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Abstract

This paper deals with multiobjective optimization
in the context of multiattribute utility theory. The
alternatives (feasible solutions) are seen as ele-
ments of a product set of attributes and preferences
over solutions are represented by generalized addi-
tive decomposable (GAI) utility functions model-
ing individual preferences or criteria. Due to de-
composability, utility vectors attached to solutions
can be compiled into a graphical structure closely
related to junction trees, the so-called GAI net. We
first show how the structure of the GAI net can be
used to determine efficiently the exact set of Pareto-
optimal solutions in a product set and provide nu-
merical tests on random instances. Since the ex-
act determination of the Pareto set is intractable in
worst case, we propose a near admissible algorithm
with performance guarantee, exploiting the GAI
structure to approximate the set of Pareto optimal
solutions. We present numerical experimentations,
showing that both utility decomposition and ap-
proximation significantly improve resolution times
in multiobjective search problems.

1 Introduction
The complexity of human decision making in organizations,
the importance of the issues raised in decision problems and
the increasing need to explain or justify any decision has led
decision makers to seek a scientific support in the preparation
of their decisions. During many years, rational decision mak-
ing was understood as solving a single-objective optimiza-
tion problem, the optimal decision being implicitly defined
as a feasible solution minimizing a cost function under some
technical constraints. However, the practice of decision mak-
ing in organizations has shown the limits of such formula-
tions. First, there is some diversity and subjectivity in human
preferences that requires distinguishing between the objective
description of the alternatives of a choice problem and their
value as perceived by individuals. In decision theory, alterna-
tives are often seen as multiattribute items characterized by a
tuple in a product set of attributes domains, the value system
of each individual being encoded by a utility function defined

on the multiattribute space and measuring the relative attrac-
tiveness of each tuple. Hence objectives of individuals take
the form of multiattribute utilities to be optimized. Typically,
in a multiagent decision problem, we have to deal with several
such utilities that must be optimized simultaneously. Since
individual utilities are generally not commensurate, this is not
always possible to construct an overall utility that might sim-
plify the optimization task and we have to solve a multiobjec-
tive problem. Moreover, even when there is a single decision
maker, several conflicting points of views may be considered
in the preference analysis, leading to the definition of sev-
eral criteria. All these observations have motivated the emer-
gence of multicriteria methodologies for preference modeling
and human decision support, an entire stream of research that
steadily developed for 40 years [Keeney and Raiffa, 1993].

In human decision problems, alternatives are often char-
acterized by a combination of local decisions providing the
feasible set with a combinatorial structure. This explains
the growing interest for multiobjective combinatorial optimi-
zation [Ehrgott, 1999], with applications in various contexts
such as planning actions of autonomous agents, organizing
production workflows, solving resource allocation problems.
Besides the existence of several criteria, the combinatorial na-
ture of multiattribute spaces is a significant source of com-
plexity. This has motivated the development of preference
representation languages aiming at simplifying preference
handling and decision making on combinatorial domains.

As far as utility functions are concerned, the works on
compact representation aim at exploiting preference indepen-
dence among some attributes so as to decompose the utility
of a tuple into a sum of smaller utility factors. Different de-
composition models of utilities have been developed to model
preferences. The most widely used assumes a special kind
of independence among attributes called “mutual preferential
independence”. It ensures that preferences are representable
by an additively decomposable utility [Krantz et al., 1971;
Bacchus and Grove, 1995]. Such decomposability makes
both the elicitation process and the query optimizations very
fast and simple. However, in practice, it may fail to hold
as it rules out any interaction among attributes. Generaliza-
tions have thus been proposed in the literature to significantly
increase the descriptive power of additive utilities. Among
them, multilinear utilities [Keeney and Raiffa, 1993] and GAI
(generalized additive independence) decompositions [Brazi-



unas and Boutilier, 2005; Gonzales and Perny, 2004] allow
quite general interactions between attributes [Bacchus and
Grove, 1995] while preserving some decomposability. The
latter has been used to endow CP-nets with utilities (UCP-
nets) [Boutilier et al., 2001; Brafman et al., 2004]. GAI de-
composable utilities can be compiled into graphical structures
closely related to junction trees, the so-called GAI networks.
They can be exploited to perform classical optimization tasks
(e.g. find a tuple with maximal utility) using a simple col-
lect/distribute scheme essentially similar to that used in the
Bayes net community. The next step is to address multiob-
jective optimization problems with such graphical models.

