
Fast Recommendations using GAI Models

Jean-Philippe Dubus Christophe Gonzales Patrice Perny
LIP6 - UPMC

104 avenue du président Kennedy, F-75016 Paris
firstname.lastname@lip6.fr

Abstract
This paper deals with Decision-Making in the con-
text of multiattribute utility theory and, more pre-
cisely, with the problem of efficiently determin-
ing the best alternative w.r.t. an agent’s preferences
(choice problem). We assume that alternatives are
elements of a product set of attributes and that the
agent’s preferences are represented by a general-
ized additive decomposable (GAI) utility on this
set. Such a function allows an efficient represen-
tation of interactions between attributes while pre-
serving some decomposability of the model. GAI
utilities can be compiled into graphical structures
called GAI networks that can be exploited to solve
choice problems using collect/distribute schemes
essentially similar to those used in Bayesian net-
works. In this paper, rather than directly using this
scheme on the GAI network for determining the
most preferred alternative, we propose to work with
another GAI function, acting as an upper-bound on
utility values and enhancing the model’s decompos-
ability. This method still provides the exact optimal
solution but speeds up significantly the search. It
proves to be particularly useful when dealing with
choice and ranking under constraints and within
collective Decision-Making, where GAI nets tend
to have a large size. We present an efficient algo-
rithm for determining this new GAI function and
provide experimental results highlighting the prac-
tical efficiency of our procedure.

1 Introduction
Current works in preference modeling and algorithmic de-
cision theory aim at developing compact preference models
achieving a good compromise between descriptive and pre-
scriptive objectives. On the one hand, they aim at proposing
new sophisticated models able to capture the diversity of ob-
served decision making behaviors. On the other hand, the
models are kept as simple as possible to preserve efficiency
both in elicitation and recommendation tasks. This very ac-
tive flow of research is motivated by the increasing need of
decision support systems on the web, to help users in making
decisions among a combinatorial sets of possibilities.

In this context, extensive representation of preferences is
not feasible and decision procedures cannot resort to exhaus-
tive enumerations of options due to the large size of the do-
mains to be explored. In this paper we consider such situa-
tions where the set of items on which recommendations must
be done is all or part of a product set of attributes the size
of which is huge. Current works on this matter include ad-
vances on qualitative preference models (CP-nets [Boutilier
et al., 2004a; 2004b; Brafman et al., 2006]). These are nat-
urally suited to applications in which preferences can easily
be approximated by almost lexicographic rules on attributes
with small domains (e.g. recommender systems to buy books
on the web). However, as observed in [Boutilier et al., 2001],
when a deeper preference investigation is possible, quantita-
tive representations such as utilities can significantly outper-
form qualitative models due to their higher descriptive power.

In the literature, different quantitative models based on
utilities have been developed to take into account different
preference structures. The most popular assumes a special
kind of independence among attributes called “mutual pref-
erential independence”. It ensures that preferences are rep-
resentable by an additive utility [Krantz et al., 1971; Bac-
chus and Grove, 1995]. Such decomposability makes both
the elicitation process and the query optimizations very fast
and simple. However, in practice, it may fail to hold as it rules
out any interaction among attributes. Generalizations have
thus been proposed in the literature to increase the descriptive
power of additive utilities. Among them, multilinear utilities
[Keeney and Raiffa, 1993] and GAI (generalized additive in-
dependence) decompositions [Braziunas and Boutilier, 2005;
Gonzales and Perny, 2004; Bacchus and Grove, 1995] allow
quite general interactions between attributes while preserv-
ing some decomposability. The latter has been used to en-
dow CP-nets with utilities (UCP-nets) [Boutilier et al., 2001;
Brafman et al., 2004].

Studies on GAI utilities have been mainly devoted to their
elicitation [Braziunas and Boutilier, 2005; 2007; Gonzales
and Perny, 2004; 2005], efficient algorithms for answering
queries being similar to those used in the Bayes net or junc-
tion tree community [Jensen et al., 1990; Madsen and Jensen,
1999]. However, queries of interest in GAI-based recom-
mender systems are very special: generally, they consist in
finding the element most preferred by the user (choice prob-
lem), or a list of the top k elements (ranking problem). The

specificities of these queries are not taken into account by
the general junction tree-based methods mentioned above.
This paper proposes a new algorithm that takes advantage
of these particularities, thus significantly increasing the ef-
ficiency of the junction tree-based algorithms. This proves to
be particularly useful when dealing, e.g., with recommenda-
tion tasks under constraints and collective Decision-Making,
where GAI nets tend to have a substantial size.

