and u3(b)
such that, for all (x1, x2), (y1, y2) ∈ X1 ×X2 and all x3, y3 ∈ {a, b} such that x3 6= y3,

(x1, x2, x3) % (y1, y2, y3)⇔ u1(x1) + u2(x2) + u3(x3) ≥ u1(y1) + u2(y2) + u3(y3). (8)

The remainder of the proof consists in showing that such u3(a) and u3(b) exist. Without loss of
generality, we will assume hereafter that a ≺3 b.

second step: extension of u to represent % on the whole X

First case: if there exists no (x1, x2), (y1, y2) ∈ X1 ×X2 such that (x1, x2, a) ∼ (y1, y2, b):

By lemma 2, for all (x1, x2), (y1, y2) ∈ X1 × X2, (x1, x2, a) ≺ (y1, y2, b). Suppose now that
u1 is unbounded from above; then, for every real number r, there exists an element x1(r) ∈
X1 such that u1(x1(r)) ≥ r. By hypothesis of lemma 4, essentiality holds w.r.t. the second
component, so there exist x02, x

1
2 ∈ X2 such that x12 �2 x

0
2. Accordingly, for every x01 ∈ X1,

(x01, x
0
2, a) ≺ (x01, x

1
2, a). But then, if r = u2(x

1
2) − u2(x02) + u1(x

0
1), we know that there exists

x11 = x1(r) in X1 such that u1(x
1
1) ≥ r = u2(x

1
2) − u2(x02) + u1(x

0
1), or, equivalently, such that

u1(x
1
1)+u2(x

0
2) ≥ u1(x01)+u2(x

1
2). u being a utility function on X1×X2×{a}, the last inequality

is equivalent to (x01, x
1
2, a) - (x11, x

0
2, a). X being a Cartesian product, (x11, x

1
2, a) belongs to X.

Iterating the above process with r = u2(x
1
2)− u2(x02) + u1(x

1
1), one can find an element x21 ∈ X1

such that (x11, x
1
2, a) - (x21, x

0
2, a). By induction, one can find an infinite sequence (xk1)k∈N such

that x12 �2 x
0
2 and (xk1, x

1
2, a) - (xk+1

1 , x02, a) for all k ∈ N.
Therefore, by definition 4, (xk1)k∈N is a strong standard sequence, infinite and bounded by

(x01, x
0
2, a) and by (x01, x

0
2, b) (by the conclusion of the preceding paragraph). But this is impossi-

ble because it would contradict the strengthened Archimedean axiom (which holds according to
the hypotheses of lemma 4). Therefore, u1 cannot be unbounded from above. Similarly, it can
be shown that u1 is bounded from below. So u1 is bounded. By symmetry, u2 is also bounded.

Now let γ = supx1,x2{u1(x1) + u2(x2)} and δ = infx1,x2{u1(x1) + u2(x2)}. Suppose that

u3(b) < u3(a)+γ−δ; let ξ ∈ R∗+ be such that u3(b) = u3(a)+γ−δ−ξ. By definition of the inf and
the sup, for every ε ∈ R∗+, there exist xγ1(ε), xγ2(ε), xδ1(ε), x

δ
2(ε) such that u1(x

γ
1(ε)) + u2(x

γ
2(ε)) ≥

γ − ε and u1(x
δ
1(ε)) + u2(x

δ
2(ε)) ≤ δ + ε. Now, for ε < ξ/2, u1(x

δ
1(ε)) + u2(x

δ
2(ε)) + u3(b) ≤

u3(b) + δ+ ε < u3(b) + δ+ ξ/2 = u3(a) +γ− ξ/2 ≤ u3(a) +γ− ε ≤ u1(xγ1(ε)) +u2(x
γ
2(ε)) +u3(a).

Therefore u cannot represent % because (xγ1(ε), xγ2(ε), a) ≺ (xδ1(ε), x
δ
2(ε), b) by the first paragraph.

So, a necessary condition for u to represent % is that:

u3(a) + γ − δ ≤ u3(b). (9)

If both γ and δ are attained, then there exist xγ1 , x
δ
1 ∈ X1 and xγ2 , x

δ
2 ∈ X2, such that

u1(x
γ
1) + u2(x

γ
2) = γ and u1(x

δ
1) + u2(x

δ
2) = δ. To represent %, u3(b) cannot be equal to

u3(a) + γ− δ else (xγ1 , x
γ
2 , a) ≺ (xδ1, x

δ
2, b) and u1(x

γ
1) +u2(x

γ
2) +u3(a) = u1(x

δ
1) +u2(x

δ
2) +u3(b).

So, in this case, a necessary condition is that

u3(a) + γ − δ < u3(b). (10)
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It is also a sufficient condition because, by definition of sup and inf, (10) implies that, for all
x1, x2, y1, y2, u1(x1) + u2(x2) + u3(a) ≤ u1(x

γ
1) + u2(x

γ
2) + u3(a) < u1(x

δ
1) + u2(x

δ
2) + u3(b) ≤

u1(y1) + u2(y2) + u3(b), and because (x1, x2, a) - (xγ1 , x
γ
2 , a) ≺ (xδ1, x

δ
2, b) - (y1, y2, b) since u, as

defined by (10), is a utility function on X1 ×X2 × {a} and on X1 ×X2 × {b}.
If γ is not attained then, for all x1, x2, (9) implies that u1(x1)+u2(x2)+u3(a) < γ+u3(a) ≤

δ + u3(b) ≤ u1(y1) + u2(y2) + u3(b), and so u represents % on X. And similarly if δ is not
attained.

To summarize, a necessary and sufficient condition for u to represent % on X is that
• u3(a) + γ − δ < u3(b) if both γ and δ are attained,
• u3(a) + γ − δ ≤ u3(b) if at least one of the bounds, γ or δ, is not attained.

Second case: there exists (x01, x
1
1, x

0
2, x

1
2) such that (x01, x

0
2, a) ∼ (x11, x

1
2, b):

first substep: bounding the working space
In the following, for any finite set A1 ⊂ X1, min%1

A1 denotes an element x1 of A1 such that
x1 -1 y1 for all y1 ∈ A1. Parallel definitions hold for max%1

, min%2
, and max%2

. Moreover, for
all xi, yi ∈ Xi, [xi, yi] denotes the set {zi ∈ Xi : xi -i zi -i yi}.

Clearly a necessary condition for the existence of an additive utility is the following equation:

u3(b) = u3(a) + u1(x
0
1)− u1(x11) + u2(x

0
2)− u2(x12). (11)

If a and b are single-dimensionally-matched in X, then either i) there exist z11 , z
2
1 such that

z21 �1 z
1
1 and (z21 , z2, a) ∼ (z11 , z2, b) and, by essentiality, there also exist z12 , z

2
2 such that z22 �2 z

1
2 ,

or ii) there exist z12 , z
2
2 such that z22 �2 z12 and (z1, z

2
2 , a) ∼ (z1, z

1
2 , b) and, by essentiality,

there also exist z11 , z
2
1 such that z21 �1 z11 . Else, by essentiality, there exist z11 , z21 , z12 and

z22 such that z21 �1 z11 and z22 �2 z12 . Now, if, for any couple of arbitrary elements of X,
(x21, x

2
2, a) and (x31, x

3
2, b), there exist real numbers u3(a) and u3(b) such that u represents % on

Z = Z1 × Z2 × {a, b}, where

Z1 =
[
z1, z1

]
, z1 = min%1

{x01, x11, x21, x31, z11 , z21}, z1 = max%1
{x01, x11, x21, x31, z11 , z21},

Z2 =
[
z2, z2

]
, z2 = min%2

{x02, x12, x22, x32, z12 , z22}, z2 = max%2
{x02, x12, x22, x32, z12 , z22},

then u, as defined by (11), represents % on X; indeed, since (x01, x
0
2, a) and (x11, x

1
2, b) belong

to Z, u represents % on Z only if (11) holds, so that the real numbers u3(a) and u3(b) do
not depend on (x21, x

2
2, a) and (x31, x

3
2, b); consequently, u is well defined on X. Moreover, since

(x21, x
2
2, a) and (x31, x

3
2, b) are arbitrary, u represents % on X. z11 , z21 , z12 and z22 are needed

i) to ensure that z1 �1 z1 and z2 �2 z2, so that standard sequences of mesh (z2, z2) can be
constructed in case 2.1 and case 2.2; and ii) to ensure that case 2.3 occurs only when a and b
are not single-dimensionally-matched.

Now, to prove that u, as defined by (11), represents % on X, it is sufficient to prove that it
is representing on Z for any couple (x21, x

2
2, a), (x31, x

3
2, b).

second substep: restricting the working space
Let (x21, x

2
2, a) and (x31, x

3
2, b) be arbitrary elements of X, and let Z be defined as in the

preceding substep. Let Y = {(x1, x2, x3) ∈ Z : there exists (y1, y2, y3) ∈ Z such that (y1, y2, y3) ∼
(x1, x2, x3) and y3 6= x3}. Now, suppose that there exist real numbers u3(a) and u3(b) such that
u represents % on Y ; then, since (x01, x

0
2, a), (x11, x

1
2, b) ∈ Y , (11) holds, so that u3(a) and u3(b)

still do not depend on the choice of (x21, x
2
2, a) and (x31, x

3
2, b). Moreover, u also represents %

on Z: indeed, we already know that it represents % on X1 ×X2 × {a} and on X1 ×X2 × {b};
so, it only remains to prove that (8) — see page 11 — holds for all (x1, x2, x3) ∈ Z and all
(y1, y2, y3) ∈ Z such that x3 6= y3. Two subcases shall be examined:

first subcase: at least one element, (x1, x2, x3) or (y1, y2, y3), belongs to Y :
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If (x1, x2, x3) ∈ Y , then, by definition of Y , there exists (z1, z2, y3) ∈ Y such that (z1, z2, y3) ∼
(x1, x2, x3). But u1(x1) + u2(x2) + u3(x3) = u1(z1) + u2(z2) + u3(y3) because, by hypothesis, u
represents % on Y . But u is also representing on X1 ×X2 × {y3}, so (z1, z2, y3) % (y1, y2, y3)⇔
u1(z1) + u2(z2) + u3(y3) ≥ u1(y1) + u2(y2) + u3(y3). Therefore, (x1, x2, x3) % (y1, y2, y3) ⇔
u1(x1)+u2(x2)+u3(x3) ≥ u1(y1)+u2(y2)+u3(y3). A similar proof would hold if (y1, y2, y3) ∈ Y .

second subcase: (x1, x2, x3), (y1, y2, y3) ∈ Z\Y :
Y 6= ∅ and Z\Y 6= ∅ because (x01, x

0
2, a) ∈ Y and (x1, x2, x3) ∈ Z\Y . So, by lemma 3,

(x3, y3) equals (b, a) and (x1, x2, b) � (x11, x
1
2, b) ∼ (x01, x

0
2, a) � (y1, y2, a). Since u represents %

on X1 ×X2 × {b}, u1(x1) + u2(x2) + u3(b) > u1(x
1
1) + u2(x

1
2) + u3(b); since u represents % on

Y , u1(x
1
1) + u2(x

1
2) + u3(b) = u1(x

0
1) + u2(x

0
2) + u3(a); since u represents % on X1 ×X2 × {a},

u1(x
0
1)+u2(x

0
2)+u3(a) > u1(y1)+u2(y2)+u3(a). By transitivity of ≥, u1(x1)+u2(x2)+u3(x3) ≥

u1(y1) + u2(y2) + u3(y3).