The aim of this paper is to show the potential of GAI mod-
els in representing and solving multiobjective combinatorial
optimization problems. Assuming each objective is repre-
sented by a GAI decomposable utility function defined on
the multiattribute space, we investigate the determination of
Pareto-optimal elements. More precisely, in Section 2, we in-
troduce exact and approximated optimality concepts linked to
the notion of Pareto dominance. In Section 3, we show how
both exact and approximated Pareto sets can be determined
efficiently using GAI nets. Finally, in Section 4, we present
numerical experimentations showing the impact of decompo-
sition and approximation on solution times.

2 Non-dominated Solutions and their
Approximation

We assume that alternatives are characterized by n variables
x1, . . . , xn taking their values in finite domains X1, . . . , Xn

respectively. Hence alternatives can be seen as elements of
the product set of these domains X = X1 × . . . × Xn. By
abuse of notation, for any set Y ⊆ {1, ..., n}, xY will refer
to the projection of x ∈ X on

∏
i∈Y Xi. Considering a finite

set of objectives M = {1, ...,m}, any solution x ∈ X can
be characterized by a utility vector (u1(x), ..., um(x)) ∈ Zm+
where ui : X → Z+ is the ith utility function. It measures the
relative utility of alternatives with respect to the ith point of
view (criterion or agent) considered in the problem. Hence,
the comparison of alternatives reduces to that of their utility
vectors. The set of all utility vectors attached to solutions in
X is denoted by U . We recall now some definitions related to
dominance and optimality in multiobjective optimization.

Definition 1 The weak Pareto dominance relation is defined
on utility vectors of Zm+ as: u %P v ⇔ [∀i ∈M,ui ≥ vi].
Definition 2 Any utility vector u ∈ U is said to be non-
dominated in U (or Pareto-optimal) if, for all v ∈ U , v %P

u ⇒ u %P v. The set of non-dominated vectors in U is
denoted ND(U) and is referred to as the “Pareto set”.

The Pareto set can be very large as U is the image of a
combinatorial setX in Zm+ and, in the worst case, all elements
in U are non-dominated as shown by the following example:

Example 1 Consider a decision problem with two objec-
tives on a set X =

∏n
k=1Xk, where Xk = {0, 1}, k =

1, . . . , n. Assume the objectives are additive utility functions
defined, for any Boolean vector x = (x1, . . . , xn) ∈ X , by
ui(x) =

∑n
k=1 u

i
k(xk), i = 1, 2, where uik is a marginal

utility function defined on Xk by u1
k(xk) = 2k−1xk and

u2
k(xk) = 2k−1(1 − xk). Then for all x ∈ {0, 1}n, u1(x) =∑n
k=1 2k−1xk and u2(x) =

∑n
k=1 2k−1(1 − xk) and there-

fore u1(x) + u2(x) =
∑n
k=1 2k−1 = 2n − 1. So there ex-

ist 2n different Boolean vectors in X with distinct images in
the utility space. Actually, all feasible utility vectors of type
(u1, u2) ∈ U are on the same line characterized by equation
u1 + u2 = 2n − 1. This line is orthogonal to vector (1, 1)
which proves that all these vectors are Pareto-optimal. Here
ND(U) = U . In such a case, the size of the Pareto set grows
exponentially with the number of attributes.