More precisely, Section 2 recalls the basics of GAI utili-
ties and their graphical counterparts, the so-called GAI net-
works. It also briefly recalls how recommendation tasks can
be performed using these networks. Section 3 shows how
these computations can be significantly sped up by solving a
special ranking task within a secondary sparse GAI structure.
Section 4 presents benchmarks that illustrate the practical ef-
ficiency of our method. Finally, the last section concludes the
paper and suggests some perspectives for future research.

2 GAI-Networks Fundamentals
Throughout the paper, % denotes a decision maker’s (DM)
preference relation (a weak order over some set X). x % y
means that x is at least as good as y. � refers to the asym-
metric part of % and ∼ to the symmetric one. In practice,
X is often described by a set of attributes. For simplicity,
we assume that X is the product set of these attributes do-
mains

∏n
i=1 Xi. The combinatorial nature of X prevents any

recommender system to perform an exhaustive search for de-
termining the best element w.r.t. % and the aim of this paper
is to present an efficient procedure for its computation. Note
that recommendations over subsets Y’s of product set X can
be dealt with simply by imposing that elements y ∈ Y have
low preference levels. In the sequel, bold letters represent
sets of attributes indices, uppercase letters such as A, X1, de-
note attributes and their domains (as this is unambiguous) and
lowercase letters denote their values: x, x1 (resp. xi, x1

i) are
thus values of X (resp. Xi). For any set Y ⊆ {1, . . . , n}, xY

refers to the projection of x ∈ X on
∏

i∈Y Xi.

2.1 GAI-Networks’ Definition
Under mild hypotheses [Debreu, 1964], % is representable by
a utility u : X 7→ R such that x % y ⇔ u(x) ≥ u(y) for all
x, y ∈ X . However, in general, such a function is impractical
because: i) as preferences are specific to each individual, util-
ities must be elicited for each DM, which is impossible due
to the combinatorial nature of X ; and ii) in recommendation
systems with multiple users, storing explicitly for each user
the utility of every x∈X is too prohibitive. Fortunately, DM’s
preferences usually have a structure induced by independen-
cies among attributes that substantially decreases the elicita-
tion burden and the memory needed to store preferences, thus
making the model usable in practice. The simplest case is ob-
tained when preferences are represented by an additive utility
u(x) =

∑n
i=1 ui(xi) for any x = (x1, ..., xn) ∈ X [Wakker,

1989; Keeney and Raiffa, 1993]. This model only requires
to elicit and store ui(xi) for all xi ∈ Xi, i = 1, . . . , n.
However, such a decomposition is not always convenient be-
cause it rules out any interaction between attributes. When
DM’s preferences are more complex, a more elaborate model
is needed as shown next:

Example 1 Consider a recommender system for train tickets
where the set X of possible configurations for a train ticket
is described by three attributes: class x1 ∈ X1 = {first class
(c1

1), second class (c2
1)}; type of car x2 ∈ X2 = {smoking

(s2), smoking-free (s̄2)}; and pricing period x3 ∈ X3 =
{discount period (d3), normal period (n3)}. Suppose that an
individual’s preferences are as follows:

1) I prefer a smoking-free train car to a smoking one;
2) I prefer to travel in first class during the discount period

and in second class during the normal period;
3) Given the option between a second class smoking train

car and a first class smoking-free one, I prefer the latter.
These statements are assumed to be ceteris paribus, i.e. all

else being equal. Such preferences are not representable by a
fully additively decomposable utility because (c1