Therefore, in all cases, if u, as defined in (11), represents % on Y , then it also represents %
on Z, and consequently on X. So, in the remainder of the proof it is sufficient to show that u
represents % on Y , for all (x21, x

2
2, a) and (x31, x

3
2, b).

third substep: proof that u represents % on Y

Case 2.1: if (z1, z2, b) - (z1, z2, a) : (12)

This case will be studied in 3 subsubsteps. Figure 3 shows the different elements of Z
examined in each subsubstep.

............

Z2 Z2

Z1 Z1

a21a11 ap1ap−11 z1 bp1 b
p+1
1bp−11b21 z1z1

first subsubstep

second subsubstep

third subsubstep

hyperplane x3 = a hyperplane x3 = b

b11

Figure 3: Areas generated by the subsubsteps of case 2.1

first subsubstep: generating the area
Since a ≺3 b, (z1, z2, a) ≺ (z1, z2, b), which, by (12), implies that (z1, z2, a) ≺ (z1, z2, b) -

(z1, z2, a). So, by axiom 5, there exists a11 ∈ Z1 such that

(a11, z2, a) ∼ (z1, z2, b). (13)

Assume that u3(b) = u3(a)+u1(a
1
1)−u1(z1). This is clearly necessary for additive representabil-

ity. Now, by independence, for all z2 ∈ Z2,

(a11, z2, a) ∼ (z1, z2, b), and u1(a
1
1) + u2(z2) + u3(a) = u1(z1) + u2(z2) + u3(b). (14)

Consider any (z1, z2, a) ∈ Y such that z1 -1 a
1
1. By definition of z1 and z2, (z1, z2, a) %

(z1, z2, b). By (13) and since z1 -1 a11, (a11, z2, a) - (z1, z2, a) - (a11, z2, a), which implies
by axiom 5 that there exists y2 ∈ Z2 such that (z1, z2, a) ∼ (a11, y2, a). u representing %
on Z1 × Z2 × {a}, the last indifference relation is equivalent to u1(z1) + u2(z2) + u3(a) =
u1(a

1
1) + u2(y2) + u3(a). Now, by (14) and transitivity of % and =,

(z1, z2, a) ∼ (z1, y2, b) and u1(z1) + u2(z2) + u3(a) = u1(z1) + u2(y2) + u3(b). (15)
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So, to summarize, for all (z1, z2, a) ∈ Y such that z1 -1 a
1
1, there exists y2 ∈ Z such that (15)

holds. This corresponds to the area in figure 3.

second subsubstep: generating the area by induction

Suppose that, for k ≥ 1, sequences (a11, . . . , a
k
1) and (b11, . . . , b

k
1) exist such that

• for all r such that 2 ≤ r ≤ k, (ar−11 , z2, a) ∼ (ar1, z2, a) and

u1(a
r−1
1 ) + u2(z2) + u3(a) = u1(a

r
1) + u2(z2) + u3(a);

(16)

• for all r such that 1 ≤ r ≤ k, (ar1, z2, a) ∼ (br1, z2, b) and
u1(a

r
1) + u2(z2) + u3(a) = u1(b

r
1) + u2(z2) + u3(b);

(17)

• for all (z1, z2, a) ∈ Y such that z1 -1 a
k
1, there exist y1 ∈ Z1, y2 ∈ Z2 such that

(z1, z2, a) ∼ (y1, y2, b) and u(z1) + u2(z2) + u3(a) = u1(y1) + u2(y2) + u3(b).
(18)

Note that, by defining b11 = z1, the existence of sequences (ar1) and (br1) has been shown for k = 1
in the first subsubstep (since (16) trivially holds because there exists no r such that 2 ≤ r ≤ 1).
Now, suppose that there exists ak+1

1 ∈ Z1 such that

(ak1, z2, a) ∼ (ak+1
1 , z2, a), (19)

otherwise go to the third subsubstep. As u represents % on Z1 × Z2 × {a},

u1(a
k
1) + u2(z2) + u3(a) = u1(a

k+1
1 ) + u2(z2) + u3(a). (20)

By independence, (17), (19), and since z2 ≺2 z2 and a ≺3 b, (bk1, z2, b) ≺ (bk1, z2, b) ∼
(ak1, z2, a) ≺ (ak1, z2, b) ∼ (ak+1

1 , z2, b), which implies by axiom 5 that there exists bk+1
1 such

that (bk1, z2, b) ∼ (bk+1
1 , z2, b). As u represents % on Z1 × Z2 × {b}, u1(bk1) + u2(z2) + u3(b) =

u1(b
k+1
1 ) + u2(z2) + u3(b). Combining (17), (19), (20) and the last two equations, one gets

(ak+1
1 , z2, a) ∼ (bk+1

1 , z2, b) and u1(a
k+1
1 ) + u2(z2) + u3(a) = u1(b

k+1
1 ) + u2(z2) + u3(b). (21)

To summarize, (16) and (17), already satisfied by sequences (ar1)
k
r=1 and (br1)

k
r=1, are also satisfied

by ak+1
1 and bk+1

1 . Now, let us show that (18) also holds w.r.t. ak+1
1 . Consider any (z1, z2, a) ∈ Y

such that ak1 -1 z1 -1 a
k+1
1 . Then two subcases can occur:

first subcase: if (z1, z2, a) - (ak1, z2, a) then, since ak1 -1 z1, (ak1, z2, a) - (z1, z2, a) - (ak1, z2, a),
which implies by axiom 5 that there exists y2 ∈ Z2 such that

(z1, z2, a) ∼ (ak1, y2, a). (22)

But, since u represents % in Z1 × Z2 × {a}, u(z1) + u2(z2) + u3(a) = u1(a
k
1) + u2(y2) + u3(a).

Now, combining (22) with (17), and, next, the last equality with (17), one gets

(z1, z2, a) ∼ (bk1, y2, b) and u(z1) + u2(z2) + u3(a) = u1(b
k
1) + u2(y2) + u3(b).

second subcase: if (z1, z2, a) � (ak1, z2, a) then, by (19) and since z1 -1 ak+1
1 , (ak1, z2, a) ∼

(ak+1
1 , z2, a) ≺ (z1, z2, a) - (ak+1

1 , z2, a), which implies by axiom 5 that there exists y2 ∈ Z2 such
that

(z1, z2, a) ∼ (ak+1
1 , y2, a). (23)

But, since u represents % in Z1 ×Z2 × {a}, u(z1) + u2(z2) + u3(a) = u1(a
k+1
1 ) + u2(y2) + u3(a).

Now, combining (23) with (21), and, next, the last equality with (21), one gets

(z1, z2, a) ∼ (bk+1
1 , y2, b) and u(z1) + u2(z2) + u3(a) = u1(b

k+1
1 ) + u2(y2) + u3(b).
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To summarize, for every (z1, z2, a) ∈ Y such that ak1 -1 z1 -1 a
k+1
1 , there exists y2 ∈ Z2 such

that either i) (z1, z2, a) ∼ (bk1, y2, b) and u1(z1) + u2(z2) + u3(a) = u1(b
k
1) + u2(y2) + u3(b), or

ii) (z1, z2, a) ∼ (bk+1
1 , y2, b) and u1(z1) + u2(z2) + u3(a) = u1(b

k+1
1 ) + u2(y2) + u3(b). Combined

with (18), this leads to: for every (z1, z2, a) ∈ Y such that z1 -1 a
k+1
1 , there exist y1 ∈ Z1 and

y2 ∈ Z2 such that (z1, z2, a) ∼ (y1, y2, b) and u1(z1) + u2(z2) + u3(a) = u1(y1) + u2(y2) + u3(b).
Now, to complete this subsubstep, we show that sequences (ar1) and (br1) cannot be infinite.

By definition of z2 and z2, and by (16), z2 �2 z2 and (ar1, z2) ∼12 (ar+1
1 , z2) for all r. Therefore,

(ar1) is a standard sequence w.r.t. the first component, bounded in Z by z1 and z1; so, by the
strengthened Archimedean axiom (axiom 9), it is necessarily finite. Similarly for (br1).

third subsubstep: generating the area
When we reach this subsubstep, sequence (ar1) has been shown to be finite. Let p be the last

index of the sequence, i.e., the index such that (ap1, z2, a) � (z1, z2, a).
Consider any element (z1, z2, a) ∈ Y such that ap1 -1 z1 -1 z1. Two subcases can occur:

first subcase: if (z1, z2, a) - (ap1, z2, a), then, since ap1 -1 z1, (ap1, z2, a) - (z1, z2, a) - (ap1, z2, a),
which implies by axiom 5 that there exists y2 ∈ Z2 such that (z1, z2, a) ∼ (ap1, y2, a). But,
since u represents % in Z1 × Z2 × {a}, u1(z1) + u2(z2) + u3(a) = u1(a

p
1) + u2(y2) + u3(a).