Although pathological, this example shows that the de-
termination of Pareto-optimal vectors may be intractable in
practice on large size instances. Numerical tests presented in
Section 4 will confirm this point. For this reason, relaxing
the notion of Pareto dominance to approximate the Pareto set
with performance guarantee is a good alternative in practice.
In this perspective, we consider the notion of ε-dominance
defined as follows [Papadimitriou and Yannakakis, 2000;
Laumanns et al., 2002; Perny and Spanjaard, 2008]:

Definition 3 For any ε > 0, the ε-dominance relation is de-
fined on utility vectors of Zm+ as follows:

u %ε v ⇔ [∀i ∈M, (1 + ε)ui ≥ vi].
For instance, on the left part of Fig. 1, the black point in cone
C ε-dominates any other point in the cone. Hence we can de-
fine the notion of approximation of the Pareto set as follows:

Definition 4 For any ε > 0 and any set V ⊆ U of bounded
utility vectors, a subsetW ⊆ V is said to be an ε-covering of
ND(V) if ∀v ∈ ND(V), ∃w ∈ W : w %ε v.

In general, multiple ε-coverings of ND(V) exist, with dif-
ferent sizes, the most interesting being minimal w.r.t. set in-
clusion. For instance, on the left part of Fig. 1, the gray and
the four black points form an ε-covering of the Pareto set
since the union of cones A,B,C,D,E covers all feasible util-
ity vectors. But the five points do not form a minimal cover-
ing since, excluding the gray point, the four remaining points
still cover the entire feasible set as can be seen on Fig. 1.

The strength of the ε-covering concept derives from the fol-
lowing result due to [Papadimitriou and Yannakakis, 2000]:
for any fixed number m > 1, for any finite ε > 0 and any
set U of bounded utility vectors such that 0 < ui(x) ≤ K
for all i ∈ M , there exists in U an ε-covering of the Pareto
set ND(U) the size of which is polynomial in log K and
1/ log(1 + ε). The result can be simply explained as follows:
to any utility vector u ∈ Zm+ , we can assign vector ϕ(u) the

components of which are ϕ(ui) = d log ui

log(1+ε)e. By definition,
the following property holds:

Proposition 1 ∀u, v ∈ U , ϕ(u) %P ϕ(v)⇒ u %ε v.

Thanks to the scaling and rounding operation, the num-
ber of different possible values for ϕ is bounded on each
axis by dlogK/ log(1 + ε)e. Hence the cardinality of set
ϕ(U) = {ϕ(u), u ∈ U} is upper bounded by B(K,m, ε) =
dlogK/ log(1+ ε)em. This can easily be explained using the
right part of Fig. 1 representing a logarithmic grid in the space
of criteria. Any square of the grid represents a different class
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Figure 1: ε-coverings of the Pareto set

of utility vectors having the same image through ϕ. Thanks
to Proposition 1, we can see that any vector belonging to a
given square covers any other element of the square in terms
of %ε. Hence, choosing one representative in each square, we
cover the entire set U . The size of the covering is bounded
by the number of squares in the grid, i.e., B(K,m, ε). The
covering can easily be refined by keeping only the elements
of ND(ϕ(U)) in the covering (plotted in black on Fig. 1).
Since we have no more than one Pareto-optimal element for
each different value of ϕ(u) such a covering will include at
most dlogK/ log(1 + ε)em−1 elements. In Example 1, if
items are described by 20 Boolean attributes, then the Pareto
set contains more than one million of elements (220) whereas
dlog 220/ log 1.1e = 146 elements are sufficient to cover this
set with a tolerance threshold of 10% (ε = 0.1).

It is now natural to wonder how GAI decomposability of
utility functions can be used to efficiently compute i) the ex-
act set of Pareto-optimal utility vectors (when it is not too
large) and ii) an ε-covering of the Pareto set when it is too
large for complete enumeration. In both cases, we would like
to be able to recover a feasible solution for each returned vec-
tor. These questions are discussed in the following sections.