1, s2, d3) �
(c2

1, s2, d3) ⇒ u1(c1
1) > u1(c2

1) whereas (c2
1, s2, n3) �

(c1
1, s2, n3) ⇒ u1(c2

1) > u1(c1
1). Actually, the additive

decomposition is ruled out by the interactions between at-
tributes X1 and X3 (rule 2). However the DM’s preferences
can be represented by a decomposable utility of the form:
u(x) = u1,2(x1, x2) + u1,3(x1, x3), setting for instance:

u1,2(c1
1,s2)=1; u1,2(c1

1,s̄2)=3; u1,2(c2
1,s2)=2;

u1,2(c2
1,s̄2)=4; u1,3(c1

1,n3)=1; u1,3(c1
1,d3)=2;

u1,3(c2
1,n3)=2; u1,3(c2

1,d3)=1.
Note that CP-nets are also unable to represent compactly

these preferences due to rule 3. �

Such a decomposition over overlapping factors is called a
GAI decomposition [Bacchus and Grove, 1995]. It includes
additive and multilinear decompositions as special cases. It
is also very flexible since it does not make any assumption on
the kind of interactions between attributes. GAI decomposi-
tions can be defined more formally as follows:
Definition 1 (GAI decomposition) Let X =

∏n
i=1 Xi. Let

Z1, . . . ,Zr be some subsets of N = {1, . . . , n} such that
N = ∪r

i=1Zi. For every i, let XZi
=
∏

j∈Zi
Xj . Utility u(·)

representing % is GAI-decomposable w.r.t. the XZi
’s iff there

exist functions ui : XZi
7→ R such that:

u(x) =
∑r

i=1 ui(xZi
), for all x = (x1, . . . , xn) ∈ X ,

where xZi denotes the tuple constituted by the xj’s, j ∈ Zi.
GAI decompositions can be represented by graphical

structures called GAI networks [Gonzales and Perny, 2004]
which are essentially similar to the junction graphs used for
Bayesian networks [Jensen, 1996; Cowell et al., 1999]:
Definition 2 (GAI network) Let X =

∏n
i=1 Xi. Let

Z1, . . . ,Zr be some subsets of N = {1, . . . , n} such that⋃r
i=1 Zi = N. Assume that % is representable by a GAI

utility u(x) =
∑r

i=1 ui(xZi) for all x ∈ X . Then a GAI
network representing u(·) is an undirected graph G = (V, E),
satisfying the following two properties:

1. V = {XZ1 , . . . , XZr
};

2. For every (XZi
, XZj

) ∈ E , Zi ∩ Zj 6= ∅. For every
pair of nodes XZi

, XZj
such that Zi ∩ Zj = Tij 6= ∅,

there exists a path in G linking XZi
and XZj

such that
all of its nodes contain all the indices of Tij (Running
intersection property).

Nodes of V are called cliques. Every edge (XZi , XZj) ∈ E
is labeled by XTij = XZi∩Zj and is called a separator.

Cliques are drawn as ellipses and separators as rectangles.
In this paper, we shall only be interested in GAI trees. As
mentioned in [Gonzales and Perny, 2004], this is not restric-
tive as general GAI networks can always be compiled into
GAI trees. For any GAI decomposition, by Definition 2, the
cliques of the GAI network should be the sets of variables
of the subutilities. For instance, if u(a, b, c, d, e, f, g, h) =
u1(a, b, c)+u2(a, g)+u3(b, d)+u4(b, f)+u5(d, e)+u6(d, h)
then the cliques are: ABC, AG, BD, BF , DE and DH (see
Fig. 1). By Property 2 of Definition 2, the set of edges of a
GAI network can be determined by any algorithm preserving
the running intersection property (see the Bayesian network
literature on this matter [Cowell et al., 1999]). Within the
GAI net, subutilities are stored into their respective clique.

ABC
A

B
B

BF

AG
BD

D DE

DHD

Figure 1: A GAI tree

2.2 Basic Procedures for Choice and Ranking
Finding the optimal choice for the GAI net of Figure 1 is
equivalent to solving:

maxa,b,c,d,e,f,g,h u1(a, b, c) + u2(a, g) + u3(b, d)
+ u4(b, f) + u5(d, e) + u6(d, h).

This can be computed by eliminating variables one by one us-
ing absorption defined below, that is, by maximizing locally
within a clique the subutility stored into it and, then, sending
the result to its neighbors.
Definition 3 (Absorption of clique XCj

by XCi
) Let Sij =

Ci ∩ Cj and Dj = Cj\Sij . Assume that XCi
and XCj

contain respectively utilities ui and uj . Let vij(xSij) =
maxxDj

∈XDj
uj(xSij , xDj) for all xSij ∈XSij . Clique XCi

is said to absorb XCj
if ui is substituted by u′i = ui + vij .