Now, combining these equations with the fact that (ap1, z2, a) ∼ (bp1, z2, b) and u1(a
p
1) + u2(z2) +

u3(a) = u1(b
p
1) + u2(z2) + u3(b) — as was shown in the first two subsubsteps — one gets:

(z1, z2, a) ∼ (bp1, y2, b) and u(z1) + u2(z2) + u3(a) = u1(b
p
1) + u2(y2) + u3(b).

second subcase: if (z1, z2, a) � (ap1, z2, a) then, since(ap1, z2, a) � (z1, z2, a) and since ap1 -1 z1,
(z1, z2, a) ≺ (ap1, z2, a) - (z1, z2, a), which implies by axiom 5 that there exists y2 ∈ Z2 such
that (ap1, z2, a) ∼ (z1, y2, a). Since u represents % on Z1 × Z2 × {a}, u1(ap1) + u2(z2) + u3(a) =
u1(z1) + u2(y2) + u3(a).

Combining these equations with y2 -2 z2 and a ≺3 b, one gets: (bp1, y2, b) - (bp1, z2, b) ∼
(ap1, z2, a) ≺ (ap1, z2, b) ∼ (z1, y2, b), which implies by axiom 5 that there exists bp+1

1 such that

(bp1, z2, b) ∼ (bp+1
1 , y2, b). As u represents % on Z1×Z2×{b}, u1(bp1)+u2(z2)+u3(b) = u1(b

p+1
1 )+

u2(y2) + u3(b). Combining these equations, one gets

(z1, y2, a) ∼ (bp+1
1 , y2, b) and u1(z1) + u2(y2) + u3(a) = u1(b

p+1
1 ) + u2(y2) + u3(b). (24)

Now, let us come back to (z1, z2, a). By hypothesis, (z1, z2, a) � (ap1, z2, a) ∼ (z1, y2, a);
and, by definition of z1, (z1, z2, a) - (z1, z2, a); consequently, (z1, y2, a) ≺ (z1, z2, a) - (z1, z2, a),
which implies by axiom 5 that there exists t2 ∈ Z2 such that (z1, z2, a) ∼ (z1, t2, a); and, since u
represents % on Z1×Z2×{a}, u1(z1)+u2(z2)+u3(a) = u1(z1)+u2(t2)+u3(a). Now, combining
these equations with (24), one gets: (z1, z2, a) ∼ (bp+1

1 , t2, b) and u1(z1) + u2(z2) + u3(a) =

u1(b
p+1
1 ) + u2(t2) + u3(b).

Therefore, to summarize, for every element (z1, z2, a) ∈ Y such that ap1 -1 z1 -1 z1, there
exists y2 ∈ Z2 such that either i) (z1, z2, a) ∼ (bp1, y2, b) and u(z1) + u2(z2) + u3(a) = u1(b

p
1) +

u2(y2)+u3(b), or ii) (z1, z2, a) ∼ (bp+1
1 , y2, b) and u(z1)+u2(z2)+u3(a) = u1(b

p+1
1 )+u2(y2)+u3(b).

fourth subsubstep: conclusion of case 2.1
At this step, we have shown that, for every (z1, z2, a) ∈ Y such that z1 -1 z1 — which means

actually every (z1, z2, a) ∈ Y — there exist y1 ∈ Z1 and y2 ∈ Z2 such that

(z1, z2, a) ∼ (y1, y2, b) and u(z1) + u2(z2) + u3(a) = u1(y1) + u2(y2) + u3(b). (25)

We will prove in this subsubstep, that it is sufficient for u to represent % on Y . Indeed, consider
two elements (z1, z2, a), (t1, t2, b) ∈ Y . By (25), there exist y1 ∈ Z1 and y2 ∈ Z2 such that
(z1, z2, a) ∼ (y1, y2, b) and such that u1(z1)+u2(z2)+u3(a) = u1(y1)+u2(y2)+u3(b). Now, since
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u represents % on Z1×Z2×{b}, u1(y1) +u2(y2) +u3(b) ≥ u1(t1) +u2(t2) +u3(b)⇔ (y1, y2, b) %
(t1, t2, b) and u1(y1) + u2(y2) + u3(b) ≤ u1(t1) + u2(t2) + u3(b) ⇔ (y1, y2, b) - (t1, t2, b). So, by
transitivity of % and ≥, (z1, z2, a) % (t1, t2, b)⇔ u1(z1)+u2(z2)+u3(a) ≥ u1(t1)+u2(t2)+u3(b)
and u1(z1) + u2(z2) + u3(a) ≤ u1(t1) + u2(t2) + u3(b)⇔ (y1, y2, a) - (t1, t2, b).

Therefore, u, as defined by u3(b) = u3(a) + u1(a
1
1) − u1(z1), represents % on Y . And since

(x01, x
0
2, a) and (x11, x

1
2, b) belong to Y , u is as defined by (11).

Case 2.2: if (z1, z2, b) - (z1, z2, a) : (26)

Using a symmetric proof of case 2.1 — symmetric w.r.t. components one and two — it is
easily shown that u, as defined by (11), is a utility function on Y .

Case 2.3: if (z1, z2, a) ≺ (z1, z2, b) and (z1, z2, a) ≺ (z1, z2, b) : (27)

Y is nonempty, so (z1, z2, b) - (z1, z2, a) and, by (27) and independence,

(z1, z2, a) ≺ (z1, z2, b) - (z1, z2, a) ≺ (z1, z2, b). (28)

For all (z1, z2, z3) ∈ Y , there exists (t1, t2, t3) ∈ Z such that (z1, z2, z3) ∼ (t1, t2, t3) and such
that z3 6= t3; so, (z1, z2, b) - (z1, z2, z3) - (z1, z2, a), which implies by (28) and by axiom 5 that
there exist y1 ∈ Z1 and y2 ∈ Z2 such that

(z1, z2, z3) ∼ (y1, z2, b) ∼ (z1, y2, a). (29)

In particular, there exists a2 ∈ Z2 such that

(z1, a2, a) ∼ (z1, z2, b). (30)

So, a necessary condition for u to represent % on Y is clearly that

u3(b) = u3(a) + u1(z1)− u1(z1) + u2(a2)− u2(z2). (31)

Now let (z1, z2, a) be an arbitrary element of Y . By (29), there exist y1 ∈ Z1 and y2 ∈ Z2

such that (z1, z2, a) ∼ (y1, z2, b) ∼ (z1, y2, a). Now, by (30) and the scaling axiom, (y1, z2, b) ∼
(z1, y2, a) and (z1, a2, a) ∼ (z1, z2, b) imply that (z1, y2, a) ∼ (y1, a2, a). Indeed equation (4) of
the scaling axiom can be used because, by definition of z1, z1, z2 and z2, when case 2.3 occurs,
a and b are not single-dimensionally-matched in X. But u, as defined by (31), represents % in
Z1×Z2×{a}; so, u1(z1) +u2(y2) +u3(a) = u1(y1) +u2(a2) +u3(a). Now, this equality and (31)
imply that u1(y1) + u2(z2) + u3(b) = u1(z1) + u2(y2) + u3(a). By (29) and since u represents %
on Z1 × Z2 × {a}, u1(z1) + u2(z2) + u3(a) = u1(z1) + u2(y2) + u3(a).

Therefore, to summarize, for all (z1, z2, a) ∈ Y , there exists y1 ∈ Z1 such that (z1, z2, a) ∼
(y1, z2, b) and u1(z1) + u2(z2) + u3(a) = u1(y1) + u2(z2) + u3(b). Consequently, u, as defined by
(31), represents % on Y ; and since (x01, x

0
2, a) and (x11, x

1
2, b) belong to Y , (11) holds.

So far, we proved the existence of an additive utility on X1 × X2 × {a, b}. It remains to
show the uniqueness property. Since u1 and u2 are unique up to scale and location, (11), being
necessary and sufficient for u to represent %, ensures that u3 is unique up to scale and location.

�

Lemma 5 Let X = X1 × X2 × X3. Suppose that (X,%) satisfies axiom 1 (weak ordering),
axiom 2 (independence) and axiom 5 (restricted solvability w.r.t. the first two components). Let
x3, z3 ∈ X3 be such that x3 and z3 are 3-linked, i.e., x3 O3 z3. Then, x3 and z3 can be 3-linked
by a strictly monotonic sequence, i.e., by a sequence (yk3 )pk=0 of elements of X3 such that
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• y03 = x3, yp3 = z3,

• for every k ∈ {0, . . . , p− 1}, there exist ak+1, bk ∈ X1 ×X2 such that (bk, yk3 ) ∼ (ak+1, yk+1
3 ),

• either yk+1
3 �3 y

k
3 for all k ∈ {0, . . . , p− 1}, or yk+1

3 ≺3 y
k
3 for all k ∈ {0, . . . , p− 1}.

Moreover, if x3 and z3 are single-dimensionally-matched, then they can be single-dimensionally-
matched by a strictly monotonic sequence.

Proof of lemma 5: Suppose that x3 and z3 are 3-linked. Without loss of generality, suppose
that x3 -3 z3 — since, as was mentioned in section 2, x3 O3 z3 ⇔ z3 O3 x3. By definition
of i-linkness, there exists a finite sequence (tk3)rk=0 such that t03 = x3, t

r
3 = z3, and for all

k ∈ {0, . . . , r− 1}, there exist ak+1, bk ∈ X1×X2 such that (bk, tk3) ∼ (ak+1, tk+1
3 ). If, moreover,

x3 and z3 are single-dimensionally-matched, then ak+1 and bk have one component in common.