3 Pareto Set Computation using GAI nets
GAI decompositions are extensions of additive and multilin-
ear decompositions [Bacchus and Grove, 1995]. They encode
utilities as a sum of subutilities with overlapping factors:
Definition 5 (GAI decomposition) Let X =

∏n
i=1Xi. Let

Z1, . . . ,Zr ⊆ N = {1, . . . , n} be such that N = ∪ri=1Zi.
For every i, let XZi =

∏
j∈Zi

Xj . Utility u(·) is GAI-
decomposable w.r.t. the XZi

’s iff there exist functions ui :
XZi

7→ R such that u(x) =
∑r
i=1 ui(xZi

), for all x ∈ X ,
where xZi

denotes the tuple constituted by the xj’s, j ∈ Zi.
GAI decompositions can be represented by graphical

structures called GAI networks [Gonzales and Perny, 2004]
which are essentially similar to the junction graphs used for
Bayesian networks [Jensen, 1996; Cowell et al., 1999]:
Definition 6 (GAI network) Let X =

∏n
i=1Xi. Let

Z1, . . . ,Zr be some subsets of N = {1, . . . , n} such that⋃r
i=1 Zi = N. Let u(x) =

∑r
i=1 ui(xZi

) for all x ∈ X .
Then a GAI network representing u(·) is an undirected graph
G = (V,E), satisfying the following two properties:

1. V = {XZ1 , . . . , XZr
};

2. For every (XZi
, XZj

) ∈ E, Zi ∩ Zj 6= ∅. For every

pair of nodes XZi
, XZj

such that Zi ∩ Zj = Tij 6= ∅,
there exists a path in G linking XZi

and XZj
such that

all of its nodes contain all the indices of Tij (Running
intersection property).

Nodes of V are called cliques. Every edge (XZi
, XZj

) ∈ E
is labeled by XTij

= XZi∩Zj
and is called a separator.

Cliques are drawn as ellipses and separators as rectangles.
Here, we shall only consider GAI trees. This is not restrictive
as general GAI nets can always be compiled into GAI trees
[Gonzales and Perny, 2004]. For any GAI decomposition, by
Definition 6, the cliques of the GAI net should be the sets
of variables of the subutilities. For instance, the GAI net of
Fig. 2 represents the GAI decomposition: u(a, b, c, d, e, f) =
u1(a, b) + u2(c, e) + u3(b, c, d) + u4(d, f).

3.1 Exact Pareto Set Computation
To understand how GAI nets can be exploited to compute
Pareto sets, assume that two agents have preferences over a
set X = A × B × C × D × E × F . Both agents have
utilities decomposable according to the GAI net of Fig. 2,
i.e., ui(a, b, c, d, e, f) = ui1(a, b) + ui2(c, e) + ui3(b, c, d) +
ui4(d, f), i = 1, 2, the tables of Fig. 2 showing pairs (u1

j , u
2
j ).

Denote by U the set of all possible values of u. The key prop-
erty of our algorithm is that, for any additive utility vector
vi(x, y) = vi1(x) + vi2(y), i = 1, 2, the Pareto set w.r.t. v
can only be constituted by non-dominated vectors v1(x)’s
and v2(y)’s. Indeed, if v1(x) �P v1(x′), then, for any
y, v1(x) + v2(y) �P v1(x′) + v2(y), hence v1(x′) can-
not be part of the Pareto set w.r.t. v. Now, let us come
back to the GAI net of Fig. 2. For a fixed value, say b1,
of separator B, ui(a, b, c, d, e, f) becomes an additive utility:
ui1(a, b1) + vi(b1, c, d, e, f). Consequently, for B = b1, vec-
tors in ND(U) can only be constituted with non-dominated
u1(a, b1)’s and, for instance, it cannot contain u1(a3, b1) =
(7, 1) as u1(a2, b1) = (8, 2) �P u1(a3, b1). Hence, if clique
AB sends to BCD messageMB containing, for each value
bj of B, non-dominated vectors u1(a, bj), then only these
vectors need be considered for determining ND(U). For the
same reason, only non-dominated vectorsMC of u2 need be
considered. Now, for each value dj of D, u(a, b, c, dj , e, f)
can be decomposed additively as w(a, b, c, dj , e)+u4(dj , f).
Hence only non-dominated vectors w(a, b, c, dj , e) need be
considered for determining ND(U). But, as shown previ-
ously, w(a, b, c, dj , e) must be equal to the sum of one vector
ofMB , one vector ofMC and one compatible vector of u3.
By compatible, we mean that if the vector chosen in MB