Function Collect(clique XCi)
01 for all cliques XCj adjacent to XCi except, if any, that which

called Collect (XCi) do
02 call Collect (XCj) ; make XCi absorb XCj

After calling Collect on any clique XCi
, the max of the

subutility stored into XCi
clearly corresponds to the value

of the overall utility for the optimal choice. Now, there just
remains to propagate back Argmax’s to get the latter.
Definition 4 (Propagation of xCi

into clique XCj
) Let Sij

= Ci ∩ Cj and Dj = Cj\Sij . Let xCi
∈ XCi

. Assume
that XCj

contains utilitiy uj . xCj
propagates xCi

to XCj
if

xCj
= (xSij

, ArgmaxxDj
∈XDj

uj(xSij
, xDj

)).

Function Instantiate(clique XCi)
01 if Instantiate (XCi) was called from clique XCj

02 then Propagate the argmax’s value of XCj to XCi

03 else let xCi be the argmax of the subutility of XCi

04 for all cliques XCj adjacent to XCi except, if any, that which
called Instantiate (XCi) do call Instantiate (XCj)

Function Optimal choice(GAI-net)
01 Let XC0 be any clique in the GAI-net
02 call Collect (XC0) and, then, Instantiate (XC0)
03 x∗ ← the tuple of the argmax’s computed by Instantiate
04 return the optimal choice x∗

XSij

vij

x∗Sij

XCi
XCj

Figure 2: Absorption (←) and Propagation (→)

As suggested by [Nilsson, 1998] for finding the k most
probable configurations in Bayes nets, determining the k-best
elements in a GAI net can be performed by slightly modify-
ing Instantiate. First, compute the optimal choice x∗.
The next best element differs from x∗ by at least the val-
ues of the attributes of one clique. Assume that this clique
is XC0 , then calling Instantiate (XC0) and preventing
x∗C0

to be chosen leads to the element we look for. Else if
it is a neighbor XCi

of XC0 , then the element we look for
can be found by calling Instantiate (XCi) and i) impos-
ing xCi∩C0 to be equal to x∗Ci∩C0

, and ii) preventing calls
to Instantiate (XC0). The same process can be applied
for all the other cliques. As we do not know actually from
which clique Instantiate should be called to get the el-
ement we look for, we call it from every clique and the sec-
ond best element is, among all those returned by the calls to
Instantiate, that which has the maximal utility value. Of
course, the same scheme can be applied to get the third best
element, and so on till the k-best element. A feature that is
important for our algorithm is that all the heavy computations
are performed during the Collect phase, Instantiate
having no matrix manipulation to do. As a consequence, the
latter is much faster than the former and, even for large k’s,
ranking the k-best elements is not much more time consum-
ing than computing the optimal choice.

3 An Efficient Exact Choice Procedure
Of course, for “small” GAI nets, we cannot expect to speed up
significantly the above ranking and choice procedures. How-
ever, when working on large GAI nets, as is often the case
when hard constraints are added to the network1 or when
dealing with collective decision making, substantial benefits
can be gained using the method described below. The key
idea is to approximate the DM’s GAI utility —call it u— by
another GAI function —call it g— which is much more de-
composable than the former (i.e., the cliques of its GAI tree
are smaller than those of u’s GAI tree), and which acts as
an upper-bound on the DM’s utility values. Being more de-
composable, its GAI net is thus of smaller size and answering
choice and ranking queries can be done quickly. Of course,
as g is only an upper bound on u, the best element for g is cer-
tainly not that for u. However, we show that ranking enough
elements with g, we can extract from these elements the best
element for u. As ranking involves only one Collect phase
followed by multiple Instantiate calls, which are very
light in terms of time consumption, the ranking process with
g significantly outperforms answering a choice query with u.
As we shall see in the next section, this intuition is confirmed
by our experiments.

1Hard constraints can be encoded as additional utilities such that
feasible tuples are assigned utility 0 and infeasible ones utility −∞.