First step: extracting a 3-linking sequence constituted by elements “between” x3 and z3

If tk+1
3 �3 t

k
3 for all k ∈ {0, . . . , r − 1}, then lemma 5 is proved. Otherwise, extract from (tk3)

sequence (sk3)qk=0 constituted by all the elements “between” x3 and z3, i.e., such that z3 %3

sk3 %3 x3 for all k. Let f(·) be such that sk3 = t
f(k)
3 for all k. We will show that, for all

k ∈ {0, . . . , q− 1}, there exist ck+1, dk ∈ X1×X2 such that (dk, sk3) ∼ (ck+1, sk+1
3 ). If f(k+ 1) =

f(k) + 1, sk3 = t
f(k)
3 and sk+1

3 = t
f(k)+1
3 , so (bf(k), sk3) ∼ (af(k)+1, sk+1

3 ). If x3 and z3 are single-
dimensionally-matched, then bf(k) and af(k)+1 have one component in common, so sk3 and sk+1

3

are directly-single-dimensionally-matched.
Otherwise, suppose that some ti3, for i ∈ {f(k)+1, . . . , f(k+1)−1}, are such that ti3 �3 z3 and

others are such that ti3 ≺3 x3; then, there exists i1 ∈ {f(k)+1, . . . , f(k+1)−1} such that either
ti13 �3 z3 and ti1+1

3 ≺3 x3 or such that ti13 ≺3 x3 and ti1+1
3 �3 z3. Consider the first case (the other

one can be proved similarly). Then (bi1 , x3) - (bi1 , z3) ≺ (bi1 , ti13 ) ∼ (ai1+1, ti1+1
3 ) ≺ (ai1+1, x3) -

(ai1+1, z3), which implies, by lemma 2, that there exist a, b such that (a, x3) ∼ (b, z3) ∼ (bi1 , ti13 ),
and so sequence (s03 = x3, s

1
3 = z3) is monotonic and 3-linking. Moreover, if x3 and z3 are

single-dimensionally-matched, then ai1+1 and bi1 have one component in common, so a and b
have also one component in common and x03 and x13 are directly-single-dimensionally-matched.

If, on the other hand, there do not exist some ti3, for i ∈ {f(k)+1, . . . , f(k+1)−1}, such that
ti3 �3 z3 and others such that ti3 ≺3 x3, then either ti3 �3 z3 for all i ∈ {f(k)+1, . . . , f(k+1)−1},
or ti3 ≺3 x3 for all i ∈ {f(k) + 1, . . . , f(k+ 1)− 1}. Consider the first case (the other one can be

proved similarly); then, if t
f(k)
3 -3 t

f(k+1)
3 , (af(k)+1, t

f(k+1)
3 ) - (bf(k), t

f(k)
3 ) ∼ (af(k)+1, t

f(k)+1
3 ) -

(bf(k), t
f(k+1)
3 ), which implies, by lemma 2, that there exists ck+1 such that (bf(k), t

f(k)
3 ) ∼

(ck+1, t
f(k+1)
3 ), or, equivalently, such that (bf(k), sk3) ∼ (ck+1, sk+1

3 ). if, on the contrary, t
f(k)
3 %3

t
f(k+1)
3 , then (bf(k+1)−1, t

f(k)
3 ) - (bf(k+1)−1, t

f(k+1)−1
3 ) ∼ (af(k+1), t

f(k+1)
3 ) - (af(k+1), t

f(k)
3 ),

which implies, by lemma 2, that there exists dk such that (dk, t
f(k)
3 ) ∼ (af(k+1), t

f(k+1)
3 ), or,

equivalently, such that (dk, sk3) ∼ (af(k+1), sk+1
3 ). Moreover, if x3 and z3 are single-dimensionally-

matched, then af(k)+1 and bf(k) (resp. bf(k+1)−1 and af(k+1)) have one component in common,
so ck+1 and bf(k) (resp. dk and af(k+1)) have also one component in common, hence resulting in
sk3 and sk+1

3 being directly-single-dimensionally-matched.
So, (sk3)qk=0 3-links or single-dimensionally-matches x3 and z3. Suppose that, for all k ∈

{1, . . . , q−1}, sk3 6= x3 and sk3 6= z3 — otherwise, just extract the smallest subsequence such that
this property holds. Next, we will show that one can extract from (sk3)qk=0 a strictly increasing
sequence 3-linking or single-dimensionally-matching x3 and z3.

Second step: extracting a strictly increasing sequence 3-linking x3 and z3

If sk+1
3 �3 s

k
3 for all k ∈ {0, . . . , q − 1}, then lemma 5 is proved. Otherwise, there exists k1 in

{0, . . . , q−2} such that sk1+1
3 -3 s

k1
3 . Let k2 be the smallest index in {0, . . . , q−1} such that k2 ≥
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k1 and sk23 �3 s
k1
3 . Let (hk3)pk=0 be the sequence (s03, . . . , s

k1
3 , s

k2
3 , . . . , s

q
3), and g(·) be such that

hk3 = s
g(k)
3 . Clearly, for all k < k1−1, (dk, sk3) ∼ (ck+1, sk+1

3 ), so (dk, hk3) ∼ (ck+1, hk+1
3 ); similarly,

for all k ≥ k1+1, (dg(k), s
g(k)
3 ) ∼ (cg(k+1), s

g(k+1)
3 ), so that (dg(k), hk3) ∼ (cg(k+1), hk+1

3 ). Moreover,
if x3 and z3 are single-dimensionally-matched, hk3 and hk+1

3 are directly-single-dimensionally-
matched for all k < k1−1 and all k ≥ k1 +1. Now, by definition of k2, k2 > k1 +1, sk2−13 ≺3 s

k1
3 ,

so (ck2 , sk13 ) ≺ (ck2 , sk23 ) ∼ (dk2−1, sk2−13 ) - (dk2−1, sk13 ), which implies, by lemma 2, that there
exists ik1 such that (ik1 , sk13 ) ∼ (ck2 , sk23 ). Therefore, (ik1 , hk13 ) ∼ (ck2 , hk1+1

3 ), and so sequence
(hk3) 3-links x3 and z3. Moreover, if x3 and z3 are single-dimensionally-matched, then ck2 and
dk2−1 have one component in common and so ck2 and ik1 have also one component in common,
hence hk13 and hk1+1

3 are directly-single-dimensionally-matched.
If (hk3) is strictly increasing, then lemma 5 holds; otherwise, repeat the same process with

(hk3) playing the role previously taken by (sk3); by construction, Card(hk3) ≤ Card(sk3) − 1, so
at most q iterations are needed to extract a strictly increasing sequence 3-linking or single-
dimensionally-matching x3 and z3. �

Proof of theorem 1: The proof is organized in two steps. First, it is shown that, for all
x03, x

1
3, % is representable on X1×X2× [x03, x

1
3] by an additive utility u. In step 2, u is extended

to represent % on X and the set of equivalence classes of O3 is shown to be denumerable.
We know that there exist real-valued functions u1 on X1 and u2 on X2 such that % is

represented on X1×X2 by u1+u2. Now consider some arbitrary elements x03, x
1
3 of X3. Without

loss of generality, suppose that x03 ≺3 x
1
3. We will prove in the first step that u1 + u2 can be

extended to represent % on X1 ×X2 × [x03, x
1
3] — remind that [x03, x

1
3] = {x3 : x03 -3 x3 -3 x

1
3}.

First step: generating u on X1 ×X2 × [x0
3, x

1
3]

First case: if there exists (x01, x
0
2, x

1
1, x

1
2) such that (x11, x

1
2, x

1
3) ∼ (x01, x

0
2, x

0
3) : (32)

first substep: generating u on X1 ×X2 × {x03, x13}
A necessary and sufficient condition for u to represent % on X1 ×X2 × {x03, x13} is that

u3(x
1
3) = u3(x

0
3) + u1(x

0
1)− u1(x11) + u2(x

0
2)− u2(x12). (33)

Indeed, if x03 and x13 are not single-dimensionally-matched in X, then they are neither single-
dimensionally-matched in X1 ×X2 ×{x03, x13}. Thus, case 2.3 of lemma 4 can be applied, which
proves that an additive utility exists. If, on the contrary, x03 and x13 are single-dimensionally-
matched in X, then, by lemma 5, there exists a sequence (yk3 )pk=0 such that y03 = x03, y

p
3 = x13,

and such that yi3 ≺3 yi+1
3 , and yi3 and yi+1

3 are directly-single-dimensionally-matched for all
i ∈ {0, . . . , p − 1}. Hence, by cases 2.1 and/or 2.2 of lemma 4, % is representable by additive
utilities ui1 + ui2 + ui3, unique up to scale and location, on every space X1 × X2 × {yi3, y

i+1
3 }.

Applying proper scalings and adding proper constants, it is not restrictive to assume that ui1 = u1
and ui2 = u2 for all i ∈ {0, . . . , p}, and that ui3(y

i+1
3 ) = ui+1

3 (yi+1
3 ) for all i ∈ {0, . . . , p− 1}.

Now, let u3 : {yi3 : i ∈ {0, . . . , p}} → R be defined as u3(y
i
3) = ui3(y

i
3) for all i. Then

u1+u2+u3 is an additive utility, unique up to scale and location, representing% onX1×X2×{yi3 :
i ∈ {0, . . . , p}}. Indeed, compare two elements (x1, x2, y

i
3) and (y1, y2, y

i+k
3 ), k ≥ 0. If k ≤ 1,

then by definition of u3, it is trivial that u preserves the ordering. If k > 1, then if (x1, x2, y
i
3) ≺

(z1, z2, y
i+1
3 ) for all (z1, z2) ∈ X1 ×X2, then, since u represents % on X1 ×X2 × {yi3, y

i+1
3 },

u1(x1) + u2(x2) + u3(y
i
3) ≤ inf

(z1,z2)∈X1×X2

u1(z1) + u2(z2) + u3(y
i+1
3 ), (34)

with equality only if the inf is not attained. (yj3)
p
j=0 is a strictly increasing sequence and u

represents % on X1 ×X2 × {yj3, y
j+1
3 } for all j ∈ {0, . . . , p− 1}, hence, by induction, u3(y

i+1
3 ) <
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u3(y
i+k
3 ). Consequently, by (34), u1(x1) + u2(x2) + u3(y

i
3) < u1(y1) + u2(y2) + u3(y

i+k
3 ), and of

course (x1, x2, y
i
3) ≺ (y1, y2, y

i+1
3 ) ≺ (y1, y2, y

i+k
3 ) since (yi3) is a strictly increasing sequence.