(resp.MC) corresponds to B = bi (resp. C = ck), then only
vector u3(bi, ck, dj) is allowed. For determining ND(U),
only non-dominated such sums need be considered. These
are precisely stored in messageMD sent from clique BCD
to clique DF . Finally, ND(U) can be exactly determined by
computing all the sums of one vector ofMD with a compati-
ble vector in u4 and keeping only those non-dominated. This
corresponds to messageM. Note the efficiency of the algo-
rithm: in our example |X | = 192, hence a naive approach
would make dominance tests between 192 different vectors.
Here, for each bi (resp. cj , dk), message MB (resp. MC ,
MD) requires dominance tests between 3 (resp. 4, 16) vec-
tors, andM needs dominance tests between 14 vectors.
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Figure 2: Computing the Pareto set using a GAI network

This process can be automated as follows: first, we need
a function that, given two sets of vectors, computes the non
dominated vectors of their sums. GetLabelsNonDom de-
fined below performs this operation. Actually, this function
takes in argument some sets of labels V and W rather than
sets of vectors. A label is simply a pair 〈v, P 〉 such that v
is a utility vector and P is some information enabling to get
the instantiation of the attributes that led to v’s utility value.
In this function, operator ⊕ is defined as V ⊕ W 7→ L =
{〈v + v′, P ′′〉 : 〈v, P 〉 ∈ V and 〈v′, P ′〉 ∈ W}, i.e., operator
⊕ combines all vectors in V with all vectors inW . The rest
of the function removes iteratively all dominated vectors and
Lout contains the labels of all the non-dominated vectors.
Function GetLabelsNonDom(label sets V,W)
01 L ← V ⊕W; Lout ← ∅
02 for all labels 〈v, P 〉 ∈ L do
03 if 6 ∃〈v′, P ′〉 ∈ Lout s.t. v′ %P v then
04 remove from Lout all labels 〈v′, P ′〉 s.t. v %P v

′

Lout ← Lout ∪ {〈v, P 〉}
05 done
06 return Lout

Given this function, it is easy to compute the M’s mes-
sages mentioned previously. Consider for instance the gen-
eration of message Ma of Fig. 3. Let XCp1

, . . . , XCpr
be

the cliques adjacent to XCa that already sent their messages
MPi ’s to XCa . Let XSab

be the separator between cliques
XCa

and XCb
and let XDa

be the attributes in clique XCa

that do not belong to this separator. For any fixed value
xSab

of XSab
, let Ma[xSab

] denote the non-dominated vec-
tors given xSab

to be sent to clique XCb
. Then, as mentioned

at the beginning of this section, Ma[xSab
] is the set of the

non-dominated vectors among ∪xDa∈XDa
{ua(xDa

, xSab
) +∑r

j=1 v
ij : vij ∈ MPij

are compatible with (xDa
, xSab

)}.
To compute this, we exploit the transitivity of Pareto domi-
nance and first add to a given ua(xDa

, xSab
) all its compati-

ble vi1 ’s vectors. In function GetLabelsMessage, this is
done on Line 07. Then combine the resulting vectors with all
the compatible vi2 ’s and extract the non-dominated vectors.

...
.

XCp2
XSp2a

XSp1a

XSpra

XCp1

XSab XCb

XCpr

MP2

MP1
Ma

XDa XSab

XCaMPr

Figure 3: Illustration of function GetLabelsMessage

This is done on Line 09 by a call to GetLabelsNonDom. It-
erate over all the XCpi

’s neighbors (loop 08–10). As a result,
we get all the non-dominated vectors compatible with a given
value xDa

. There remains to make the unions of these sets
of vectors for different instantiations (loop 06–12) and to ex-
tract from these unions the non-dominated vectors (Line 11).
GetLabelsMessage thus computes correctlyMa.
Function GetLabelsMessage(XCa , XCb