3.1 Fast Exact Choice Using Upper-Bound g

Let u be a GAI function representing relation % on X , and let
g : X 7→ R be a GAI function such that, for all x ∈ X ,
g(x) ≥ u(x). Assume that x1, ..., xk are the k-best ele-
ments on X w.r.t. g. Compute x̂ = Argmaxi=1,...,ku(xi).
If u(x̂) ≥ g(xk), then x̂ is the optimal choice for u. Indeed,
as we rank elements w.r.t. g, for any k′ > k, g(xk′) ≤ g(xk),
and since g(x) ≥ u(x) for all x ∈ X , u(xk′) ≤ g(xk′) ≤
g(xk) ≤ u(x̂). Consequently, the optimal choice for u can be
obtained by ranking elements xi w.r.t. g until the maximum
value of the u(xj)’s for all the xj’s found so far, exceeds the
value of g(xi). Recall that rankings are not much more time
consuming than optimal choice computations. Hence, if the
GAI net related to g is much smaller than that of u, its optimal
choice computation is much faster, and the overall response
time for g’s ranking is much smaller than a direct choice com-
putation using u. Now, the main problem is to find an efficient
way for determining a “good” candidate for g.

3.2 Construction of Upper-Bound Function g

Let X =
∏n

i=1 Xi and let Z1, . . . ,Zr be some subsets of
N = {1, . . . , n} such that N = ∪r

i=1Zi. Consider a GAI
function u =

∑r
i=1 ui, with ui : XZi

7→ R. With-
out additional constraints on the ui’s domains, it may hap-
pen that u’s GAI net is not singly connected. For instance,
if u(A, B,C, D) = u1(A, B) + u2(B, C) + u3(C, D) +
u4(D,A), then the running intersection property requires that
the GAI net contains a loop. But a GAI tree is needed to
apply the preceding section. Hence, before computing opti-
mal choice with u, the latter must be compiled into a GAI
tree. This compilation process is similar that of junction
trees for Bayes nets [Kjærulff, 1990; van den Eijkhof and
Bodlaender, 2002]. First an undirected graph G = (V, E)
is created with V = {X1, . . . , Xn} and E = {(Xi, Xj) :
there exists h such that {i, j} ⊆ Zh}. Next, G is trian-
gulated by eliminating one by one the nodes of V . Each
time a node, say Xi, is eliminated, edges (fill-ins) are added
to G so that Xi’s neighbors form a complete subgraph (a
clique) and, then, Xi and its adjacent edges are removed
from G. [Rose, 1970] guarantees that, whatever the elim-
ination sequence, the cliques thus created can be linked to
form a GAI tree. The compactness of the resulting GAI tree
heavily depends on the sequence chosen. However finding
the best sequence is out of the scope of this paper and the
reader interested may refer for instance to [Kjærulff, 1990;
van den Eijkhof and Bodlaender, 2002].

GAI cliques are thus created during the triangulation pro-
cess. Clearly, the smaller the cliques the faster the choice and
ranking procedures, the size of a clique being the product of
the domain sizes of its attributes [Nilsson, 1998]. To deter-

(c)

ABC

(b)(a) (d)

D

C

BD

ABCD

C

B

A D

C

B

ABC

BD

CD

D
B

C

Figure 3: Constraints on edges deletions

mine a good upper bound function g, we should thus perform
a triangulation that ensures that no clique is too large. As-
sume that, during the triangulation, nodes Xi1 , . . . , Xip

have
already been eliminated and that we are currently eliminat-
ing Xip+1 . If the size of the new clique is above a given
threshold, then we advocate removing some edges adjacent
to Xip+1 in order to reduce the size of the clique. The re-
sulting GAI tree will thus represent an approximation of u.
When removing edges, care should nevertheless be taken in
order to avoid the GAI network to contain loops: consider the
triangulation of function u of the preceding paragraph. At the
beginning, graph G is that of Fig.3.a. Eliminating A results in
the creation of clique ABC and edge (B, C) (Fig. 3.b). Now,
eliminating B creates clique BCD. But if BCD is too large,
we may be willing to remove edge (B, C) to reduce its size.
The resulting clique would be BD. Finally, removing C and
D would create clique CD, thus resulting in the multiply-
connected graph of Fig. 3.d. The problem stems from the fact
that (B, C) is compulsory for A and its neighbors to form
a clique when A is eliminated. Hence, removing (B, C) re-
quires that either B or C be no more a neighbor of A or,
equivalently, that either edge (A, C) or (A, B) be removed
as well. Of course, if A is not the first node eliminated, then
removing edge (A, C) or (A, B) adds similar constraints on
edges involved in previous node eliminations. Fortunately, all
these constraints can be organized as a set of linear inequali-
ties: assume we eliminate Xi and that Xj and Xk are neigh-
bors of Xi; consider inequality eij + eik ≥ ejk, where eij ,
eik, ejk are Booleans equal to 1 iff their corresponding edge
((Xi, Xj), (Xi, Xk) or (Xj , Xk)) is removed. Then, obvi-
ously the edge linking Xi’s neighbors, i.e., (Xj , Xk), can be
removed only if either (Xi, Xj) or (Xi, Xk) is removed as
well. Our system of inequalities is thus constructed incre-
mentally each time a node elimination is performed, adding
a new inequality for each pair of nodes adjacent to the one
eliminated. Each time we wish to compel an edge removal,
we just add to the system that the corresponding Boolean is
equal to 1. Clearly, any solution of this system will lead to a
triangulated graph and, consequently, to a GAI tree.