If, on the contrary, there exists (z1, z2) ∈ X1×X2 such that (x1, x2, y
i
3) ∼ (z1, z2, y

i+1
3 ), then,

since u represents % on X1 × X2 × {yi3, y
i+1
3 }, u1(x1) + u2(x2) + u3(y

i
3) = u1(z1) + u2(z2) +

u3(y
i+1
3 ). Now, it remains to compare (z1, z2, y

i+1
3 ) and (y1, y2, y

i+k
3 ). By induction on the above

process, it is clear that u represents % on X1 ×X2 × {yi3 : i ∈ {0, . . . , p}}, hence a fortiori on
X1 ×X2 × {x03, x13}.

Now, consider an arbitrary element x3 ∈ [x03, x
1
3]. Then, by (32), (x11, x

1
2, x3) - (x11, x

1
2, x

1
3) ∼

(x01, x
0
2, x

0
3) - (x01, x

0
2, x3). So, by lemma 2, that there exist x1, x2 such that

(x1, x2, x3) ∼ (x01, x
0
2, x

0
3) ∼ (x11, x

1
2, x

1
3). (35)

second substep: generating u on X1 ×X2 × {x03, x3, x13}
Using a proof similar to the first substep, % is representable by an additive utility function

v1 + v2 + v3 on X1 ×X2 × {x03, x3}, and v satisfies

v1(x1) + v2(x2) + v3(x3) = v1(x
0
1) + v2(x

0
2) + v3(x

0
3), (36)

and, moreover, v1, v2 and v3 are unique up to scale and location. Therefore, since v1 + v2 and
u1 + u2 both represent %12 on X1 ×X2, it is not restrictive to assume that v1 = u1, v2 = u2,
and v3(x

0
3) = u3(x

0
3). Consequently, a necessary and sufficient condition for u to represent % on

X1 ×X2 × {x03, x3} and on X1 ×X2 × {x03, x13} is that

u3(x
1
3) = u3(x

0
3) + u1(x

0
1)− u1(x11) + u2(x

0
2)− u2(x12),

u3(x3) = u3(x
0
3) + u1(x

0
1)− u1(x1) + u2(x

0
2)− u2(x2).

(37)

Using a similar proof, it can be easily shown that it is also a necessary and sufficient condition for
u to represent % on X1×X2×{x3, x13}. Note that (35) and (37) ensure that the values of u3(x3)
inferred from the application of the first substep on X1×X2×{x03, x3} and on X1×X2×{x3, x13}
are identical.

Now, it is clear that (37) is necessary and sufficient for u to represent % on X1 × X2 ×
{x03, x3, x13} because, when comparing any two elements (y1, y2, y3), (z1, z2, z3) ∈ X1 × X2 ×
{x03, x3, x13}, (y3, z3) belong either to {x3, x13}2, to {x03, x3}2 or to {x3, x13}2.

third substep: generating u on X1 ×X2 × [x03, x
1
3]

Consider two elements y3, z3 ∈ [x03, x
1
3]. We have shown at the beginning of this case

that there exist (s1, s2, y3) and (t1, t2, z3) such that (s1, s2, y3) ∼ (t1, t2, z3) ∼ (x01, x
0
2, x

0
3) ∼

(x11, x
1
2, x

1
3). By the preceding substep, a necessary and sufficient condition for u to represent %

on X1 ×X2 × {x03, y3, x13} and on X1 ×X2 × {x03, z3, x13}, is that

u3(x
1
3) = u3(x

0
3) + u1(x

0
1)− u1(x11) + u2(x

0
2)− u2(x12),

u3(y3) = u3(x
0
3) + u1(x

0
1)− u1(s1) + u2(x

0
2)− u2(s2),

u3(z3) = u3(x
0
3) + u1(x

0
1)− u1(t1) + u2(x

0
2)− u2(t2).

(38)

We will show next that it is also sufficient for u to represent % on X1×X2×{x03, y3, z3, x13}.
According to the preceding paragraph, there remains to show that u is still representing when
comparing an element of X1 × X2 × {y3} with one of X1 × X2 × {z3}. So, consider two ar-
bitrary elements (y1, y2, y3) and (z1, z2, z3). Either i) (y1, y2, y3) - (x01, x

0
2, x

0
3), in which case,

since y3 %3 x03, (y1, y2, x
0
3) - (y1, y2, y3) - (x01, x

0
2, x

0
3) and, by lemma 2, there exist a1, a2

such that (y1, y2, y3) ∼ (a1, a2, x
0
3); or ii) (y1, y2, y3) � (x01, x

0
2, x

0
3) ∼ (x11, x

1
2, x

1
3), in which

case (x11, x
1
2, x

1
3) ≺ (y1, y2, y3) - (y1, y2, x

1
3) and, by lemma 2, there exist a1, a2 such that
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(y1, y2, y3) ∼ (a1, a2, x
1
3). Now suppose that i) holds (case ii) is similar). Then, since u is repre-

senting on X1×X2×{x03, y3, x13}, u1(y1) +u2(y2) +u3(y3) = u1(a1) +u2(a2) +u3(x
0
3). Since u is

also representing on X1×X2×{x03, z3, x13}, (a1, a2, x
0
3) % (z1, z2, z3)⇔ u1(a1)+u2(a2)+u3(x

0
3) ≥

u1(z1) + u2(z2) + u3(z3) and (a1, a2, x
0
3) - (z1, z2, z3) ⇔ u1(a1) + u2(a2) + u3(x

0
3) ≤ u1(z1) +

u2(z2)+u3(z3). So (y1, y2, y3) % (z1, z2, z3)⇔ u1(y1)+u2(y2)+u3(y3) ≥ u1(z1)+u2(z2)+u3(z3)
and (y1, y2, y3) - (z1, z2, z3)⇔ u1(y1) + u2(y2) + u3(y3) ≤ u1(z1) + u2(z2) + u3(z3).

So (38) is necessary and sufficient for u to represent % on X1 ×X2 × {x03, y3, z3, x13}. Now,
note that in (38), u3(y3) was not defined in function of u3(z3), and conversely; moreover, y3
and z3 were arbitrary; consequently, a necessary and sufficient condition for u to represent % on
X1 ×X2 × [x03, x

1
3] is that, for all y3 ∈ [x03, x

1
3], u3(y3) is defined by:

u3(y3) = u3(x
0
3) + u1(x

0
1)− u1(s1) + u2(x

0
2)− u2(s2) (39)

when (s1, s2, y3) ∼ (x01, x
0
2, x

0
3).

Second case: if Not[(x11, x
1
2, x

1
3) ∼ (x01, x

0
2, x

0
3)] for every (x01, x

0
2, x

1
1, x

1
2):

Then (x11, x
1
2, x

1
3) � (x01, x

0
2, x

0
3) else, since x03 ≺ x13, (x11, x

1
2, x

1
3) - (x01, x

0
2, x

0
3) ≺ (x01, x

0
2, x

1
3)

and, by lemma 2, there would exist a1, a2 such that (x01, x
0
2, x

0
3) ∼ (a1, a2, x

1
3).

Case 2.1: if x13 O3 x
0
3 (i.e., x03 and x13 are 3-linked (see definition 1 on page 4)):

By lemma 5, there exists a finite sequence (zi3)
p
i=1 such that i) z03 = x03, z

p
3 = x13; ii) zi+1

3 �3 z
i
3

for all i in {0, . . . , p−1}; and iii) there exist (zi1, z
i
2) and (yi+1

1 , yi+1
2 ) such that (yi+1

1 , yi+1
2 , zi+1

3 ) ∼
(zi1, z

i
2, z

i
3). Applying the first case on X1 ×X2 × [zi3, z

i+1
3 ], i.e., selecting an appropriate value

for u3(z
i+1
3 ) from that of u3(z

i
3), as in (39), u is a utility on X1 ×X2 × [zi3, z

i+1
3 ] for all i; and,

since u1, u2 and u3(z
i
3) are unique up to positive affine transforms, u is also unique up to scale

and location on each X1 ×X2 × [zi3, z
i+1
3 ].

Now, consider an arbitrary element (x1, x2, x3) ∈ X1×X2× [z03 , z
1
3 ] and an arbitrary element

(y1, y2, y3) ∈ X1 ×X2 × [z13 , z
2
3 ]; if there exists (a1, a2, z

1
3) such that (x1, x2, x3) ∼ (a1, a2, z

1
3) or

(y1, y2, y3) ∼ (a1, a2, z
1
3), then, since u represents % on X1×X2×[z03 , z

1
3 ] and on X1×X2×[z13 , z

2
3 ],

(x1, x2, x3) % (y1, y2, y3)⇔ u1(x1)+u2(x2)+u3(x3) ≥ u1(y1)+u2(y2)+u3(y3) and (x1, x2, x3) -
(y1, y2, y3) ⇔ u1(x1) + u2(x2) + u3(x3) ≤ u1(y1) + u2(y2) + u3(y3); else according to lemma 3,
(x1, x2, x3) ≺ (x1, x2, z

1
3) ≺ (y1, y2, y3), and, since u represents % on X1 ×X2 × [z03 , z

1
3 ] and on

X1×X2×[z13 , z
2
3 ], (x1, x2, x3) ≺ (y1, y2, y3)⇔ u1(x1)+u2(x2)+u3(x3) < u1(y1)+u2(y2)+u3(y3).

Therefore, u represents % on X1 ×X2 × [z03 , z
2
3 ]. By induction, using the process described

above, it is easily shown that u, as extended above, represents % on X1×X2×[x03, x
1
3]. Moreover,

due to the equality in (39), u is unique up to scale and location.