)
01 let XCp1

,..., XCpr
be the cliques adjacent to XCa except XCb

02 letMpi , i = 1, ..., r, be the vectors sets sent by XCpi
to XCa

03 let Sab = Ca ∩Cb, Da = Ca\Sab and Spia = Cpi ∩Ca

04 for all xSab ∈ XSab do
05 Ma[xSab ]← ∅
06 for all xDa ∈ XDa do
07 V ← {〈ua(xCa), xCa〉} ⊕Mp1 [xSp1a

]
08 for all i ∈ {2, . . . , r} do
09 V ← GetLabelsNonDom(V,Mpi [xSpi

a])
10 done
11 Ma[xSab ]← GetLabelsNonDom(V,Ma[xSab ])
12 done
13 done
14 returnMa = {Ma[xSab ] : xSab ∈ XSab}

Now, to complete the computation of the Pareto set, there
remains to organize the calls to GetLabelsMessage. This
can be done by a classical “collect” algorithm as described
below. Create a dummy attribute A of domain size 1 as well
as a dummy clique root containing only A. Select an arbi-
trary clique XCa

, add A to it, and add an edge between XCa

and root. Then calling Collect(XCa
,root) clearly re-

sults in messageMa sent by XCa
to root being the Pareto

set. Now, for any v ∈ Ma, it is possible to determine
which instantiations of the attributes have utility v because
the collect phase returned labels which, by definition, contain
enough informations to get back the instantiations.
Function Collect(clique XCa

by clique XCb
)

01 for all cliques XCpi
adjacent to XCa except XCb do

02 call Collect (XCpi
, XCa )

03 Ma ← GetLabelsMessage(XCa , XCb)
04 send to XCb label setMa

05 done
For a fixed number of objectives m, function Collect

is pseudopolynomial, i.e., it returns the Pareto set in time
and space bounded by a polynomial in K, the largest of the
ui’s over X , and L|XC|, the size of the instance, where L
is the number of cliques in the GAI net and |XC| is the size
of the biggest clique (i.e., the product of the domain sizes
of its attributes). Actually, label sets V and W passed to
GetLabelsNonDom have less than Km elements as each



utility value is an integer between 1 and K. Hence, on
line 01, L is computed in O(mK2m). But |L| ≤ Km

as L contains sums of compatible subutilities. So, the for
loop of lines 02–05 is executed at most Km times. As
Lout ⊆ L, lines 03 and 04 can be executed in O(mKm).
Hence GetLabelsNonDom is in O(mK2m). In function
GetLabelsMessage, the for loops of lines 04 and 06
parse all the elements of XCa

. Within these loops, Line 07 is
performed in O(mKm) and lines 09 and 11 in O(mK2m).
Hence the whole function is in O(|XCa |rmK2m), hence
within O(|XC|rmK2m). Finally, function Collect calls
GetLabelsMessage over all the cliques, hence all edges
should be parsed and thus Collect is in O(|XC|LmK2m).
Note that |XC | is exponential in w where w is the treewidth
of the GAI net (i.e. the number of attributes in its largest
clique). The algorithm is hence exponential in w but remains
pseudo-polynomial for bounded w. In practice, w is small as
subutility factors usually involve only a few attributes.

3.2 A FPTAS for the Pareto Set
Computing an ε-covering is in essence similar to computing
a Pareto set. However, care must be taken when using ε-
dominance. Let XCa

and XCb
be two adjacent cliques. Let

v, v′, v′′ be three vectors on cliqueXCa
such that v %ε v

′ and
v, v′′ are non-dominated on clique XCa

. Let w,w′′ be two
vectors on cliqueXCb

such that v′′+w′′ %ε v+w. Since v+
w is dominated, it should be deleted. However, to preserve a
covering of the Pareto set, we need to be sure that v′′+w′′ %ε

v′+w. Unfortunately, although v+w %ε v
′+w by additivity,

we only have (1 + ε)2(v′′ + w′′) %P v′ + w instead of (1 +
ε)(v′′ + w′′) %P v′ + w. For this reason, we should have
used an ε/2-dominance to ensure that the message sent by
the second clique is actually an ε-covering. More generally,
we need a finer dominance notion:

Definition 7 For any utility vectors u, v ∈ Zm+ , and any
w > 0, u %w

ε v ⇔ (1 + ε)wu %P v. Then u is said to
(ε, w)-dominate v, and a set of (ε, w)-non-dominated vectors
is called an (ε, w)-covering.