Of course, removing an edge from the triangulated graph
has a cost: that of approximating the original function u by
another function g. As a result, the more the discrepancy be-
tween u and g, the higher the number of elements required
to be ranked with g. Hence, in addition to our system of in-
equalities, we should add a cost function measuring how far
apart g is from u. Consider a subutility ui : XZi

7→ R of
u. In the GAI graph of u, XZi

forms a clique. Assume we
remove from this clique some edges, hence resulting in m
smaller cliques XCj

, each one representing a function, say
gj : XCj

7→ R. Then, ui is approximated by
∑m

j=1 gj . In
this paper, the discrepancy measure we chose between ui and∑m

j=1 gj is simply:
∑

xZi
∈XZi

|
∑m

j=1 gj(xCj) − ui(xZi)|.
Hence we should find some functions gj’s minimizing this
measure while approximating ui from above. So we should
solve the following linear program whose variables are the
values of the gj(xCj)’s for all xCj ∈ XCj :

min{values gj(xCj
)}
∑

xZi
∈XZi

[
∑m

j=1 gj(xCj
)]− ui(xZi

)
s.t.

∑m
j=1 gj(xCj

) ≥ ui(xZi
), for all xZi

∈ XZi
.

(1)

 10000

 0.01

 0.1

 1

 10

 100

 1000

 1000 10000 100000 1e+06 1e+07 1e+08

 0.01

 0.1

 1

 10

 100

 1000

 10000

 1000 10000 100000 1e+06 1e+07 1e+08 1e+09 1e+10

Classical choice algorithm
Our algorithm

Mini-bucket
Our algorithm

time (seconds) time (seconds)

P
cliques’ sizes

P
cliques’ sizes

Figure 4: Comparisons with the classical choice algorithm (left) and with Mini-bucket Branch and Bound (right)

Usually, the original GAI subutilities ui’s do not contain
many attributes, so optimal gj’s functions can be computed
quickly as a preprocess for any subset of edges of cliques
XZi ’s. Now, when removing a given set of edges, the set of
linear inequalities described in the preceding paragraph can
be used to compute which additional edges need be removed
to prevent loops in the resulting GAI graph and, using the
gj’s computed in (1), the discrepancy between u and g can
be measured. This guides us in selecting, at each node elim-
ination step, the right set of edges to be removed in order to
minimize the discrepancy between u and g while preventing
cliques sizes to be greater than a given value. Actually, this
minimization problem can be completely specified as a linear
program with Boolean variables.

3.3 Practical Determination of Function g

In practice, the above method involves solving many lin-
ear programs of type (1): one for each set of edges se-
lected to be removed at each node elimination step. Fortu-
nately, this process can be significantly sped-up by approx-
imating the discrepancy measure. The objective function in
(1) actually measures the gap between u and g for a given
set S of removed edges. If we approximate this measure
by the sum of the discrepancies induced separately by each
edge in S, then it can be estimated using dynamic program-
ming techniques. Consider a clique XZi

of the original GAI
function from which we have removed p edges (Xjt , Xkt),
t ∈ {1, . . . , p}. Instead of using (1) as the discrepancy mea-
sure, for each removed edge (Xjt , Xkt), compute the discrep-
ancy measure in the case where only this edge is removed,
i.e., djtkt