Case 2.2: if Not(x13 O3 x
0
3) : (40)

Lemma 4 on X1×X2×{x03, x13} implies that u1(X1) and u2(X2) are bounded (here lemma 4
can be applied directly because x03 and x13 are not single-dimensionally-matched in X). For
every x3, y3 ∈ X3 such that x3 O3 y3 O3 x

0
3 and y3 %3 x3 %3 x

0
3, by the first case and case 2.1,

there exists a unique up to scale and location additive utility u (resp. u′) representing % on
X1 ×X2 × [x03, x3] (resp. on X1 ×X2 × [x03, y3]). u

′ represents % on X1 ×X2 × [x03, y3], so the
restriction of u′ on X1 × X2 × [x03, x3] is an affine transform of u. By multiplying and adding
proper constants to u′, the restriction of u′ on X1 ×X2 × [x03, x3] is equal to u. So, u has been
extended to represent % on X1 × X2 × [x03, y3]. Repeating this process, one can extend u to
represent % on X1 × X2 × [x03, z3] for all z3 %3 y3, and so on. Hence, there exists an additive
utility, unique up to scale and location, representing % on X1×X2×{x3 : x3O3x

0
3 and x3 %3 x

0
3}.
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Now, let us prove that there exists β0 ∈ R such that, for every x3 ∈ X3 such that x3O3x
0
3 and

x3 %3 x
0
3, u3(x3) ≤ β0. Assume the contrary; then, for every r ∈ R, there exists x3(r) such that

x3(r) O3 x
0
3 and u3(x3(r)) ≥ r. The second component being essential, there exist x2, y2 ∈ X2

such that x2 �2 y2. Now, for y03 = x03, if r = u3(y
0
3) + u2(x2) − u2(y2), there exists y13 = x3(r)

such that u3(y
1
3) ≥ u3(y03) + u2(x2)− u2(y2), or, equivalently, such that (y1, y2, y

1
3) % (y1, x2, y

0
3)

for all y1 ∈ X1. By induction, for all i ∈ N, if r = u3(y
i
3) + u2(x2) − u2(y2), there exists yi+1

3

such that (y1, y2, y
i+1
3 ) % (y1, x2, y

i
3). (yi+1

3 ) is an infinite increasing strong standard sequence,
bounded by y03 and x13 (since Not(x13 O3 x

0
3)), which is impossible according to the strengthened

Archimedean axiom. So, there exists β0 ∈ R such that u3(x3) ≤ β0 for all x3 ∈ X3 such that
x3 O3 x

0
3.

Similarly, one can define an additive utility u1 over X1×X2×{x3 : x3O3 x
1
3 and x3 -3 x

1
3},

and u1 has a finite greatest lower bound, say α1, on this set. Since, by the first case and case 2.1,
u1 is unique up to scale and location, and since u1+u2 and u11+u12 both represent %12 on X1×X2,
u11 + u12 is an affine transform of u1 + u2; so, it is not restrictive to suppose that u11 = u1 and
u12 = u2. Now, we will show that it is possible to define u3(x3) for all x3 ∈ [x03, x

1
3] so that u is

representing on X1×X2× [x03, x
1
3]. Clearly, it is now sufficient to show that it is possible to define

u3(x3) for all x3 ∈ [x03, x
1
3] such that Not(x3O3x

0
3) so that u is representing on X1×X2× [x03, x

1
3];

and a necessary condition to get this result is that u3(·) = u13(·) + a constant γ.

Case 2.2.a: if there is no x23 ∈ [x03, x
1
3] such that Not(x23 O3 x

0
3) and Not(x23 O3 x

1
3):

Then, for all x3 ∈ [x03, x
1
3], either x3O3x

0
3 or x3O3x

1
3. Now, by lemma 3, it is known that, for

all (x1, x2, x3) ∈ X1×X2×{x3 : x3O3x
0
3 and x3 %3 x

0
3}, and for all (y1, y2, y3) ∈ X1×X2×{y3 :

y3 O3 x
1
3 and y3 -3 x

1
3}, (x1, x2, x3) ≺ (y1, y2, y3). But we already know that

u1(x1) + u2(x2) + u3(x3) ≤ supz1∈X1
{u1(z1)}+ supz2∈X2

{u2(z2)}+ supz3 O3 x03
{u3(z3)},

u1(y1) + u2(y2) + u13(y3) ≥ infz1∈X1{u1(z1)}+ infz2∈X2{u2(z2)}+ infz3 O3 x13
{u13(z3)}.

Therefore, if all the sup’s and inf’s are attained, then, clearly, a necessary and sufficient condition
to get u1(x1) + u2(x2) + u3(x3) < u1(y1) + u2(y2) + u3(y3) for all (x1, x2, x3) ∈ X1 ×X2 × {x3 :
x3 O3 x

0
3 and x3 %3 x

0
3} and all (y1, y2, y3) ∈ X1 × X2 × {y3 : y3 O3 x

1
3 and y3 -3 x

1
3}, is to

add to u13 a constant γ such that supz1∈X1
{u1(z1)} + supz2∈X2

{u2(z2)} + supz3 O3 x03
{u3(z3)} <

infz1∈X1{u1(z1)}+infz2∈X2{u2(z2)}+infz3 O3 x13
{u3(z3)}. So, adding any constant γ such that the

last inequality holds ensures that u represents % on X1×X2× [x03, x
1
3]. Similarly, if at least one

sup or inf is not attained, then, to get u1(x1)+u2(x2)+u3(x3) < u1(y1)+u2(y2)+u3(y3) for all
(x1, x2, x3) ∈ X1×X2×{x3 : x3O3x

0
3 and x3 %3 x

0
3} and all (y1, y2, y3) ∈ X1×X2×{y3 : y3O3x

1
3

and y3 -3 x13}, it is necessary and sufficient that supz1∈X1
{u1(z1)} + supz2∈X2

{u2(z2)} +
supz3 O3 x03

{u3(z3)} ≤ infz1∈X1{u1(z1)} + infz2∈X2{u2(z2)} + infz3 O3 x13
{u3(z3)}. So, to sum-

marize, there exists an additive utility u on X1 ×X2 × [x03, x
1
3], and the uniqueness property of

theorem 1 clearly holds.

Case 2.2.b: there exists x23 ∈ [x03, x
1
3] such that Not(x23 O3 x

0
3) and Not(x23 O3 x

1
3):

Let O∼3 be the set of equivalence classes of O3, and consider Z = {z̃3 ∈ O∼3 : there exists
z3 ∈ z̃3 such that z3 ∈ [x03, x

1
3]}. Suppose that Card(Z) is infinite; then it is possible to extract

from Z an infinite sequence (z̃p3) such that either zp+1
3 �3 z

p
3 for all (zp3 , z

p+1
3 ) ∈ z̃p3 × z̃

p+1
3 , or

such that zp+1
3 ≺3 z

p
3 for all (zp3 , z

p+1
3 ) ∈ z̃p3 × z̃

p+1
3 . Indeed, construct the sequence as follows:

let z̃03 = x̃03. If there exists an element z̃3 ∈ Z such that there exists no ỹ3 ∈ Z such that
z03 ≺3 y3 ≺3 z3, then let z̃13 = z̃3. Repeat the same process to define z̃23 , z̃

3
3 , etc. Two cases can

occur: either the process can be repeated infinitely, in which case the strictly monotonic infinite
sequence mentioned above has been constructed, or there exists an index p such that

for all z̃3 ∈ Z such that zp3 ≺3 z3, there exists ỹ3 ∈ Z such that zp3 ≺3 y3 ≺3 z3. (41)
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In this case, construct a strictly decreasing infinite sequence (t̃p3) as follows: take any such z̃3
and define t̃03 = z̃3. By (41), there exists ỹ3 ∈ Z such that zp3 ≺3 y3 ≺3 t

0
3. Let t̃13 = ỹ3. But ỹ3

is such that zp3 ≺3 y3, so (41) can be applied again with y3 playing the role previously taken by
z3. Therefore, t̃23 can be constructed. (41) ensures that the process of construction will never
stop, hence resulting in the existence of a strictly decreasing infinite sequence.

Now, suppose that an infinite strictly increasing sequence (z̃p3) has been constructed (a similar
proof would for a strictly decreasing sequence). The second component being essential, there
exist x2, y2 ∈ X2 such that x2 �2 y2. Let x1 be an arbitrary element of X1. By definition
of sequence (z̃p3), Not(zp+1

3 O3 z
p
3)), so (x1, y2, z

p+1
3 ) � (x1, x2, z

p
3); hence (zp3) is an infinite

increasing strong standard sequence bounded by x03 and x13, which contradicts the strengthened
Archimedean axiom. Therefore, Card(Z) is a finite number, say N, and so Z = {z̃13 , . . . , z̃N3 },
z̃13 = x̃03, z̃

N
3 = x̃13.

We know that there exists an additive utility ui, bounded and unique up to scale and
location, on X1 × X2 × {x3 : x3 O3 z

i
3} such that ui(x1, x2, x3) = u1(x1) + u2(x2) + ui3(x3).

Now it can be shown inductively, using case 2.2.a, that u can be extended to represent % on
X1×X2×{x3 : x3O3z

1
3 or x3O3z

2
3 or . . . or x3O3z

i+1
3 }. So, u can be extended to represent % on

X1 ×X2 × [x03, x
1
3]. As for the uniqueness property, inside an equivalence class of O3, elements

satisfy the first case or case 2.1, which implies a uniqueness up to scale and location, and
between two consecutive equivalence classes, case 2.2.a holds. Hence, the uniqueness property
of theorem 1 holds.

Second step: generating u on X1 ×X2 ×X3

Suppose that u has been constructed on X1×X2× [x03, x
1
3]. Take an arbitrary element x3 �3 x

1
3.

Similarly to the first step, there exists an additive utility, u1 + u2 + u13, representing % on
X1 ×X2 × [x13, x3]. Using again a process similar to the first step, one can prove that if u13(·) =
u3(·) + u13(x

1
3) − u3(x13), u can be extended to represent % on X1 × X2 × [x03, x3]. Using this

property repeatedly, u can be extended to represent % on X1×X2× [x03, x3] for all x3 %3 x
0
3. The

construction of u by extension ensures that we never question what was previously constructed.
So, u can be extended to represent % on X1 × X2 × {x3 : x3 %3 x

0
3}. The process works fine

because there exists an additive utility on X1×X2× [x03, x3] for every x3, which is true because
the number of equivalence classes of O3 is finite inside [x03, x3]. Similarly, for all y3 ≺3 x

0
3, u can

be extended to represent % on X1 ×X2 × [y3, x
0
3]; hence, u can be extended to represent % on

X1 ×X2 × {y3 : y3 -3 x
0
3}. By lemma 3, u represents % on X.