Lemma 1 Let x, xi, y, yi, z be some positive vectors and w,
wi be positive numbers. Then the following properties hold:
P1: x %w

ε y =⇒ x+ z %w
ε y + z.

P2: [x %w
ε y and y %w′

ε z] =⇒ x %w+w′

ε z.

Hence as the collect over k cliques requires chaining k
(ε, wi)-dominance tests, i = 1, ..., k, a sufficient condition
to get an ε-covering is to choose the wi’s summing to 1.
Weights wi’s can be chosen equal to 1/L, where L is the
number of cliques or, better, they can be proportional to the
sizes of the cliques. To implement this idea (with all the wi’s
equal to 1/L), we substitute function GetLabelsNonDom
by the one below which computes (ε, 1/L)-covering labels.
Function GetLabelsNonDom(label sets V,W)
01 L ← V ⊕W; Lgrid ← ∅; Lout ← ∅
02 for all labels 〈v, P 〉 ∈ L do
04 if ϕ(v) 6∈Lgrid and 6 ∃〈v′, P ′〉∈Lout s.t. v′ %1/L

ε v then
05 remove from Lout all labels 〈v′, P ′〉 s.t. v %P v

′

06 Lout ← Lout ∪ {〈v, P 〉}; Lgrid ← Lgrid ∪ {ϕ(v)}
07 done
08 return Lout

Proposition 2 Let XCa
be any clique of the GAI net. Add to

XCa
a dummy attribute A with a domain size of 1. Add to

the GAI net a dummy clique root containing only A and an
edge between XCa

and root. Call Collect(XCa
,root).

Then the message sent by XCa
to root is an ε-covering.

Provided 1 ≤ K ≤ 2p(L|XC|), where p denotes some
polynomial, function Collect using the newly defined
GetLabelsNonDom is a Fully Polynomial Time Approx-
imation Scheme (FPTAS), i.e., it returns the ε-covering in
time and space bounded by a polynomial in 1/ε and the in-
stance size L|XC|. Indeed, vector sets V and W passed
to GetLabelsNonDom are some (ε, w)-coverings, so they
contain at most dL logK/ log(1 + ε)em elements. Here,
we only consider small ε’s, hence 1/ log(1 + ε) ≤ 2/ε.
So, V and W contain less than (2L logK/ε)m elements
and L is computed in O(m(L logK/ε)2m). By definition,
Lgrid cannot contain more than dL logK/ log(1 + ε)em el-
ements and checking whether ϕ(v) ∈ Lgrid is in O(m).
We thus check whether v′ %1/L

ε v at most (2L logK/ε)m
times. For the same reason, Lout cannot have more than
(2L logK/ε)m elements, hence line 05 can be completed
in O((L logK/ε)m). Hence GetLabelsNonDom is within
O(m(L logK/ε)2m). Therefore, the overall complexity of
Collect is in O(L|XC|m(L logK/ε)2m).

4 Experimentations
In order to evaluate the performance of our algorithm, we per-
formed numerical tests on a Core 2 Duo 2.66 GHz with 4 Gb
of RAM. The first part of the experiments aims at illustrating
the potential of GAI-decompositions to reduce computation
times for the exact Pareto set. To this end, we have considered
a search space with 17 attributes of size 5 and a GAI-net hav-
ing a chain structure with 16 cliques XCi= {Xi, Xi+1}, i=
1, ..., 16, so as to have XCi ∩XCi+1 ={Xi+1} as separators.
Then we drew utility tables randomly and computed the ex-
act Pareto set using this GAI-net. Next, we merged cliques by
pairs to form 8 cliquesXC′i =XC2i−1∪XC2i

, i = 1, ..., 8, so
as to represent the same utility in a less decomposed form; we
computed the exact Pareto set again and recorded the compu-
tation time. Then we iterated the process and merged again
cliques by pairs. We repeated the process until a single clique
of size 17 was obtained. The next table provides computa-
tion times (in seconds) as the size of cliques varies from 2
to 17 (a timeout was set to 1 hour); the times represent aver-
ages over 20 different instances with different utility tables,
for problems involving 2 and 5 objectives respectively. The
results show that exploiting utility decompositions makes the
multiobjective optimization significantly faster.