= min{values of ht,ft}
∑

xZi
∈XZi

ht(xZi\{jt}) +
ft(xZi\{kt})−ui(xZi

), where ht + ft approximates ui from
above, and ht (resp. ft) is defined on clique XZi

without node
Xjt

(resp Xkt
). We then estimate the discrepancy between u

and its approximation g when all the p edges (Xjt
, Xkt

)’s
have been removed as

∑p
t=1 djtkt

. As such, to each edge of
the graph being triangulated can be attached its djtkt value,
computed once and for all. During triangulation, if the clique
resulting from a node elimination is too large, the edges to be
removed to reduce its size can thus be determined minimizing∑

djkejk under the constraints of the type eij + eik ≥ ejk

described above, where the ejk’s are the Booleans indicating
whether edge (Xj , Xk) is deleted. When djk is taken into
account in this objective function to be minimized, ejk = 1,
which implies that either eij = 1 or eik = 1. Hence, the re-

sulting graph is triangulated.
∑

djkejk can be approximated
from above using dynamic programming by defining:

Djk =
{

djk if there exists no constraint eij + eik ≥ ejk

djk +
∑

i min{Dij , Dik} otherwise.

Djk actually approximates from above
∑

djkejk as it selects
between edges (Xi, Xj) and (Xi, Xk) that which seems, lo-
cally, to minimize the discrepancy between u and its approx-
imation. The dynamic programming nature of Djk makes it
computable incrementally very quickly during triangulation
and avoids needing to solve any Boolean linear program. This
is the very process we used in our experiments to determine
the GAI tree of the upper-bound function g. It enables a fast
computation of this tree and, as we shall see in the next sec-
tion, its result significantly speeds up the computation of the
most preferred element w.r.t. the original GAI utility.

4 Experimentations
To evaluate the performance of our method in practice, we
chose to compare it with the basic GAI net’ choice algo-
rithm [Gonzales and Perny, 2005] as well as with an adap-
tation of Mini-Buckets Branch and Bound to GAI networks
[Kask and Dechter, 1999]. We performed two different sets of
experiments, the difference lying in the maximal number of
attributes of product set X : for comparisons with the clas-
sical choice algorithm, X had up to 20 attributes whereas
for comparisons with mini-buckets, it could contain up to 40
attributes (in this case, X could have up to 100 trillion el-
ements). In each experiment, attributes’ domain sizes have
been chosen randomly between 3 and 5, and GAI subutilities
ui’s have been created randomly, with values drawn between
0 and 1000. Fig. 4 summarizes the results of 20000 choice
experiments: the X-axis represents the sum of the sizes of the
cliques in the GAI net (the size of a clique being the product
of the domain sizes of its attributes), whereas the Y-axis rep-
resents the response times (in seconds) for solving the choice
problem. Note that scales are logarithmic. As expected, when
cliques’ sizes are large, our algorithm clearly outperforms
both the classical algorithm and Mini-Buckets B&B. Actu-
ally, experimentally, it tends to be exponentially faster than
the classical algorithm. When cliques are small, i.e., their
size is smaller than 107, the resolution times of the linear pro-
grams used in our method cancel the gain induced by using
g’s network instead of that of u. Note that, even if the sizes of
the subutilities representing the DM’s preferences are small,

the addition of subutilities representing hard constraints may
result in GAI trees with large cliques.

5 Conclusion
We showed in this paper that approximating a GAI utility
by an appropriate more decomposable function acting as an
upper-bound significantly speeds-up the exact determination
of optimal tuples. Besides this direct application, this tech-
nique will probably also open new possibilities in solving
utility-based search problems under constraints. Indeed fea-
sibility constraints can easily be incorporated in a GAI-utility
maximization problem, under the form of additional GAI fac-
tors. Such factors model new dependencies that might induce,
after triangulation of the Markov graph, a significant increase
in the size of cliques, with a drastic impact on computation
times. Similarly, in collective decision making on combina-
torial domains, it might be useful to optimize a multiagent
GAI utility function defined as the sum of individual GAI
utilities. Since individuals may have different value systems,
it may happen that the independence structure significantly
varies from an individual to another, thus multiplying the GAI
factors of the utility function. In both cases, the possibility of
approximating the utility function so as to add artificial de-
compositions of cliques will significantly speed-up resolution
times without departing from optimality, and will increase the
size of the problems solved.

For future research, different approximating schemes seem
quite promising. In particular, alternative criteria for decid-
ing whether a clique need be approximated should further en-
hance the efficiency of our approach.