In the process of construction, we started with an arbitrary element x03 of X3, and we
showed that for all x3 %3 x

0
3, there exists no infinite sequence (xi3) such that x03 -3 x

i
3 - x3

and Not(xi3 O3 x
i+1
3 ). We also showed that an additive utility existed; so for every integer p,

every sequence (xi3) such that p ≤ u3(x
i
3) ≤ p + 1 and Not(xi3 O3 x

i+1
3 ), is finite. Hence O∼3 is

denumerable and there exists a sequence (xi3) such that for all i, xi+1
3 �3 x

i
3 and for all x3 of

X3, there exists i such that x3 O3 x
i
3. This sequence is in fact created by taking one element in

each indifference class of O3. The uniqueness of the additive representation is immediate. �

Lemma 6 Let % be a weak order on
∏n
i=1Xi, satisfying axioms 2, 3, 5, 6, 7, 8, and 9. Let k ∈

{3, . . . , n}. If k = n, let X3,k =
∏n
i=3Xi and assume that for all xn, yn ∈ Xn, xn On yn, else let

(ak+1, . . . , an) be an arbitrary element of
∏n
i=k+1Xi and let X3,k =

∏k
i=3Xi×{ak+1}×· · ·×{an}.

Then % is a weak order satisfying axioms 2, 3, 5, 6, 7, 8, 9, on the 3-dimensional Cartesian
product Y = X1 ×X2 ×X3,k.

Proof of lemma 6: According to Wakker (1989, pp.30–31), axiom 2 holds on Y . Moreover,
by their very definitions, axioms 3, 5, 6, clearly hold on Y .
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Let us prove by induction on k that axiom 7 holds on Y : when k is equal to 3, there is nothing
to prove. Suppose now that axiom 7 holds on sets Y ′ = X1×X2×X3,k′ for all k′ < k, that is, by
independence, for all x3,k′ , z3,k′ ∈ Y ′, there exists a sequence (yl3,k′)

q
l=0 ∈ X3,k′ such that y03,k′ =

x3,k′ , y
q
3,k′ = z3,k′ , and such that for all l ∈ {0, . . . , q−1}, there exist cl+1, dl ∈ X1×X2 such that

(cl+1, yl+1
3,k′) ∼ (dl, yl3,k′). Consider two arbitrary elements of X3,k, say (x3, . . . , xk, ak+1, . . . , an)

and (z3, . . . , zk, ak+1, . . . , an). By hypothesis, xk and zk are k-linked. Therefore, there exists a se-
quence (ylk)

p
l=0 in Xk such that y0k = xk, y

p
k = zk, and such that for all l ∈ {0, . . . , p−1}, there ex-

ist al+1 = (al+1
1 , . . . , al+1

k−1) and bl = (bl1, . . . , b
l
k−1) in

∏k−1
j=1 Xj such that (al+1, yl+1

k ) ∼1...k (bl, ylk),

or equivalently such that (al+1, yl+1
k , ak+1, . . . , an) ∼ (bl, ylk, ak+1, . . . , an). Note that, by inde-

pendence, for all l ∈ {0, . . . , p−1}, (al+1
3 , . . . , al+1

k−1, y
l+1
k , ak+1, . . . , an) and (bl+1

3 , bl+1
k−1, y

l+1
k , ak+1,

. . . , an) belong to X3,k−1. Therefore, by hypothesis of induction and independence, for all l ∈
{0, . . . , p−1}, there exists a sequence (wm,l3,k−1)

q(l)
m=0 such that w0,l

3,k−1 = (al+1
3 , . . . , al+1

k−1, y
l+1
k , ak+1,

. . . , an), w
q(l),l
3,k−1 = (bl+1

3 , . . . , bl+1
k−1, y

l+1
k , ak+1, . . . , an) and such that, for all m ∈ {0, . . . , q(l)− 1},

there exist cm+1,l, dm,l ∈ X1 × X2 such that (cm+1,l, wm+1,l
3,k−1 ) ∼ (dm,l, wm,l3,k−1). Similarly,

there exists two sequences, say (wm,−13,k−1)
q(−1)
m=0 and (wm,p+1

3,k−1 )
q(p+1)
m=0 , (3, k − 1)-linking respectively

(x3, . . . , xk−1, xk, ak+1, . . . , an) and (b01, . . . , b
0
k−1, xk, ak+1, . . . , an), and (z3, . . . , zk−1, zk, ak+1,

. . . , an) and (ap3, . . . , a
p
k−1, zk, ak+1, . . . , an). Then, the sequence

(
(wm,l3,k )

q(l)
m=0

)p+1

l=−1
, formed by

appending the sequences (wm,l3,k )
q(l)
m=0 for all l, (3, k)-links x3,k and z3,k. Hence axiom 7 holds on

Y .
Let us now prove that axiom 9 holds on Y . Let x = (x1, x2, x3,k) and z = (z1, z2, z3,k) be

two elements of Y and assume that there exists an infinite increasing strong standard sequence
w.r.t. X3,k, say (wl3,k), with mesh (x01, x

0
2) ≺ (x11, x

1
2) ∈ X1 × X2, and such that for all l,

x - (x01, x
0
2, w

l
3,k) - z. According to the preceding paragraph, x3,k and z3,k are (3, k)-linked,

hence there exists a sequence (ym3,k)
p
m=0 of elements of X3,k such that y03,k = x3,k, y

p
3,k = z3,k, and

such that for all m ∈ {0, . . . , p− 1}, there exist am+1 = (am+1
1 , am+1

2 ), bm = (bm1 , b
m
2 ) ∈ X1 ×X2

such that (am+1, ym+1
3,k ) ∼ (bm, ym3,k). For convenience, let a0 = (x1, x2) and bp = (z1, z2). Indeed,

if it were not true, the sequence (tm3,k)
p+1
m=−1 defined as t−13,k = x3,k, t

p+1
3,k = z3,k, t

i
3,k = yi3,k for

all i ∈ {0, . . . , p}, (a−11 , a−12 ) = (x1, x2) and (b−11 , b−12 ) = (a01, a
0
2), (bp+1

1 , bp+1
2 ) = (z1, z2) and

(ap+1
1 , ap+1

2 ) = (bp1, b
p
2), and (am+1, tm+1

3,k ) ∼ (bm, tm3,k) for all m ∈ {0, . . . , p − 1}, could be used
instead. Thus, for all l, there obviously exists m ∈ {0, . . . , p} such that either i) (bm, ym3,k) -

(x01, x
0
2, w

l
3,k) - (am, ym3,k); or ii) (am, ym3,k) - (x01, x

0
2, w

l
3,k) - (bm, ym3,k). Since (wl3,k) is infinite,

there exists an index m such that either i) or ii) holds for an infinite number of l’s. Consider
such an index m and assume for convenience that i) holds for all l’s in an infinite set L (the
proof is similar for ii)).

If am1 - bm1 , then for all l ∈ L, (bm1 , b
m
2 , y

m
3,k) - (x01, x

0
2, w

l
3,k) - (bm1 , a

m
2 , y

m
3,k). So, by

restricted solvability w.r.t. the second component, for all l ∈ L, there exists cl2 ∈ X2 such that
(x01, x

0
2, w

l
3,k) ∼ (bm1 , c

l
2, y

m
3,k). Let us show that (cl2)l∈L is an infinite strong standard sequence

w.r.t. the second component. By hypothesis, for all l ∈ L,

(bm1 , c
l
2, y

m
3,k) ∼ (x01, x

0
2, w

l
3,k) ≺ (x11, x

1
2, w

l
3,k) - (x01, x

0
2, w

l+1
3,k ) ∼ (bm1 , c

l+1
2 , ym3,k). (42)

By essentiality w.r.t. X1, there exists d1 ∈ X1 such that Not(d1 ∼1 b
m
1 ). Suppose now that

d1 �1 b
m
1 (a similar proof holds when d1 ≺1 b

m
1 ). Then, by equation (42),

• either there exists l such (bm1 , c
l
2, y

m
3,k) ≺ (d1, c

l
2, y

m
3,k) - (x11, x

1
2, w

l
3,k), and (cl2)l∈L is a strong

standard sequence of mesh {(bm1 , ym3,k), (d1, ym3,k)}. To prove this it is sufficient to show that

∀l′ ∈ L, (bm1 , c
l′
2 , y

m
3,k) ≺ (d1, c

l′
2 , y

m
3,k) - (x11, x

1
2, w

l′
3,k). But if the third order cancellation
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axiom holds, then for all l′ we get :

(x01, x
0
2, w

l
3,k) ∼ (bm1 , c

l
2, y

m
3,k)

(bm1 , c
l′
2 , y

m
3,k) ∼ (x01, x

0
2, w

l′
3,k)

(d1, c
l
2, y

m
3,k) - (x11, x

1
2, w

l
3,k)︸ ︷︷ ︸

⇓
(x11, x

1
2, w

l′
3,k) % (d1, c

l′
2 , y

m
3,k).

(43)

Let us show now that the third order cancellation axiom holds. Let (fp3,n) be a sequence

single-dimensionally matching wl3,k and ym3,k in X if such a sequence exists, else sequence

(wl3,k, y
m
3,k). Similarly, for l′ 6= l, let (gs3,n) (resp. (ht3,n)) be a sequence single-dimensionally

matching in X wl
′
3,k and ym3,k (resp. wl

′
3,k and wl3,k) if such a sequence exists, or else sequence

(wl
′
3,k, y

m
3,k) (resp. (wl

′
3,k, w

l
3,k)). Let Z3,n = {fp3,n}∪{gs3,n}∪{ht3,n}. Then % is a weak order

on X1 × X2 × Z3,n satisfying the independence axiom. We already know that restricted
solvability, essentiality and the Thomsen condition hold on X1 and X2. The strengthened
Archimedean axiom holds as well on X1 and X2, and on Z3,n since the latter is finite. The
scaling axiom holds because when two elements of Z3,n are single-dimensionally matched
in X, they are also single-dimensionally matched in Z3,n, so that when they are not single-
dimensionally matched in Z3,n, they are neither in X and equation (4) of the scaling axiom
holds. In conclusion, (X1 ×X2 × Z3,n,%) satisfies all the requirements of theorem 1, and
% is representable by an additive utility on this set. Hence the third order cancellation
axiom holds on this set, which contains X1 ×X2 × {ym3,k, wl3,k, wl

′
3,k}. Thus (43) holds and

(cl2)l∈L is a strong standard sequence.