Treewidth (number of attributes per clique)
2 3 5 9 17

2 objs 0.055 0.141 1.486 895.556 > 3600
5 objs 31.316 125.726 2467.78 > 3600 > 3600
The second set of experimentations consists of evaluating

the potential of a joint use of utility decomposition and ε-
dominance to reduce computation times. To this end we have
generated the pathological bi-objective instances of Example
1 with different sizes (from 10 to 20 attributes). For each in-
stance, the covering of the Pareto set is computed with the



FPTAS for different values of the accuracy level ε varying
from 0 to 10%. Note that when ε = 0 we get the exact Pareto
set. The table below provides the cardinality of the output set
(# sol) and computation times (in seconds). We can observe
significant reduction of the output set as ε increases. Compu-
tation times are almost negligible.

Number of attributes
10 15 20

ε # sol time # sol time # sol time
0 1024 0.008 32768 0.257 106 8.9

0.01 407 0.008 644 0.014 782 0.206
0.05 117 0.002 149 0.004 193 0.010
0.1 58 0.002 72 0.002 109 0.005

The next table provides results on randomly generated
bi-objective problems of different sizes (from 15 to 30 at-
tributes). We give the cardinality of the output set (# sol)
as well as the average computation times (in seconds) over
100 experimentations. Instances are generated as follows:
for a given number of attributes, we generate a complete sub-
graph in the Markov graph containing the node representing
the kth variable, and 2 other variables chosen randomly. Each
GAI-network is then obtained by triangulation of the gener-
ated Markov graph, and each utility table is filled with values
between 1 and 100. We get the following results:

Number of attributes
15 20 25 30

ε # sol time # sol time # sol time # sol time
0 94 0.21 390 5.05 537 53.87 1595 103.02

0.01 37 0.029 102 0.064 123 0.30 147 0.64
0.05 9 0.012 14 0.017 17 0.060 18 0.13
0.1 3 0.006 3 0.009 4 0.027 4 0.059

Finally, we have investigated how the number of objectives
impacts on solution times. The table below provides the run-
ning times of the FPTAS for ε = 10%, on problems with
between 5 and 15 attributes, and from 2 to 10 objectives.

Number of attributes
# obj 5 10 15

2 0.001 0.002 0.003
5 0.003 1.07 32.9
10 0.084 189 589

5 Conclusion
We have shown that GAI models can be used efficiently
to generate Pareto sets using utility decompositions. The
techniques introduced here bear some similarity with those
involved in multiobjective state-space search [Stewart and
White III, 1991] or in multiobjective CSPs [Rollon and Lar-
rosa, 2007], with some additional specificities due to the
use of junction trees and the aim of generating approxima-
tions. Our FPTAS reveals very fast, even on pathologi-
cal instances, provided the number of objectives (not to be
confused with the number of attributes) and the sizes of
cliques are not too large (this is usually the case in real-
ity). Besides utility decompositions, our tests confirm the
practical efficiency of ε-dominance on multiobjective prob-
lems, as in [Laumanns et al., 2002; Bazgan et al., 2007;
Perny and Spanjaard, 2008]. Knowing that the size of the
Pareto set can be huge in real-world multiobjective combina-
torial problems, utility decompositions and ε-coverings ap-

pear as key concepts to enhance efficiency of multiobjective
optimization procedures while keeping performance guaran-
tees. The approach proposed here also enables to go be-
yond Pareto optimality, even for non-decomposable prefer-
ence models, provided they refine Pareto dominance. It can
indeed be used to devise preference-based search algorithms
where Pareto dominance is used to prune dominated solutions
or subsolutions during the search.
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