References
[Bacchus and Grove, 1995] F Bacchus and A Grove. Graph-

ical models for preference and utility. In UAI, 1995.

[Boutilier et al., 2001] C Boutilier, F Bacchus, and R Braf-
man. UCP-networks; a directed graphical representation
of conditional utilities. In UAI, 2001.

[Boutilier et al., 2004a] C Boutilier, R Brafman, C Domsh-
lak, H Hoos, and D Poole. CP-nets: A tool for representing
and reasoning with conditional ceteris paribus preference
statements. Journal of A.I. Research, 21:135–191, 2004.

[Boutilier et al., 2004b] C Boutilier, R Brafman, C Domsh-
lak, H Hoos, and D Poole. Preference-based constraint
optimization with CP-nets. Computational Intelligence,
20, 2004.

[Brafman et al., 2004] R Brafman, C Domshlak, and T Ko-
gan. On generalized additive value-function decomposi-
tion. In UAI, 2004.

[Brafman et al., 2006] R Brafman, C Domshlak, and S Shi-
mony. On graphical modeling of preference and impor-
tance. Journal of A.I. Research, 25:389–424, 2006.

[Braziunas and Boutilier, 2005] D Braziunas and
C Boutilier. Local utility elicitation in GAI models.
In UAI, 2005.

[Braziunas and Boutilier, 2007] D Braziunas and
C Boutilier. Minimax regret-based elicitation of
generalized additive utilities. In UAI, pages 25–32, 2007.

[Cowell et al., 1999] R Cowell, A Dawid, S Lauritzen, and
D Spiegelhalter. Probabilistic Networks and Expert Sys-
tems. Statistics for Engineering and Information Science.
Springer, 1999.

[Debreu, 1964] G Debreu. Continuity properties of paretian
utility. International Economic Review, 5:285–293, 1964.

[Gonzales and Perny, 2004] C Gonzales and P Perny. GAI
networks for utility elicitation. In KR, pages 224–234,
2004.

[Gonzales and Perny, 2005] C Gonzales and P Perny. GAI
networks for decision making under certainty. In IJCAI’05
– Workshop on Advances in Preference Handling, pages
100–105, 2005.

[Jensen et al., 1990] F.V. Jensen, S.L. Lauritzen, and K.G.
Olesen. Bayesian updating in causal probabilistic net-
works by local computations. Computational Statistics
Quarterly, 4:269–282, 1990.

[Jensen, 1996] F Jensen. An introduction to Bayesian Net-
works. Taylor and Francis, 1996.

[Kask and Dechter, 1999] K Kask and R Dechter. Branch
and bound with mini-bucket heuristics. In Proc. of IJCAI,
1999.

[Keeney and Raiffa, 1993] Ralph L Keeney and Howard
Raiffa. Decisions with Multiple Objectives - Preferences
and Value Tradeoffs. Cambridge University Press, 1993.

[Kjærulff, 1990] U. Kjærulff. Triangulation of graphs — al-
gorithms giving small total state space. Technical Report
R-90-09, Dept. of Maths and Computer Science, Aalborg
University, 1990.

[Krantz et al., 1971] D Krantz, R D Luce, P Suppes, and
A Tversky. Foundations of Measurement (Additive and
Polynomial Representations), volume 1. Academic Press,
1971.

[Madsen and Jensen, 1999] A.L. Madsen and F.V. Jensen.
LAZY propagation: A junction tree inference algorithm
based on lazy inference. Artificial Intelligence, 113(1–
2):203–245, 1999.

[Nilsson, 1998] D Nilsson. An efficient algorithm for finding
the M most probable configurations in probabilistic expert
systems. Statistics and Computing, 8(2):159–173, 1998.

[Rose, 1970] D.J. Rose. Triangulated graphs and the elim-
ination process. J. Math. Analysis and Applications,
32:597–609, 1970.

[van den Eijkhof and Bodlaender, 2002] F. van den Eijkhof
and H. L. Bodlaender. Safe reduction rules for weighted
treewidth. In Proc of the 28th International Workshop on
Graph-Theoretic Concepts in Computer Science, volume
2573 of LNCS, pages 176–185. Springer, 2002.

[Wakker, 1989] P Wakker. Additive Representations of Pref-
erences, A New Foundation of Decision Analysis. Kluwer,
1989.