• or there exists l such that (bm1 , c
l
2, y

m
3,k) ≺ (x11, x

1
2, w

l
3,k) - (d1, c

l
2, y

m
3,k), and by restricted

solvability w.r.t. X1, there exists e1 ∈ X1 such that (x11, x
1
2, w

l
3,k) ∼ (e1, c

l
2, y

m
3,k). Thus

(cl2)l∈L is a strong standard sequence of mesh {(bm1 , ym3,k), (e1, ym3,k)}. The proof to show
that the last independence relation does not depend on the value of l is similar to that of
the “either” part.

But both cases are impossible according to the strengthened Archimedean axiom w.r.t. the
second component.

If am2 - bm2 , then by symmetry w.r.t. the first component, there would exist an infinite
strong standard sequence w.r.t. the first component “between” (bm, ym3,k) and (am, ym3,k), which
is impossible. Assume now that bm1 ≺ am1 and that bm2 ≺ am2 . If there exists an infinite set
L′ such that for all l ∈ L′, (am1 , b

m
2 , y

m
3,k) - (x01, x

0
2, w

l
3,k) - (am1 , a

m
2 , y

m
3,k), then, similarly to

the preceding paragraph, there exists a bounded infinite strong standard sequence w.r.t. the
second component, else there exists an infinite set L′′ such that for all l ∈ L′′, (bm1 , b

m
2 , y

m
3,k) -

(x01, x
0
2, w

l
3,k) - (am1 , b

m
2 , y

m
3,k), and there exists a bounded infinite strong standard sequence

w.r.t. the first component. Consequently, the existence of (wl3,k) implies the existence of infinite
bounded strong standard sequences w.r.t. X1 or X2, which is impossible by hypothesis, and
axiom 9 holds on Y .

Now, let us prove that axiom 8 holds on Y . Let x = (x3, . . . , xk, ak+1, . . . , an) and y =
(y3, . . . , yk, ak+1, . . . , an) be two arbitrary elements of X3,k. Assume that, in X, x and y are
not single-dimensionnally-matched. Then, by axiom 8 on X, equation (4) (see page 6) holds.
If, on the contrary, x and y are single-dimensionnally-matched, then, by definition, their last
components, say xn and yn, are n-linked. So x, y ∈ Z =

∏n−1
i=3 Xi × {zn : zn On xn}. But

according to the preceding paragraphs, on X1 × X2 × Z, % satisfies axioms 2, 3, 5, 6, 7 and
9. Moreover, it trivially satisfies axiom 8 on X1 ×X2 ×Z since single-dimensionnally-matching
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implies i-linkness. So, by theorem 1, there exists an additive utility function representing % on
X1 ×X2 × Z. Equation (4) is obviously necessary for additive representability. Consequently,
the scaling axiom holds w.r.t. x and y, and, a fortiori, on Y . �

Proof of theorem 2: Let (w1, . . . , wn) be an arbitrary element of X. Hereafter, for all
i, j in {1, . . . , n}, i < j, Xi,j denotes the Cartesian product

∏j
k=iXk ×

∏n
k=j+1{wk}. By

lemma 6, (X1,3,%) satisfies the assumptions of theorem 1, hence there exist real-valued functions,
u1, u2, u3, such that (x1, x2, x3) %123 (y1, y2, y3) ⇔

∑3
i=1 ui(xi) ≥

∑3
i=1 ui(yi), and, moreover,

by axiom 7, u1, u2, u3 are unique up to scale and location.

First step: generating u on X1,n−1:

Consider X1,4 =
∏4
i=1Xi×

∏n
k=5{wk}. Aggregate the last (n−2) components; then X1,4 = X1×

X2×X3,4. Then, by lemma 6 and theorem 1, there exist real-valued functions v1, v2, v3,4 such that
(x1, x2, x3, x4) %1...4 (y1, y2, y3, y4)⇔ v1(x1)+v2(x2)+v3,4(x3, x4) ≥ v1(y1)+v2(y2)+v3,4(y3, y4).
Now, if n, the dimension of X, is strictly greater than 4 — else see the second step —, by axiom 7,
v1, v2, v3,4 are unique up to scale and location. But, for a fixed value of the fourth component,
say x04, (x1, x2, x3, x

0
4) %1...4 (y1, y2, y3, x

0
4) ⇔ (x1, x2, x3) %1...3 (y1, y2, y3) ⇔ v1(x1) + v2(x2) +

v3,4(x3, x
0
4) ≥ v1(y1) + v2(y2) + v3,4(y3, x

0
4). Hence there exist constants α, β1, β2, β3,4(x

0
4) such

that, for all (x1, x2, x3) ∈ X1 × X2 × X3, v1(x1) = α u1(x1) + β1, v2(x2) = α u2(x2) + β2
and v3,4(x3, x

0
4) = α u3(x3) + β3,4(x

0
4). But, by independence, this is true for every value x04.

Thus, v3,4(x3, x4) is, in fact, the sum of two functions of one component each. Therefore,
if u4(·) = β3,4(·), (x1, x2, x3, x4) %1...4 (y1, y2, y3, y4) ⇔

∑4
i=1 ui(xi) ≥

∑4
i=1 ui(yi), and, of

course, u1, u2, u3, u4, are unique up to scale and location. By induction, it can be proved that
there exist real-valued functions u1, . . . , un−1, unique up to scale and location, and such that
(x1, . . . , xn−1) %1...n−1 (y1, . . . , yn−1)⇔

∑n−1
i=1 ui(xi) ≥

∑n−1
i=1 ui(yi).

Second step: generating un:

Select an arbitrary x0n in Xn. Let Y =
∏n−1
i=1 Xi × {xn : xn On x0n}. On Y , xn On yn for

every xn, yn ∈ Xn. So, the process described above can be applied and there exists a real-valued
function un on {xn : xnOnx0n}, unique up to scale and location, such that x % y ⇔

∑n
i=1 ui(xi) ≥∑n

i=1 ui(yi) for all x, y ∈ Y . Of course, this is true for any x0n. So, on each equivalence class of
On, there exists an additive utility representing %, unique up to scale and location.

If On has only one equivalence class, then u represents % on X. Otherwise, aggregate the non
solvable components: let X3,n =

∏n
i=3Xi. Let us now show that axiom 9 holds on X1×X2×X3,n.

Assume that there exist z, t ∈ X and an infinite increasing strong standard sequence (yi3,n)i≥0 of

mesh {(x01, x02), (x11, x12)}, such that for all i, z - (x01, x
0
2, y

i
3,n) - t (the proof is similar when the

sequence is decreasing). If there existed an equivalence class of On containing an infinite number
of elements of (yi3,n), then this would contradict lemma 6 since within this class, all elements

are i-linked. So the existence of (yi3,n) implies the existence of an infinite number of equivalence
classes ofO3,n “between” the classes containing (z3, . . . , zn) and (t3, . . . , tn). One can now extract
from (yi3,n) an infinite increasing strong standard sequence of mesh {(x01, x02), (x11, x12)}, say (ri3,n),

such that Not(ri3,nO3,n r
j
3,n) for all i, j. Let (rin) be the sequence of the nth components of (ri3,n)

in X. Then, by definition, Not(rin On r
j
n) for all i 6= j. But since (ri3,n) is increasing, (rin) is

also increasing. Moreover, by definition of On, for all (a1, . . . , an−1) �1...n−1 (b1, . . . , bn−1) (such
elements exist by essentiality), we have (b1, . . . , bn−1, r

i+1
n ) � (a1, . . . , an−1, r

i
n). Hence (rin) is

an increasing strong standard sequence w.r.t. the nth component, bounded by z and t, which is
impossible by hypothesis. So the strengthened Archimedean axiom holds on X3,n.

Moreover, on X1 ×X2 ×X3,n, axioms 2, 3, 5, 6, and 8, hold. And by the i-linkness axiom
(axiom 7), two elements of X3,n, say x3,n and y3,n, are (3, n)-linked only if xn On yn, where xn
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and yn denote the nth component of x3,n and y3,n respectively. So, by theorem 1, there exists
an additive utility u1 + u2 + u3,n on X1 ×X2 ×X3,n, and u1 and u2 are unique up to scale and
location, as well as u3,n on each equivalence class of On. But then, on each equivalence class
of On, we already know that

∑n
i=1 ui exists representing %. Therefore, on every equivalence

class, there exists a constant such that u3,n(·) =
∑n

i=3 ui(·)+constant; Aggregating the constant
with un, one gets u3,n(·) =

∑n−1
i=3 ui(·) + [un(·) + constant]. The constant need not be the same

in each equivalence class since un was defined separately on each equivalence class. Therefore,
there exists an additive utility u representing % on X. Moreover, the set of equivalence classes
of On is at most denumerable.

The problem that remains is the uniqueness of u. We already know that u1, . . . , un−1 are
unique up to scale and location, as well as un on each equivalence class of On. Now, suppose
that there exists another additive utility:

∑n
i=1 vi. By theorem 1, there exist a set, say N , of

consecutive integers, and a sequence of elements of X3,n, (xi3,n)i∈N such that, for all i, i + 1

in N , xi+1
3,n �3,n x

i
3,n and Not(xi3,n On x

i+1
3,n ), and, for all x3,n ∈ X3,n there exists i ∈ N such

that x3,n On xi3,n. Moreover, for all x3,n such that x3,n On xi3,n, v3,n(x3,n) = αu3,n(x3,n) + βi,
where, for all i, i+ 1 ∈ N , βi+1 ≥ βi + α[supx1,x2{u1(x1) + u2(x2)}+ supy3,n On xi3,n

u3,n(y3,n)]−
α[infx1,x2{u1(x1) + u2(x2)} + infy3,n On x

i+1
3,n

u3,n(y3,n)], with equality only if the inf and/or the

sup is not attained. The uniqueness of un follows from that of u3, . . . , un−1. �
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